Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6] / drivers / isdn / hardware / mISDN / hfcpci.c
1 /*
2  *
3  * hfcpci.c     low level driver for CCD's hfc-pci based cards
4  *
5  * Author     Werner Cornelius (werner@isdn4linux.de)
6  *            based on existing driver for CCD hfc ISA cards
7  *            type approval valid for HFC-S PCI A based card
8  *
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module options:
27  *
28  * debug:
29  *      NOTE: only one poll value must be given for all cards
30  *      See hfc_pci.h for debug flags.
31  *
32  * poll:
33  *      NOTE: only one poll value must be given for all cards
34  *      Give the number of samples for each fifo process.
35  *      By default 128 is used. Decrease to reduce delay, increase to
36  *      reduce cpu load. If unsure, don't mess with it!
37  *      A value of 128 will use controller's interrupt. Other values will
38  *      use kernel timer, because the controller will not allow lower values
39  *      than 128.
40  *      Also note that the value depends on the kernel timer frequency.
41  *      If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42  *      If the kernel uses 100 Hz, steps of 80 samples are possible.
43  *      If the kernel uses 300 Hz, steps of about 26 samples are possible.
44  *
45  */
46
47 #include <linux/module.h>
48 #include <linux/pci.h>
49 #include <linux/delay.h>
50 #include <linux/mISDNhw.h>
51
52 #include "hfc_pci.h"
53
54 static const char *hfcpci_revision = "2.0";
55
56 static int HFC_cnt;
57 static uint debug;
58 static uint poll, tics;
59 static struct timer_list hfc_tl;
60 static unsigned long hfc_jiffies;
61
62 MODULE_AUTHOR("Karsten Keil");
63 MODULE_LICENSE("GPL");
64 module_param(debug, uint, S_IRUGO | S_IWUSR);
65 module_param(poll, uint, S_IRUGO | S_IWUSR);
66
67 enum {
68         HFC_CCD_2BD0,
69         HFC_CCD_B000,
70         HFC_CCD_B006,
71         HFC_CCD_B007,
72         HFC_CCD_B008,
73         HFC_CCD_B009,
74         HFC_CCD_B00A,
75         HFC_CCD_B00B,
76         HFC_CCD_B00C,
77         HFC_CCD_B100,
78         HFC_CCD_B700,
79         HFC_CCD_B701,
80         HFC_ASUS_0675,
81         HFC_BERKOM_A1T,
82         HFC_BERKOM_TCONCEPT,
83         HFC_ANIGMA_MC145575,
84         HFC_ZOLTRIX_2BD0,
85         HFC_DIGI_DF_M_IOM2_E,
86         HFC_DIGI_DF_M_E,
87         HFC_DIGI_DF_M_IOM2_A,
88         HFC_DIGI_DF_M_A,
89         HFC_ABOCOM_2BD1,
90         HFC_SITECOM_DC105V2,
91 };
92
93 struct hfcPCI_hw {
94         unsigned char           cirm;
95         unsigned char           ctmt;
96         unsigned char           clkdel;
97         unsigned char           states;
98         unsigned char           conn;
99         unsigned char           mst_m;
100         unsigned char           int_m1;
101         unsigned char           int_m2;
102         unsigned char           sctrl;
103         unsigned char           sctrl_r;
104         unsigned char           sctrl_e;
105         unsigned char           trm;
106         unsigned char           fifo_en;
107         unsigned char           bswapped;
108         unsigned char           protocol;
109         int                     nt_timer;
110         unsigned char __iomem   *pci_io; /* start of PCI IO memory */
111         dma_addr_t              dmahandle;
112         void                    *fifos; /* FIFO memory */
113         int                     last_bfifo_cnt[2];
114             /* marker saving last b-fifo frame count */
115         struct timer_list       timer;
116 };
117
118 #define HFC_CFG_MASTER          1
119 #define HFC_CFG_SLAVE           2
120 #define HFC_CFG_PCM             3
121 #define HFC_CFG_2HFC            4
122 #define HFC_CFG_SLAVEHFC        5
123 #define HFC_CFG_NEG_F0          6
124 #define HFC_CFG_SW_DD_DU        7
125
126 #define FLG_HFC_TIMER_T1        16
127 #define FLG_HFC_TIMER_T3        17
128
129 #define NT_T1_COUNT     1120    /* number of 3.125ms interrupts (3.5s) */
130 #define NT_T3_COUNT     31      /* number of 3.125ms interrupts (97 ms) */
131 #define CLKDEL_TE       0x0e    /* CLKDEL in TE mode */
132 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode */
133
134
135 struct hfc_pci {
136         u_char                  subtype;
137         u_char                  chanlimit;
138         u_char                  initdone;
139         u_long                  cfg;
140         u_int                   irq;
141         u_int                   irqcnt;
142         struct pci_dev          *pdev;
143         struct hfcPCI_hw        hw;
144         spinlock_t              lock;   /* card lock */
145         struct dchannel         dch;
146         struct bchannel         bch[2];
147 };
148
149 /* Interface functions */
150 static void
151 enable_hwirq(struct hfc_pci *hc)
152 {
153         hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
154         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
155 }
156
157 static void
158 disable_hwirq(struct hfc_pci *hc)
159 {
160         hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
161         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
162 }
163
164 /*
165  * free hardware resources used by driver
166  */
167 static void
168 release_io_hfcpci(struct hfc_pci *hc)
169 {
170         /* disable memory mapped ports + busmaster */
171         pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
172         del_timer(&hc->hw.timer);
173         pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
174         iounmap(hc->hw.pci_io);
175 }
176
177 /*
178  * set mode (NT or TE)
179  */
180 static void
181 hfcpci_setmode(struct hfc_pci *hc)
182 {
183         if (hc->hw.protocol == ISDN_P_NT_S0) {
184                 hc->hw.clkdel = CLKDEL_NT;      /* ST-Bit delay for NT-Mode */
185                 hc->hw.sctrl |= SCTRL_MODE_NT;  /* NT-MODE */
186                 hc->hw.states = 1;              /* G1 */
187         } else {
188                 hc->hw.clkdel = CLKDEL_TE;      /* ST-Bit delay for TE-Mode */
189                 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
190                 hc->hw.states = 2;              /* F2 */
191         }
192         Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
193         Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
194         udelay(10);
195         Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
196         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
197 }
198
199 /*
200  * function called to reset the HFC PCI chip. A complete software reset of chip
201  * and fifos is done.
202  */
203 static void
204 reset_hfcpci(struct hfc_pci *hc)
205 {
206         u_char  val;
207         int     cnt = 0;
208
209         printk(KERN_DEBUG "reset_hfcpci: entered\n");
210         val = Read_hfc(hc, HFCPCI_CHIP_ID);
211         printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
212         /* enable memory mapped ports, disable busmaster */
213         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
214         disable_hwirq(hc);
215         /* enable memory ports + busmaster */
216         pci_write_config_word(hc->pdev, PCI_COMMAND,
217             PCI_ENA_MEMIO + PCI_ENA_MASTER);
218         val = Read_hfc(hc, HFCPCI_STATUS);
219         printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
220         hc->hw.cirm = HFCPCI_RESET;     /* Reset On */
221         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
222         set_current_state(TASK_UNINTERRUPTIBLE);
223         mdelay(10);                     /* Timeout 10ms */
224         hc->hw.cirm = 0;                /* Reset Off */
225         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
226         val = Read_hfc(hc, HFCPCI_STATUS);
227         printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
228         while (cnt < 50000) { /* max 50000 us */
229                 udelay(5);
230                 cnt += 5;
231                 val = Read_hfc(hc, HFCPCI_STATUS);
232                 if (!(val & 2))
233                         break;
234         }
235         printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
236
237         hc->hw.fifo_en = 0x30;  /* only D fifos enabled */
238
239         hc->hw.bswapped = 0;    /* no exchange */
240         hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
241         hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
242         hc->hw.sctrl = 0x40;    /* set tx_lo mode, error in datasheet ! */
243         hc->hw.sctrl_r = 0;
244         hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;     /* S/T Auto awake */
245         hc->hw.mst_m = 0;
246         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
247                 hc->hw.mst_m |= HFCPCI_MASTER;  /* HFC Master Mode */
248         if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
249                 hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
250         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
251         Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
252         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
253         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
254
255         hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
256             HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
257         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
258
259         /* Clear already pending ints */
260         val = Read_hfc(hc, HFCPCI_INT_S1);
261
262         /* set NT/TE mode */
263         hfcpci_setmode(hc);
264
265         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
266         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
267
268         /*
269          * Init GCI/IOM2 in master mode
270          * Slots 0 and 1 are set for B-chan 1 and 2
271          * D- and monitor/CI channel are not enabled
272          * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
273          * STIO2 is used as data input, B1+B2 from IOM->ST
274          * ST B-channel send disabled -> continous 1s
275          * The IOM slots are always enabled
276          */
277         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
278                 /* set data flow directions: connect B1,B2: HFC to/from PCM */
279                 hc->hw.conn = 0x09;
280         } else {
281                 hc->hw.conn = 0x36;     /* set data flow directions */
282                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
283                         Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
284                         Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
285                         Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
286                         Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
287                 } else {
288                         Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
289                         Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
290                         Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
291                         Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
292                 }
293         }
294         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
295         val = Read_hfc(hc, HFCPCI_INT_S2);
296 }
297
298 /*
299  * Timer function called when kernel timer expires
300  */
301 static void
302 hfcpci_Timer(struct hfc_pci *hc)
303 {
304         hc->hw.timer.expires = jiffies + 75;
305         /* WD RESET */
306 /*
307  *      WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
308  *      add_timer(&hc->hw.timer);
309  */
310 }
311
312
313 /*
314  * select a b-channel entry matching and active
315  */
316 static struct bchannel *
317 Sel_BCS(struct hfc_pci *hc, int channel)
318 {
319         if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
320                 (hc->bch[0].nr & channel))
321                 return &hc->bch[0];
322         else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
323                 (hc->bch[1].nr & channel))
324                 return &hc->bch[1];
325         else
326                 return NULL;
327 }
328
329 /*
330  * clear the desired B-channel rx fifo
331  */
332 static void
333 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
334 {
335         u_char          fifo_state;
336         struct bzfifo   *bzr;
337
338         if (fifo) {
339                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
340                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
341         } else {
342                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
343                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
344         }
345         if (fifo_state)
346                 hc->hw.fifo_en ^= fifo_state;
347         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
348         hc->hw.last_bfifo_cnt[fifo] = 0;
349         bzr->f1 = MAX_B_FRAMES;
350         bzr->f2 = bzr->f1;      /* init F pointers to remain constant */
