4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
8 #define USB_DEVICE_MAJOR 189
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
27 /*-------------------------------------------------------------------------*/
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
39 * And there might be other descriptors mixed in with those.
41 * Devices may also have class-specific or vendor-specific descriptors.
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 * with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
56 * USB requests are always queued to a given endpoint, identified by a
57 * descriptor within an active interface in a given USB configuration.
59 struct usb_host_endpoint {
60 struct usb_endpoint_descriptor desc;
61 struct list_head urb_list;
63 struct ep_device *ep_dev; /* For sysfs info */
65 unsigned char *extra; /* Extra descriptors */
69 /* host-side wrapper for one interface setting's parsed descriptors */
70 struct usb_host_interface {
71 struct usb_interface_descriptor desc;
73 /* array of desc.bNumEndpoint endpoints associated with this
74 * interface setting. these will be in no particular order.
76 struct usb_host_endpoint *endpoint;
78 char *string; /* iInterface string, if present */
79 unsigned char *extra; /* Extra descriptors */
83 enum usb_interface_condition {
84 USB_INTERFACE_UNBOUND = 0,
85 USB_INTERFACE_BINDING,
87 USB_INTERFACE_UNBINDING,
91 * struct usb_interface - what usb device drivers talk to
92 * @altsetting: array of interface structures, one for each alternate
93 * setting that may be selected. Each one includes a set of
94 * endpoint configurations. They will be in no particular order.
95 * @num_altsetting: number of altsettings defined.
96 * @cur_altsetting: the current altsetting.
97 * @intf_assoc: interface association descriptor
98 * @driver: the USB driver that is bound to this interface.
99 * @minor: the minor number assigned to this interface, if this
100 * interface is bound to a driver that uses the USB major number.
101 * If this interface does not use the USB major, this field should
102 * be unused. The driver should set this value in the probe()
103 * function of the driver, after it has been assigned a minor
104 * number from the USB core by calling usb_register_dev().
105 * @condition: binding state of the interface: not bound, binding
106 * (in probe()), bound to a driver, or unbinding (in disconnect())
107 * @is_active: flag set when the interface is bound and not suspended.
108 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
109 * capability during autosuspend.
110 * @dev: driver model's view of this device
111 * @usb_dev: if an interface is bound to the USB major, this will point
112 * to the sysfs representation for that device.
113 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
114 * allowed unless the counter is 0.
116 * USB device drivers attach to interfaces on a physical device. Each
117 * interface encapsulates a single high level function, such as feeding
118 * an audio stream to a speaker or reporting a change in a volume control.
119 * Many USB devices only have one interface. The protocol used to talk to
120 * an interface's endpoints can be defined in a usb "class" specification,
121 * or by a product's vendor. The (default) control endpoint is part of
122 * every interface, but is never listed among the interface's descriptors.
124 * The driver that is bound to the interface can use standard driver model
125 * calls such as dev_get_drvdata() on the dev member of this structure.
127 * Each interface may have alternate settings. The initial configuration
128 * of a device sets altsetting 0, but the device driver can change
129 * that setting using usb_set_interface(). Alternate settings are often
130 * used to control the use of periodic endpoints, such as by having
131 * different endpoints use different amounts of reserved USB bandwidth.
132 * All standards-conformant USB devices that use isochronous endpoints
133 * will use them in non-default settings.
135 * The USB specification says that alternate setting numbers must run from
136 * 0 to one less than the total number of alternate settings. But some
137 * devices manage to mess this up, and the structures aren't necessarily
138 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
139 * look up an alternate setting in the altsetting array based on its number.
