KVM: Correctly handle writes crossing a page boundary
[linux-2.6] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 static cpumask_t cpus_hardware_enabled;
54
55 struct kvm_arch_ops *kvm_arch_ops;
56
57 static void hardware_disable(void *ignored);
58
59 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
60
61 static struct kvm_stats_debugfs_item {
62         const char *name;
63         int offset;
64         struct dentry *dentry;
65 } debugfs_entries[] = {
66         { "pf_fixed", STAT_OFFSET(pf_fixed) },
67         { "pf_guest", STAT_OFFSET(pf_guest) },
68         { "tlb_flush", STAT_OFFSET(tlb_flush) },
69         { "invlpg", STAT_OFFSET(invlpg) },
70         { "exits", STAT_OFFSET(exits) },
71         { "io_exits", STAT_OFFSET(io_exits) },
72         { "mmio_exits", STAT_OFFSET(mmio_exits) },
73         { "signal_exits", STAT_OFFSET(signal_exits) },
74         { "irq_window", STAT_OFFSET(irq_window_exits) },
75         { "halt_exits", STAT_OFFSET(halt_exits) },
76         { "request_irq", STAT_OFFSET(request_irq_exits) },
77         { "irq_exits", STAT_OFFSET(irq_exits) },
78         { "light_exits", STAT_OFFSET(light_exits) },
79         { "efer_reload", STAT_OFFSET(efer_reload) },
80         { NULL }
81 };
82
83 static struct dentry *debugfs_dir;
84
85 #define MAX_IO_MSRS 256
86
87 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
88 #define LMSW_GUEST_MASK 0x0eULL
89 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
90 #define CR8_RESEVED_BITS (~0x0fULL)
91 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
92
93 #ifdef CONFIG_X86_64
94 // LDT or TSS descriptor in the GDT. 16 bytes.
95 struct segment_descriptor_64 {
96         struct segment_descriptor s;
97         u32 base_higher;
98         u32 pad_zero;
99 };
100
101 #endif
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104                            unsigned long arg);
105
106 unsigned long segment_base(u16 selector)
107 {
108         struct descriptor_table gdt;
109         struct segment_descriptor *d;
110         unsigned long table_base;
111         typedef unsigned long ul;
112         unsigned long v;
113
114         if (selector == 0)
115                 return 0;
116
117         asm ("sgdt %0" : "=m"(gdt));
118         table_base = gdt.base;
119
120         if (selector & 4) {           /* from ldt */
121                 u16 ldt_selector;
122
123                 asm ("sldt %0" : "=g"(ldt_selector));
124                 table_base = segment_base(ldt_selector);
125         }
126         d = (struct segment_descriptor *)(table_base + (selector & ~7));
127         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
128 #ifdef CONFIG_X86_64
129         if (d->system == 0
130             && (d->type == 2 || d->type == 9 || d->type == 11))
131                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
132 #endif
133         return v;
134 }
135 EXPORT_SYMBOL_GPL(segment_base);
136
137 static inline int valid_vcpu(int n)
138 {
139         return likely(n >= 0 && n < KVM_MAX_VCPUS);
140 }
141
142 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
143                    void *dest)
144 {
145         unsigned char *host_buf = dest;
146         unsigned long req_size = size;
147
148         while (size) {
149                 hpa_t paddr;
150                 unsigned now;
151                 unsigned offset;
152                 hva_t guest_buf;
153
154                 paddr = gva_to_hpa(vcpu, addr);
155
156                 if (is_error_hpa(paddr))
157                         break;
158
159                 guest_buf = (hva_t)kmap_atomic(
160                                         pfn_to_page(paddr >> PAGE_SHIFT),
161                                         KM_USER0);
162                 offset = addr & ~PAGE_MASK;
163                 guest_buf |= offset;
164                 now = min(size, PAGE_SIZE - offset);
165                 memcpy(host_buf, (void*)guest_buf, now);
166                 host_buf += now;
167                 addr += now;
168                 size -= now;
169                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
170         }
171         return req_size - size;
172 }
173 EXPORT_SYMBOL_GPL(kvm_read_guest);
174
175 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
176                     void *data)
177 {
178         unsigned char *host_buf = data;
179         unsigned long req_size = size;
180
181         while (size) {
182                 hpa_t paddr;
183                 unsigned now;
184                 unsigned offset;
185                 hva_t guest_buf;
186                 gfn_t gfn;
187
188                 paddr = gva_to_hpa(vcpu, addr);
189
190                 if (is_error_hpa(paddr))
191                         break;
192
193                 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
194                 mark_page_dirty(vcpu->kvm, gfn);
195                 guest_buf = (hva_t)kmap_atomic(
196                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
197                 offset = addr & ~PAGE_MASK;
198                 guest_buf |= offset;
199                 now = min(size, PAGE_SIZE - offset);
200                 memcpy((void*)guest_buf, host_buf, now);
201                 host_buf += now;
202                 addr += now;
203                 size -= now;
204                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
205         }
206         return req_size - size;
207 }
208 EXPORT_SYMBOL_GPL(kvm_write_guest);
209
210 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
211 {
212         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
213                 return;
214
215         vcpu->guest_fpu_loaded = 1;
216         fx_save(vcpu->host_fx_image);
217         fx_restore(vcpu->guest_fx_image);
218 }
219 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
220
221 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
222 {
223         if (!vcpu->guest_fpu_loaded)
224                 return;
225
226         vcpu->guest_fpu_loaded = 0;
227         fx_save(vcpu->guest_fx_image);
228         fx_restore(vcpu->host_fx_image);
229 }
230 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
231
232 /*
233  * Switches to specified vcpu, until a matching vcpu_put()
234  */
235 static void vcpu_load(struct kvm_vcpu *vcpu)
236 {
237         mutex_lock(&vcpu->mutex);
238         kvm_arch_ops->vcpu_load(vcpu);
239 }
240
241 static void vcpu_put(struct kvm_vcpu *vcpu)
242 {
243         kvm_arch_ops->vcpu_put(vcpu);
244         mutex_unlock(&vcpu->mutex);
245 }
246
247 static void ack_flush(void *_completed)
248 {
249         atomic_t *completed = _completed;
250
251         atomic_inc(completed);
252 }
253
254 void kvm_flush_remote_tlbs(struct kvm *kvm)
255 {
256         int i, cpu, needed;
257         cpumask_t cpus;
258         struct kvm_vcpu *vcpu;
259         atomic_t completed;
260
261         atomic_set(&completed, 0);
262         cpus_clear(cpus);
263         needed = 0;
264         for (i = 0; i < kvm->nvcpus; ++i) {
265                 vcpu = &kvm->vcpus[i];
266                 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
267                         continue;
268                 cpu = vcpu->cpu;
269                 if (cpu != -1 && cpu != raw_smp_processor_id())
270                         if (!cpu_isset(cpu, cpus)) {
271                                 cpu_set(cpu, cpus);
272                                 ++needed;
273                         }
274         }
275
276         /*
277          * We really want smp_call_function_mask() here.  But that's not
278          * available, so ipi all cpus in parallel and wait for them
279          * to complete.
280          */
281         for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
282                 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
283         while (atomic_read(&completed) != needed) {
284                 cpu_relax();
285                 barrier();
286         }
287 }
288
289 static struct kvm *kvm_create_vm(void)
290 {
291         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
292         int i;
293
294         if (!kvm)
295                 return ERR_PTR(-ENOMEM);
296
297         kvm_io_bus_init(&kvm->pio_bus);
298         spin_lock_init(&kvm->lock);
299         INIT_LIST_HEAD(&kvm->active_mmu_pages);
300         spin_lock(&kvm_lock);
301         list_add(&kvm->vm_list, &vm_list);
302         spin_unlock(&kvm_lock);
303         kvm_io_bus_init(&kvm->mmio_bus);
304         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
305                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
306
307                 mutex_init(&vcpu->mutex);
308                 vcpu->cpu = -1;
309                 vcpu->kvm = kvm;
310                 vcpu->mmu.root_hpa = INVALID_PAGE;
311         }
312         return kvm;
313 }
314
315 static int kvm_dev_open(struct inode *inode, struct file *filp)
316 {
317         return 0;
318 }
319
320 /*
321  * Free any memory in @free but not in @dont.
322  */
323 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
324                                   struct kvm_memory_slot *dont)
325 {
326         int i;
327
328         if (!dont || free->phys_mem != dont->phys_mem)
329                 if (free->phys_mem) {
330                         for (i = 0; i < free->npages; ++i)
331                                 if (free->phys_mem[i])
332                                         __free_page(free->phys_mem[i]);
333                         vfree(free->phys_mem);
334                 }
335
336         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
337                 vfree(free->dirty_bitmap);
338
339         free->phys_mem = NULL;
340         free->npages = 0;
341         free->dirty_bitmap = NULL;
342 }
343
344 static void kvm_free_physmem(struct kvm *kvm)
345 {
346         int i;
347
348         for (i = 0; i < kvm->nmemslots; ++i)
349                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
350 }
351
352 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
353 {
354         int i;
355
356         for (i = 0; i < 2; ++i)
357                 if (vcpu->pio.guest_pages[i]) {
358                         __free_page(vcpu->pio.guest_pages[i]);
359                         vcpu->pio.guest_pages[i] = NULL;
360                 }
361 }
362
363 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
364 {
365         if (!vcpu->vmcs)
366                 return;
367
368         vcpu_load(vcpu);
369         kvm_mmu_unload(vcpu);
370         vcpu_put(vcpu);
371 }
372
373 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
374 {
375         if (!vcpu->vmcs)
376                 return;
377
378         vcpu_load(vcpu);
379         kvm_mmu_destroy(vcpu);
380         vcpu_put(vcpu);
381         kvm_arch_ops->vcpu_free(vcpu);
382         free_page((unsigned long)vcpu->run);
383         vcpu->run = NULL;
384         free_page((unsigned long)vcpu->pio_data);
385         vcpu->pio_data = NULL;
386         free_pio_guest_pages(vcpu);
387 }
388
389 static void kvm_free_vcpus(struct kvm *kvm)
390 {
391         unsigned int i;
392
393         /*
394          * Unpin any mmu pages first.
395          */
396         for (i = 0; i < KVM_MAX_VCPUS; ++i)
397                 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
398         for (i = 0; i < KVM_MAX_VCPUS; ++i)
399                 kvm_free_vcpu(&kvm->vcpus[i]);
400 }
401
402 static int kvm_dev_release(struct inode *inode, struct file *filp)
403 {
404         return 0;
405 }
406
407 static void kvm_destroy_vm(struct kvm *kvm)
408 {
409         spin_lock(&kvm_lock);
410         list_del(&kvm->vm_list);
411         spin_unlock(&kvm_lock);
412         kvm_io_bus_destroy(&kvm->pio_bus);
413         kvm_io_bus_destroy(&kvm->mmio_bus);
414         kvm_free_vcpus(kvm);
415         kvm_free_physmem(kvm);
416         kfree(kvm);
417 }
418
419 static int kvm_vm_release(struct inode *inode, struct file *filp)
420 {
421         struct kvm *kvm = filp->private_data;
422
423         kvm_destroy_vm(kvm);
424         return 0;
425 }
426
427 static void inject_gp(struct kvm_vcpu *vcpu)
428 {
429         kvm_arch_ops->inject_gp(vcpu, 0);
430 }
431
432 /*
433  * Load the pae pdptrs.  Return true is they are all valid.