351         bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
352         bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
353             le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
354         if (fifo_state)
355                 hc->hw.fifo_en |= fifo_state;
356         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
357 }
358
359 /*
360  * clear the desired B-channel tx fifo
361  */
362 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
363 {
364         u_char          fifo_state;
365         struct bzfifo   *bzt;
366
367         if (fifo) {
368                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
369                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
370         } else {
371                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
372                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
373         }
374         if (fifo_state)
375                 hc->hw.fifo_en ^= fifo_state;
376         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
377         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
378                 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
379                     "z1(%x) z2(%x) state(%x)\n",
380                     fifo, bzt->f1, bzt->f2,
381                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
382                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
383                     fifo_state);
384         bzt->f2 = MAX_B_FRAMES;
385         bzt->f1 = bzt->f2;      /* init F pointers to remain constant */
386         bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
387         bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
388         if (fifo_state)
389                 hc->hw.fifo_en |= fifo_state;
390         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
391         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
392                 printk(KERN_DEBUG
393                     "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
394                     fifo, bzt->f1, bzt->f2,
395                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
396                     le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
397 }
398
399 /*
400  * read a complete B-frame out of the buffer
401  */
402 static void
403 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
404     u_char *bdata, int count)
405 {
406         u_char          *ptr, *ptr1, new_f2;
407         int             total, maxlen, new_z2;
408         struct zt       *zp;
409
410         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
411                 printk(KERN_DEBUG "hfcpci_empty_fifo\n");
412         zp = &bz->za[bz->f2];   /* point to Z-Regs */
413         new_z2 = le16_to_cpu(zp->z2) + count;   /* new position in fifo */
414         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
415                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
416         new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
417         if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
418             (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
419                 if (bch->debug & DEBUG_HW)
420                         printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
421                             "invalid length %d or crc\n", count);
422 #ifdef ERROR_STATISTIC
423                 bch->err_inv++;
424 #endif
425                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
426                 bz->f2 = new_f2;        /* next buffer */
427         } else {
428                 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
429                 if (!bch->rx_skb) {
430                         printk(KERN_WARNING "HFCPCI: receive out of memory\n");
431                         return;
432                 }
433                 total = count;
434                 count -= 3;
435                 ptr = skb_put(bch->rx_skb, count);
436
437                 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
438                         maxlen = count;         /* complete transfer */
439                 else
440                         maxlen = B_FIFO_SIZE + B_SUB_VAL -
441                             le16_to_cpu(zp->z2);        /* maximum */
442
443                 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
444                     /* start of data */
445                 memcpy(ptr, ptr1, maxlen);      /* copy data */
446                 count -= maxlen;
447
448                 if (count) {    /* rest remaining */
449                         ptr += maxlen;
450                         ptr1 = bdata;   /* start of buffer */
451                         memcpy(ptr, ptr1, count);       /* rest */
452                 }
453                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
454                 bz->f2 = new_f2;        /* next buffer */
455                 recv_Bchannel(bch, MISDN_ID_ANY);
456         }
457 }
458
459 /*
460  * D-channel receive procedure
461  */
462 static int
463 receive_dmsg(struct hfc_pci *hc)
464 {
465         struct dchannel *dch = &hc->dch;
466         int             maxlen;
467         int             rcnt, total;
468         int             count = 5;
469         u_char          *ptr, *ptr1;
470         struct dfifo    *df;
471         struct zt       *zp;
472
473         df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
474         while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
475                 zp = &df->za[df->f2 & D_FREG_MASK];
476                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
477                 if (rcnt < 0)
478                         rcnt += D_FIFO_SIZE;
479                 rcnt++;
480                 if (dch->debug & DEBUG_HW_DCHANNEL)
481                         printk(KERN_DEBUG
482                             "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
483                                 df->f1, df->f2,
484                                 le16_to_cpu(zp->z1),
485                                 le16_to_cpu(zp->z2),
486                                 rcnt);
487
488                 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
489                     (df->data[le16_to_cpu(zp->z1)])) {
490                         if (dch->debug & DEBUG_HW)
491                                 printk(KERN_DEBUG
492                                     "empty_fifo hfcpci paket inv. len "
493                                     "%d or crc %d\n",
494                                     rcnt,
495                                     df->data[le16_to_cpu(zp->z1)]);
496 #ifdef ERROR_STATISTIC
497                         cs->err_rx++;
498 #endif
499                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
500                             (MAX_D_FRAMES + 1); /* next buffer */
501                         df->za[df->f2 & D_FREG_MASK].z2 =
502                             cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
503                             (D_FIFO_SIZE - 1));
504                 } else {
505                         dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
506                         if (!dch->rx_skb) {
507                                 printk(KERN_WARNING
508                                     "HFC-PCI: D receive out of memory\n");
509                                 break;
510                         }
511                         total = rcnt;
512                         rcnt -= 3;
513                         ptr = skb_put(dch->rx_skb, rcnt);
514
515                         if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
516                                 maxlen = rcnt;  /* complete transfer */
517                         else
518                                 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
519                                     /* maximum */
520
521                         ptr1 = df->data + le16_to_cpu(zp->z2);
522                             /* start of data */
523                         memcpy(ptr, ptr1, maxlen);      /* copy data */
524                         rcnt -= maxlen;
525
526                         if (rcnt) {     /* rest remaining */
527                                 ptr += maxlen;
528                                 ptr1 = df->data;        /* start of buffer */
529                                 memcpy(ptr, ptr1, rcnt);        /* rest */
530                         }
531                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
532                             (MAX_D_FRAMES + 1); /* next buffer */
533                         df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
534                             le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
535                         recv_Dchannel(dch);
536                 }
537         }
538         return 1;
539 }
540
541 /*
542  * check for transparent receive data and read max one 'poll' size if avail
543  */
544 static void
545 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
546         struct bzfifo *txbz, u_char *bdata)
547 {
548          __le16 *z1r, *z2r, *z1t, *z2t;
549         int     new_z2, fcnt_rx, fcnt_tx, maxlen;
550         u_char  *ptr, *ptr1;
551
552         z1r = &rxbz->za[MAX_B_FRAMES].z1;       /* pointer to z reg */
553         z2r = z1r + 1;
554         z1t = &txbz->za[MAX_B_FRAMES].z1;
555         z2t = z1t + 1;
556
557         fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
558         if (!fcnt_rx)
559                 return; /* no data avail */
560
561         if (fcnt_rx <= 0)
562                 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
563         new_z2 = le16_to_cpu(*z2r) + fcnt_rx;   /* new position in fifo */
564         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
565                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
566
567         if (fcnt_rx > MAX_DATA_SIZE) {  /* flush, if oversized */
568                 *z2r = cpu_to_le16(new_z2);             /* new position */
569                 return;
570         }
571
572         fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
573         if (fcnt_tx <= 0)
574                 fcnt_tx += B_FIFO_SIZE;
575                     /* fcnt_tx contains available bytes in tx-fifo */
576         fcnt_tx = B_FIFO_SIZE - fcnt_tx;
577                     /* remaining bytes to send (bytes in tx-fifo) */
578
579         bch->rx_skb = mI_alloc_skb(fcnt_rx, GFP_ATOMIC);
580         if (bch->rx_skb) {
581                 ptr = skb_put(bch->rx_skb, fcnt_rx);
582                 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
583                         maxlen = fcnt_rx;       /* complete transfer */
584                 else
585                         maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
586                             /* maximum */
587
588                 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
589                     /* start of data */
590                 memcpy(ptr, ptr1, maxlen);      /* copy data */
591                 fcnt_rx -= maxlen;
592
593                 if (fcnt_rx) {  /* rest remaining */
594                         ptr += maxlen;
595                         ptr1 = bdata;   /* start of buffer */
596                         memcpy(ptr, ptr1, fcnt_rx);     /* rest */
597                 }
598                 recv_Bchannel(bch, fcnt_tx); /* bch, id */
599         } else
600                 printk(KERN_WARNING "HFCPCI: receive out of memory\n");
601
602         *z2r = cpu_to_le16(new_z2);             /* new position */
603 }
604
605 /*
606  * B-channel main receive routine
607  */
608 static void
609 main_rec_hfcpci(struct bchannel *bch)
610 {
611         struct hfc_pci  *hc = bch->hw;
612         int             rcnt, real_fifo;
613         int             receive = 0, count = 5;
614         struct bzfifo   *txbz, *rxbz;
615         u_char          *bdata;
616         struct zt       *zp;
617
618         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
619                 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
620                 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
621                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
622                 real_fifo = 1;
623         } else {
624                 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
625                 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
626                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
627                 real_fifo = 0;
628         }
629 Begin:
630         count--;
631         if (rxbz->f1 != rxbz->f2) {
632                 if (bch->debug & DEBUG_HW_BCHANNEL)
633                         printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
634                             bch->nr, rxbz->f1, rxbz->f2);
635                 zp = &rxbz->za[rxbz->f2];
636
637                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
