Merge branch 'for-2.6.27' of git://linux-nfs.org/~bfields/linux
[linux-2.6] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR                       180
8 #define USB_DEVICE_MAJOR                189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>        /* for mdelay() */
15 #include <linux/interrupt.h>    /* for in_interrupt() */
16 #include <linux/list.h>         /* for struct list_head */
17 #include <linux/kref.h>         /* for struct kref */
18 #include <linux/device.h>       /* for struct device */
19 #include <linux/fs.h>           /* for struct file_operations */
20 #include <linux/completion.h>   /* for struct completion */
21 #include <linux/sched.h>        /* for current && schedule_timeout */
22 #include <linux/mutex.h>        /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
27
28 /*-------------------------------------------------------------------------*/
29
30 /*
31  * Host-side wrappers for standard USB descriptors ... these are parsed
32  * from the data provided by devices.  Parsing turns them from a flat
33  * sequence of descriptors into a hierarchy:
34  *
35  *  - devices have one (usually) or more configs;
36  *  - configs have one (often) or more interfaces;
37  *  - interfaces have one (usually) or more settings;
38  *  - each interface setting has zero or (usually) more endpoints.
39  *
40  * And there might be other descriptors mixed in with those.
41  *
42  * Devices may also have class-specific or vendor-specific descriptors.
43  */
44
45 struct ep_device;
46
47 /**
48  * struct usb_host_endpoint - host-side endpoint descriptor and queue
49  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
50  * @urb_list: urbs queued to this endpoint; maintained by usbcore
51  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
52  *      with one or more transfer descriptors (TDs) per urb
53  * @ep_dev: ep_device for sysfs info
54  * @extra: descriptors following this endpoint in the configuration
55  * @extralen: how many bytes of "extra" are valid
56  * @enabled: URBs may be submitted to this endpoint
57  *
58  * USB requests are always queued to a given endpoint, identified by a
59  * descriptor within an active interface in a given USB configuration.
60  */
61 struct usb_host_endpoint {
62         struct usb_endpoint_descriptor  desc;
63         struct list_head                urb_list;
64         void                            *hcpriv;
65         struct ep_device                *ep_dev;        /* For sysfs info */
66
67         unsigned char *extra;   /* Extra descriptors */
68         int extralen;
69         int enabled;
70 };
71
72 /* host-side wrapper for one interface setting's parsed descriptors */
73 struct usb_host_interface {
74         struct usb_interface_descriptor desc;
75
76         /* array of desc.bNumEndpoint endpoints associated with this
77          * interface setting.  these will be in no particular order.
78          */
79         struct usb_host_endpoint *endpoint;
80
81         char *string;           /* iInterface string, if present */
82         unsigned char *extra;   /* Extra descriptors */
83         int extralen;
84 };
85
86 enum usb_interface_condition {
87         USB_INTERFACE_UNBOUND = 0,
88         USB_INTERFACE_BINDING,
89         USB_INTERFACE_BOUND,
90         USB_INTERFACE_UNBINDING,
91 };
92
93 /**
94  * struct usb_interface - what usb device drivers talk to
95  * @altsetting: array of interface structures, one for each alternate
96  *      setting that may be selected.  Each one includes a set of
97  *      endpoint configurations.  They will be in no particular order.
98  * @cur_altsetting: the current altsetting.
99  * @num_altsetting: number of altsettings defined.
100  * @intf_assoc: interface association descriptor
101  * @minor: the minor number assigned to this interface, if this
102  *      interface is bound to a driver that uses the USB major number.
103  *      If this interface does not use the USB major, this field should
104  *      be unused.  The driver should set this value in the probe()
105  *      function of the driver, after it has been assigned a minor
106  *      number from the USB core by calling usb_register_dev().
107  * @condition: binding state of the interface: not bound, binding
108  *      (in probe()), bound to a driver, or unbinding (in disconnect())
109  * @is_active: flag set when the interface is bound and not suspended.
110  * @sysfs_files_created: sysfs attributes exist
111  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
112  *      capability during autosuspend.
113  * @dev: driver model's view of this device
114  * @usb_dev: if an interface is bound to the USB major, this will point
115  *      to the sysfs representation for that device.
116  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
117  *      allowed unless the counter is 0.
118  *
119  * USB device drivers attach to interfaces on a physical device.  Each
120  * interface encapsulates a single high level function, such as feeding
121  * an audio stream to a speaker or reporting a change in a volume control.
122  * Many USB devices only have one interface.  The protocol used to talk to
123  * an interface's endpoints can be defined in a usb "class" specification,
124  * or by a product's vendor.  The (default) control endpoint is part of
125  * every interface, but is never listed among the interface's descriptors.
126  *
127  * The driver that is bound to the interface can use standard driver model
128  * calls such as dev_get_drvdata() on the dev member of this structure.
129  *
130  * Each interface may have alternate settings.  The initial configuration
131  * of a device sets altsetting 0, but the device driver can change
132  * that setting using usb_set_interface().  Alternate settings are often
133  * used to control the use of periodic endpoints, such as by having
134  * different endpoints use different amounts of reserved USB bandwidth.
135  * All standards-conformant USB devices that use isochronous endpoints
136  * will use them in non-default settings.
137  *
138  * The USB specification says that alternate setting numbers must run from
139  * 0 to one less than the total number of alternate settings.  But some
140  * devices manage to mess this up, and the structures aren't necessarily
141  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
142  * look up an alternate setting in the altsetting array based on its number.
143  */
144 struct usb_interface {
145         /* array of alternate settings for this interface,
146          * stored in no particular order */
147         struct usb_host_interface *altsetting;
148
149         struct usb_host_interface *cur_altsetting;      /* the currently
150                                          * active alternate setting */
151         unsigned num_altsetting;        /* number of alternate settings */
152
153         /* If there is an interface association descriptor then it will list
154          * the associated interfaces */
155         struct usb_interface_assoc_descriptor *intf_assoc;
156
157         int minor;                      /* minor number this interface is
158                                          * bound to */
159         enum usb_interface_condition condition;         /* state of binding */
160         unsigned is_active:1;           /* the interface is not suspended */
161         unsigned sysfs_files_created:1; /* the sysfs attributes exist */
162         unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
163         unsigned needs_binding:1;       /* needs delayed unbind/rebind */
164
165         struct device dev;              /* interface specific device info */
166         struct device *usb_dev;
167         int pm_usage_cnt;               /* usage counter for autosuspend */
168 };
169 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
170 #define interface_to_usbdev(intf) \
171         container_of(intf->dev.parent, struct usb_device, dev)
172
173 static inline void *usb_get_intfdata(struct usb_interface *intf)
174 {
175         return dev_get_drvdata(&intf->dev);
176 }
177
178 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
179 {
180         dev_set_drvdata(&intf->dev, data);
181 }
182
183 struct usb_interface *usb_get_intf(struct usb_interface *intf);
184 void usb_put_intf(struct usb_interface *intf);
185
186 /* this maximum is arbitrary */
187 #define USB_MAXINTERFACES       32
188 #define USB_MAXIADS             USB_MAXINTERFACES/2
189
190 /**
191  * struct usb_interface_cache - long-term representation of a device interface
192  * @num_altsetting: number of altsettings defined.
193  * @ref: reference counter.
194  * @altsetting: variable-length array of interface structures, one for
195  *      each alternate setting that may be selected.  Each one includes a
196  *      set of endpoint configurations.  They will be in no particular order.
197  *
198  * These structures persist for the lifetime of a usb_device, unlike
199  * struct usb_interface (which persists only as long as its configuration
200  * is installed).  The altsetting arrays can be accessed through these
201  * structures at any time, permitting comparison of configurations and
202  * providing support for the /proc/bus/usb/devices pseudo-file.