434  */
435 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
436 {
437         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
438         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
439         int i;
440         u64 pdpte;
441         u64 *pdpt;
442         int ret;
443         struct page *page;
444
445         spin_lock(&vcpu->kvm->lock);
446         page = gfn_to_page(vcpu->kvm, pdpt_gfn);
447         /* FIXME: !page - emulate? 0xff? */
448         pdpt = kmap_atomic(page, KM_USER0);
449
450         ret = 1;
451         for (i = 0; i < 4; ++i) {
452                 pdpte = pdpt[offset + i];
453                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458
459         for (i = 0; i < 4; ++i)
460                 vcpu->pdptrs[i] = pdpt[offset + i];
461
462 out:
463         kunmap_atomic(pdpt, KM_USER0);
464         spin_unlock(&vcpu->kvm->lock);
465
466         return ret;
467 }
468
469 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
470 {
471         if (cr0 & CR0_RESEVED_BITS) {
472                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
473                        cr0, vcpu->cr0);
474                 inject_gp(vcpu);
475                 return;
476         }
477
478         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
479                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
480                 inject_gp(vcpu);
481                 return;
482         }
483
484         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
485                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
486                        "and a clear PE flag\n");
487                 inject_gp(vcpu);
488                 return;
489         }
490
491         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
492 #ifdef CONFIG_X86_64
493                 if ((vcpu->shadow_efer & EFER_LME)) {
494                         int cs_db, cs_l;
495
496                         if (!is_pae(vcpu)) {
497                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
498                                        "in long mode while PAE is disabled\n");
499                                 inject_gp(vcpu);
500                                 return;
501                         }
502                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
503                         if (cs_l) {
504                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
505                                        "in long mode while CS.L == 1\n");
506                                 inject_gp(vcpu);
507                                 return;
508
509                         }
510                 } else
511 #endif
512                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
513                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
514                                "reserved bits\n");
515                         inject_gp(vcpu);
516                         return;
517                 }
518
519         }
520
521         kvm_arch_ops->set_cr0(vcpu, cr0);
522         vcpu->cr0 = cr0;
523
524         spin_lock(&vcpu->kvm->lock);
525         kvm_mmu_reset_context(vcpu);
526         spin_unlock(&vcpu->kvm->lock);
527         return;
528 }
529 EXPORT_SYMBOL_GPL(set_cr0);
530
531 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
532 {
533         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
534 }
535 EXPORT_SYMBOL_GPL(lmsw);
536
537 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
538 {
539         if (cr4 & CR4_RESEVED_BITS) {
540                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
541                 inject_gp(vcpu);
542                 return;
543         }
544
545         if (is_long_mode(vcpu)) {
546                 if (!(cr4 & CR4_PAE_MASK)) {
547                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
548                                "in long mode\n");
549                         inject_gp(vcpu);
550                         return;
551                 }
552         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
553                    && !load_pdptrs(vcpu, vcpu->cr3)) {
554                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
555                 inject_gp(vcpu);
556         }
557
558         if (cr4 & CR4_VMXE_MASK) {
559                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
560                 inject_gp(vcpu);
561                 return;
562         }
563         kvm_arch_ops->set_cr4(vcpu, cr4);
564         spin_lock(&vcpu->kvm->lock);
565         kvm_mmu_reset_context(vcpu);
566         spin_unlock(&vcpu->kvm->lock);
567 }
568 EXPORT_SYMBOL_GPL(set_cr4);
569
570 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
571 {
572         if (is_long_mode(vcpu)) {
573                 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
574                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
575                         inject_gp(vcpu);
576                         return;
577                 }
578         } else {
579                 if (cr3 & CR3_RESEVED_BITS) {
580                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
581                         inject_gp(vcpu);
582                         return;
583                 }
584                 if (is_paging(vcpu) && is_pae(vcpu) &&
585                     !load_pdptrs(vcpu, cr3)) {
586                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
587                                "reserved bits\n");
588                         inject_gp(vcpu);
589                         return;
590                 }
591         }
592
593         vcpu->cr3 = cr3;
594         spin_lock(&vcpu->kvm->lock);
595         /*
596          * Does the new cr3 value map to physical memory? (Note, we
597          * catch an invalid cr3 even in real-mode, because it would
598          * cause trouble later on when we turn on paging anyway.)
599          *
600          * A real CPU would silently accept an invalid cr3 and would
601          * attempt to use it - with largely undefined (and often hard
602          * to debug) behavior on the guest side.
603          */
604         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
605                 inject_gp(vcpu);
606         else
607                 vcpu->mmu.new_cr3(vcpu);
608         spin_unlock(&vcpu->kvm->lock);
609 }
610 EXPORT_SYMBOL_GPL(set_cr3);
611
612 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
613 {
614         if ( cr8 & CR8_RESEVED_BITS) {
615                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
616                 inject_gp(vcpu);
617                 return;
618         }
619         vcpu->cr8 = cr8;
620 }
621 EXPORT_SYMBOL_GPL(set_cr8);
622
623 void fx_init(struct kvm_vcpu *vcpu)
624 {
625         struct __attribute__ ((__packed__)) fx_image_s {
626                 u16 control; //fcw
627                 u16 status; //fsw
628                 u16 tag; // ftw
629                 u16 opcode; //fop
630                 u64 ip; // fpu ip
631                 u64 operand;// fpu dp
632                 u32 mxcsr;
633                 u32 mxcsr_mask;
634
635         } *fx_image;
636
637         fx_save(vcpu->host_fx_image);
638         fpu_init();
639         fx_save(vcpu->guest_fx_image);
640         fx_restore(vcpu->host_fx_image);
641
642         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
643         fx_image->mxcsr = 0x1f80;
644         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
645                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
646 }
647 EXPORT_SYMBOL_GPL(fx_init);
648
649 /*
650  * Allocate some memory and give it an address in the guest physical address
651  * space.
652  *
653  * Discontiguous memory is allowed, mostly for framebuffers.
654  */
655 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
656                                           struct kvm_memory_region *mem)
657 {
658         int r;
659         gfn_t base_gfn;
660         unsigned long npages;
661         unsigned long i;
662         struct kvm_memory_slot *memslot;
663         struct kvm_memory_slot old, new;
664         int memory_config_version;
665
666         r = -EINVAL;
667         /* General sanity checks */
668         if (mem->memory_size & (PAGE_SIZE - 1))
669                 goto out;
670         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
671                 goto out;
672         if (mem->slot >= KVM_MEMORY_SLOTS)
673                 goto out;
674         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
675                 goto out;
676
677         memslot = &kvm->memslots[mem->slot];
678         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
679         npages = mem->memory_size >> PAGE_SHIFT;
680
681         if (!npages)
682                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
683
684 raced:
685         spin_lock(&kvm->lock);
686
687         memory_config_version = kvm->memory_config_version;
688         new = old = *memslot;
689
690         new.base_gfn = base_gfn;
691         new.npages = npages;
692         new.flags = mem->flags;
693
694         /* Disallow changing a memory slot's size. */
695         r = -EINVAL;
696         if (npages && old.npages && npages != old.npages)
697                 goto out_unlock;
698
699         /* Check for overlaps */
700         r = -EEXIST;
701         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
702                 struct kvm_memory_slot *s = &kvm->memslots[i];
703
704                 if (s == memslot)
705                         continue;
706                 if (!((base_gfn + npages <= s->base_gfn) ||
707                       (base_gfn >= s->base_gfn + s->npages)))
708                         goto out_unlock;
709         }
710         /*
711          * Do memory allocations outside lock.  memory_config_version will
712          * detect any races.
713          */
714         spin_unlock(&kvm->lock);
715
716         /* Deallocate if slot is being removed */
717         if (!npages)
718                 new.phys_mem = NULL;
719
720         /* Free page dirty bitmap if unneeded */
721         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
722                 new.dirty_bitmap = NULL;
723
724         r = -ENOMEM;
725
726         /* Allocate if a slot is being created */
727         if (npages && !new.phys_mem) {
728                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
729
730                 if (!new.phys_mem)
731                         goto out_free;
732
733                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
734                 for (i = 0; i < npages; ++i) {
735                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
736                                                      | __GFP_ZERO);
737                         if (!new.phys_mem[i])
738                                 goto out_free;
739                         set_page_private(new.phys_mem[i],0);
740                 }
741         }
742
743         /* Allocate page dirty bitmap if needed */
744         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
745                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
746
747                 new.dirty_bitmap = vmalloc(dirty_bytes);
748                 if (!new.dirty_bitmap)
749                         goto out_free;
750                 memset(new.dirty_bitmap, 0, dirty_bytes);
751         }
752
753         spin_lock(&kvm->lock);
754
755         if (memory_config_version != kvm->memory_config_version) {
756                 spin_unlock(&kvm->lock);
757                 kvm_free_physmem_slot(&new, &old);
758                 goto raced;
759         }
760
761         r = -EAGAIN;
762         if (kvm->busy)
763                 goto out_unlock;
764
765         if (mem->slot >= kvm->nmemslots)
766                 kvm->nmemslots = mem->slot + 1;
767
768         *memslot = new;
769         ++kvm->memory_config_version;
770
771         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
772         kvm_flush_remote_tlbs(kvm);
773
774         spin_unlock(&kvm->lock);
775
776         kvm_free_physmem_slot(&old, &new);
777         return 0;
778
779 out_unlock:
780         spin_unlock(&kvm->lock);
781 out_free:
782         kvm_free_physmem_slot(&new, &old);
783 out:
784         return r;
785 }
786
787 /*
788  * Get (and clear) the dirty memory log for a memory slot.
789  */
790 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
791                                       struct kvm_dirty_log *log)
792 {
793         struct kvm_memory_slot *memslot;
794         int r, i;
795         int n;
796         unsigned long any = 0;
797
798         spin_lock(&kvm->lock);
799
800         /*
801          * Prevent changes to guest memory configuration even while the lock
802          * is not taken.
803          */
804         ++kvm->busy;
805         spin_unlock(&kvm->lock);
806         r = -EINVAL;
807         if (log->slot >= KVM_MEMORY_SLOTS)
808                 goto out;
809
810         memslot = &kvm->memslots[log->slot];
811         r = -ENOENT;
812         if (!memslot->dirty_bitmap)
813                 goto out;
814
815         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
816
817         for (i = 0; !any && i < n/sizeof(long); ++i)
818                 any = memslot->dirty_bitmap[i];
819
820         r = -EFAULT;
821         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
822                 goto out;
823
824         spin_lock(&kvm->lock);
825         kvm_mmu_slot_remove_write_access(kvm, log->slot);
826         kvm_flush_remote_tlbs(kvm);
827         memset(memslot->dirty_bitmap, 0, n);
828         spin_unlock(&kvm->lock);
829
830         r = 0;
831
832 out:
833         spin_lock(&kvm->lock);
834         --kvm->busy;
835         spin_unlock(&kvm->lock);
836         return r;
837 }
838
839 /*
840  * Set a new alias region.  Aliases map a portion of physical memory into
841  * another portion.  This is useful for memory windows, for example the PC
842  * VGA region.