638                 if (rcnt < 0)
639                         rcnt += B_FIFO_SIZE;
640                 rcnt++;
641                 if (bch->debug & DEBUG_HW_BCHANNEL)
642                         printk(KERN_DEBUG
643                             "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
644                             bch->nr, le16_to_cpu(zp->z1),
645                             le16_to_cpu(zp->z2), rcnt);
646                 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
647                 rcnt = rxbz->f1 - rxbz->f2;
648                 if (rcnt < 0)
649                         rcnt += MAX_B_FRAMES + 1;
650                 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
651                         rcnt = 0;
652                         hfcpci_clear_fifo_rx(hc, real_fifo);
653                 }
654                 hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
655                 if (rcnt > 1)
656                         receive = 1;
657                 else
658                         receive = 0;
659         } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
660                 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
661                 return;
662         } else
663                 receive = 0;
664         if (count && receive)
665                 goto Begin;
666
667 }
668
669 /*
670  * D-channel send routine
671  */
672 static void
673 hfcpci_fill_dfifo(struct hfc_pci *hc)
674 {
675         struct dchannel *dch = &hc->dch;
676         int             fcnt;
677         int             count, new_z1, maxlen;
678         struct dfifo    *df;
679         u_char          *src, *dst, new_f1;
680
681         if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
682                 printk(KERN_DEBUG "%s\n", __func__);
683
684         if (!dch->tx_skb)
685                 return;
686         count = dch->tx_skb->len - dch->tx_idx;
687         if (count <= 0)
688                 return;
689         df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
690
691         if (dch->debug & DEBUG_HW_DFIFO)
692                 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
693                     df->f1, df->f2,
694                     le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
695         fcnt = df->f1 - df->f2; /* frame count actually buffered */
696         if (fcnt < 0)
697                 fcnt += (MAX_D_FRAMES + 1);     /* if wrap around */
698         if (fcnt > (MAX_D_FRAMES - 1)) {
699                 if (dch->debug & DEBUG_HW_DCHANNEL)
700                         printk(KERN_DEBUG
701                             "hfcpci_fill_Dfifo more as 14 frames\n");
702 #ifdef ERROR_STATISTIC
703                 cs->err_tx++;
704 #endif
705                 return;
706         }
707         /* now determine free bytes in FIFO buffer */
708         maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
709             le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
710         if (maxlen <= 0)
711                 maxlen += D_FIFO_SIZE;  /* count now contains available bytes */
712
713         if (dch->debug & DEBUG_HW_DCHANNEL)
714                 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
715                         count, maxlen);
716         if (count > maxlen) {
717                 if (dch->debug & DEBUG_HW_DCHANNEL)
718                         printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
719                 return;
720         }
721         new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
722             (D_FIFO_SIZE - 1);
723         new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
724         src = dch->tx_skb->data + dch->tx_idx;  /* source pointer */
725         dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
726         maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
727             /* end fifo */
728         if (maxlen > count)
729                 maxlen = count; /* limit size */
730         memcpy(dst, src, maxlen);       /* first copy */
731
732         count -= maxlen;        /* remaining bytes */
733         if (count) {
734                 dst = df->data; /* start of buffer */
735                 src += maxlen;  /* new position */
736                 memcpy(dst, src, count);
737         }
738         df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
739             /* for next buffer */
740         df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
741             /* new pos actual buffer */
742         df->f1 = new_f1;        /* next frame */
743         dch->tx_idx = dch->tx_skb->len;
744 }
745
746 /*
747  * B-channel send routine
748  */
749 static void
750 hfcpci_fill_fifo(struct bchannel *bch)
751 {
752         struct hfc_pci  *hc = bch->hw;
753         int             maxlen, fcnt;
754         int             count, new_z1;
755         struct bzfifo   *bz;
756         u_char          *bdata;
757         u_char          new_f1, *src, *dst;
758         __le16 *z1t, *z2t;
759
760         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
761                 printk(KERN_DEBUG "%s\n", __func__);
762         if ((!bch->tx_skb) || bch->tx_skb->len <= 0)
763                 return;
764         count = bch->tx_skb->len - bch->tx_idx;
765         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
766                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
767                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
768         } else {
769                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
770                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
771         }
772
773         if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
774                 z1t = &bz->za[MAX_B_FRAMES].z1;
775                 z2t = z1t + 1;
776                 if (bch->debug & DEBUG_HW_BCHANNEL)
777                         printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
778                             "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
779                             le16_to_cpu(*z1t), le16_to_cpu(*z2t));
780                 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
781                 if (fcnt <= 0)
782                         fcnt += B_FIFO_SIZE;
783                             /* fcnt contains available bytes in fifo */
784                 fcnt = B_FIFO_SIZE - fcnt;
785                     /* remaining bytes to send (bytes in fifo) */
786
787                 /* "fill fifo if empty" feature */
788                 if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) {
789                         /* printk(KERN_DEBUG "%s: buffer empty, so we have "
790                                 "underrun\n", __func__); */
791                         /* fill buffer, to prevent future underrun */
792                         count = HFCPCI_FILLEMPTY;
793                         new_z1 = le16_to_cpu(*z1t) + count;
794                            /* new buffer Position */
795                         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
796                                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
797                         dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
798                         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
799                             /* end of fifo */
800                         if (bch->debug & DEBUG_HW_BFIFO)
801                                 printk(KERN_DEBUG "hfcpci_FFt fillempty "
802                                     "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
803                                     fcnt, maxlen, new_z1, dst);
804                         fcnt += count;
805                         if (maxlen > count)
806                                 maxlen = count;         /* limit size */
807                         memset(dst, 0x2a, maxlen);      /* first copy */
808                         count -= maxlen;                /* remaining bytes */
809                         if (count) {
810                                 dst = bdata;            /* start of buffer */
811                                 memset(dst, 0x2a, count);
812                         }
813                         *z1t = cpu_to_le16(new_z1);     /* now send data */
814                 }
815
816 next_t_frame:
817                 count = bch->tx_skb->len - bch->tx_idx;
818                 /* maximum fill shall be poll*2 */
819                 if (count > (poll << 1) - fcnt)
820                         count = (poll << 1) - fcnt;
821                 if (count <= 0)
822                         return;
823                 /* data is suitable for fifo */
824                 new_z1 = le16_to_cpu(*z1t) + count;
825                     /* new buffer Position */
826                 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
827                         new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
828                 src = bch->tx_skb->data + bch->tx_idx;
829                     /* source pointer */
830                 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
831                 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
832                     /* end of fifo */
833                 if (bch->debug & DEBUG_HW_BFIFO)
834                         printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
835                             "maxl(%d) nz1(%x) dst(%p)\n",
836                             fcnt, maxlen, new_z1, dst);
837                 fcnt += count;
838                 bch->tx_idx += count;
839                 if (maxlen > count)
840                         maxlen = count;         /* limit size */
841                 memcpy(dst, src, maxlen);       /* first copy */
842                 count -= maxlen;        /* remaining bytes */
843                 if (count) {
844                         dst = bdata;    /* start of buffer */
845                         src += maxlen;  /* new position */
846                         memcpy(dst, src, count);
847                 }
848                 *z1t = cpu_to_le16(new_z1);     /* now send data */
849                 if (bch->tx_idx < bch->tx_skb->len)
850                         return;
851                 /* send confirm, on trans, free on hdlc. */
852                 if (test_bit(FLG_TRANSPARENT, &bch->Flags))
853                         confirm_Bsend(bch);
854                 dev_kfree_skb(bch->tx_skb);
855                 if (get_next_bframe(bch))
856                         goto next_t_frame;
857                 return;
858         }
859         if (bch->debug & DEBUG_HW_BCHANNEL)
860                 printk(KERN_DEBUG
861                     "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
862                     __func__, bch->nr, bz->f1, bz->f2,
863                     bz->za[bz->f1].z1);
864         fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
865         if (fcnt < 0)
866                 fcnt += (MAX_B_FRAMES + 1);     /* if wrap around */
867         if (fcnt > (MAX_B_FRAMES - 1)) {
868                 if (bch->debug & DEBUG_HW_BCHANNEL)
869                         printk(KERN_DEBUG
870                             "hfcpci_fill_Bfifo more as 14 frames\n");
871                 return;
872         }
873         /* now determine free bytes in FIFO buffer */
874         maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
875             le16_to_cpu(bz->za[bz->f1].z1) - 1;
876         if (maxlen <= 0)
877                 maxlen += B_FIFO_SIZE;  /* count now contains available bytes */
878
879         if (bch->debug & DEBUG_HW_BCHANNEL)
880                 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
881                         bch->nr, count, maxlen);
882
883         if (maxlen < count) {
884                 if (bch->debug & DEBUG_HW_BCHANNEL)
885                         printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
886                 return;
887         }
888         new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
889             /* new buffer Position */
890         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
891                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
892
893         new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
894         src = bch->tx_skb->data + bch->tx_idx;  /* source pointer */
895         dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
896         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
897             /* end fifo */
898         if (maxlen > count)
899                 maxlen = count; /* limit size */
900         memcpy(dst, src, maxlen);       /* first copy */
901
902         count -= maxlen;        /* remaining bytes */
903         if (count) {
904                 dst = bdata;    /* start of buffer */
905                 src += maxlen;  /* new position */
906                 memcpy(dst, src, count);
907         }