203  */
204 struct usb_interface_cache {
205         unsigned num_altsetting;        /* number of alternate settings */
206         struct kref ref;                /* reference counter */
207
208         /* variable-length array of alternate settings for this interface,
209          * stored in no particular order */
210         struct usb_host_interface altsetting[0];
211 };
212 #define ref_to_usb_interface_cache(r) \
213                 container_of(r, struct usb_interface_cache, ref)
214 #define altsetting_to_usb_interface_cache(a) \
215                 container_of(a, struct usb_interface_cache, altsetting[0])
216
217 /**
218  * struct usb_host_config - representation of a device's configuration
219  * @desc: the device's configuration descriptor.
220  * @string: pointer to the cached version of the iConfiguration string, if
221  *      present for this configuration.
222  * @intf_assoc: list of any interface association descriptors in this config
223  * @interface: array of pointers to usb_interface structures, one for each
224  *      interface in the configuration.  The number of interfaces is stored
225  *      in desc.bNumInterfaces.  These pointers are valid only while the
226  *      the configuration is active.
227  * @intf_cache: array of pointers to usb_interface_cache structures, one
228  *      for each interface in the configuration.  These structures exist
229  *      for the entire life of the device.
230  * @extra: pointer to buffer containing all extra descriptors associated
231  *      with this configuration (those preceding the first interface
232  *      descriptor).
233  * @extralen: length of the extra descriptors buffer.
234  *
235  * USB devices may have multiple configurations, but only one can be active
236  * at any time.  Each encapsulates a different operational environment;
237  * for example, a dual-speed device would have separate configurations for
238  * full-speed and high-speed operation.  The number of configurations
239  * available is stored in the device descriptor as bNumConfigurations.
240  *
241  * A configuration can contain multiple interfaces.  Each corresponds to
242  * a different function of the USB device, and all are available whenever
243  * the configuration is active.  The USB standard says that interfaces
244  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
245  * of devices get this wrong.  In addition, the interface array is not
246  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
247  * look up an interface entry based on its number.
248  *
249  * Device drivers should not attempt to activate configurations.  The choice
250  * of which configuration to install is a policy decision based on such
251  * considerations as available power, functionality provided, and the user's
252  * desires (expressed through userspace tools).  However, drivers can call
253  * usb_reset_configuration() to reinitialize the current configuration and
254  * all its interfaces.
255  */
256 struct usb_host_config {
257         struct usb_config_descriptor    desc;
258
259         char *string;           /* iConfiguration string, if present */
260
261         /* List of any Interface Association Descriptors in this
262          * configuration. */
263         struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
264
265         /* the interfaces associated with this configuration,
266          * stored in no particular order */
267         struct usb_interface *interface[USB_MAXINTERFACES];
268
269         /* Interface information available even when this is not the
270          * active configuration */
271         struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
272
273         unsigned char *extra;   /* Extra descriptors */
274         int extralen;
275 };
276
277 int __usb_get_extra_descriptor(char *buffer, unsigned size,
278         unsigned char type, void **ptr);
279 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
280                                 __usb_get_extra_descriptor((ifpoint)->extra, \
281                                 (ifpoint)->extralen, \
282                                 type, (void **)ptr)
283
284 /* ----------------------------------------------------------------------- */
285
286 /* USB device number allocation bitmap */
287 struct usb_devmap {
288         unsigned long devicemap[128 / (8*sizeof(unsigned long))];
289 };
290
291 /*
292  * Allocated per bus (tree of devices) we have:
293  */
294 struct usb_bus {
295         struct device *controller;      /* host/master side hardware */
296         int busnum;                     /* Bus number (in order of reg) */
297         const char *bus_name;           /* stable id (PCI slot_name etc) */
298         u8 uses_dma;                    /* Does the host controller use DMA? */
299         u8 otg_port;                    /* 0, or number of OTG/HNP port */
300         unsigned is_b_host:1;           /* true during some HNP roleswitches */
301         unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
302
303         int devnum_next;                /* Next open device number in
304                                          * round-robin allocation */
305
306         struct usb_devmap devmap;       /* device address allocation map */
307         struct usb_device *root_hub;    /* Root hub */
308         struct list_head bus_list;      /* list of busses */
309
310         int bandwidth_allocated;        /* on this bus: how much of the time
311                                          * reserved for periodic (intr/iso)
312                                          * requests is used, on average?
313                                          * Units: microseconds/frame.
314                                          * Limits: Full/low speed reserve 90%,
315                                          * while high speed reserves 80%.
316                                          */
317         int bandwidth_int_reqs;         /* number of Interrupt requests */
318         int bandwidth_isoc_reqs;        /* number of Isoc. requests */
319
320 #ifdef CONFIG_USB_DEVICEFS
321         struct dentry *usbfs_dentry;    /* usbfs dentry entry for the bus */
322 #endif
323         struct device *dev;             /* device for this bus */
324
325 #if defined(CONFIG_USB_MON)
326         struct mon_bus *mon_bus;        /* non-null when associated */
327         int monitored;                  /* non-zero when monitored */
328 #endif
329 };
330
331 /* ----------------------------------------------------------------------- */
332
333 /* This is arbitrary.
334  * From USB 2.0 spec Table 11-13, offset 7, a hub can
335  * have up to 255 ports. The most yet reported is 10.
336  *
337  * Current Wireless USB host hardware (Intel i1480 for example) allows
338  * up to 22 devices to connect. Upcoming hardware might raise that
339  * limit. Because the arrays need to add a bit for hub status data, we
340  * do 31, so plus one evens out to four bytes.
341  */
342 #define USB_MAXCHILDREN         (31)
343
344 struct usb_tt;
345
346 /**
347  * struct usb_device - kernel's representation of a USB device
348  * @devnum: device number; address on a USB bus
349  * @devpath: device ID string for use in messages (e.g., /port/...)
350  * @state: device state: configured, not attached, etc.
351  * @speed: device speed: high/full/low (or error)
352  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
353  * @ttport: device port on that tt hub
354  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
355  * @parent: our hub, unless we're the root
356  * @bus: bus we're part of
357  * @ep0: endpoint 0 data (default control pipe)
358  * @dev: generic device interface
359  * @descriptor: USB device descriptor
360  * @config: all of the device's configs
361  * @actconfig: the active configuration
362  * @ep_in: array of IN endpoints
363  * @ep_out: array of OUT endpoints
364  * @rawdescriptors: raw descriptors for each config
365  * @bus_mA: Current available from the bus
366  * @portnum: parent port number (origin 1)
367  * @level: number of USB hub ancestors
368  * @can_submit: URBs may be submitted
369  * @discon_suspended: disconnected while suspended
370  * @persist_enabled:  USB_PERSIST enabled for this device
371  * @have_langid: whether string_langid is valid
372  * @authorized: policy has said we can use it;
373  *      (user space) policy determines if we authorize this device to be
374  *      used or not. By default, wired USB devices are authorized.
375  *      WUSB devices are not, until we authorize them from user space.
376  *      FIXME -- complete doc
377  * @authenticated: Crypto authentication passed
378  * @wusb: device is Wireless USB
379  * @string_langid: language ID for strings
380  * @product: iProduct string, if present (static)
381  * @manufacturer: iManufacturer string, if present (static)
382  * @serial: iSerialNumber string, if present (static)
383  * @filelist: usbfs files that are open to this device
384  * @usb_classdev: USB class device that was created for usbfs device
385  *      access from userspace
386  * @usbfs_dentry: usbfs dentry entry for the device
387  * @maxchild: number of ports if hub
388  * @children: child devices - USB devices that are attached to this hub
389  * @pm_usage_cnt: usage counter for autosuspend
390  * @quirks: quirks of the whole device
391  * @urbnum: number of URBs submitted for the whole device
392  * @active_duration: total time device is not suspended
393  * @autosuspend: for delayed autosuspends
394  * @pm_mutex: protects PM operations
395  * @last_busy: time of last use
396  * @autosuspend_delay: in jiffies
397  * @connect_time: time device was first connected
398  * @auto_pm: autosuspend/resume in progress
399  * @do_remote_wakeup:  remote wakeup should be enabled
400  * @reset_resume: needs reset instead of resume
401  * @autosuspend_disabled: autosuspend disabled by the user
402  * @autoresume_disabled: autoresume disabled by the user
403  * @skip_sys_resume: skip the next system resume
404  *
405  * Notes:
406  * Usbcore drivers should not set usbdev->state directly.  Instead use
407  * usb_set_device_state().