843  */
844 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
845                                          struct kvm_memory_alias *alias)
846 {
847         int r, n;
848         struct kvm_mem_alias *p;
849
850         r = -EINVAL;
851         /* General sanity checks */
852         if (alias->memory_size & (PAGE_SIZE - 1))
853                 goto out;
854         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
855                 goto out;
856         if (alias->slot >= KVM_ALIAS_SLOTS)
857                 goto out;
858         if (alias->guest_phys_addr + alias->memory_size
859             < alias->guest_phys_addr)
860                 goto out;
861         if (alias->target_phys_addr + alias->memory_size
862             < alias->target_phys_addr)
863                 goto out;
864
865         spin_lock(&kvm->lock);
866
867         p = &kvm->aliases[alias->slot];
868         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
869         p->npages = alias->memory_size >> PAGE_SHIFT;
870         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
871
872         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
873                 if (kvm->aliases[n - 1].npages)
874                         break;
875         kvm->naliases = n;
876
877         kvm_mmu_zap_all(kvm);
878
879         spin_unlock(&kvm->lock);
880
881         return 0;
882
883 out:
884         return r;
885 }
886
887 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
888 {
889         int i;
890         struct kvm_mem_alias *alias;
891
892         for (i = 0; i < kvm->naliases; ++i) {
893                 alias = &kvm->aliases[i];
894                 if (gfn >= alias->base_gfn
895                     && gfn < alias->base_gfn + alias->npages)
896                         return alias->target_gfn + gfn - alias->base_gfn;
897         }
898         return gfn;
899 }
900
901 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
902 {
903         int i;
904
905         for (i = 0; i < kvm->nmemslots; ++i) {
906                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
907
908                 if (gfn >= memslot->base_gfn
909                     && gfn < memslot->base_gfn + memslot->npages)
910                         return memslot;
911         }
912         return NULL;
913 }
914
915 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
916 {
917         gfn = unalias_gfn(kvm, gfn);
918         return __gfn_to_memslot(kvm, gfn);
919 }
920
921 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
922 {
923         struct kvm_memory_slot *slot;
924
925         gfn = unalias_gfn(kvm, gfn);
926         slot = __gfn_to_memslot(kvm, gfn);
927         if (!slot)
928                 return NULL;
929         return slot->phys_mem[gfn - slot->base_gfn];
930 }
931 EXPORT_SYMBOL_GPL(gfn_to_page);
932
933 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
934 {
935         int i;
936         struct kvm_memory_slot *memslot;
937         unsigned long rel_gfn;
938
939         for (i = 0; i < kvm->nmemslots; ++i) {
940                 memslot = &kvm->memslots[i];
941
942                 if (gfn >= memslot->base_gfn
943                     && gfn < memslot->base_gfn + memslot->npages) {
944
945                         if (!memslot->dirty_bitmap)
946                                 return;
947
948                         rel_gfn = gfn - memslot->base_gfn;
949
950                         /* avoid RMW */
951                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
952                                 set_bit(rel_gfn, memslot->dirty_bitmap);
953                         return;
954                 }
955         }
956 }
957
958 static int emulator_read_std(unsigned long addr,
959                              void *val,
960                              unsigned int bytes,
961                              struct x86_emulate_ctxt *ctxt)
962 {
963         struct kvm_vcpu *vcpu = ctxt->vcpu;
964         void *data = val;
965
966         while (bytes) {
967                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
968                 unsigned offset = addr & (PAGE_SIZE-1);
969                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
970                 unsigned long pfn;
971                 struct page *page;
972                 void *page_virt;
973
974                 if (gpa == UNMAPPED_GVA)
975                         return X86EMUL_PROPAGATE_FAULT;
976                 pfn = gpa >> PAGE_SHIFT;
977                 page = gfn_to_page(vcpu->kvm, pfn);
978                 if (!page)
979                         return X86EMUL_UNHANDLEABLE;
980                 page_virt = kmap_atomic(page, KM_USER0);
981
982                 memcpy(data, page_virt + offset, tocopy);
983
984                 kunmap_atomic(page_virt, KM_USER0);
985
986                 bytes -= tocopy;
987                 data += tocopy;
988                 addr += tocopy;
989         }
990
991         return X86EMUL_CONTINUE;
992 }
993
994 static int emulator_write_std(unsigned long addr,
995                               const void *val,
996                               unsigned int bytes,
997                               struct x86_emulate_ctxt *ctxt)
998 {
999         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1000                addr, bytes);
1001         return X86EMUL_UNHANDLEABLE;
1002 }
1003
1004 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1005                                                 gpa_t addr)
1006 {
1007         /*
1008          * Note that its important to have this wrapper function because
1009          * in the very near future we will be checking for MMIOs against
1010          * the LAPIC as well as the general MMIO bus
1011          */
1012         return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1013 }
1014
1015 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1016                                                gpa_t addr)
1017 {
1018         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1019 }
1020
1021 static int emulator_read_emulated(unsigned long addr,
1022                                   void *val,
1023                                   unsigned int bytes,
1024                                   struct x86_emulate_ctxt *ctxt)
1025 {
1026         struct kvm_vcpu      *vcpu = ctxt->vcpu;
1027         struct kvm_io_device *mmio_dev;
1028         gpa_t                 gpa;
1029
1030         if (vcpu->mmio_read_completed) {
1031                 memcpy(val, vcpu->mmio_data, bytes);
1032                 vcpu->mmio_read_completed = 0;
1033                 return X86EMUL_CONTINUE;
1034         } else if (emulator_read_std(addr, val, bytes, ctxt)
1035                    == X86EMUL_CONTINUE)
1036                 return X86EMUL_CONTINUE;
1037
1038         gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1039         if (gpa == UNMAPPED_GVA)
1040                 return X86EMUL_PROPAGATE_FAULT;
1041
1042         /*
1043          * Is this MMIO handled locally?
1044          */
1045         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1046         if (mmio_dev) {
1047                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1048                 return X86EMUL_CONTINUE;
1049         }
1050
1051         vcpu->mmio_needed = 1;
1052         vcpu->mmio_phys_addr = gpa;
1053         vcpu->mmio_size = bytes;
1054         vcpu->mmio_is_write = 0;
1055
1056         return X86EMUL_UNHANDLEABLE;
1057 }
1058
1059 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1060                                const void *val, int bytes)
1061 {
1062         struct page *page;
1063         void *virt;
1064         unsigned offset = offset_in_page(gpa);
1065
1066         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1067                 return 0;
1068         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1069         if (!page)
1070                 return 0;
1071         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1072         virt = kmap_atomic(page, KM_USER0);
1073         if (memcmp(virt + offset_in_page(gpa), val, bytes)) {
1074                 kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
1075                 memcpy(virt + offset_in_page(gpa), val, bytes);
1076         }
1077         kunmap_atomic(virt, KM_USER0);
1078         return 1;
1079 }
1080
1081 static int emulator_write_emulated_onepage(unsigned long addr,
1082                                            const void *val,
1083                                            unsigned int bytes,
1084                                            struct x86_emulate_ctxt *ctxt)
1085 {
1086         struct kvm_vcpu      *vcpu = ctxt->vcpu;
1087         struct kvm_io_device *mmio_dev;
1088         gpa_t                 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1089
1090         if (gpa == UNMAPPED_GVA) {
1091                 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1092                 return X86EMUL_PROPAGATE_FAULT;
1093         }
1094
1095         if (emulator_write_phys(vcpu, gpa, val, bytes))
1096                 return X86EMUL_CONTINUE;
1097
1098         /*
1099          * Is this MMIO handled locally?
1100          */
1101         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1102         if (mmio_dev) {
1103                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1104                 return X86EMUL_CONTINUE;
1105         }
1106
1107         vcpu->mmio_needed = 1;
1108         vcpu->mmio_phys_addr = gpa;
1109         vcpu->mmio_size = bytes;
1110         vcpu->mmio_is_write = 1;
1111         memcpy(vcpu->mmio_data, val, bytes);
1112
1113         return X86EMUL_CONTINUE;
1114 }
1115
1116 static int emulator_write_emulated(unsigned long addr,
1117                                    const void *val,
1118                                    unsigned int bytes,
1119                                    struct x86_emulate_ctxt *ctxt)
1120 {
1121         /* Crossing a page boundary? */
1122         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1123                 int rc, now;
1124
1125                 now = -addr & ~PAGE_MASK;
1126                 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1127                 if (rc != X86EMUL_CONTINUE)
1128                         return rc;
1129                 addr += now;
1130                 val += now;
1131                 bytes -= now;
1132         }
1133         return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1134 }
1135
1136 static int emulator_cmpxchg_emulated(unsigned long addr,
1137                                      const void *old,
1138                                      const void *new,
1139                                      unsigned int bytes,
1140                                      struct x86_emulate_ctxt *ctxt)
1141 {
1142         static int reported;
1143
1144         if (!reported) {
1145                 reported = 1;
1146                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1147         }
1148         return emulator_write_emulated(addr, new, bytes, ctxt);
1149 }
1150
1151 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1152 {
1153         return kvm_arch_ops->get_segment_base(vcpu, seg);
1154 }
1155
1156 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1157 {
1158         return X86EMUL_CONTINUE;
1159 }
1160
1161 int emulate_clts(struct kvm_vcpu *vcpu)
1162 {
1163         unsigned long cr0;
1164
1165         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1166         kvm_arch_ops->set_cr0(vcpu, cr0);
1167         return X86EMUL_CONTINUE;
1168 }
1169
1170 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1171 {
1172         struct kvm_vcpu *vcpu = ctxt->vcpu;
1173
1174         switch (dr) {
1175         case 0 ... 3:
1176                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1177                 return X86EMUL_CONTINUE;
1178         default:
1179                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1180                        __FUNCTION__, dr);
1181                 return X86EMUL_UNHANDLEABLE;
1182         }
1183 }
1184
1185 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1186 {
1187         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1188         int exception;
1189
1190         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1191         if (exception) {
1192                 /* FIXME: better handling */
1193                 return X86EMUL_UNHANDLEABLE;
1194         }
1195         return X86EMUL_CONTINUE;
1196 }
1197
1198 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1199 {
1200         static int reported;
1201         u8 opcodes[4];
1202         unsigned long rip = ctxt->vcpu->rip;
1203         unsigned long rip_linear;
1204
1205         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1206
1207         if (reported)
1208                 return;
1209
1210         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1211
1212         printk(KERN_ERR "emulation failed but !mmio_needed?"