908         bz->za[new_f1].z1 = cpu_to_le16(new_z1);        /* for next buffer */
909         bz->f1 = new_f1;        /* next frame */
910         dev_kfree_skb(bch->tx_skb);
911         get_next_bframe(bch);
912 }
913
914
915
916 /*
917  * handle L1 state changes TE
918  */
919
920 static void
921 ph_state_te(struct dchannel *dch)
922 {
923         if (dch->debug)
924                 printk(KERN_DEBUG "%s: TE newstate %x\n",
925                         __func__, dch->state);
926         switch (dch->state) {
927         case 0:
928                 l1_event(dch->l1, HW_RESET_IND);
929                 break;
930         case 3:
931                 l1_event(dch->l1, HW_DEACT_IND);
932                 break;
933         case 5:
934         case 8:
935                 l1_event(dch->l1, ANYSIGNAL);
936                 break;
937         case 6:
938                 l1_event(dch->l1, INFO2);
939                 break;
940         case 7:
941                 l1_event(dch->l1, INFO4_P8);
942                 break;
943         }
944 }
945
946 /*
947  * handle L1 state changes NT
948  */
949
950 static void
951 handle_nt_timer3(struct dchannel *dch) {
952         struct hfc_pci  *hc = dch->hw;
953
954         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
955         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
956         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
957         hc->hw.nt_timer = 0;
958         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
959         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
960                 hc->hw.mst_m |= HFCPCI_MASTER;
961         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
962         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
963             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
964 }
965
966 static void
967 ph_state_nt(struct dchannel *dch)
968 {
969         struct hfc_pci  *hc = dch->hw;
970         u_char  val;
971
972         if (dch->debug)
973                 printk(KERN_DEBUG "%s: NT newstate %x\n",
974                         __func__, dch->state);
975         switch (dch->state) {
976         case 2:
977                 if (hc->hw.nt_timer < 0) {
978                         hc->hw.nt_timer = 0;
979                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
980                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
981                         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
982                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
983                         /* Clear already pending ints */
984                         val = Read_hfc(hc, HFCPCI_INT_S1);
985                         Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
986                         udelay(10);
987                         Write_hfc(hc, HFCPCI_STATES, 4);
988                         dch->state = 4;
989                 } else if (hc->hw.nt_timer == 0) {
990                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
991                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
992                         hc->hw.nt_timer = NT_T1_COUNT;
993                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
994                         hc->hw.ctmt |= HFCPCI_TIM3_125;
995                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
996                                 HFCPCI_CLTIMER);
997                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
998                         test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
999                         /* allow G2 -> G3 transition */
1000                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1001                 } else {
1002                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1003                 }
1004                 break;
1005         case 1:
1006                 hc->hw.nt_timer = 0;
1007                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1012                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1013                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1014                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1015                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1016                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1017                 break;
1018         case 4:
1019                 hc->hw.nt_timer = 0;
1020                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1021                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1022                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1023                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1024                 break;
1025         case 3:
1026                 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1027                         if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1028                             &dch->Flags)) {
1029                                 handle_nt_timer3(dch);
1030                                 break;
1031                         }
1032                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1033                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1034                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1035                         hc->hw.nt_timer = NT_T3_COUNT;
1036                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1037                         hc->hw.ctmt |= HFCPCI_TIM3_125;
1038                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1039                                 HFCPCI_CLTIMER);
1040                 }
1041                 break;
1042         }
1043 }
1044
1045 static void
1046 ph_state(struct dchannel *dch)
1047 {
1048         struct hfc_pci  *hc = dch->hw;
1049
1050         if (hc->hw.protocol == ISDN_P_NT_S0) {
1051                 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1052                     hc->hw.nt_timer < 0)
1053                         handle_nt_timer3(dch);
1054                 else
1055                         ph_state_nt(dch);
1056         } else
1057                 ph_state_te(dch);
1058 }
1059
1060 /*
1061  * Layer 1 callback function
1062  */
1063 static int
1064 hfc_l1callback(struct dchannel *dch, u_int cmd)
1065 {
1066         struct hfc_pci          *hc = dch->hw;
1067
1068         switch (cmd) {
1069         case INFO3_P8:
1070         case INFO3_P10:
1071                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1072                         hc->hw.mst_m |= HFCPCI_MASTER;
1073                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1074                 break;
1075         case HW_RESET_REQ:
1076                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1077                 /* HFC ST 3 */
1078                 udelay(6);
1079                 Write_hfc(hc, HFCPCI_STATES, 3);        /* HFC ST 2 */
1080                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1081                         hc->hw.mst_m |= HFCPCI_MASTER;
1082                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1083                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1084                    HFCPCI_DO_ACTION);
1085                 l1_event(dch->l1, HW_POWERUP_IND);
1086                 break;
1087         case HW_DEACT_REQ:
1088                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1089                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1090                 skb_queue_purge(&dch->squeue);
1091                 if (dch->tx_skb) {
1092                         dev_kfree_skb(dch->tx_skb);
1093                         dch->tx_skb = NULL;
1094                 }
1095                 dch->tx_idx = 0;
1096                 if (dch->rx_skb) {
1097                         dev_kfree_skb(dch->rx_skb);
1098                         dch->rx_skb = NULL;
1099                 }
1100                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1101                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1102                         del_timer(&dch->timer);
1103                 break;
1104         case HW_POWERUP_REQ:
1105                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1106                 break;
1107         case PH_ACTIVATE_IND:
1108                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1109                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1110                         GFP_ATOMIC);
1111                 break;
1112         case PH_DEACTIVATE_IND:
1113                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1114                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1115                         GFP_ATOMIC);
1116                 break;
1117         default:
1118                 if (dch->debug & DEBUG_HW)
1119                         printk(KERN_DEBUG "%s: unknown command %x\n",
1120                             __func__, cmd);
1121                 return -1;
1122         }
1123         return 0;
1124 }
1125
1126 /*
1127  * Interrupt handler
1128  */
1129 static inline void
1130 tx_birq(struct bchannel *bch)
1131 {
1132         if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1133                 hfcpci_fill_fifo(bch);
1134         else {
1135                 if (bch->tx_skb)
1136                         dev_kfree_skb(bch->tx_skb);
1137                 if (get_next_bframe(bch))
1138                         hfcpci_fill_fifo(bch);
1139         }
1140 }
1141
1142 static inline void
1143 tx_dirq(struct dchannel *dch)
1144 {
1145         if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1146                 hfcpci_fill_dfifo(dch->hw);
1147         else {
1148                 if (dch->tx_skb)
1149                         dev_kfree_skb(dch->tx_skb);
1150                 if (get_next_dframe(dch))
1151                         hfcpci_fill_dfifo(dch->hw);
1152         }
1153 }
1154
1155 static irqreturn_t
1156 hfcpci_int(int intno, void *dev_id)
1157 {
1158         struct hfc_pci  *hc = dev_id;
1159         u_char          exval;
1160         struct bchannel *bch;
1161         u_char          val, stat;
1162
1163         spin_lock(&hc->lock);
1164         if (!(hc->hw.int_m2 & 0x08)) {
1165                 spin_unlock(&hc->lock);
1166                 return IRQ_NONE; /* not initialised */
1167         }
1168         stat = Read_hfc(hc, HFCPCI_STATUS);
1169         if (HFCPCI_ANYINT & stat) {
1170                 val = Read_hfc(hc, HFCPCI_INT_S1);
1171                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172                         printk(KERN_DEBUG
1173                             "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1174         } else {
1175                 /* shared */
1176                 spin_unlock(&hc->lock);
1177                 return IRQ_NONE;
1178         }
1179         hc->irqcnt++;
1180
1181         if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1182                 printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1183         val &= hc->hw.int_m1;
1184         if (val & 0x40) {       /* state machine irq */
1185                 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1186                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1187                         printk(KERN_DEBUG "ph_state chg %d->%d\n",
1188                                 hc->dch.state, exval);
1189                 hc->dch.state = exval;
1190                 schedule_event(&hc->dch, FLG_PHCHANGE);
1191                 val &= ~0x40;
1192         }
1193         if (val & 0x80) {       /* timer irq */
1194                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1195                         if ((--hc->hw.nt_timer) < 0)
1196                                 schedule_event(&hc->dch, FLG_PHCHANGE);
1197                 }
1198                 val &= ~0x80;
1199                 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1200         }
1201         if (val & 0x08) {       /* B1 rx */
1202                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203                 if (bch)
1204                         main_rec_hfcpci(bch);
1205                 else if (hc->dch.debug)
1206                         printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1207         }
1208         if (val & 0x10) {       /* B2 rx */
1209                 bch = Sel_BCS(hc, 2);
1210                 if (bch)
1211                         main_rec_hfcpci(bch);
1212                 else if (hc->dch.debug)
1213                         printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1214         }
1215         if (val & 0x01) {       /* B1 tx */
1216                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1217                 if (bch)
1218                         tx_birq(bch);
1219                 else if (hc->dch.debug)
1220                         printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1221         }