408  */
409 struct usb_device {
410         int             devnum;
411         char            devpath [16];
412         enum usb_device_state   state;
413         enum usb_device_speed   speed;
414
415         struct usb_tt   *tt;
416         int             ttport;
417
418         unsigned int toggle[2];
419
420         struct usb_device *parent;
421         struct usb_bus *bus;
422         struct usb_host_endpoint ep0;
423
424         struct device dev;
425
426         struct usb_device_descriptor descriptor;
427         struct usb_host_config *config;
428
429         struct usb_host_config *actconfig;
430         struct usb_host_endpoint *ep_in[16];
431         struct usb_host_endpoint *ep_out[16];
432
433         char **rawdescriptors;
434
435         unsigned short bus_mA;
436         u8 portnum;
437         u8 level;
438
439         unsigned can_submit:1;
440         unsigned discon_suspended:1;
441         unsigned persist_enabled:1;
442         unsigned have_langid:1;
443         unsigned authorized:1;
444         unsigned authenticated:1;
445         unsigned wusb:1;
446         int string_langid;
447
448         /* static strings from the device */
449         char *product;
450         char *manufacturer;
451         char *serial;
452
453         struct list_head filelist;
454 #ifdef CONFIG_USB_DEVICE_CLASS
455         struct device *usb_classdev;
456 #endif
457 #ifdef CONFIG_USB_DEVICEFS
458         struct dentry *usbfs_dentry;
459 #endif
460
461         int maxchild;
462         struct usb_device *children[USB_MAXCHILDREN];
463
464         int pm_usage_cnt;
465         u32 quirks;
466         atomic_t urbnum;
467
468         unsigned long active_duration;
469
470 #ifdef CONFIG_PM
471         struct delayed_work autosuspend;
472         struct mutex pm_mutex;
473
474         unsigned long last_busy;
475         int autosuspend_delay;
476         unsigned long connect_time;
477
478         unsigned auto_pm:1;
479         unsigned do_remote_wakeup:1;
480         unsigned reset_resume:1;
481         unsigned autosuspend_disabled:1;
482         unsigned autoresume_disabled:1;
483         unsigned skip_sys_resume:1;
484 #endif
485         struct wusb_dev *wusb_dev;
486 };
487 #define to_usb_device(d) container_of(d, struct usb_device, dev)
488
489 extern struct usb_device *usb_get_dev(struct usb_device *dev);
490 extern void usb_put_dev(struct usb_device *dev);
491
492 /* USB device locking */
493 #define usb_lock_device(udev)           down(&(udev)->dev.sem)
494 #define usb_unlock_device(udev)         up(&(udev)->dev.sem)
495 #define usb_trylock_device(udev)        down_trylock(&(udev)->dev.sem)
496 extern int usb_lock_device_for_reset(struct usb_device *udev,
497                                      const struct usb_interface *iface);
498
499 /* USB port reset for device reinitialization */
500 extern int usb_reset_device(struct usb_device *dev);
501
502 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
503
504 /* USB autosuspend and autoresume */
505 #ifdef CONFIG_USB_SUSPEND
506 extern int usb_autopm_set_interface(struct usb_interface *intf);
507 extern int usb_autopm_get_interface(struct usb_interface *intf);
508 extern void usb_autopm_put_interface(struct usb_interface *intf);
509
510 static inline void usb_autopm_enable(struct usb_interface *intf)
511 {
512         intf->pm_usage_cnt = 0;
513         usb_autopm_set_interface(intf);
514 }
515
516 static inline void usb_autopm_disable(struct usb_interface *intf)
517 {
518         intf->pm_usage_cnt = 1;
519         usb_autopm_set_interface(intf);
520 }
521
522 static inline void usb_mark_last_busy(struct usb_device *udev)
523 {
524         udev->last_busy = jiffies;
525 }
526
527 #else
528
529 static inline int usb_autopm_set_interface(struct usb_interface *intf)
530 { return 0; }
531
532 static inline int usb_autopm_get_interface(struct usb_interface *intf)
533 { return 0; }
534
535 static inline void usb_autopm_put_interface(struct usb_interface *intf)
536 { }
537 static inline void usb_autopm_enable(struct usb_interface *intf)
538 { }
539 static inline void usb_autopm_disable(struct usb_interface *intf)
540 { }
541 static inline void usb_mark_last_busy(struct usb_device *udev)
542 { }
543 #endif
544
545 /*-------------------------------------------------------------------------*/
546
547 /* for drivers using iso endpoints */
548 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
549
550 /* used these for multi-interface device registration */
551 extern int usb_driver_claim_interface(struct usb_driver *driver,
552                         struct usb_interface *iface, void *priv);
553
554 /**
555  * usb_interface_claimed - returns true iff an interface is claimed
556  * @iface: the interface being checked
557  *
558  * Returns true (nonzero) iff the interface is claimed, else false (zero).
559  * Callers must own the driver model's usb bus readlock.  So driver
560  * probe() entries don't need extra locking, but other call contexts
561  * may need to explicitly claim that lock.
562  *
563  */
564 static inline int usb_interface_claimed(struct usb_interface *iface)
565 {
566         return (iface->dev.driver != NULL);
567 }
568
569 extern void usb_driver_release_interface(struct usb_driver *driver,
570                         struct usb_interface *iface);
571 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
572                                          const struct usb_device_id *id);
573 extern int usb_match_one_id(struct usb_interface *interface,
574                             const struct usb_device_id *id);
575
576 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
577                 int minor);
578 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
579                 unsigned ifnum);
580 extern struct usb_host_interface *usb_altnum_to_altsetting(
581                 const struct usb_interface *intf, unsigned int altnum);
582
583
584 /**
585  * usb_make_path - returns stable device path in the usb tree
586  * @dev: the device whose path is being constructed
587  * @buf: where to put the string
588  * @size: how big is "buf"?
589  *
590  * Returns length of the string (> 0) or negative if size was too small.
591  *
592  * This identifier is intended to be "stable", reflecting physical paths in
593  * hardware such as physical bus addresses for host controllers or ports on
594  * USB hubs.  That makes it stay the same until systems are physically
595  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
596  * controllers.  Adding and removing devices, including virtual root hubs
597  * in host controller driver modules, does not change these path identifers;
598  * neither does rebooting or re-enumerating.  These are more useful identifiers
599  * than changeable ("unstable") ones like bus numbers or device addresses.
600  *
601  * With a partial exception for devices connected to USB 2.0 root hubs, these
602  * identifiers are also predictable.  So long as the device tree isn't changed,
603  * plugging any USB device into a given hub port always gives it the same path.
604  * Because of the use of "companion" controllers, devices connected to ports on
605  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
606  * high speed, and a different one if they are full or low speed.
607  */
608 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
609 {
610         int actual;
611         actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
612                           dev->devpath);
613         return (actual >= (int)size) ? -1 : actual;
614 }
615
616 /*-------------------------------------------------------------------------*/
617
618 /**
619  * usb_endpoint_num - get the endpoint's number
620  * @epd: endpoint to be checked
621  *
622  * Returns @epd's number: 0 to 15.