1213                " rip %lx %02x %02x %02x %02x\n",
1214                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1215         reported = 1;
1216 }
1217
1218 struct x86_emulate_ops emulate_ops = {
1219         .read_std            = emulator_read_std,
1220         .write_std           = emulator_write_std,
1221         .read_emulated       = emulator_read_emulated,
1222         .write_emulated      = emulator_write_emulated,
1223         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1224 };
1225
1226 int emulate_instruction(struct kvm_vcpu *vcpu,
1227                         struct kvm_run *run,
1228                         unsigned long cr2,
1229                         u16 error_code)
1230 {
1231         struct x86_emulate_ctxt emulate_ctxt;
1232         int r;
1233         int cs_db, cs_l;
1234
1235         vcpu->mmio_fault_cr2 = cr2;
1236         kvm_arch_ops->cache_regs(vcpu);
1237
1238         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1239
1240         emulate_ctxt.vcpu = vcpu;
1241         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1242         emulate_ctxt.cr2 = cr2;
1243         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1244                 ? X86EMUL_MODE_REAL : cs_l
1245                 ? X86EMUL_MODE_PROT64 : cs_db
1246                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1247
1248         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1249                 emulate_ctxt.cs_base = 0;
1250                 emulate_ctxt.ds_base = 0;
1251                 emulate_ctxt.es_base = 0;
1252                 emulate_ctxt.ss_base = 0;
1253         } else {
1254                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1255                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1256                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1257                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1258         }
1259
1260         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1261         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1262
1263         vcpu->mmio_is_write = 0;
1264         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1265
1266         if ((r || vcpu->mmio_is_write) && run) {
1267                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1268                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1269                 run->mmio.len = vcpu->mmio_size;
1270                 run->mmio.is_write = vcpu->mmio_is_write;
1271         }
1272
1273         if (r) {
1274                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1275                         return EMULATE_DONE;
1276                 if (!vcpu->mmio_needed) {
1277                         report_emulation_failure(&emulate_ctxt);
1278                         return EMULATE_FAIL;
1279                 }
1280                 return EMULATE_DO_MMIO;
1281         }
1282
1283         kvm_arch_ops->decache_regs(vcpu);
1284         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1285
1286         if (vcpu->mmio_is_write) {
1287                 vcpu->mmio_needed = 0;
1288                 return EMULATE_DO_MMIO;
1289         }
1290
1291         return EMULATE_DONE;
1292 }
1293 EXPORT_SYMBOL_GPL(emulate_instruction);
1294
1295 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1296 {
1297         if (vcpu->irq_summary)
1298                 return 1;
1299
1300         vcpu->run->exit_reason = KVM_EXIT_HLT;
1301         ++vcpu->stat.halt_exits;
1302         return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1305
1306 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1307 {
1308         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1309
1310         kvm_arch_ops->cache_regs(vcpu);
1311         ret = -KVM_EINVAL;
1312 #ifdef CONFIG_X86_64
1313         if (is_long_mode(vcpu)) {
1314                 nr = vcpu->regs[VCPU_REGS_RAX];
1315                 a0 = vcpu->regs[VCPU_REGS_RDI];
1316                 a1 = vcpu->regs[VCPU_REGS_RSI];
1317                 a2 = vcpu->regs[VCPU_REGS_RDX];
1318                 a3 = vcpu->regs[VCPU_REGS_RCX];
1319                 a4 = vcpu->regs[VCPU_REGS_R8];
1320                 a5 = vcpu->regs[VCPU_REGS_R9];
1321         } else
1322 #endif
1323         {
1324                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1325                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1326                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1327                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1328                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1329                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1330                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1331         }
1332         switch (nr) {
1333         default:
1334                 run->hypercall.args[0] = a0;
1335                 run->hypercall.args[1] = a1;
1336                 run->hypercall.args[2] = a2;
1337                 run->hypercall.args[3] = a3;
1338                 run->hypercall.args[4] = a4;
1339                 run->hypercall.args[5] = a5;
1340                 run->hypercall.ret = ret;
1341                 run->hypercall.longmode = is_long_mode(vcpu);
1342                 kvm_arch_ops->decache_regs(vcpu);
1343                 return 0;
1344         }
1345         vcpu->regs[VCPU_REGS_RAX] = ret;
1346         kvm_arch_ops->decache_regs(vcpu);
1347         return 1;
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_hypercall);
1350
1351 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1352 {
1353         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1354 }
1355
1356 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1357 {
1358         struct descriptor_table dt = { limit, base };
1359
1360         kvm_arch_ops->set_gdt(vcpu, &dt);
1361 }
1362
1363 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1364 {
1365         struct descriptor_table dt = { limit, base };
1366
1367         kvm_arch_ops->set_idt(vcpu, &dt);
1368 }
1369
1370 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1371                    unsigned long *rflags)
1372 {
1373         lmsw(vcpu, msw);
1374         *rflags = kvm_arch_ops->get_rflags(vcpu);
1375 }
1376
1377 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1378 {
1379         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1380         switch (cr) {
1381         case 0:
1382                 return vcpu->cr0;
1383         case 2:
1384                 return vcpu->cr2;
1385         case 3:
1386                 return vcpu->cr3;
1387         case 4:
1388                 return vcpu->cr4;
1389         default:
1390                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1391                 return 0;
1392         }
1393 }
1394
1395 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1396                      unsigned long *rflags)
1397 {
1398         switch (cr) {
1399         case 0:
1400                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1401                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1402                 break;
1403         case 2:
1404                 vcpu->cr2 = val;
1405                 break;
1406         case 3:
1407                 set_cr3(vcpu, val);
1408                 break;
1409         case 4:
1410                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1411                 break;
1412         default:
1413                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1414         }
1415 }
1416
1417 /*
1418  * Register the para guest with the host:
1419  */
1420 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1421 {
1422         struct kvm_vcpu_para_state *para_state;
1423         hpa_t para_state_hpa, hypercall_hpa;
1424         struct page *para_state_page;
1425         unsigned char *hypercall;
1426         gpa_t hypercall_gpa;
1427
1428         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1429         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1430
1431         /*
1432          * Needs to be page aligned:
1433          */
1434         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1435                 goto err_gp;
1436
1437         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1438         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1439         if (is_error_hpa(para_state_hpa))
1440                 goto err_gp;
1441
1442         mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1443         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1444         para_state = kmap_atomic(para_state_page, KM_USER0);
1445
1446         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1447         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1448
1449         para_state->host_version = KVM_PARA_API_VERSION;
1450         /*
1451          * We cannot support guests that try to register themselves
1452          * with a newer API version than the host supports:
1453          */
1454         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1455                 para_state->ret = -KVM_EINVAL;
1456                 goto err_kunmap_skip;
1457         }
1458
1459         hypercall_gpa = para_state->hypercall_gpa;
1460         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1461         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1462         if (is_error_hpa(hypercall_hpa)) {
1463                 para_state->ret = -KVM_EINVAL;
1464                 goto err_kunmap_skip;
1465         }
1466
1467         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1468         vcpu->para_state_page = para_state_page;
1469         vcpu->para_state_gpa = para_state_gpa;
1470         vcpu->hypercall_gpa = hypercall_gpa;
1471
1472         mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1473         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1474                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1475         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1476         kunmap_atomic(hypercall, KM_USER1);
1477
1478         para_state->ret = 0;
1479 err_kunmap_skip:
1480         kunmap_atomic(para_state, KM_USER0);
1481         return 0;
1482 err_gp:
1483         return 1;
1484 }
1485
1486 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1487 {
1488         u64 data;
1489
1490         switch (msr) {
1491         case 0xc0010010: /* SYSCFG */
1492         case 0xc0010015: /* HWCR */
1493         case MSR_IA32_PLATFORM_ID:
1494         case MSR_IA32_P5_MC_ADDR:
1495         case MSR_IA32_P5_MC_TYPE:
1496         case MSR_IA32_MC0_CTL:
1497         case MSR_IA32_MCG_STATUS:
1498         case MSR_IA32_MCG_CAP:
1499         case MSR_IA32_MC0_MISC:
1500         case MSR_IA32_MC0_MISC+4:
1501         case MSR_IA32_MC0_MISC+8:
1502         case MSR_IA32_MC0_MISC+12:
1503         case MSR_IA32_MC0_MISC+16:
1504         case MSR_IA32_UCODE_REV:
1505         case MSR_IA32_PERF_STATUS:
1506         case MSR_IA32_EBL_CR_POWERON:
1507                 /* MTRR registers */
1508         case 0xfe:
1509         case 0x200 ... 0x2ff:
1510                 data = 0;
1511                 break;
1512         case 0xcd: /* fsb frequency */
1513                 data = 3;
1514                 break;
1515         case MSR_IA32_APICBASE:
1516                 data = vcpu->apic_base;
1517                 break;
1518         case MSR_IA32_MISC_ENABLE:
1519                 data = vcpu->ia32_misc_enable_msr;
1520                 break;
1521 #ifdef CONFIG_X86_64
1522         case MSR_EFER:
1523                 data = vcpu->shadow_efer;
1524                 break;
1525 #endif
1526         default:
1527                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1528                 return 1;
1529         }
1530         *pdata = data;
1531         return 0;
1532 }
1533 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1534
1535 /*
1536  * Reads an msr value (of 'msr_index') into 'pdata'.
1537  * Returns 0 on success, non-0 otherwise.
1538  * Assumes vcpu_load() was already called.
1539  */
1540 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1541 {
1542         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1543 }
1544
1545 #ifdef CONFIG_X86_64
1546
1547 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1548 {
1549         if (efer & EFER_RESERVED_BITS) {
1550                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1551                        efer);
1552                 inject_gp(vcpu);
1553                 return;
1554         }
1555
1556         if (is_paging(vcpu)
1557             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1558                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1559                 inject_gp(vcpu);
1560                 return;
1561         }
1562
1563         kvm_arch_ops->set_efer(vcpu, efer);
1564
1565         efer &= ~EFER_LMA;
1566         efer |= vcpu->shadow_efer & EFER_LMA;
1567
1568         vcpu->shadow_efer = efer;
1569 }
1570
1571 #endif
1572
1573 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1574 {
1575         switch (msr) {
1576 #ifdef CONFIG_X86_64
1577         case MSR_EFER:
1578                 set_efer(vcpu, data);
1579                 break;
1580 #endif
1581         case MSR_IA32_MC0_STATUS:
1582                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1583                        __FUNCTION__, data);
1584                 break;
1585         case MSR_IA32_MCG_STATUS:
1586                 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1587                         __FUNCTION__, data);
1588                 break;
1589         case MSR_IA32_UCODE_REV:
1590         case MSR_IA32_UCODE_WRITE:
1591         case 0x200 ... 0x2ff: /* MTRRs */
1592                 break;
1593         case MSR_IA32_APICBASE:
1594                 vcpu->apic_base = data;
1595                 break;
1596         case MSR_IA32_MISC_ENABLE:
1597                 vcpu->ia32_misc_enable_msr = data;
1598                 break;
1599         /*
1600          * This is the 'probe whether the host is KVM' logic:
1601          */
1602         case MSR_KVM_API_MAGIC:
1603                 return vcpu_register_para(vcpu, data);
1604
1605         default:
1606                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1607                 return 1;
1608         }
1609         return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1612
1613 /*
1614  * Writes msr value into into the appropriate "register".
1615  * Returns 0 on success, non-0 otherwise.
1616  * Assumes vcpu_load() was already called.