1222         if (val & 0x02) {       /* B2 tx */
1223                 bch = Sel_BCS(hc, 2);
1224                 if (bch)
1225                         tx_birq(bch);
1226                 else if (hc->dch.debug)
1227                         printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1228         }
1229         if (val & 0x20)         /* D rx */
1230                 receive_dmsg(hc);
1231         if (val & 0x04) {       /* D tx */
1232                 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1233                         del_timer(&hc->dch.timer);
1234                 tx_dirq(&hc->dch);
1235         }
1236         spin_unlock(&hc->lock);
1237         return IRQ_HANDLED;
1238 }
1239
1240 /*
1241  * timer callback for D-chan busy resolution. Currently no function
1242  */
1243 static void
1244 hfcpci_dbusy_timer(struct hfc_pci *hc)
1245 {
1246 }
1247
1248 /*
1249  * activate/deactivate hardware for selected channels and mode
1250  */
1251 static int
1252 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1253 {
1254         struct hfc_pci  *hc = bch->hw;
1255         int             fifo2;
1256         u_char          rx_slot = 0, tx_slot = 0, pcm_mode;
1257
1258         if (bch->debug & DEBUG_HW_BCHANNEL)
1259                 printk(KERN_DEBUG
1260                     "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1261                     bch->state, protocol, bch->nr, bc);
1262
1263         fifo2 = bc;
1264         pcm_mode = (bc>>24) & 0xff;
1265         if (pcm_mode) { /* PCM SLOT USE */
1266                 if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1267                         printk(KERN_WARNING
1268                             "%s: pcm channel id without HFC_CFG_PCM\n",
1269                             __func__);
1270                 rx_slot = (bc>>8) & 0xff;
1271                 tx_slot = (bc>>16) & 0xff;
1272                 bc = bc & 0xff;
1273         } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1274                 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1275                     __func__);
1276         if (hc->chanlimit > 1) {
1277                 hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1278                 hc->hw.sctrl_e &= ~0x80;
1279         } else {
1280                 if (bc & 2) {
1281                         if (protocol != ISDN_P_NONE) {
1282                                 hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1283                                 hc->hw.sctrl_e |= 0x80;
1284                         } else {
1285                                 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1286                                 hc->hw.sctrl_e &= ~0x80;
1287                         }
1288                         fifo2 = 1;
1289                 } else {
1290                         hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1291                         hc->hw.sctrl_e &= ~0x80;
1292                 }
1293         }
1294         switch (protocol) {
1295         case (-1): /* used for init */
1296                 bch->state = -1;
1297                 bch->nr = bc;
1298         case (ISDN_P_NONE):
1299                 if (bch->state == ISDN_P_NONE)
1300                         return 0;
1301                 if (bc & 2) {
1302                         hc->hw.sctrl &= ~SCTRL_B2_ENA;
1303                         hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1304                 } else {
1305                         hc->hw.sctrl &= ~SCTRL_B1_ENA;
1306                         hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1307                 }
1308                 if (fifo2 & 2) {
1309                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1310                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1311                                 HFCPCI_INTS_B2REC);
1312                 } else {
1313                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1314                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1315                                 HFCPCI_INTS_B1REC);
1316                 }
1317 #ifdef REVERSE_BITORDER
1318                 if (bch->nr & 2)
1319                         hc->hw.cirm &= 0x7f;
1320                 else
1321                         hc->hw.cirm &= 0xbf;
1322 #endif
1323                 bch->state = ISDN_P_NONE;
1324                 bch->nr = bc;
1325                 test_and_clear_bit(FLG_HDLC, &bch->Flags);
1326                 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1327                 break;
1328         case (ISDN_P_B_RAW):
1329                 bch->state = protocol;
1330                 bch->nr = bc;
1331                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1332                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1333                 if (bc & 2) {
1334                         hc->hw.sctrl |= SCTRL_B2_ENA;
1335                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1336 #ifdef REVERSE_BITORDER
1337                         hc->hw.cirm |= 0x80;
1338 #endif
1339                 } else {
1340                         hc->hw.sctrl |= SCTRL_B1_ENA;
1341                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1342 #ifdef REVERSE_BITORDER
1343                         hc->hw.cirm |= 0x40;
1344 #endif
1345                 }
1346                 if (fifo2 & 2) {
1347                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1348                         if (!tics)
1349                                 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1350                                     HFCPCI_INTS_B2REC);
1351                         hc->hw.ctmt |= 2;
1352                         hc->hw.conn &= ~0x18;
1353                 } else {
1354                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1355                         if (!tics)
1356                                 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1357                                     HFCPCI_INTS_B1REC);
1358                         hc->hw.ctmt |= 1;
1359                         hc->hw.conn &= ~0x03;
1360                 }
1361                 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1362                 break;
1363         case (ISDN_P_B_HDLC):
1364                 bch->state = protocol;
1365                 bch->nr = bc;
1366                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1367                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1368                 if (bc & 2) {
1369                         hc->hw.sctrl |= SCTRL_B2_ENA;
1370                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1371                 } else {
1372                         hc->hw.sctrl |= SCTRL_B1_ENA;
1373                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1374                 }
1375                 if (fifo2 & 2) {
1376                         hc->hw.last_bfifo_cnt[1] = 0;
1377                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1378                         hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1379                             HFCPCI_INTS_B2REC);
1380                         hc->hw.ctmt &= ~2;
1381                         hc->hw.conn &= ~0x18;
1382                 } else {
1383                         hc->hw.last_bfifo_cnt[0] = 0;
1384                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1385                         hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1386                             HFCPCI_INTS_B1REC);
1387                         hc->hw.ctmt &= ~1;
1388                         hc->hw.conn &= ~0x03;
1389                 }
1390                 test_and_set_bit(FLG_HDLC, &bch->Flags);
1391                 break;
1392         default:
1393                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1394                 return -ENOPROTOOPT;
1395         }
1396         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1397                 if ((protocol == ISDN_P_NONE) ||
1398                         (protocol == -1)) {     /* init case */
1399                         rx_slot = 0;
1400                         tx_slot = 0;
1401                 } else {
1402                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1403                                 rx_slot |= 0xC0;
1404                                 tx_slot |= 0xC0;
1405                         } else {
1406                                 rx_slot |= 0x80;
1407                                 tx_slot |= 0x80;
1408                         }
1409                 }
1410                 if (bc & 2) {
1411                         hc->hw.conn &= 0xc7;
1412                         hc->hw.conn |= 0x08;
1413                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1414                                 __func__, tx_slot);
1415                         printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1416                                 __func__, rx_slot);
1417                         Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1418                         Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1419                 } else {
1420                         hc->hw.conn &= 0xf8;
1421                         hc->hw.conn |= 0x01;
1422                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1423                                 __func__, tx_slot);
1424                         printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1425                                 __func__, rx_slot);
1426                         Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1427                         Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1428                 }
1429         }
1430         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1431         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1432         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1433         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1434         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1435         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1436         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1437 #ifdef REVERSE_BITORDER
1438         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1439 #endif
1440         return 0;
1441 }
1442
1443 static int
1444 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1445 {
1446         struct hfc_pci  *hc = bch->hw;
1447
1448         if (bch->debug & DEBUG_HW_BCHANNEL)
1449                 printk(KERN_DEBUG
1450                     "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1451                     bch->state, protocol, bch->nr, chan);
1452         if (bch->nr != chan) {
1453                 printk(KERN_DEBUG
1454                     "HFCPCI rxtest wrong channel parameter %x/%x\n",
1455                     bch->nr, chan);
1456                 return -EINVAL;
1457         }
1458         switch (protocol) {
1459         case (ISDN_P_B_RAW):
1460                 bch->state = protocol;
1461                 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1462                 if (chan & 2) {
1463                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1464                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1465                         if (!tics)
1466                                 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1467                         hc->hw.ctmt |= 2;
1468                         hc->hw.conn &= ~0x18;
1469 #ifdef REVERSE_BITORDER
1470                         hc->hw.cirm |= 0x80;
1471 #endif
1472                 } else {
1473                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1474                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1475                         if (!tics)
1476                                 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1477                         hc->hw.ctmt |= 1;
1478                         hc->hw.conn &= ~0x03;
1479 #ifdef REVERSE_BITORDER
1480                         hc->hw.cirm |= 0x40;
1481 #endif
1482                 }
1483                 break;
1484         case (ISDN_P_B_HDLC):
1485                 bch->state = protocol;
1486                 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1487                 if (chan & 2) {
1488                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1489                         hc->hw.last_bfifo_cnt[1] = 0;
1490                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1491                         hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1492                         hc->hw.ctmt &= ~2;
1493                         hc->hw.conn &= ~0x18;
1494                 } else {
1495                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1496                         hc->hw.last_bfifo_cnt[0] = 0;