623  */
624 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
625 {
626         return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
627 }
628
629 /**
630  * usb_endpoint_type - get the endpoint's transfer type
631  * @epd: endpoint to be checked
632  *
633  * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
634  * to @epd's transfer type.
635  */
636 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
637 {
638         return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
639 }
640
641 /**
642  * usb_endpoint_dir_in - check if the endpoint has IN direction
643  * @epd: endpoint to be checked
644  *
645  * Returns true if the endpoint is of type IN, otherwise it returns false.
646  */
647 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
648 {
649         return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
650 }
651
652 /**
653  * usb_endpoint_dir_out - check if the endpoint has OUT direction
654  * @epd: endpoint to be checked
655  *
656  * Returns true if the endpoint is of type OUT, otherwise it returns false.
657  */
658 static inline int usb_endpoint_dir_out(
659                                 const struct usb_endpoint_descriptor *epd)
660 {
661         return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
662 }
663
664 /**
665  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
666  * @epd: endpoint to be checked
667  *
668  * Returns true if the endpoint is of type bulk, otherwise it returns false.
669  */
670 static inline int usb_endpoint_xfer_bulk(
671                                 const struct usb_endpoint_descriptor *epd)
672 {
673         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
674                 USB_ENDPOINT_XFER_BULK);
675 }
676
677 /**
678  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
679  * @epd: endpoint to be checked
680  *
681  * Returns true if the endpoint is of type control, otherwise it returns false.
682  */
683 static inline int usb_endpoint_xfer_control(
684                                 const struct usb_endpoint_descriptor *epd)
685 {
686         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
687                 USB_ENDPOINT_XFER_CONTROL);
688 }
689
690 /**
691  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
692  * @epd: endpoint to be checked
693  *
694  * Returns true if the endpoint is of type interrupt, otherwise it returns
695  * false.
696  */
697 static inline int usb_endpoint_xfer_int(
698                                 const struct usb_endpoint_descriptor *epd)
699 {
700         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
701                 USB_ENDPOINT_XFER_INT);
702 }
703
704 /**
705  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
706  * @epd: endpoint to be checked
707  *
708  * Returns true if the endpoint is of type isochronous, otherwise it returns
709  * false.
710  */
711 static inline int usb_endpoint_xfer_isoc(
712                                 const struct usb_endpoint_descriptor *epd)
713 {
714         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
715                 USB_ENDPOINT_XFER_ISOC);
716 }
717
718 /**
719  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
720  * @epd: endpoint to be checked
721  *
722  * Returns true if the endpoint has bulk transfer type and IN direction,
723  * otherwise it returns false.
724  */
725 static inline int usb_endpoint_is_bulk_in(
726                                 const struct usb_endpoint_descriptor *epd)
727 {
728         return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
729 }
730
731 /**
732  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
733  * @epd: endpoint to be checked
734  *
735  * Returns true if the endpoint has bulk transfer type and OUT direction,
736  * otherwise it returns false.
737  */
738 static inline int usb_endpoint_is_bulk_out(
739                                 const struct usb_endpoint_descriptor *epd)
740 {
741         return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
742 }
743
744 /**
745  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
746  * @epd: endpoint to be checked
747  *
748  * Returns true if the endpoint has interrupt transfer type and IN direction,
749  * otherwise it returns false.
750  */
751 static inline int usb_endpoint_is_int_in(
752                                 const struct usb_endpoint_descriptor *epd)
753 {
754         return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
755 }
756
757 /**
758  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
759  * @epd: endpoint to be checked
760  *
761  * Returns true if the endpoint has interrupt transfer type and OUT direction,
762  * otherwise it returns false.
763  */
764 static inline int usb_endpoint_is_int_out(
765                                 const struct usb_endpoint_descriptor *epd)
766 {
767         return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
768 }
769
770 /**
771  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
772  * @epd: endpoint to be checked
773  *
774  * Returns true if the endpoint has isochronous transfer type and IN direction,
775  * otherwise it returns false.
776  */
777 static inline int usb_endpoint_is_isoc_in(
778                                 const struct usb_endpoint_descriptor *epd)
779 {
780         return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
781 }
782
783 /**
784  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
785  * @epd: endpoint to be checked
786  *
787  * Returns true if the endpoint has isochronous transfer type and OUT direction,
788  * otherwise it returns false.
789  */
790 static inline int usb_endpoint_is_isoc_out(
791                                 const struct usb_endpoint_descriptor *epd)
792 {
793         return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
794 }
795
796 /*-------------------------------------------------------------------------*/
797
798 #define USB_DEVICE_ID_MATCH_DEVICE \
799                 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
800 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
801                 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
802 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
803                 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
804 #define USB_DEVICE_ID_MATCH_DEV_INFO \
805                 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
806                 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
807                 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
808 #define USB_DEVICE_ID_MATCH_INT_INFO \
809                 (USB_DEVICE_ID_MATCH_INT_CLASS | \
810                 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
811                 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
812
813 /**
814  * USB_DEVICE - macro used to describe a specific usb device
815  * @vend: the 16 bit USB Vendor ID
816  * @prod: the 16 bit USB Product ID
817  *
818  * This macro is used to create a struct usb_device_id that matches a
819  * specific device.
820  */
821 #define USB_DEVICE(vend,prod) \
822         .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
823         .idVendor = (vend), \
824         .idProduct = (prod)
825 /**
826  * USB_DEVICE_VER - describe a specific usb device with a version range
827  * @vend: the 16 bit USB Vendor ID
828  * @prod: the 16 bit USB Product ID
829  * @lo: the bcdDevice_lo value
830  * @hi: the bcdDevice_hi value
831  *
832  * This macro is used to create a struct usb_device_id that matches a
833  * specific device, with a version range.
834  */
835 #define USB_DEVICE_VER(vend, prod, lo, hi) \
836         .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
837         .idVendor = (vend), \
838         .idProduct = (prod), \
839         .bcdDevice_lo = (lo), \
840         .bcdDevice_hi = (hi)
841
842 /**
843  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
844  * @vend: the 16 bit USB Vendor ID
845  * @prod: the 16 bit USB Product ID
846  * @pr: bInterfaceProtocol value
847  *
848  * This macro is used to create a struct usb_device_id that matches a
849  * specific interface protocol of devices.
850  */
851 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
852         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
853                        USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
854         .idVendor = (vend), \
855         .idProduct = (prod), \
856         .bInterfaceProtocol = (pr)
857
858 /**
859  * USB_DEVICE_INFO - macro used to describe a class of usb devices
860  * @cl: bDeviceClass value
861  * @sc: bDeviceSubClass value
862  * @pr: bDeviceProtocol value
863  *
864  * This macro is used to create a struct usb_device_id that matches a
865  * specific class of devices.
866  */
867 #define USB_DEVICE_INFO(cl, sc, pr) \
868         .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
869         .bDeviceClass = (cl), \
870         .bDeviceSubClass = (sc), \
871         .bDeviceProtocol = (pr)
872
873 /**
874  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
875  * @cl: bInterfaceClass value
876  * @sc: bInterfaceSubClass value
877  * @pr: bInterfaceProtocol value
878  *
879  * This macro is used to create a struct usb_device_id that matches a
880  * specific class of interfaces.
881  */
882 #define USB_INTERFACE_INFO(cl, sc, pr) \
883         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
884         .bInterfaceClass = (cl), \
885         .bInterfaceSubClass = (sc), \
886         .bInterfaceProtocol = (pr)
887
888 /**
889  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
890  * @vend: the 16 bit USB Vendor ID
891  * @prod: the 16 bit USB Product ID
892  * @cl: bInterfaceClass value
893  * @sc: bInterfaceSubClass value
894  * @pr: bInterfaceProtocol value
895  *
896  * This macro is used to create a struct usb_device_id that matches a
897  * specific device with a specific class of interfaces.