1617  */
1618 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1619 {
1620         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1621 }
1622
1623 void kvm_resched(struct kvm_vcpu *vcpu)
1624 {
1625         if (!need_resched())
1626                 return;
1627         vcpu_put(vcpu);
1628         cond_resched();
1629         vcpu_load(vcpu);
1630 }
1631 EXPORT_SYMBOL_GPL(kvm_resched);
1632
1633 void load_msrs(struct vmx_msr_entry *e, int n)
1634 {
1635         int i;
1636
1637         for (i = 0; i < n; ++i)
1638                 wrmsrl(e[i].index, e[i].data);
1639 }
1640 EXPORT_SYMBOL_GPL(load_msrs);
1641
1642 void save_msrs(struct vmx_msr_entry *e, int n)
1643 {
1644         int i;
1645
1646         for (i = 0; i < n; ++i)
1647                 rdmsrl(e[i].index, e[i].data);
1648 }
1649 EXPORT_SYMBOL_GPL(save_msrs);
1650
1651 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1652 {
1653         int i;
1654         u32 function;
1655         struct kvm_cpuid_entry *e, *best;
1656
1657         kvm_arch_ops->cache_regs(vcpu);
1658         function = vcpu->regs[VCPU_REGS_RAX];
1659         vcpu->regs[VCPU_REGS_RAX] = 0;
1660         vcpu->regs[VCPU_REGS_RBX] = 0;
1661         vcpu->regs[VCPU_REGS_RCX] = 0;
1662         vcpu->regs[VCPU_REGS_RDX] = 0;
1663         best = NULL;
1664         for (i = 0; i < vcpu->cpuid_nent; ++i) {
1665                 e = &vcpu->cpuid_entries[i];
1666                 if (e->function == function) {
1667                         best = e;
1668                         break;
1669                 }
1670                 /*
1671                  * Both basic or both extended?
1672                  */
1673                 if (((e->function ^ function) & 0x80000000) == 0)
1674                         if (!best || e->function > best->function)
1675                                 best = e;
1676         }
1677         if (best) {
1678                 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1679                 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1680                 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1681                 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1682         }
1683         kvm_arch_ops->decache_regs(vcpu);
1684         kvm_arch_ops->skip_emulated_instruction(vcpu);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1687
1688 static int pio_copy_data(struct kvm_vcpu *vcpu)
1689 {
1690         void *p = vcpu->pio_data;
1691         void *q;
1692         unsigned bytes;
1693         int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1694
1695         kvm_arch_ops->vcpu_put(vcpu);
1696         q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1697                  PAGE_KERNEL);
1698         if (!q) {
1699                 kvm_arch_ops->vcpu_load(vcpu);
1700                 free_pio_guest_pages(vcpu);
1701                 return -ENOMEM;
1702         }
1703         q += vcpu->pio.guest_page_offset;
1704         bytes = vcpu->pio.size * vcpu->pio.cur_count;
1705         if (vcpu->pio.in)
1706                 memcpy(q, p, bytes);
1707         else
1708                 memcpy(p, q, bytes);
1709         q -= vcpu->pio.guest_page_offset;
1710         vunmap(q);
1711         kvm_arch_ops->vcpu_load(vcpu);
1712         free_pio_guest_pages(vcpu);
1713         return 0;
1714 }
1715
1716 static int complete_pio(struct kvm_vcpu *vcpu)
1717 {
1718         struct kvm_pio_request *io = &vcpu->pio;
1719         long delta;
1720         int r;
1721
1722         kvm_arch_ops->cache_regs(vcpu);
1723
1724         if (!io->string) {
1725                 if (io->in)
1726                         memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1727                                io->size);
1728         } else {
1729                 if (io->in) {
1730                         r = pio_copy_data(vcpu);
1731                         if (r) {
1732                                 kvm_arch_ops->cache_regs(vcpu);
1733                                 return r;
1734                         }
1735                 }
1736
1737                 delta = 1;
1738                 if (io->rep) {
1739                         delta *= io->cur_count;
1740                         /*
1741                          * The size of the register should really depend on
1742                          * current address size.
1743                          */
1744                         vcpu->regs[VCPU_REGS_RCX] -= delta;
1745                 }
1746                 if (io->down)
1747                         delta = -delta;
1748                 delta *= io->size;
1749                 if (io->in)
1750                         vcpu->regs[VCPU_REGS_RDI] += delta;
1751                 else
1752                         vcpu->regs[VCPU_REGS_RSI] += delta;
1753         }
1754
1755         kvm_arch_ops->decache_regs(vcpu);
1756
1757         io->count -= io->cur_count;
1758         io->cur_count = 0;
1759
1760         if (!io->count)
1761                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1762         return 0;
1763 }
1764
1765 void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu)
1766 {
1767         /* TODO: String I/O for in kernel device */
1768
1769         if (vcpu->pio.in)
1770                 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1771                                   vcpu->pio.size,
1772                                   vcpu->pio_data);
1773         else
1774                 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1775                                    vcpu->pio.size,
1776                                    vcpu->pio_data);
1777 }
1778
1779 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1780                   int size, unsigned long count, int string, int down,
1781                   gva_t address, int rep, unsigned port)
1782 {
1783         unsigned now, in_page;
1784         int i;
1785         int nr_pages = 1;
1786         struct page *page;
1787         struct kvm_io_device *pio_dev;
1788
1789         vcpu->run->exit_reason = KVM_EXIT_IO;
1790         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1791         vcpu->run->io.size = size;
1792         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1793         vcpu->run->io.count = count;
1794         vcpu->run->io.port = port;
1795         vcpu->pio.count = count;
1796         vcpu->pio.cur_count = count;
1797         vcpu->pio.size = size;
1798         vcpu->pio.in = in;
1799         vcpu->pio.port = port;
1800         vcpu->pio.string = string;
1801         vcpu->pio.down = down;
1802         vcpu->pio.guest_page_offset = offset_in_page(address);
1803         vcpu->pio.rep = rep;
1804
1805         pio_dev = vcpu_find_pio_dev(vcpu, port);
1806         if (!string) {
1807                 kvm_arch_ops->cache_regs(vcpu);
1808                 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1809                 kvm_arch_ops->decache_regs(vcpu);
1810                 if (pio_dev) {
1811                         kernel_pio(pio_dev, vcpu);
1812                         complete_pio(vcpu);
1813                         return 1;
1814                 }
1815                 return 0;
1816         }
1817         /* TODO: String I/O for in kernel device */
1818         if (pio_dev)
1819                 printk(KERN_ERR "kvm_setup_pio: no string io support\n");
1820
1821         if (!count) {
1822                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1823                 return 1;
1824         }
1825
1826         now = min(count, PAGE_SIZE / size);
1827
1828         if (!down)
1829                 in_page = PAGE_SIZE - offset_in_page(address);
1830         else
1831                 in_page = offset_in_page(address) + size;
1832         now = min(count, (unsigned long)in_page / size);
1833         if (!now) {
1834                 /*
1835                  * String I/O straddles page boundary.  Pin two guest pages
1836                  * so that we satisfy atomicity constraints.  Do just one
1837                  * transaction to avoid complexity.
1838                  */
1839                 nr_pages = 2;
1840                 now = 1;
1841         }
1842         if (down) {
1843                 /*
1844                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
1845                  */
1846                 printk(KERN_ERR "kvm: guest string pio down\n");
1847                 inject_gp(vcpu);
1848                 return 1;
1849         }
1850         vcpu->run->io.count = now;
1851         vcpu->pio.cur_count = now;
1852
1853         for (i = 0; i < nr_pages; ++i) {
1854                 spin_lock(&vcpu->kvm->lock);
1855                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1856                 if (page)
1857                         get_page(page);
1858                 vcpu->pio.guest_pages[i] = page;
1859                 spin_unlock(&vcpu->kvm->lock);
1860                 if (!page) {
1861                         inject_gp(vcpu);
1862                         free_pio_guest_pages(vcpu);
1863                         return 1;
1864                 }
1865         }
1866
1867         if (!vcpu->pio.in)
1868                 return pio_copy_data(vcpu);
1869         return 0;
1870 }
1871 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1872
1873 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1874 {
1875         int r;
1876         sigset_t sigsaved;
1877
1878         vcpu_load(vcpu);
1879
1880         if (vcpu->sigset_active)
1881                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1882
1883         /* re-sync apic's tpr */
1884         vcpu->cr8 = kvm_run->cr8;
1885
1886         if (vcpu->pio.cur_count) {
1887                 r = complete_pio(vcpu);
1888                 if (r)
1889                         goto out;
1890         }
1891
1892         if (vcpu->mmio_needed) {
1893                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1894                 vcpu->mmio_read_completed = 1;
1895                 vcpu->mmio_needed = 0;
1896                 r = emulate_instruction(vcpu, kvm_run,
1897                                         vcpu->mmio_fault_cr2, 0);
1898                 if (r == EMULATE_DO_MMIO) {
1899                         /*
1900                          * Read-modify-write.  Back to userspace.
1901                          */
1902                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1903                         r = 0;
1904                         goto out;
1905                 }
1906         }
1907
1908         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1909                 kvm_arch_ops->cache_regs(vcpu);
1910                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1911                 kvm_arch_ops->decache_regs(vcpu);
1912         }
1913
1914         r = kvm_arch_ops->run(vcpu, kvm_run);
1915
1916 out:
1917         if (vcpu->sigset_active)
1918                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1919
1920         vcpu_put(vcpu);
1921         return r;
1922 }
1923
1924 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1925                                    struct kvm_regs *regs)
1926 {
1927         vcpu_load(vcpu);
1928
1929         kvm_arch_ops->cache_regs(vcpu);
1930
1931         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1932         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1933         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1934         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1935         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1936         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1937         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1938         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1939 #ifdef CONFIG_X86_64
1940         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1941         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1942         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1943         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1944         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1945         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1946         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1947         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1948 #endif
1949
1950         regs->rip = vcpu->rip;
1951         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1952
1953         /*
1954          * Don't leak debug flags in case they were set for guest debugging
1955          */
1956         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1957                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1958
1959         vcpu_put(vcpu);
1960
1961         return 0;
1962 }
1963
1964 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1965                                    struct kvm_regs *regs)
1966 {
1967         vcpu_load(vcpu);
1968
1969         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1970         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1971         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1972         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1973         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1974         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1975         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1976         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1977 #ifdef CONFIG_X86_64
1978         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1979         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1980         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1981         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1982         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1983         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1984         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1985         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1986 #endif
1987
1988         vcpu->rip = regs->rip;
1989         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1990
1991         kvm_arch_ops->decache_regs(vcpu);
1992
1993         vcpu_put(vcpu);
1994
1995         return 0;
1996 }
1997
1998 static void get_segment(struct kvm_vcpu *vcpu,
1999                         struct kvm_segment *var, int seg)
2000 {
2001         return kvm_arch_ops->get_segment(vcpu, var, seg);
2002 }
2003
2004 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2005                                     struct kvm_sregs *sregs)
2006 {
2007         struct descriptor_table dt;
2008
2009         vcpu_load(vcpu);
2010
2011         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2012         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2013         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2014         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2015         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2016         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2017
2018         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2019         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2020
2021         kvm_arch_ops->get_idt(vcpu, &dt);
2022         sregs->idt.limit = dt.limit;
2023         sregs->idt.base = dt.base;
2024         kvm_arch_ops->get_gdt(vcpu, &dt);
2025         sregs->gdt.limit = dt.limit;
2026         sregs->gdt.base = dt.base;
2027
2028         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2029         sregs->cr0 = vcpu->cr0;
2030         sregs->cr2 = vcpu->cr2;
2031         sregs->cr3 = vcpu->cr3;
2032         sregs->cr4 = vcpu->cr4;
2033         sregs->cr8 = vcpu->cr8;
2034         sregs->efer = vcpu->shadow_efer;
2035         sregs->apic_base = vcpu->apic_base;
2036
2037         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2038                sizeof sregs->interrupt_bitmap);
2039
2040         vcpu_put(vcpu);
2041
2042         return 0;
2043 }
2044
2045 static void set_segment(struct kvm_vcpu *vcpu,
2046                         struct kvm_segment *var, int seg)
2047 {
2048         return kvm_arch_ops->set_segment(vcpu, var, seg);
2049 }
2050
2051 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2052                                     struct kvm_sregs *sregs)
2053 {
2054         int mmu_reset_needed = 0;
2055         int i;
2056         struct descriptor_table dt;
2057
2058         vcpu_load(vcpu);
2059
2060         dt.limit = sregs->idt.limit;
2061         dt.base = sregs->idt.base;
2062         kvm_arch_ops->set_idt(vcpu, &dt);
2063         dt.limit = sregs->gdt.limit;
2064         dt.base = sregs->gdt.base;
2065         kvm_arch_ops->set_gdt(vcpu, &dt);
2066
2067         vcpu->cr2 = sregs->cr2;
2068         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2069         vcpu->cr3 = sregs->cr3;
2070
2071         vcpu->cr8 = sregs->cr8;
2072
2073         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2074 #ifdef CONFIG_X86_64
2075         kvm_arch_ops->set_efer(vcpu, sregs->efer);
2076 #endif
2077         vcpu->apic_base = sregs->apic_base;
2078
2079         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2080
2081         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2082         kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2083
2084         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2085         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2086         if (!is_long_mode(vcpu) && is_pae(vcpu))
2087                 load_pdptrs(vcpu, vcpu->cr3);
2088
2089         if (mmu_reset_needed)
2090                 kvm_mmu_reset_context(vcpu);
2091
2092         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2093                sizeof vcpu->irq_pending);
2094         vcpu->irq_summary = 0;
2095         for (i = 0; i < NR_IRQ_WORDS; ++i)
2096                 if (vcpu->irq_pending[i])
2097                         __set_bit(i, &vcpu->irq_summary);
2098
2099         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2100         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2101         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2102         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2103         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2104         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2105
2106         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2107         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2108
2109         vcpu_put(vcpu);
2110
2111         return 0;
2112 }
2113
2114 /*
2115  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2116  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2117  *
2118  * This list is modified at module load time to reflect the
2119  * capabilities of the host cpu.