1497                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1498                         hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1499                         hc->hw.ctmt &= ~1;
1500                         hc->hw.conn &= ~0x03;
1501                 }
1502                 break;
1503         default:
1504                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1505                 return -ENOPROTOOPT;
1506         }
1507         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1508         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1509         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1510         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1511         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1512 #ifdef REVERSE_BITORDER
1513         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1514 #endif
1515         return 0;
1516 }
1517
1518 static void
1519 deactivate_bchannel(struct bchannel *bch)
1520 {
1521         struct hfc_pci  *hc = bch->hw;
1522         u_long          flags;
1523
1524         spin_lock_irqsave(&hc->lock, flags);
1525         if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
1526                 dev_kfree_skb(bch->next_skb);
1527                 bch->next_skb = NULL;
1528         }
1529         if (bch->tx_skb) {
1530                 dev_kfree_skb(bch->tx_skb);
1531                 bch->tx_skb = NULL;
1532         }
1533         bch->tx_idx = 0;
1534         if (bch->rx_skb) {
1535                 dev_kfree_skb(bch->rx_skb);
1536                 bch->rx_skb = NULL;
1537         }
1538         mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1539         test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
1540         test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
1541         spin_unlock_irqrestore(&hc->lock, flags);
1542 }
1543
1544 /*
1545  * Layer 1 B-channel hardware access
1546  */
1547 static int
1548 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1549 {
1550         int     ret = 0;
1551
1552         switch (cq->op) {
1553         case MISDN_CTRL_GETOP:
1554                 cq->op = MISDN_CTRL_FILL_EMPTY;
1555                 break;
1556         case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
1557                 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
1558                 if (debug & DEBUG_HW_OPEN)
1559                         printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
1560                                 "off=%d)\n", __func__, bch->nr, !!cq->p1);
1561                 break;
1562         default:
1563                 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
1564                 ret = -EINVAL;
1565                 break;
1566         }
1567         return ret;
1568 }
1569 static int
1570 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1571 {
1572         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1573         struct hfc_pci  *hc = bch->hw;
1574         int             ret = -EINVAL;
1575         u_long          flags;
1576
1577         if (bch->debug & DEBUG_HW)
1578                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1579         switch (cmd) {
1580         case HW_TESTRX_RAW:
1581                 spin_lock_irqsave(&hc->lock, flags);
1582                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1583                 spin_unlock_irqrestore(&hc->lock, flags);
1584                 break;
1585         case HW_TESTRX_HDLC:
1586                 spin_lock_irqsave(&hc->lock, flags);
1587                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1588                 spin_unlock_irqrestore(&hc->lock, flags);
1589                 break;
1590         case HW_TESTRX_OFF:
1591                 spin_lock_irqsave(&hc->lock, flags);
1592                 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1593                 spin_unlock_irqrestore(&hc->lock, flags);
1594                 ret = 0;
1595                 break;
1596         case CLOSE_CHANNEL:
1597                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1598                 if (test_bit(FLG_ACTIVE, &bch->Flags))
1599                         deactivate_bchannel(bch);
1600                 ch->protocol = ISDN_P_NONE;
1601                 ch->peer = NULL;
1602                 module_put(THIS_MODULE);
1603                 ret = 0;
1604                 break;
1605         case CONTROL_CHANNEL:
1606                 ret = channel_bctrl(bch, arg);
1607                 break;
1608         default:
1609                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1610                         __func__, cmd);
1611         }
1612         return ret;
1613 }
1614
1615 /*
1616  * Layer2 -> Layer 1 Dchannel data
1617  */
1618 static int
1619 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1620 {
1621         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1622         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1623         struct hfc_pci          *hc = dch->hw;
1624         int                     ret = -EINVAL;
1625         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1626         unsigned int            id;
1627         u_long                  flags;
1628
1629         switch (hh->prim) {
1630         case PH_DATA_REQ:
1631                 spin_lock_irqsave(&hc->lock, flags);
1632                 ret = dchannel_senddata(dch, skb);
1633                 if (ret > 0) { /* direct TX */
1634                         id = hh->id; /* skb can be freed */
1635                         hfcpci_fill_dfifo(dch->hw);
1636                         ret = 0;
1637                         spin_unlock_irqrestore(&hc->lock, flags);
1638                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1639                 } else
1640                         spin_unlock_irqrestore(&hc->lock, flags);
1641                 return ret;
1642         case PH_ACTIVATE_REQ:
1643                 spin_lock_irqsave(&hc->lock, flags);
1644                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1645                         ret = 0;
1646                         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1647                                 hc->hw.mst_m |= HFCPCI_MASTER;
1648                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1649                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1650                                 spin_unlock_irqrestore(&hc->lock, flags);
1651                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1652                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1653                                 break;
1654                         }
1655                         test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1656                         Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1657                             HFCPCI_DO_ACTION | 1);
1658                 } else
1659                         ret = l1_event(dch->l1, hh->prim);
1660                 spin_unlock_irqrestore(&hc->lock, flags);
1661                 break;
1662         case PH_DEACTIVATE_REQ:
1663                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1664                 spin_lock_irqsave(&hc->lock, flags);
1665                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1666                         /* prepare deactivation */
1667                         Write_hfc(hc, HFCPCI_STATES, 0x40);
1668                         skb_queue_purge(&dch->squeue);
1669                         if (dch->tx_skb) {
1670                                 dev_kfree_skb(dch->tx_skb);
1671                                 dch->tx_skb = NULL;
1672                         }
1673                         dch->tx_idx = 0;
1674                         if (dch->rx_skb) {
1675                                 dev_kfree_skb(dch->rx_skb);
1676                                 dch->rx_skb = NULL;
1677                         }
1678                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1679                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1680                                 del_timer(&dch->timer);
1681 #ifdef FIXME
1682                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1683                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1684 #endif
1685                         hc->hw.mst_m &= ~HFCPCI_MASTER;
1686                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1687                         ret = 0;
1688                 } else {
1689                         ret = l1_event(dch->l1, hh->prim);
1690                 }
1691                 spin_unlock_irqrestore(&hc->lock, flags);
1692                 break;
1693         }
1694         if (!ret)
1695                 dev_kfree_skb(skb);
1696         return ret;
1697 }
1698
1699 /*
1700  * Layer2 -> Layer 1 Bchannel data
1701  */
1702 static int
1703 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1704 {
1705         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
1706         struct hfc_pci          *hc = bch->hw;
1707         int                     ret = -EINVAL;
1708         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1709         unsigned int            id;
1710         u_long                  flags;
1711
1712         switch (hh->prim) {
1713         case PH_DATA_REQ:
1714                 spin_lock_irqsave(&hc->lock, flags);
1715                 ret = bchannel_senddata(bch, skb);
1716                 if (ret > 0) { /* direct TX */
1717                         id = hh->id; /* skb can be freed */
1718                         hfcpci_fill_fifo(bch);
1719                         ret = 0;
1720                         spin_unlock_irqrestore(&hc->lock, flags);
1721                         if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1722                                 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1723                 } else
1724                         spin_unlock_irqrestore(&hc->lock, flags);
1725                 return ret;
1726         case PH_ACTIVATE_REQ:
1727                 spin_lock_irqsave(&hc->lock, flags);
1728                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1729                         ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1730                 else
1731                         ret = 0;
1732                 spin_unlock_irqrestore(&hc->lock, flags);
1733                 if (!ret)
1734                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1735                                 NULL, GFP_KERNEL);
1736                 break;
1737         case PH_DEACTIVATE_REQ:
1738                 deactivate_bchannel(bch);
1739                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1740                         NULL, GFP_KERNEL);
1741                 ret = 0;
1742                 break;
1743         }
1744         if (!ret)
1745                 dev_kfree_skb(skb);
1746         return ret;
1747 }
1748
1749 /*
1750  * called for card init message
1751  */
1752
1753 static void
1754 inithfcpci(struct hfc_pci *hc)
1755 {
1756         printk(KERN_DEBUG "inithfcpci: entered\n");
1757         hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1758         hc->dch.timer.data = (long) &hc->dch;
1759         init_timer(&hc->dch.timer);
1760         hc->chanlimit = 2;
1761         mode_hfcpci(&hc->bch[0], 1, -1);
1762         mode_hfcpci(&hc->bch[1], 2, -1);
1763 }
1764
1765
1766 static int
1767 init_card(struct hfc_pci *hc)
1768 {
1769         int     cnt = 3;
1770         u_long  flags;
1771
1772         printk(KERN_DEBUG "init_card: entered\n");
1773
1774
1775         spin_lock_irqsave(&hc->lock, flags);
1776         disable_hwirq(hc);
1777         spin_unlock_irqrestore(&hc->lock, flags);
1778         if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1779                 printk(KERN_WARNING
1780                     "mISDN: couldn't get interrupt %d\n", hc->irq);
1781                 return -EIO;
1782         }
1783         spin_lock_irqsave(&hc->lock, flags);
1784         reset_hfcpci(hc);
1785         while (cnt) {
1786                 inithfcpci(hc);
1787                 /*
1788                  * Finally enable IRQ output
1789                  * this is only allowed, if an IRQ routine is allready
1790                  * established for this HFC, so don't do that earlier
1791                  */
1792                 enable_hwirq(hc);
1793                 spin_unlock_irqrestore(&hc->lock, flags);
1794                 /* Timeout 80ms */
1795                 current->state = TASK_UNINTERRUPTIBLE;
1796                 schedule_timeout((80*HZ)/1000);
1797                 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1798                         hc->irq, hc->irqcnt);
1799                 /* now switch timer interrupt off */
1800                 spin_lock_irqsave(&hc->lock, flags);