898  *
899  * This is especially useful when explicitly matching devices that have
900  * vendor specific bDeviceClass values, but standards-compliant interfaces.
901  */
902 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
903         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
904                 | USB_DEVICE_ID_MATCH_DEVICE, \
905         .idVendor = (vend), \
906         .idProduct = (prod), \
907         .bInterfaceClass = (cl), \
908         .bInterfaceSubClass = (sc), \
909         .bInterfaceProtocol = (pr)
910
911 /* ----------------------------------------------------------------------- */
912
913 /* Stuff for dynamic usb ids */
914 struct usb_dynids {
915         spinlock_t lock;
916         struct list_head list;
917 };
918
919 struct usb_dynid {
920         struct list_head node;
921         struct usb_device_id id;
922 };
923
924 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
925                                 struct device_driver *driver,
926                                 const char *buf, size_t count);
927
928 /**
929  * struct usbdrv_wrap - wrapper for driver-model structure
930  * @driver: The driver-model core driver structure.
931  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
932  */
933 struct usbdrv_wrap {
934         struct device_driver driver;
935         int for_devices;
936 };
937
938 /**
939  * struct usb_driver - identifies USB interface driver to usbcore
940  * @name: The driver name should be unique among USB drivers,
941  *      and should normally be the same as the module name.
942  * @probe: Called to see if the driver is willing to manage a particular
943  *      interface on a device.  If it is, probe returns zero and uses
944  *      usb_set_intfdata() to associate driver-specific data with the
945  *      interface.  It may also use usb_set_interface() to specify the
946  *      appropriate altsetting.  If unwilling to manage the interface,
947  *      return -ENODEV, if genuine IO errors occured, an appropriate
948  *      negative errno value.
949  * @disconnect: Called when the interface is no longer accessible, usually
950  *      because its device has been (or is being) disconnected or the
951  *      driver module is being unloaded.
952  * @ioctl: Used for drivers that want to talk to userspace through
953  *      the "usbfs" filesystem.  This lets devices provide ways to
954  *      expose information to user space regardless of where they
955  *      do (or don't) show up otherwise in the filesystem.
956  * @suspend: Called when the device is going to be suspended by the system.
957  * @resume: Called when the device is being resumed by the system.
958  * @reset_resume: Called when the suspended device has been reset instead
959  *      of being resumed.
960  * @pre_reset: Called by usb_reset_device() when the device
961  *      is about to be reset.
962  * @post_reset: Called by usb_reset_device() after the device
963  *      has been reset
964  * @id_table: USB drivers use ID table to support hotplugging.
965  *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
966  *      or your driver's probe function will never get called.
967  * @dynids: used internally to hold the list of dynamically added device
968  *      ids for this driver.
969  * @drvwrap: Driver-model core structure wrapper.
970  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
971  *      added to this driver by preventing the sysfs file from being created.
972  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
973  *      for interfaces bound to this driver.
974  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
975  *      endpoints before calling the driver's disconnect method.
976  *
977  * USB interface drivers must provide a name, probe() and disconnect()
978  * methods, and an id_table.  Other driver fields are optional.
979  *
980  * The id_table is used in hotplugging.  It holds a set of descriptors,
981  * and specialized data may be associated with each entry.  That table
982  * is used by both user and kernel mode hotplugging support.
983  *
984  * The probe() and disconnect() methods are called in a context where
985  * they can sleep, but they should avoid abusing the privilege.  Most
986  * work to connect to a device should be done when the device is opened,
987  * and undone at the last close.  The disconnect code needs to address
988  * concurrency issues with respect to open() and close() methods, as
989  * well as forcing all pending I/O requests to complete (by unlinking
990  * them as necessary, and blocking until the unlinks complete).
991  */
992 struct usb_driver {
993         const char *name;
994
995         int (*probe) (struct usb_interface *intf,
996                       const struct usb_device_id *id);
997
998         void (*disconnect) (struct usb_interface *intf);
999
1000         int (*ioctl) (struct usb_interface *intf, unsigned int code,
1001                         void *buf);
1002
1003         int (*suspend) (struct usb_interface *intf, pm_message_t message);
1004         int (*resume) (struct usb_interface *intf);
1005         int (*reset_resume)(struct usb_interface *intf);
1006
1007         int (*pre_reset)(struct usb_interface *intf);
1008         int (*post_reset)(struct usb_interface *intf);
1009
1010         const struct usb_device_id *id_table;
1011
1012         struct usb_dynids dynids;
1013         struct usbdrv_wrap drvwrap;
1014         unsigned int no_dynamic_id:1;
1015         unsigned int supports_autosuspend:1;
1016         unsigned int soft_unbind:1;
1017 };
1018 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1019
1020 /**
1021  * struct usb_device_driver - identifies USB device driver to usbcore
1022  * @name: The driver name should be unique among USB drivers,
1023  *      and should normally be the same as the module name.
1024  * @probe: Called to see if the driver is willing to manage a particular
1025  *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1026  *      to associate driver-specific data with the device.  If unwilling
1027  *      to manage the device, return a negative errno value.
1028  * @disconnect: Called when the device is no longer accessible, usually
1029  *      because it has been (or is being) disconnected or the driver's
1030  *      module is being unloaded.
1031  * @suspend: Called when the device is going to be suspended by the system.
1032  * @resume: Called when the device is being resumed by the system.
1033  * @drvwrap: Driver-model core structure wrapper.
1034  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1035  *      for devices bound to this driver.
1036  *
1037  * USB drivers must provide all the fields listed above except drvwrap.
1038  */
1039 struct usb_device_driver {
1040         const char *name;
1041
1042         int (*probe) (struct usb_device *udev);
1043         void (*disconnect) (struct usb_device *udev);
1044
1045         int (*suspend) (struct usb_device *udev, pm_message_t message);
1046         int (*resume) (struct usb_device *udev);
1047         struct usbdrv_wrap drvwrap;
1048         unsigned int supports_autosuspend:1;
1049 };
1050 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1051                 drvwrap.driver)
1052
1053 extern struct bus_type usb_bus_type;
1054
1055 /**
1056  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1057  * @name: the usb class device name for this driver.  Will show up in sysfs.
1058  * @fops: pointer to the struct file_operations of this driver.
1059  * @minor_base: the start of the minor range for this driver.
1060  *
1061  * This structure is used for the usb_register_dev() and
1062  * usb_unregister_dev() functions, to consolidate a number of the
1063  * parameters used for them.
1064  */
1065 struct usb_class_driver {
1066         char *name;
1067         const struct file_operations *fops;
1068         int minor_base;
1069 };
1070
1071 /*
1072  * use these in module_init()/module_exit()
1073  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1074  */
1075 extern int usb_register_driver(struct usb_driver *, struct module *,
1076                                const char *);
1077 static inline int usb_register(struct usb_driver *driver)
1078 {
1079         return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1080 }
1081 extern void usb_deregister(struct usb_driver *);
1082
1083 extern int usb_register_device_driver(struct usb_device_driver *,
1084                         struct module *);
1085 extern void usb_deregister_device_driver(struct usb_device_driver *);
1086
1087 extern int usb_register_dev(struct usb_interface *intf,
1088                             struct usb_class_driver *class_driver);
1089 extern void usb_deregister_dev(struct usb_interface *intf,
1090                                struct usb_class_driver *class_driver);
1091
1092 extern int usb_disabled(void);
1093
1094 /* ----------------------------------------------------------------------- */
1095
1096 /*
1097  * URB support, for asynchronous request completions
1098  */
1099
1100 /*
1101  * urb->transfer_flags:
1102  *
1103  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1104  */
1105 #define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1106 #define URB_ISO_ASAP            0x0002  /* iso-only, urb->start_frame
1107                                          * ignored */
1108 #define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1109 #define URB_NO_SETUP_DMA_MAP    0x0008  /* urb->setup_dma valid on submit */
1110 #define URB_NO_FSBR             0x0020  /* UHCI-specific */
1111 #define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1112 #define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1113                                          * needed */
1114 #define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1115
1116 #define URB_DIR_IN              0x0200  /* Transfer from device to host */
1117 #define URB_DIR_OUT             0
1118 #define URB_DIR_MASK            URB_DIR_IN
1119
1120 struct usb_iso_packet_descriptor {
1121         unsigned int offset;
1122         unsigned int length;            /* expected length */
1123         unsigned int actual_length;
1124         int status;
1125 };
1126
1127 struct urb;
1128
1129 struct usb_anchor {
1130         struct list_head urb_list;
1131         wait_queue_head_t wait;
1132         spinlock_t lock;
1133 };
1134
1135 static inline void init_usb_anchor(struct usb_anchor *anchor)
1136 {
1137         INIT_LIST_HEAD(&anchor->urb_list);
1138         init_waitqueue_head(&anchor->wait);
1139         spin_lock_init(&anchor->lock);
1140 }
1141
1142 typedef void (*usb_complete_t)(struct urb *);
1143
1144 /**
1145  * struct urb - USB Request Block
1146  * @urb_list: For use by current owner of the URB.