2120  */
2121 static u32 msrs_to_save[] = {
2122         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2123         MSR_K6_STAR,
2124 #ifdef CONFIG_X86_64
2125         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2126 #endif
2127         MSR_IA32_TIME_STAMP_COUNTER,
2128 };
2129
2130 static unsigned num_msrs_to_save;
2131
2132 static u32 emulated_msrs[] = {
2133         MSR_IA32_MISC_ENABLE,
2134 };
2135
2136 static __init void kvm_init_msr_list(void)
2137 {
2138         u32 dummy[2];
2139         unsigned i, j;
2140
2141         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2142                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2143                         continue;
2144                 if (j < i)
2145                         msrs_to_save[j] = msrs_to_save[i];
2146                 j++;
2147         }
2148         num_msrs_to_save = j;
2149 }
2150
2151 /*
2152  * Adapt set_msr() to msr_io()'s calling convention
2153  */
2154 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2155 {
2156         return kvm_set_msr(vcpu, index, *data);
2157 }
2158
2159 /*
2160  * Read or write a bunch of msrs. All parameters are kernel addresses.
2161  *
2162  * @return number of msrs set successfully.
2163  */
2164 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2165                     struct kvm_msr_entry *entries,
2166                     int (*do_msr)(struct kvm_vcpu *vcpu,
2167                                   unsigned index, u64 *data))
2168 {
2169         int i;
2170
2171         vcpu_load(vcpu);
2172
2173         for (i = 0; i < msrs->nmsrs; ++i)
2174                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2175                         break;
2176
2177         vcpu_put(vcpu);
2178
2179         return i;
2180 }
2181
2182 /*
2183  * Read or write a bunch of msrs. Parameters are user addresses.
2184  *
2185  * @return number of msrs set successfully.
2186  */
2187 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2188                   int (*do_msr)(struct kvm_vcpu *vcpu,
2189                                 unsigned index, u64 *data),
2190                   int writeback)
2191 {
2192         struct kvm_msrs msrs;
2193         struct kvm_msr_entry *entries;
2194         int r, n;
2195         unsigned size;
2196
2197         r = -EFAULT;
2198         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2199                 goto out;
2200
2201         r = -E2BIG;
2202         if (msrs.nmsrs >= MAX_IO_MSRS)
2203                 goto out;
2204
2205         r = -ENOMEM;
2206         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2207         entries = vmalloc(size);
2208         if (!entries)
2209                 goto out;
2210
2211         r = -EFAULT;
2212         if (copy_from_user(entries, user_msrs->entries, size))
2213                 goto out_free;
2214
2215         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2216         if (r < 0)
2217                 goto out_free;
2218
2219         r = -EFAULT;
2220         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2221                 goto out_free;
2222
2223         r = n;
2224
2225 out_free:
2226         vfree(entries);
2227 out:
2228         return r;
2229 }
2230
2231 /*
2232  * Translate a guest virtual address to a guest physical address.
2233  */
2234 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2235                                     struct kvm_translation *tr)
2236 {
2237         unsigned long vaddr = tr->linear_address;
2238         gpa_t gpa;
2239
2240         vcpu_load(vcpu);
2241         spin_lock(&vcpu->kvm->lock);
2242         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2243         tr->physical_address = gpa;
2244         tr->valid = gpa != UNMAPPED_GVA;
2245         tr->writeable = 1;
2246         tr->usermode = 0;
2247         spin_unlock(&vcpu->kvm->lock);
2248         vcpu_put(vcpu);
2249
2250         return 0;
2251 }
2252
2253 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2254                                     struct kvm_interrupt *irq)
2255 {
2256         if (irq->irq < 0 || irq->irq >= 256)
2257                 return -EINVAL;
2258         vcpu_load(vcpu);
2259
2260         set_bit(irq->irq, vcpu->irq_pending);
2261         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2262
2263         vcpu_put(vcpu);
2264
2265         return 0;
2266 }
2267
2268 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2269                                       struct kvm_debug_guest *dbg)
2270 {
2271         int r;
2272
2273         vcpu_load(vcpu);
2274
2275         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2276
2277         vcpu_put(vcpu);
2278
2279         return r;
2280 }
2281
2282 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2283                                     unsigned long address,
2284                                     int *type)
2285 {
2286         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2287         unsigned long pgoff;
2288         struct page *page;
2289
2290         *type = VM_FAULT_MINOR;
2291         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2292         if (pgoff == 0)
2293                 page = virt_to_page(vcpu->run);
2294         else if (pgoff == KVM_PIO_PAGE_OFFSET)
2295                 page = virt_to_page(vcpu->pio_data);
2296         else
2297                 return NOPAGE_SIGBUS;
2298         get_page(page);
2299         return page;
2300 }
2301
2302 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2303         .nopage = kvm_vcpu_nopage,
2304 };
2305
2306 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2307 {
2308         vma->vm_ops = &kvm_vcpu_vm_ops;
2309         return 0;
2310 }
2311
2312 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2313 {
2314         struct kvm_vcpu *vcpu = filp->private_data;
2315
2316         fput(vcpu->kvm->filp);
2317         return 0;
2318 }
2319
2320 static struct file_operations kvm_vcpu_fops = {
2321         .release        = kvm_vcpu_release,
2322         .unlocked_ioctl = kvm_vcpu_ioctl,
2323         .compat_ioctl   = kvm_vcpu_ioctl,
2324         .mmap           = kvm_vcpu_mmap,
2325 };
2326
2327 /*
2328  * Allocates an inode for the vcpu.
2329  */
2330 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2331 {
2332         int fd, r;
2333         struct inode *inode;
2334         struct file *file;
2335
2336         r = anon_inode_getfd(&fd, &inode, &file,
2337                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2338         if (r)
2339                 return r;
2340         atomic_inc(&vcpu->kvm->filp->f_count);
2341         return fd;
2342 }
2343
2344 /*
2345  * Creates some virtual cpus.  Good luck creating more than one.