1801                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1802                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1803                 /* reinit mode reg */
1804                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1805                 if (!hc->irqcnt) {
1806                         printk(KERN_WARNING
1807                             "HFC PCI: IRQ(%d) getting no interrupts "
1808                             "during init %d\n", hc->irq, 4 - cnt);
1809                         if (cnt == 1)
1810                                 break;
1811                         else {
1812                                 reset_hfcpci(hc);
1813                                 cnt--;
1814                         }
1815                 } else {
1816                         spin_unlock_irqrestore(&hc->lock, flags);
1817                         hc->initdone = 1;
1818                         return 0;
1819                 }
1820         }
1821         disable_hwirq(hc);
1822         spin_unlock_irqrestore(&hc->lock, flags);
1823         free_irq(hc->irq, hc);
1824         return -EIO;
1825 }
1826
1827 static int
1828 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1829 {
1830         int     ret = 0;
1831         u_char  slot;
1832
1833         switch (cq->op) {
1834         case MISDN_CTRL_GETOP:
1835                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1836                     MISDN_CTRL_DISCONNECT;
1837                 break;
1838         case MISDN_CTRL_LOOP:
1839                 /* channel 0 disabled loop */
1840                 if (cq->channel < 0 || cq->channel > 2) {
1841                         ret = -EINVAL;
1842                         break;
1843                 }
1844                 if (cq->channel & 1) {
1845                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1846                                 slot = 0xC0;
1847                         else
1848                                 slot = 0x80;
1849                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1850                             __func__, slot);
1851                         Write_hfc(hc, HFCPCI_B1_SSL, slot);
1852                         Write_hfc(hc, HFCPCI_B1_RSL, slot);
1853                         hc->hw.conn = (hc->hw.conn & ~7) | 6;
1854                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1855                 }
1856                 if (cq->channel & 2) {
1857                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1858                                 slot = 0xC1;
1859                         else
1860                                 slot = 0x81;
1861                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1862                             __func__, slot);
1863                         Write_hfc(hc, HFCPCI_B2_SSL, slot);
1864                         Write_hfc(hc, HFCPCI_B2_RSL, slot);
1865                         hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1866                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1867                 }
1868                 if (cq->channel & 3)
1869                         hc->hw.trm |= 0x80;     /* enable IOM-loop */
1870                 else {
1871                         hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1872                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1873                         hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1874                 }
1875                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1876                 break;
1877         case MISDN_CTRL_CONNECT:
1878                 if (cq->channel == cq->p1) {
1879                         ret = -EINVAL;
1880                         break;
1881                 }
1882                 if (cq->channel < 1 || cq->channel > 2 ||
1883                     cq->p1 < 1 || cq->p1 > 2) {
1884                         ret = -EINVAL;
1885                         break;
1886                 }
1887                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1888                         slot = 0xC0;
1889                 else
1890                         slot = 0x80;
1891                 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1892                     __func__, slot);
1893                 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1894                 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1895                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1896                         slot = 0xC1;
1897                 else
1898                         slot = 0x81;
1899                 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1900                     __func__, slot);
1901                 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1902                 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1903                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1904                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1905                 hc->hw.trm |= 0x80;
1906                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1907                 break;
1908         case MISDN_CTRL_DISCONNECT:
1909                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1910                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1911                 hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1912                 break;
1913         default:
1914                 printk(KERN_WARNING "%s: unknown Op %x\n",
1915                     __func__, cq->op);
1916                 ret = -EINVAL;
1917                 break;
1918         }
1919         return ret;
1920 }
1921
1922 static int
1923 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1924     struct channel_req *rq)
1925 {
1926         int err = 0;
1927
1928         if (debug & DEBUG_HW_OPEN)
1929                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1930                     hc->dch.dev.id, __builtin_return_address(0));
1931         if (rq->protocol == ISDN_P_NONE)
1932                 return -EINVAL;
1933         if (rq->adr.channel == 1) {
1934                 /* TODO: E-Channel */
1935                 return -EINVAL;
1936         }
1937         if (!hc->initdone) {
1938                 if (rq->protocol == ISDN_P_TE_S0) {
1939                         err = create_l1(&hc->dch, hfc_l1callback);
1940                         if (err)
1941                                 return err;
1942                 }
1943                 hc->hw.protocol = rq->protocol;
1944                 ch->protocol = rq->protocol;
1945                 err = init_card(hc);
1946                 if (err)
1947                         return err;
1948         } else {
1949                 if (rq->protocol != ch->protocol) {
1950                         if (hc->hw.protocol == ISDN_P_TE_S0)
1951                                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
1952                         if (rq->protocol == ISDN_P_TE_S0) {
1953                                 err = create_l1(&hc->dch, hfc_l1callback);
1954                                 if (err)
1955                                         return err;
1956                         }
1957                         hc->hw.protocol = rq->protocol;
1958                         ch->protocol = rq->protocol;
1959                         hfcpci_setmode(hc);
1960                 }
1961         }
1962
1963         if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1964             ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1965                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1966                     0, NULL, GFP_KERNEL);
1967         }
1968         rq->ch = ch;
1969         if (!try_module_get(THIS_MODULE))
1970                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1971         return 0;
1972 }
1973
1974 static int
1975 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1976 {
1977         struct bchannel         *bch;
1978
1979         if (rq->adr.channel > 2)
1980                 return -EINVAL;
1981         if (rq->protocol == ISDN_P_NONE)
1982                 return -EINVAL;
1983         bch = &hc->bch[rq->adr.channel - 1];
1984         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1985                 return -EBUSY; /* b-channel can be only open once */
1986         test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
1987         bch->ch.protocol = rq->protocol;
1988         rq->ch = &bch->ch; /* TODO: E-channel */
1989         if (!try_module_get(THIS_MODULE))
1990                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1991         return 0;
1992 }
1993
1994 /*
1995  * device control function
1996  */
1997 static int
1998 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1999 {
2000         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
2001         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
2002         struct hfc_pci          *hc = dch->hw;
2003         struct channel_req      *rq;
2004         int                     err = 0;
2005
2006         if (dch->debug & DEBUG_HW)
2007                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
2008                     __func__, cmd, arg);
2009         switch (cmd) {
2010         case OPEN_CHANNEL:
2011                 rq = arg;
2012                 if ((rq->protocol == ISDN_P_TE_S0) ||
2013                     (rq->protocol == ISDN_P_NT_S0))
2014                         err = open_dchannel(hc, ch, rq);
2015                 else
2016                         err = open_bchannel(hc, rq);
2017                 break;
2018         case CLOSE_CHANNEL:
2019                 if (debug & DEBUG_HW_OPEN)
2020                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
2021                             __func__, hc->dch.dev.id,
2022                             __builtin_return_address(0));
2023                 module_put(THIS_MODULE);
2024                 break;
2025         case CONTROL_CHANNEL:
2026                 err = channel_ctrl(hc, arg);
2027                 break;
2028         default:
2029                 if (dch->debug & DEBUG_HW)
2030                         printk(KERN_DEBUG "%s: unknown command %x\n",
2031                             __func__, cmd);
2032                 return -EINVAL;
2033         }
2034         return err;
2035 }
2036
2037 static int
2038 setup_hw(struct hfc_pci *hc)
2039 {
2040         void    *buffer;
2041
2042         printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2043         hc->hw.cirm = 0;
2044         hc->dch.state = 0;
2045         pci_set_master(hc->pdev);
2046         if (!hc->irq) {
2047                 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2048                 return 1;
2049         }
2050         hc->hw.pci_io =
2051                 (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2052
2053         if (!hc->hw.pci_io) {
2054                 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2055                 return 1;
2056         }
2057         /* Allocate memory for FIFOS */
2058         /* the memory needs to be on a 32k boundary within the first 4G */
2059         pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2060         buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2061         /* We silently assume the address is okay if nonzero */
2062         if (!buffer) {
2063                 printk(KERN_WARNING
2064                     "HFC-PCI: Error allocating memory for FIFO!\n");
2065                 return 1;
2066         }
2067         hc->hw.fifos = buffer;
2068         pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2069         hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2070         printk(KERN_INFO
2071                 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2072                 (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2073                 (u_long) hc->hw.dmahandle, hc->irq, HZ);
2074         /* enable memory mapped ports, disable busmaster */
2075         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2076         hc->hw.int_m2 = 0;
2077         disable_hwirq(hc);
2078         hc->hw.int_m1 = 0;
2079         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2080         /* At this point the needed PCI config is done */
2081         /* fifos are still not enabled */
2082         hc->hw.timer.function = (void *) hfcpci_Timer;
2083         hc->hw.timer.data = (long) hc;
2084         init_timer(&hc->hw.timer);
2085         /* default PCM master */
2086         test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2087         return 0;
2088 }
2089
2090 static void
2091 release_card(struct hfc_pci *hc) {
2092         u_long  flags;
2093
2094         spin_lock_irqsave(&hc->lock, flags);
2095         hc->hw.int_m2 = 0; /* interrupt output off ! */
2096         disable_hwirq(hc);