1147  * @anchor_list: membership in the list of an anchor
1148  * @anchor: to anchor URBs to a common mooring
1149  * @ep: Points to the endpoint's data structure.  Will eventually
1150  *      replace @pipe.
1151  * @pipe: Holds endpoint number, direction, type, and more.
1152  *      Create these values with the eight macros available;
1153  *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1154  *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1155  *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1156  *      numbers range from zero to fifteen.  Note that "in" endpoint two
1157  *      is a different endpoint (and pipe) from "out" endpoint two.
1158  *      The current configuration controls the existence, type, and
1159  *      maximum packet size of any given endpoint.
1160  * @dev: Identifies the USB device to perform the request.
1161  * @status: This is read in non-iso completion functions to get the
1162  *      status of the particular request.  ISO requests only use it
1163  *      to tell whether the URB was unlinked; detailed status for
1164  *      each frame is in the fields of the iso_frame-desc.
1165  * @transfer_flags: A variety of flags may be used to affect how URB
1166  *      submission, unlinking, or operation are handled.  Different
1167  *      kinds of URB can use different flags.
1168  * @transfer_buffer:  This identifies the buffer to (or from) which
1169  *      the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1170  *      is set).  This buffer must be suitable for DMA; allocate it with
1171  *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1172  *      of this buffer will be modified.  This buffer is used for the data
1173  *      stage of control transfers.
1174  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1175  *      the device driver is saying that it provided this DMA address,
1176  *      which the host controller driver should use in preference to the
1177  *      transfer_buffer.
1178  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1179  *      be broken up into chunks according to the current maximum packet
1180  *      size for the endpoint, which is a function of the configuration
1181  *      and is encoded in the pipe.  When the length is zero, neither
1182  *      transfer_buffer nor transfer_dma is used.
1183  * @actual_length: This is read in non-iso completion functions, and
1184  *      it tells how many bytes (out of transfer_buffer_length) were
1185  *      transferred.  It will normally be the same as requested, unless
1186  *      either an error was reported or a short read was performed.
1187  *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1188  *      short reads be reported as errors.
1189  * @setup_packet: Only used for control transfers, this points to eight bytes
1190  *      of setup data.  Control transfers always start by sending this data
1191  *      to the device.  Then transfer_buffer is read or written, if needed.
1192  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1193  *      device driver has provided this DMA address for the setup packet.
1194  *      The host controller driver should use this in preference to
1195  *      setup_packet.
1196  * @start_frame: Returns the initial frame for isochronous transfers.
1197  * @number_of_packets: Lists the number of ISO transfer buffers.
1198  * @interval: Specifies the polling interval for interrupt or isochronous
1199  *      transfers.  The units are frames (milliseconds) for for full and low
1200  *      speed devices, and microframes (1/8 millisecond) for highspeed ones.
1201  * @error_count: Returns the number of ISO transfers that reported errors.
1202  * @context: For use in completion functions.  This normally points to
1203  *      request-specific driver context.
1204  * @complete: Completion handler. This URB is passed as the parameter to the
1205  *      completion function.  The completion function may then do what
1206  *      it likes with the URB, including resubmitting or freeing it.
1207  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1208  *      collect the transfer status for each buffer.
1209  *
1210  * This structure identifies USB transfer requests.  URBs must be allocated by
1211  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1212  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1213  * are submitted using usb_submit_urb(), and pending requests may be canceled
1214  * using usb_unlink_urb() or usb_kill_urb().
1215  *
1216  * Data Transfer Buffers:
1217  *
1218  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1219  * taken from the general page pool.  That is provided by transfer_buffer
1220  * (control requests also use setup_packet), and host controller drivers
1221  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1222  * mapping operations can be expensive on some platforms (perhaps using a dma
1223  * bounce buffer or talking to an IOMMU),
1224  * although they're cheap on commodity x86 and ppc hardware.
1225  *
1226  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1227  * which tell the host controller driver that no such mapping is needed since
1228  * the device driver is DMA-aware.  For example, a device driver might
1229  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1230  * When these transfer flags are provided, host controller drivers will
1231  * attempt to use the dma addresses found in the transfer_dma and/or
1232  * setup_dma fields rather than determining a dma address themselves.  (Note
1233  * that transfer_buffer and setup_packet must still be set because not all
1234  * host controllers use DMA, nor do virtual root hubs).
1235  *
1236  * Initialization:
1237  *
1238  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1239  * zero), and complete fields.  All URBs must also initialize
1240  * transfer_buffer and transfer_buffer_length.  They may provide the
1241  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1242  * to be treated as errors; that flag is invalid for write requests.
1243  *
1244  * Bulk URBs may
1245  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1246  * should always terminate with a short packet, even if it means adding an
1247  * extra zero length packet.
1248  *
1249  * Control URBs must provide a setup_packet.  The setup_packet and
1250  * transfer_buffer may each be mapped for DMA or not, independently of
1251  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1252  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1253  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1254  *
1255  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1256  * or, for highspeed devices, 125 microsecond units)
1257  * to poll for transfers.  After the URB has been submitted, the interval
1258  * field reflects how the transfer was actually scheduled.
1259  * The polling interval may be more frequent than requested.
1260  * For example, some controllers have a maximum interval of 32 milliseconds,
1261  * while others support intervals of up to 1024 milliseconds.
1262  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1263  * endpoints, as well as high speed interrupt endpoints, the encoding of
1264  * the transfer interval in the endpoint descriptor is logarithmic.
1265  * Device drivers must convert that value to linear units themselves.)
1266  *
1267  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1268  * the host controller to schedule the transfer as soon as bandwidth
1269  * utilization allows, and then set start_frame to reflect the actual frame
1270  * selected during submission.  Otherwise drivers must specify the start_frame
1271  * and handle the case where the transfer can't begin then.  However, drivers
1272  * won't know how bandwidth is currently allocated, and while they can
1273  * find the current frame using usb_get_current_frame_number () they can't
1274  * know the range for that frame number.  (Ranges for frame counter values
1275  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1276  *
1277  * Isochronous URBs have a different data transfer model, in part because
1278  * the quality of service is only "best effort".  Callers provide specially
1279  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1280  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1281  * URBs are normally queued, submitted by drivers to arrange that
1282  * transfers are at least double buffered, and then explicitly resubmitted
1283  * in completion handlers, so
1284  * that data (such as audio or video) streams at as constant a rate as the
1285  * host controller scheduler can support.
1286  *
1287  * Completion Callbacks:
1288  *
1289  * The completion callback is made in_interrupt(), and one of the first
1290  * things that a completion handler should do is check the status field.