2346  */
2347 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2348 {
2349         int r;
2350         struct kvm_vcpu *vcpu;
2351         struct page *page;
2352
2353         r = -EINVAL;
2354         if (!valid_vcpu(n))
2355                 goto out;
2356
2357         vcpu = &kvm->vcpus[n];
2358
2359         mutex_lock(&vcpu->mutex);
2360
2361         if (vcpu->vmcs) {
2362                 mutex_unlock(&vcpu->mutex);
2363                 return -EEXIST;
2364         }
2365
2366         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2367         r = -ENOMEM;
2368         if (!page)
2369                 goto out_unlock;
2370         vcpu->run = page_address(page);
2371
2372         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2373         r = -ENOMEM;
2374         if (!page)
2375                 goto out_free_run;
2376         vcpu->pio_data = page_address(page);
2377
2378         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2379                                            FX_IMAGE_ALIGN);
2380         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2381         vcpu->cr0 = 0x10;
2382
2383         r = kvm_arch_ops->vcpu_create(vcpu);
2384         if (r < 0)
2385                 goto out_free_vcpus;
2386
2387         r = kvm_mmu_create(vcpu);
2388         if (r < 0)
2389                 goto out_free_vcpus;
2390
2391         kvm_arch_ops->vcpu_load(vcpu);
2392         r = kvm_mmu_setup(vcpu);
2393         if (r >= 0)
2394                 r = kvm_arch_ops->vcpu_setup(vcpu);
2395         vcpu_put(vcpu);
2396
2397         if (r < 0)
2398                 goto out_free_vcpus;
2399
2400         r = create_vcpu_fd(vcpu);
2401         if (r < 0)
2402                 goto out_free_vcpus;
2403
2404         spin_lock(&kvm_lock);
2405         if (n >= kvm->nvcpus)
2406                 kvm->nvcpus = n + 1;
2407         spin_unlock(&kvm_lock);
2408
2409         return r;
2410
2411 out_free_vcpus:
2412         kvm_free_vcpu(vcpu);
2413 out_free_run:
2414         free_page((unsigned long)vcpu->run);
2415         vcpu->run = NULL;
2416 out_unlock:
2417         mutex_unlock(&vcpu->mutex);
2418 out:
2419         return r;
2420 }
2421
2422 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2423 {
2424         u64 efer;
2425         int i;
2426         struct kvm_cpuid_entry *e, *entry;
2427
2428         rdmsrl(MSR_EFER, efer);
2429         entry = NULL;
2430         for (i = 0; i < vcpu->cpuid_nent; ++i) {
2431                 e = &vcpu->cpuid_entries[i];
2432                 if (e->function == 0x80000001) {
2433                         entry = e;
2434                         break;
2435                 }
2436         }
2437         if (entry && (entry->edx & EFER_NX) && !(efer & EFER_NX)) {
2438                 entry->edx &= ~(1 << 20);
2439                 printk(KERN_INFO ": guest NX capability removed\n");
2440         }
2441 }
2442
2443 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2444                                     struct kvm_cpuid *cpuid,
2445                                     struct kvm_cpuid_entry __user *entries)
2446 {
2447         int r;
2448
2449         r = -E2BIG;
2450         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2451                 goto out;
2452         r = -EFAULT;
2453         if (copy_from_user(&vcpu->cpuid_entries, entries,
2454                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2455                 goto out;
2456         vcpu->cpuid_nent = cpuid->nent;
2457         cpuid_fix_nx_cap(vcpu);
2458         return 0;
2459
2460 out:
2461         return r;
2462 }
2463
2464 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2465 {
2466         if (sigset) {
2467                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2468                 vcpu->sigset_active = 1;
2469                 vcpu->sigset = *sigset;
2470         } else
2471                 vcpu->sigset_active = 0;
2472         return 0;
2473 }
2474
2475 /*
2476  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
2477  * we have asm/x86/processor.h
2478  */
2479 struct fxsave {
2480         u16     cwd;
2481         u16     swd;
2482         u16     twd;
2483         u16     fop;
2484         u64     rip;
2485         u64     rdp;
2486         u32     mxcsr;
2487         u32     mxcsr_mask;
2488         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
2489 #ifdef CONFIG_X86_64
2490         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
2491 #else
2492         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
2493 #endif
2494 };
2495
2496 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2497 {
2498         struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2499
2500         vcpu_load(vcpu);
2501
2502         memcpy(fpu->fpr, fxsave->st_space, 128);
2503         fpu->fcw = fxsave->cwd;
2504         fpu->fsw = fxsave->swd;
2505         fpu->ftwx = fxsave->twd;
2506         fpu->last_opcode = fxsave->fop;
2507         fpu->last_ip = fxsave->rip;
2508         fpu->last_dp = fxsave->rdp;
2509         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2510
2511         vcpu_put(vcpu);
2512
2513         return 0;
2514 }
2515
2516 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2517 {
2518         struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2519
2520         vcpu_load(vcpu);
2521
2522         memcpy(fxsave->st_space, fpu->fpr, 128);
2523         fxsave->cwd = fpu->fcw;
2524         fxsave->swd = fpu->fsw;
2525         fxsave->twd = fpu->ftwx;
2526         fxsave->fop = fpu->last_opcode;
2527         fxsave->rip = fpu->last_ip;
2528         fxsave->rdp = fpu->last_dp;
2529         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2530
2531         vcpu_put(vcpu);
2532
2533         return 0;
2534 }
2535
2536 static long kvm_vcpu_ioctl(struct file *filp,
2537                            unsigned int ioctl, unsigned long arg)
2538 {
2539         struct kvm_vcpu *vcpu = filp->private_data;
2540         void __user *argp = (void __user *)arg;
2541         int r = -EINVAL;
2542
2543         switch (ioctl) {
2544         case KVM_RUN:
2545                 r = -EINVAL;
2546                 if (arg)
2547                         goto out;
2548                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2549                 break;
2550         case KVM_GET_REGS: {
2551                 struct kvm_regs kvm_regs;
2552
2553                 memset(&kvm_regs, 0, sizeof kvm_regs);
2554                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2555                 if (r)
2556                         goto out;
2557                 r = -EFAULT;
2558                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2559                         goto out;
2560                 r = 0;
2561                 break;
2562         }
2563         case KVM_SET_REGS: {
2564                 struct kvm_regs kvm_regs;
2565
2566                 r = -EFAULT;
2567                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2568                         goto out;
2569                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2570                 if (r)
2571                         goto out;
2572                 r = 0;
2573                 break;
2574         }
2575         case KVM_GET_SREGS: {
2576                 struct kvm_sregs kvm_sregs;
2577
2578                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2579                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2580                 if (r)
2581                         goto out;
2582                 r = -EFAULT;
2583                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2584                         goto out;
2585                 r = 0;
2586                 break;
2587         }
2588         case KVM_SET_SREGS: {
2589                 struct kvm_sregs kvm_sregs;
2590
2591                 r = -EFAULT;
2592                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2593                         goto out;
2594                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2595                 if (r)
2596                         goto out;
2597                 r = 0;
2598                 break;
2599         }
2600         case KVM_TRANSLATE: {
2601                 struct kvm_translation tr;
2602
2603                 r = -EFAULT;
2604                 if (copy_from_user(&tr, argp, sizeof tr))
2605                         goto out;
2606                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2607                 if (r)
2608                         goto out;
2609                 r = -EFAULT;
2610                 if (copy_to_user(argp, &tr, sizeof tr))
2611                         goto out;
2612                 r = 0;
2613                 break;
2614         }
2615         case KVM_INTERRUPT: {
2616                 struct kvm_interrupt irq;
2617
2618                 r = -EFAULT;
2619                 if (copy_from_user(&irq, argp, sizeof irq))
2620                         goto out;
2621                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2622                 if (r)
2623                         goto out;
2624                 r = 0;
2625                 break;
2626         }
2627         case KVM_DEBUG_GUEST: {
2628                 struct kvm_debug_guest dbg;
2629
2630                 r = -EFAULT;
2631                 if (copy_from_user(&dbg, argp, sizeof dbg))
2632                         goto out;
2633                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2634                 if (r)
2635                         goto out;
2636                 r = 0;
2637                 break;
2638         }
2639         case KVM_GET_MSRS:
2640                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2641                 break;
2642         case KVM_SET_MSRS:
2643                 r = msr_io(vcpu, argp, do_set_msr, 0);
2644                 break;
2645         case KVM_SET_CPUID: {
2646                 struct kvm_cpuid __user *cpuid_arg = argp;
2647                 struct kvm_cpuid cpuid;
2648
2649                 r = -EFAULT;
2650                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2651                         goto out;
2652                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2653                 if (r)
2654                         goto out;
2655                 break;
2656         }
2657         case KVM_SET_SIGNAL_MASK: {
2658                 struct kvm_signal_mask __user *sigmask_arg = argp;
2659                 struct kvm_signal_mask kvm_sigmask;
2660                 sigset_t sigset, *p;
2661
2662                 p = NULL;
2663                 if (argp) {
2664                         r = -EFAULT;
2665                         if (copy_from_user(&kvm_sigmask, argp,
2666                                            sizeof kvm_sigmask))
2667                                 goto out;
2668                         r = -EINVAL;
2669                         if (kvm_sigmask.len != sizeof sigset)
2670                                 goto out;
2671                         r = -EFAULT;
2672                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2673                                            sizeof sigset))
2674                                 goto out;
2675                         p = &sigset;
2676                 }
2677                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2678                 break;
2679         }
2680         case KVM_GET_FPU: {
2681                 struct kvm_fpu fpu;
2682
2683                 memset(&fpu, 0, sizeof fpu);
2684                 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2685                 if (r)
2686                         goto out;
2687                 r = -EFAULT;
2688                 if (copy_to_user(argp, &fpu, sizeof fpu))
2689                         goto out;
2690                 r = 0;
2691                 break;
2692         }
2693         case KVM_SET_FPU: {
2694                 struct kvm_fpu fpu;
2695
2696                 r = -EFAULT;
2697                 if (copy_from_user(&fpu, argp, sizeof fpu))
2698                         goto out;
2699                 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2700                 if (r)
2701                         goto out;
2702                 r = 0;
2703                 break;
2704         }
2705         default:
2706                 ;
2707         }
2708 out:
2709         return r;
2710 }
2711
2712 static long kvm_vm_ioctl(struct file *filp,
2713                            unsigned int ioctl, unsigned long arg)
2714 {
2715         struct kvm *kvm = filp->private_data;
2716         void __user *argp = (void __user *)arg;
2717         int r = -EINVAL;
2718
2719         switch (ioctl) {
2720         case KVM_CREATE_VCPU:
2721                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2722                 if (r < 0)
2723                         goto out;
2724                 break;
2725         case KVM_SET_MEMORY_REGION: {
2726                 struct kvm_memory_region kvm_mem;
2727
2728                 r = -EFAULT;
2729                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2730                         goto out;
2731                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2732                 if (r)
2733                         goto out;
2734                 break;
2735         }
2736         case KVM_GET_DIRTY_LOG: {
2737                 struct kvm_dirty_log log;
2738
2739                 r = -EFAULT;
2740                 if (copy_from_user(&log, argp, sizeof log))
2741                         goto out;
2742                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2743                 if (r)
2744                         goto out;
2745                 break;
2746         }
2747         case KVM_SET_MEMORY_ALIAS: {
2748                 struct kvm_memory_alias alias;
2749
2750                 r = -EFAULT;
2751                 if (copy_from_user(&alias, argp, sizeof alias))
2752                         goto out;
2753                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2754                 if (r)
2755                         goto out;
2756                 break;
2757         }
2758         default:
2759                 ;
2760         }
2761 out:
2762         return r;
2763 }
2764
2765 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2766                                   unsigned long address,
2767                                   int *type)
2768 {
2769         struct kvm *kvm = vma->vm_file->private_data;
2770         unsigned long pgoff;
2771         struct page *page;
2772
2773         *type = VM_FAULT_MINOR;
2774         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2775         page = gfn_to_page(kvm, pgoff);
2776         if (!page)
2777                 return NOPAGE_SIGBUS;
2778         get_page(page);
2779         return page;
2780 }
2781
2782 static struct vm_operations_struct kvm_vm_vm_ops = {
2783         .nopage = kvm_vm_nopage,
2784 };
2785
2786 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2787 {
2788         vma->vm_ops = &kvm_vm_vm_ops;
2789         return 0;
2790 }
2791
2792 static struct file_operations kvm_vm_fops = {
2793         .release        = kvm_vm_release,
2794         .unlocked_ioctl = kvm_vm_ioctl,
2795         .compat_ioctl   = kvm_vm_ioctl,
2796         .mmap           = kvm_vm_mmap,
2797 };
2798
2799 static int kvm_dev_ioctl_create_vm(void)
2800 {
2801         int fd, r;
2802         struct inode *inode;
2803         struct file *file;
2804         struct kvm *kvm;
2805
2806         kvm = kvm_create_vm();
2807         if (IS_ERR(kvm))
2808                 return PTR_ERR(kvm);
2809         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2810         if (r) {
2811                 kvm_destroy_vm(kvm);
2812                 return r;
2813         }
2814
2815         kvm->filp = file;
2816
2817         return fd;
2818 }
2819
2820 static long kvm_dev_ioctl(struct file *filp,
2821                           unsigned int ioctl, unsigned long arg)
2822 {
2823         void __user *argp = (void __user *)arg;
2824         long r = -EINVAL;
2825
2826         switch (ioctl) {
2827         case KVM_GET_API_VERSION:
2828                 r = -EINVAL;
2829                 if (arg)
2830                         goto out;
2831                 r = KVM_API_VERSION;
2832                 break;
2833         case KVM_CREATE_VM:
2834                 r = -EINVAL;
2835                 if (arg)
2836                         goto out;
2837                 r = kvm_dev_ioctl_create_vm();
2838                 break;
2839         case KVM_GET_MSR_INDEX_LIST: {
2840                 struct kvm_msr_list __user *user_msr_list = argp;
2841                 struct kvm_msr_list msr_list;
2842                 unsigned n;
2843
2844                 r = -EFAULT;
2845                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2846                         goto out;
2847                 n = msr_list.nmsrs;
2848                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2849                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2850                         goto out;
2851                 r = -E2BIG;
2852                 if (n < num_msrs_to_save)
2853                         goto out;
2854                 r = -EFAULT;
2855                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2856                                  num_msrs_to_save * sizeof(u32)))
2857                         goto out;
2858                 if (copy_to_user(user_msr_list->indices
2859                                  + num_msrs_to_save * sizeof(u32),
2860                                  &emulated_msrs,
2861                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2862                         goto out;
2863                 r = 0;
2864                 break;
2865         }
2866         case KVM_CHECK_EXTENSION:
2867                 /*
2868                  * No extensions defined at present.