2097         mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2098         mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2099         if (hc->dch.timer.function != NULL) {
2100                 del_timer(&hc->dch.timer);
2101                 hc->dch.timer.function = NULL;
2102         }
2103         spin_unlock_irqrestore(&hc->lock, flags);
2104         if (hc->hw.protocol == ISDN_P_TE_S0)
2105                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
2106         if (hc->initdone)
2107                 free_irq(hc->irq, hc);
2108         release_io_hfcpci(hc); /* must release after free_irq! */
2109         mISDN_unregister_device(&hc->dch.dev);
2110         mISDN_freebchannel(&hc->bch[1]);
2111         mISDN_freebchannel(&hc->bch[0]);
2112         mISDN_freedchannel(&hc->dch);
2113         pci_set_drvdata(hc->pdev, NULL);
2114         kfree(hc);
2115 }
2116
2117 static int
2118 setup_card(struct hfc_pci *card)
2119 {
2120         int             err = -EINVAL;
2121         u_int           i;
2122         char            name[MISDN_MAX_IDLEN];
2123
2124         card->dch.debug = debug;
2125         spin_lock_init(&card->lock);
2126         mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2127         card->dch.hw = card;
2128         card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2129         card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2130             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2131         card->dch.dev.D.send = hfcpci_l2l1D;
2132         card->dch.dev.D.ctrl = hfc_dctrl;
2133         card->dch.dev.nrbchan = 2;
2134         for (i = 0; i < 2; i++) {
2135                 card->bch[i].nr = i + 1;
2136                 set_channelmap(i + 1, card->dch.dev.channelmap);
2137                 card->bch[i].debug = debug;
2138                 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM);
2139                 card->bch[i].hw = card;
2140                 card->bch[i].ch.send = hfcpci_l2l1B;
2141                 card->bch[i].ch.ctrl = hfc_bctrl;
2142                 card->bch[i].ch.nr = i + 1;
2143                 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2144         }
2145         err = setup_hw(card);
2146         if (err)
2147                 goto error;
2148         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2149         err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2150         if (err)
2151                 goto error;
2152         HFC_cnt++;
2153         printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2154         return 0;
2155 error:
2156         mISDN_freebchannel(&card->bch[1]);
2157         mISDN_freebchannel(&card->bch[0]);
2158         mISDN_freedchannel(&card->dch);
2159         kfree(card);
2160         return err;
2161 }
2162
2163 /* private data in the PCI devices list */
2164 struct _hfc_map {
2165         u_int   subtype;
2166         u_int   flag;
2167         char    *name;
2168 };
2169
2170 static const struct _hfc_map hfc_map[] =
2171 {
2172         {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2173         {HFC_CCD_B000, 0, "Billion B000"},
2174         {HFC_CCD_B006, 0, "Billion B006"},
2175         {HFC_CCD_B007, 0, "Billion B007"},
2176         {HFC_CCD_B008, 0, "Billion B008"},
2177         {HFC_CCD_B009, 0, "Billion B009"},
2178         {HFC_CCD_B00A, 0, "Billion B00A"},
2179         {HFC_CCD_B00B, 0, "Billion B00B"},
2180         {HFC_CCD_B00C, 0, "Billion B00C"},
2181         {HFC_CCD_B100, 0, "Seyeon B100"},
2182         {HFC_CCD_B700, 0, "Primux II S0 B700"},
2183         {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2184         {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2185         {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2186         {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2187         {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2188         {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2189         {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2190         {HFC_DIGI_DF_M_IOM2_E, 0,
2191             "Digi International DataFire Micro V IOM2 (Europe)"},
2192         {HFC_DIGI_DF_M_E, 0,
2193             "Digi International DataFire Micro V (Europe)"},
2194         {HFC_DIGI_DF_M_IOM2_A, 0,
2195             "Digi International DataFire Micro V IOM2 (North America)"},
2196         {HFC_DIGI_DF_M_A, 0,
2197             "Digi International DataFire Micro V (North America)"},
2198         {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2199         {},
2200 };
2201
2202 static struct pci_device_id hfc_ids[] =
2203 {
2204         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0,
2205                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[0]},
2206         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000,
2207                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[1]},
2208         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006,
2209                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[2]},
2210         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007,
2211                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[3]},
2212         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008,
2213                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[4]},
2214         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009,
2215                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[5]},
2216         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A,
2217                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[6]},
2218         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B,
2219                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[7]},
2220         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C,
2221                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[8]},
2222         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100,
2223                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[9]},
2224         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B700,
2225                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[10]},
2226         {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B701,
2227                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[11]},
2228         {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1,
2229                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[12]},
2230         {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675,
2231                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[13]},
2232         {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT,
2233                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[14]},
2234         {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T,
2235                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[15]},
2236         {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575,
2237                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[16]},
2238         {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0,
2239                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[17]},
2240         {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,
2241                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[18]},
2242         {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,
2243                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[19]},
2244         {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,
2245                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[20]},
2246         {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,
2247                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[21]},
2248         {PCI_VENDOR_ID_SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2,
2249                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &hfc_map[22]},
2250         {},
2251 };
2252
2253 static int __devinit
2254 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2255 {
2256         int             err = -ENOMEM;
2257         struct hfc_pci  *card;
2258         struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2259
2260         card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2261         if (!card) {
2262                 printk(KERN_ERR "No kmem for HFC card\n");
2263                 return err;
2264         }
2265         card->pdev = pdev;
2266         card->subtype = m->subtype;
2267         err = pci_enable_device(pdev);
2268         if (err) {
2269                 kfree(card);
2270                 return err;
2271         }
2272
2273         printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2274                m->name, pci_name(pdev));
2275
2276         card->irq = pdev->irq;
2277         pci_set_drvdata(pdev, card);
2278         err = setup_card(card);
2279         if (err)
2280                 pci_set_drvdata(pdev, NULL);
2281         return err;
2282 }
2283
2284 static void __devexit
2285 hfc_remove_pci(struct pci_dev *pdev)
2286 {
2287         struct hfc_pci  *card = pci_get_drvdata(pdev);
2288
2289         if (card)
2290                 release_card(card);
2291         else
2292                 if (debug)
2293                         printk(KERN_DEBUG "%s: drvdata already removed\n",
2294                             __func__);
2295 }
2296
2297
2298 static struct pci_driver hfc_driver = {
2299         .name = "hfcpci",
2300         .probe = hfc_probe,
2301         .remove = __devexit_p(hfc_remove_pci),
2302         .id_table = hfc_ids,
2303 };
2304
2305 static int
2306 _hfcpci_softirq(struct device *dev, void *arg)
2307 {
2308         struct hfc_pci  *hc = dev_get_drvdata(dev);
2309         struct bchannel *bch;
2310         if (hc == NULL)
2311                 return 0;
2312
2313         if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2314                 spin_lock(&hc->lock);
2315                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2316                 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2317                         main_rec_hfcpci(bch);
2318                         tx_birq(bch);
2319                 }
2320                 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2321                 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2322                         main_rec_hfcpci(bch);
2323                         tx_birq(bch);
2324                 }
2325                 spin_unlock(&hc->lock);
2326         }
2327         return 0;
2328 }
2329
2330 static void
2331 hfcpci_softirq(void *arg)
2332 {
2333         (void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2334                                         _hfcpci_softirq);
2335
2336         /* if next event would be in the past ... */
2337         if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2338                 hfc_jiffies = jiffies + 1;
2339         else
2340                 hfc_jiffies += tics;
2341         hfc_tl.expires = hfc_jiffies;
2342         add_timer(&hfc_tl);
2343 }
2344
2345 static int __init
2346 HFC_init(void)
2347 {
2348         int             err;
2349
2350         if (!poll)
2351                 poll = HFCPCI_BTRANS_THRESHOLD;
2352
2353         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2354                 tics = (poll * HZ) / 8000;
2355                 if (tics < 1)
2356                         tics = 1;
2357                 poll = (tics * 8000) / HZ;
2358                 if (poll > 256 || poll < 8) {
2359                         printk(KERN_ERR "%s: Wrong poll value %d not in range "
2360                                 "of 8..256.\n", __func__, poll);
2361                         err = -EINVAL;
2362                         return err;
2363                 }
2364         }
2365         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2366                 printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2367                         __func__, poll);
2368                 hfc_tl.function = (void *)hfcpci_softirq;
2369                 hfc_tl.data = 0;
2370                 init_timer(&hfc_tl);
2371                 hfc_tl.expires = jiffies + tics;
2372                 hfc_jiffies = hfc_tl.expires;
2373                 add_timer(&hfc_tl);
2374         } else
2375                 tics = 0; /* indicate the use of controller's timer */
2376
2377         err = pci_register_driver(&hfc_driver);
2378         if (err) {
2379                 if (timer_pending(&hfc_tl))
2380                         del_timer(&hfc_tl);
2381         }
2382
2383         return err;
2384 }
2385
2386 static void __exit
2387 HFC_cleanup(void)
2388 {
2389         if (timer_pending(&hfc_tl))
2390                 del_timer(&hfc_tl);
2391
2392         pci_unregister_driver(&hfc_driver);
2393 }
2394
2395 module_init(HFC_init);
2396 module_exit(HFC_cleanup);
2397
2398 MODULE_DEVICE_TABLE(pci, hfc_ids);