1291  * The status field is provided for all URBs.  It is used to report
1292  * unlinked URBs, and status for all non-ISO transfers.  It should not
1293  * be examined before the URB is returned to the completion handler.
1294  *
1295  * The context field is normally used to link URBs back to the relevant
1296  * driver or request state.
1297  *
1298  * When the completion callback is invoked for non-isochronous URBs, the
1299  * actual_length field tells how many bytes were transferred.  This field
1300  * is updated even when the URB terminated with an error or was unlinked.
1301  *
1302  * ISO transfer status is reported in the status and actual_length fields
1303  * of the iso_frame_desc array, and the number of errors is reported in
1304  * error_count.  Completion callbacks for ISO transfers will normally
1305  * (re)submit URBs to ensure a constant transfer rate.
1306  *
1307  * Note that even fields marked "public" should not be touched by the driver
1308  * when the urb is owned by the hcd, that is, since the call to
1309  * usb_submit_urb() till the entry into the completion routine.
1310  */
1311 struct urb {
1312         /* private: usb core and host controller only fields in the urb */
1313         struct kref kref;               /* reference count of the URB */
1314         void *hcpriv;                   /* private data for host controller */
1315         atomic_t use_count;             /* concurrent submissions counter */
1316         u8 reject;                      /* submissions will fail */
1317         int unlinked;                   /* unlink error code */
1318
1319         /* public: documented fields in the urb that can be used by drivers */
1320         struct list_head urb_list;      /* list head for use by the urb's
1321                                          * current owner */
1322         struct list_head anchor_list;   /* the URB may be anchored */
1323         struct usb_anchor *anchor;
1324         struct usb_device *dev;         /* (in) pointer to associated device */
1325         struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1326         unsigned int pipe;              /* (in) pipe information */
1327         int status;                     /* (return) non-ISO status */
1328         unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1329         void *transfer_buffer;          /* (in) associated data buffer */
1330         dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1331         int transfer_buffer_length;     /* (in) data buffer length */
1332         int actual_length;              /* (return) actual transfer length */
1333         unsigned char *setup_packet;    /* (in) setup packet (control only) */
1334         dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1335         int start_frame;                /* (modify) start frame (ISO) */
1336         int number_of_packets;          /* (in) number of ISO packets */
1337         int interval;                   /* (modify) transfer interval
1338                                          * (INT/ISO) */
1339         int error_count;                /* (return) number of ISO errors */
1340         void *context;                  /* (in) context for completion */
1341         usb_complete_t complete;        /* (in) completion routine */
1342         struct usb_iso_packet_descriptor iso_frame_desc[0];
1343                                         /* (in) ISO ONLY */
1344 };
1345
1346 /* ----------------------------------------------------------------------- */
1347
1348 /**
1349  * usb_fill_control_urb - initializes a control urb
1350  * @urb: pointer to the urb to initialize.
1351  * @dev: pointer to the struct usb_device for this urb.
1352  * @pipe: the endpoint pipe
1353  * @setup_packet: pointer to the setup_packet buffer
1354  * @transfer_buffer: pointer to the transfer buffer
1355  * @buffer_length: length of the transfer buffer
1356  * @complete_fn: pointer to the usb_complete_t function
1357  * @context: what to set the urb context to.
1358  *
1359  * Initializes a control urb with the proper information needed to submit
1360  * it to a device.
1361  */
1362 static inline void usb_fill_control_urb(struct urb *urb,
1363                                         struct usb_device *dev,
1364                                         unsigned int pipe,
1365                                         unsigned char *setup_packet,
1366                                         void *transfer_buffer,
1367                                         int buffer_length,
1368                                         usb_complete_t complete_fn,
1369                                         void *context)
1370 {
1371         urb->dev = dev;
1372         urb->pipe = pipe;
1373         urb->setup_packet = setup_packet;
1374         urb->transfer_buffer = transfer_buffer;
1375         urb->transfer_buffer_length = buffer_length;
1376         urb->complete = complete_fn;
1377         urb->context = context;
1378 }
1379
1380 /**
1381  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1382  * @urb: pointer to the urb to initialize.
1383  * @dev: pointer to the struct usb_device for this urb.
1384  * @pipe: the endpoint pipe
1385  * @transfer_buffer: pointer to the transfer buffer
1386  * @buffer_length: length of the transfer buffer
1387  * @complete_fn: pointer to the usb_complete_t function
1388  * @context: what to set the urb context to.
1389  *
1390  * Initializes a bulk urb with the proper information needed to submit it
1391  * to a device.
1392  */
1393 static inline void usb_fill_bulk_urb(struct urb *urb,
1394                                      struct usb_device *dev,
1395                                      unsigned int pipe,
1396                                      void *transfer_buffer,
1397                                      int buffer_length,
1398                                      usb_complete_t complete_fn,
1399                                      void *context)
1400 {
1401         urb->dev = dev;
1402         urb->pipe = pipe;
1403         urb->transfer_buffer = transfer_buffer;
1404         urb->transfer_buffer_length = buffer_length;
1405         urb->complete = complete_fn;
1406         urb->context = context;
1407 }
1408
1409 /**
1410  * usb_fill_int_urb - macro to help initialize a interrupt urb
1411  * @urb: pointer to the urb to initialize.
1412  * @dev: pointer to the struct usb_device for this urb.
1413  * @pipe: the endpoint pipe
1414  * @transfer_buffer: pointer to the transfer buffer
1415  * @buffer_length: length of the transfer buffer
1416  * @complete_fn: pointer to the usb_complete_t function
1417  * @context: what to set the urb context to.
1418  * @interval: what to set the urb interval to, encoded like
1419  *      the endpoint descriptor's bInterval value.
1420  *
1421  * Initializes a interrupt urb with the proper information needed to submit
1422  * it to a device.
1423  * Note that high speed interrupt endpoints use a logarithmic encoding of
1424  * the endpoint interval, and express polling intervals in microframes
1425  * (eight per millisecond) rather than in frames (one per millisecond).
1426  */
1427 static inline void usb_fill_int_urb(struct urb *urb,
1428                                     struct usb_device *dev,
1429                                     unsigned int pipe,
1430                                     void *transfer_buffer,
1431                                     int buffer_length,
1432                                     usb_complete_t complete_fn,
1433                                     void *context,
1434                                     int interval)
1435 {
1436         urb->dev = dev;
1437         urb->pipe = pipe;
1438         urb->transfer_buffer = transfer_buffer;
1439         urb->transfer_buffer_length = buffer_length;
1440         urb->complete = complete_fn;
1441         urb->context = context;
1442         if (dev->speed == USB_SPEED_HIGH)
1443                 urb->interval = 1 << (interval - 1);
1444         else
1445                 urb->interval = interval;
1446         urb->start_frame = -1;
1447 }
1448
1449 extern void usb_init_urb(struct urb *urb);
1450 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1451 extern void usb_free_urb(struct urb *urb);
1452 #define usb_put_urb usb_free_urb
1453 extern struct urb *usb_get_urb(struct urb *urb);
1454 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1455 extern int usb_unlink_urb(struct urb *urb);
1456 extern void usb_kill_urb(struct urb *urb);
1457 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1458 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1459 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1460 extern void usb_unanchor_urb(struct urb *urb);
1461 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1462                                          unsigned int timeout);
1463
1464 /**
1465  * usb_urb_dir_in - check if an URB describes an IN transfer
1466  * @urb: URB to be checked
1467  *
1468  * Returns 1 if @urb describes an IN transfer (device-to-host),
1469  * otherwise 0.
1470  */
1471 static inline int usb_urb_dir_in(struct urb *urb)
1472 {
1473         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1474 }
1475
1476 /**
1477  * usb_urb_dir_out - check if an URB describes an OUT transfer
1478  * @urb: URB to be checked
1479  *
1480  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1481  * otherwise 0.