2869                  */
2870                 r = 0;
2871                 break;
2872         case KVM_GET_VCPU_MMAP_SIZE:
2873                 r = -EINVAL;
2874                 if (arg)
2875                         goto out;
2876                 r = 2 * PAGE_SIZE;
2877                 break;
2878         default:
2879                 ;
2880         }
2881 out:
2882         return r;
2883 }
2884
2885 static struct file_operations kvm_chardev_ops = {
2886         .open           = kvm_dev_open,
2887         .release        = kvm_dev_release,
2888         .unlocked_ioctl = kvm_dev_ioctl,
2889         .compat_ioctl   = kvm_dev_ioctl,
2890 };
2891
2892 static struct miscdevice kvm_dev = {
2893         KVM_MINOR,
2894         "kvm",
2895         &kvm_chardev_ops,
2896 };
2897
2898 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2899                        void *v)
2900 {
2901         if (val == SYS_RESTART) {
2902                 /*
2903                  * Some (well, at least mine) BIOSes hang on reboot if
2904                  * in vmx root mode.
2905                  */
2906                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2907                 on_each_cpu(hardware_disable, NULL, 0, 1);
2908         }
2909         return NOTIFY_OK;
2910 }
2911
2912 static struct notifier_block kvm_reboot_notifier = {
2913         .notifier_call = kvm_reboot,
2914         .priority = 0,
2915 };
2916
2917 /*
2918  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2919  * cached on it.
2920  */
2921 static void decache_vcpus_on_cpu(int cpu)
2922 {
2923         struct kvm *vm;
2924         struct kvm_vcpu *vcpu;
2925         int i;
2926
2927         spin_lock(&kvm_lock);
2928         list_for_each_entry(vm, &vm_list, vm_list)
2929                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2930                         vcpu = &vm->vcpus[i];
2931                         /*
2932                          * If the vcpu is locked, then it is running on some
2933                          * other cpu and therefore it is not cached on the
2934                          * cpu in question.
2935                          *
2936                          * If it's not locked, check the last cpu it executed
2937                          * on.
2938                          */
2939                         if (mutex_trylock(&vcpu->mutex)) {
2940                                 if (vcpu->cpu == cpu) {
2941                                         kvm_arch_ops->vcpu_decache(vcpu);
2942                                         vcpu->cpu = -1;
2943                                 }
2944                                 mutex_unlock(&vcpu->mutex);
2945                         }
2946                 }
2947         spin_unlock(&kvm_lock);
2948 }
2949
2950 static void hardware_enable(void *junk)
2951 {
2952         int cpu = raw_smp_processor_id();
2953
2954         if (cpu_isset(cpu, cpus_hardware_enabled))
2955                 return;
2956         cpu_set(cpu, cpus_hardware_enabled);
2957         kvm_arch_ops->hardware_enable(NULL);
2958 }
2959
2960 static void hardware_disable(void *junk)
2961 {
2962         int cpu = raw_smp_processor_id();
2963
2964         if (!cpu_isset(cpu, cpus_hardware_enabled))
2965                 return;
2966         cpu_clear(cpu, cpus_hardware_enabled);
2967         decache_vcpus_on_cpu(cpu);
2968         kvm_arch_ops->hardware_disable(NULL);
2969 }
2970
2971 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2972                            void *v)
2973 {
2974         int cpu = (long)v;
2975
2976         switch (val) {
2977         case CPU_DYING:
2978         case CPU_DYING_FROZEN:
2979         case CPU_UP_CANCELED:
2980         case CPU_UP_CANCELED_FROZEN:
2981                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2982                        cpu);
2983                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2984                 break;
2985         case CPU_ONLINE:
2986         case CPU_ONLINE_FROZEN:
2987                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2988                        cpu);
2989                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
2990                 break;
2991         }
2992         return NOTIFY_OK;
2993 }
2994
2995 void kvm_io_bus_init(struct kvm_io_bus *bus)
2996 {
2997         memset(bus, 0, sizeof(*bus));
2998 }
2999
3000 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3001 {
3002         int i;
3003
3004         for (i = 0; i < bus->dev_count; i++) {
3005                 struct kvm_io_device *pos = bus->devs[i];
3006
3007                 kvm_iodevice_destructor(pos);
3008         }
3009 }
3010
3011 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3012 {
3013         int i;
3014
3015         for (i = 0; i < bus->dev_count; i++) {
3016                 struct kvm_io_device *pos = bus->devs[i];
3017
3018                 if (pos->in_range(pos, addr))
3019                         return pos;
3020         }
3021
3022         return NULL;
3023 }
3024
3025 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3026 {
3027         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3028
3029         bus->devs[bus->dev_count++] = dev;
3030 }
3031
3032 static struct notifier_block kvm_cpu_notifier = {
3033         .notifier_call = kvm_cpu_hotplug,
3034         .priority = 20, /* must be > scheduler priority */
3035 };
3036
3037 static u64 stat_get(void *_offset)
3038 {
3039         unsigned offset = (long)_offset;
3040         u64 total = 0;
3041         struct kvm *kvm;
3042         struct kvm_vcpu *vcpu;
3043         int i;
3044
3045         spin_lock(&kvm_lock);
3046         list_for_each_entry(kvm, &vm_list, vm_list)
3047                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3048                         vcpu = &kvm->vcpus[i];
3049                         total += *(u32 *)((void *)vcpu + offset);
3050                 }
3051         spin_unlock(&kvm_lock);
3052         return total;
3053 }
3054
3055 static void stat_set(void *offset, u64 val)
3056 {
3057 }
3058
3059 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3060
3061 static __init void kvm_init_debug(void)
3062 {
3063         struct kvm_stats_debugfs_item *p;
3064
3065         debugfs_dir = debugfs_create_dir("kvm", NULL);
3066         for (p = debugfs_entries; p->name; ++p)
3067                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3068                                                 (void *)(long)p->offset,
3069                                                 &stat_fops);
3070 }
3071
3072 static void kvm_exit_debug(void)
3073 {
3074         struct kvm_stats_debugfs_item *p;
3075
3076         for (p = debugfs_entries; p->name; ++p)
3077                 debugfs_remove(p->dentry);
3078         debugfs_remove(debugfs_dir);
3079 }
3080
3081 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3082 {
3083         hardware_disable(NULL);
3084         return 0;
3085 }
3086
3087 static int kvm_resume(struct sys_device *dev)
3088 {
3089         hardware_enable(NULL);
3090         return 0;
3091 }
3092
3093 static struct sysdev_class kvm_sysdev_class = {
3094         set_kset_name("kvm"),
3095         .suspend = kvm_suspend,
3096         .resume = kvm_resume,
3097 };
3098
3099 static struct sys_device kvm_sysdev = {
3100         .id = 0,
3101         .cls = &kvm_sysdev_class,
3102 };
3103
3104 hpa_t bad_page_address;
3105
3106 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3107 {
3108         int r;
3109
3110         if (kvm_arch_ops) {
3111                 printk(KERN_ERR "kvm: already loaded the other module\n");
3112                 return -EEXIST;
3113         }
3114
3115         if (!ops->cpu_has_kvm_support()) {
3116                 printk(KERN_ERR "kvm: no hardware support\n");
3117                 return -EOPNOTSUPP;
3118         }
3119         if (ops->disabled_by_bios()) {
3120                 printk(KERN_ERR "kvm: disabled by bios\n");
3121                 return -EOPNOTSUPP;
3122         }
3123
3124         kvm_arch_ops = ops;
3125
3126         r = kvm_arch_ops->hardware_setup();
3127         if (r < 0)
3128                 goto out;
3129
3130         on_each_cpu(hardware_enable, NULL, 0, 1);
3131         r = register_cpu_notifier(&kvm_cpu_notifier);
3132         if (r)
3133                 goto out_free_1;
3134         register_reboot_notifier(&kvm_reboot_notifier);
3135
3136         r = sysdev_class_register(&kvm_sysdev_class);
3137         if (r)
3138                 goto out_free_2;
3139
3140         r = sysdev_register(&kvm_sysdev);
3141         if (r)
3142                 goto out_free_3;
3143
3144         kvm_chardev_ops.owner = module;
3145
3146         r = misc_register(&kvm_dev);
3147         if (r) {
3148                 printk (KERN_ERR "kvm: misc device register failed\n");
3149                 goto out_free;
3150         }
3151
3152         return r;
3153
3154 out_free:
3155         sysdev_unregister(&kvm_sysdev);
3156 out_free_3:
3157         sysdev_class_unregister(&kvm_sysdev_class);
3158 out_free_2:
3159         unregister_reboot_notifier(&kvm_reboot_notifier);
3160         unregister_cpu_notifier(&kvm_cpu_notifier);
3161 out_free_1:
3162         on_each_cpu(hardware_disable, NULL, 0, 1);
3163         kvm_arch_ops->hardware_unsetup();
3164 out:
3165         kvm_arch_ops = NULL;
3166         return r;
3167 }
3168
3169 void kvm_exit_arch(void)
3170 {
3171         misc_deregister(&kvm_dev);
3172         sysdev_unregister(&kvm_sysdev);
3173         sysdev_class_unregister(&kvm_sysdev_class);
3174         unregister_reboot_notifier(&kvm_reboot_notifier);
3175         unregister_cpu_notifier(&kvm_cpu_notifier);
3176         on_each_cpu(hardware_disable, NULL, 0, 1);
3177         kvm_arch_ops->hardware_unsetup();
3178         kvm_arch_ops = NULL;
3179 }
3180
3181 static __init int kvm_init(void)
3182 {
3183         static struct page *bad_page;
3184         int r;
3185
3186         r = kvm_mmu_module_init();
3187         if (r)
3188                 goto out4;
3189
3190         kvm_init_debug();
3191
3192         kvm_init_msr_list();
3193
3194         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3195                 r = -ENOMEM;
3196                 goto out;
3197         }
3198
3199         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3200         memset(__va(bad_page_address), 0, PAGE_SIZE);
3201
3202         return 0;
3203
3204 out:
3205         kvm_exit_debug();
3206         kvm_mmu_module_exit();
3207 out4:
3208         return r;
3209 }
3210
3211 static __exit void kvm_exit(void)
3212 {
3213         kvm_exit_debug();
3214         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3215         kvm_mmu_module_exit();
3216 }
3217
3218 module_init(kvm_init)
3219 module_exit(kvm_exit)
3220
3221 EXPORT_SYMBOL_GPL(kvm_init_arch);
3222 EXPORT_SYMBOL_GPL(kvm_exit_arch);