1482  */
1483 static inline int usb_urb_dir_out(struct urb *urb)
1484 {
1485         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1486 }
1487
1488 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1489         gfp_t mem_flags, dma_addr_t *dma);
1490 void usb_buffer_free(struct usb_device *dev, size_t size,
1491         void *addr, dma_addr_t dma);
1492
1493 #if 0
1494 struct urb *usb_buffer_map(struct urb *urb);
1495 void usb_buffer_dmasync(struct urb *urb);
1496 void usb_buffer_unmap(struct urb *urb);
1497 #endif
1498
1499 struct scatterlist;
1500 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1501                       struct scatterlist *sg, int nents);
1502 #if 0
1503 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1504                            struct scatterlist *sg, int n_hw_ents);
1505 #endif
1506 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1507                          struct scatterlist *sg, int n_hw_ents);
1508
1509 /*-------------------------------------------------------------------*
1510  *                         SYNCHRONOUS CALL SUPPORT                  *
1511  *-------------------------------------------------------------------*/
1512
1513 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1514         __u8 request, __u8 requesttype, __u16 value, __u16 index,
1515         void *data, __u16 size, int timeout);
1516 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1517         void *data, int len, int *actual_length, int timeout);
1518 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1519         void *data, int len, int *actual_length,
1520         int timeout);
1521
1522 /* wrappers around usb_control_msg() for the most common standard requests */
1523 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1524         unsigned char descindex, void *buf, int size);
1525 extern int usb_get_status(struct usb_device *dev,
1526         int type, int target, void *data);
1527 extern int usb_string(struct usb_device *dev, int index,
1528         char *buf, size_t size);
1529
1530 /* wrappers that also update important state inside usbcore */
1531 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1532 extern int usb_reset_configuration(struct usb_device *dev);
1533 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1534
1535 /* this request isn't really synchronous, but it belongs with the others */
1536 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1537
1538 /*
1539  * timeouts, in milliseconds, used for sending/receiving control messages
1540  * they typically complete within a few frames (msec) after they're issued
1541  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1542  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1543  */
1544 #define USB_CTRL_GET_TIMEOUT    5000
1545 #define USB_CTRL_SET_TIMEOUT    5000
1546
1547
1548 /**
1549  * struct usb_sg_request - support for scatter/gather I/O
1550  * @status: zero indicates success, else negative errno
1551  * @bytes: counts bytes transferred.
1552  *
1553  * These requests are initialized using usb_sg_init(), and then are used
1554  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1555  * members of the request object aren't for driver access.
1556  *
1557  * The status and bytecount values are valid only after usb_sg_wait()
1558  * returns.  If the status is zero, then the bytecount matches the total
1559  * from the request.
1560  *
1561  * After an error completion, drivers may need to clear a halt condition
1562  * on the endpoint.
1563  */
1564 struct usb_sg_request {
1565         int                     status;
1566         size_t                  bytes;
1567
1568         /*
1569          * members below are private: to usbcore,
1570          * and are not provided for driver access!
1571          */
1572         spinlock_t              lock;
1573
1574         struct usb_device       *dev;
1575         int                     pipe;
1576         struct scatterlist      *sg;
1577         int                     nents;
1578
1579         int                     entries;
1580         struct urb              **urbs;
1581
1582         int                     count;
1583         struct completion       complete;
1584 };
1585
1586 int usb_sg_init(
1587         struct usb_sg_request   *io,
1588         struct usb_device       *dev,
1589         unsigned                pipe,
1590         unsigned                period,
1591         struct scatterlist      *sg,
1592         int                     nents,
1593         size_t                  length,
1594         gfp_t                   mem_flags
1595 );
1596 void usb_sg_cancel(struct usb_sg_request *io);
1597 void usb_sg_wait(struct usb_sg_request *io);
1598
1599
1600 /* ----------------------------------------------------------------------- */
1601
1602 /*
1603  * For various legacy reasons, Linux has a small cookie that's paired with
1604  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1605  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1606  * an unsigned int encoded as:
1607  *
1608  *  - direction:        bit 7           (0 = Host-to-Device [Out],
1609  *                                       1 = Device-to-Host [In] ...
1610  *                                      like endpoint bEndpointAddress)
1611  *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1612  *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1613  *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1614  *                                       10 = control, 11 = bulk)
1615  *
1616  * Given the device address and endpoint descriptor, pipes are redundant.
1617  */
1618
1619 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1620 /* (yet ... they're the values used by usbfs) */
1621 #define PIPE_ISOCHRONOUS                0
1622 #define PIPE_INTERRUPT                  1
1623 #define PIPE_CONTROL                    2
1624 #define PIPE_BULK                       3
1625
1626 #define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1627 #define usb_pipeout(pipe)       (!usb_pipein(pipe))
1628
1629 #define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1630 #define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1631
1632 #define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1633 #define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1634 #define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1635 #define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1636 #define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1637
1638 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1639 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1640 #define usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1641 #define usb_settoggle(dev, ep, out, bit) \
1642                 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1643                  ((bit) << (ep)))
1644
1645
1646 static inline unsigned int __create_pipe(struct usb_device *dev,
1647                 unsigned int endpoint)
1648 {
1649         return (dev->devnum << 8) | (endpoint << 15);
1650 }
1651
1652 /* Create various pipes... */
1653 #define usb_sndctrlpipe(dev,endpoint)   \
1654         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1655 #define usb_rcvctrlpipe(dev,endpoint)   \
1656         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1657 #define usb_sndisocpipe(dev,endpoint)   \
1658         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1659 #define usb_rcvisocpipe(dev,endpoint)   \
1660         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1661 #define usb_sndbulkpipe(dev,endpoint)   \
1662         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1663 #define usb_rcvbulkpipe(dev,endpoint)   \
1664         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1665 #define usb_sndintpipe(dev,endpoint)    \
1666         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1667 #define usb_rcvintpipe(dev,endpoint)    \
1668         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1669
1670 /*-------------------------------------------------------------------------*/
1671
1672 static inline __u16
1673 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1674 {
1675         struct usb_host_endpoint        *ep;
1676         unsigned                        epnum = usb_pipeendpoint(pipe);
1677
1678         if (is_out) {
1679                 WARN_ON(usb_pipein(pipe));
1680                 ep = udev->ep_out[epnum];
1681         } else {
1682                 WARN_ON(usb_pipeout(pipe));
1683                 ep = udev->ep_in[epnum];
1684         }
1685         if (!ep)
1686                 return 0;
1687
1688         /* NOTE:  only 0x07ff bits are for packet size... */
1689         return le16_to_cpu(ep->desc.wMaxPacketSize);
1690 }
1691
1692 /* ----------------------------------------------------------------------- */
1693
1694 /* Events from the usb core */
1695 #define USB_DEVICE_ADD          0x0001
1696 #define USB_DEVICE_REMOVE       0x0002
1697 #define USB_BUS_ADD             0x0003
1698 #define USB_BUS_REMOVE          0x0004
1699 extern void usb_register_notify(struct notifier_block *nb);
1700 extern void usb_unregister_notify(struct notifier_block *nb);
1701
1702 #ifdef DEBUG
1703 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1704         __FILE__ , ## arg)
1705 #else
1706 #define dbg(format, arg...) do {} while (0)
1707 #endif
1708
1709 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \
1710         format "\n" , ## arg)
1711 #define info(format, arg...) printk(KERN_INFO KBUILD_MODNAME ": " \
1712         format "\n" , ## arg)
1713 #define warn(format, arg...) printk(KERN_WARNING KBUILD_MODNAME ": " \
1714         format "\n" , ## arg)
1715
1716 #endif  /* __KERNEL__ */
1717
1718 #endif