141 struct usb_interface {
142 /* array of alternate settings for this interface,
143 * stored in no particular order */
144 struct usb_host_interface *altsetting;
146 struct usb_host_interface *cur_altsetting; /* the currently
147 * active alternate setting */
148 unsigned num_altsetting; /* number of alternate settings */
150 /* If there is an interface association descriptor then it will list
151 * the associated interfaces */
152 struct usb_interface_assoc_descriptor *intf_assoc;
154 int minor; /* minor number this interface is
156 enum usb_interface_condition condition; /* state of binding */
157 unsigned is_active:1; /* the interface is not suspended */
158 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
160 struct device dev; /* interface specific device info */
161 struct device *usb_dev; /* pointer to the usb class's device, if any */
162 int pm_usage_cnt; /* usage counter for autosuspend */
164 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
165 #define interface_to_usbdev(intf) \
166 container_of(intf->dev.parent, struct usb_device, dev)
168 static inline void *usb_get_intfdata (struct usb_interface *intf)
170 return dev_get_drvdata (&intf->dev);
173 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
175 dev_set_drvdata(&intf->dev, data);
178 struct usb_interface *usb_get_intf(struct usb_interface *intf);
179 void usb_put_intf(struct usb_interface *intf);
181 /* this maximum is arbitrary */
182 #define USB_MAXINTERFACES 32
183 #define USB_MAXIADS USB_MAXINTERFACES/2
186 * struct usb_interface_cache - long-term representation of a device interface
187 * @num_altsetting: number of altsettings defined.
188 * @ref: reference counter.
189 * @altsetting: variable-length array of interface structures, one for
190 * each alternate setting that may be selected. Each one includes a
191 * set of endpoint configurations. They will be in no particular order.
193 * These structures persist for the lifetime of a usb_device, unlike
194 * struct usb_interface (which persists only as long as its configuration
195 * is installed). The altsetting arrays can be accessed through these
196 * structures at any time, permitting comparison of configurations and
197 * providing support for the /proc/bus/usb/devices pseudo-file.
199 struct usb_interface_cache {
200 unsigned num_altsetting; /* number of alternate settings */
201 struct kref ref; /* reference counter */
203 /* variable-length array of alternate settings for this interface,
204 * stored in no particular order */
205 struct usb_host_interface altsetting[0];
207 #define ref_to_usb_interface_cache(r) \
208 container_of(r, struct usb_interface_cache, ref)
209 #define altsetting_to_usb_interface_cache(a) \
210 container_of(a, struct usb_interface_cache, altsetting[0])
213 * struct usb_host_config - representation of a device's configuration
214 * @desc: the device's configuration descriptor.
215 * @string: pointer to the cached version of the iConfiguration string, if
216 * present for this configuration.
217 * @intf_assoc: list of any interface association descriptors in this config
218 * @interface: array of pointers to usb_interface structures, one for each
219 * interface in the configuration. The number of interfaces is stored
220 * in desc.bNumInterfaces. These pointers are valid only while the
221 * the configuration is active.
222 * @intf_cache: array of pointers to usb_interface_cache structures, one
223 * for each interface in the configuration. These structures exist
224 * for the entire life of the device.
225 * @extra: pointer to buffer containing all extra descriptors associated
226 * with this configuration (those preceding the first interface
228 * @extralen: length of the extra descriptors buffer.
230 * USB devices may have multiple configurations, but only one can be active
231 * at any time. Each encapsulates a different operational environment;
232 * for example, a dual-speed device would have separate configurations for
233 * full-speed and high-speed operation. The number of configurations
234 * available is stored in the device descriptor as bNumConfigurations.
236 * A configuration can contain multiple interfaces. Each corresponds to
237 * a different function of the USB device, and all are available whenever
238 * the configuration is active. The USB standard says that interfaces
239 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
240 * of devices get this wrong. In addition, the interface array is not
241 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
242 * look up an interface entry based on its number.
244 * Device drivers should not attempt to activate configurations. The choice
245 * of which configuration to install is a policy decision based on such
246 * considerations as available power, functionality provided, and the user's
247 * desires (expressed through userspace tools). However, drivers can call
248 * usb_reset_configuration() to reinitialize the current configuration and
249 * all its interfaces.
251 struct usb_host_config {
252 struct usb_config_descriptor desc;
254 char *string; /* iConfiguration string, if present */
256 /* List of any Interface Association Descriptors in this
258 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
260 /* the interfaces associated with this configuration,
261 * stored in no particular order */
262 struct usb_interface *interface[USB_MAXINTERFACES];
264 /* Interface information available even when this is not the
265 * active configuration */
266 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
268 unsigned char *extra; /* Extra descriptors */
272 int __usb_get_extra_descriptor(char *buffer, unsigned size,
273 unsigned char type, void **ptr);
274 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
275 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
278 /* ----------------------------------------------------------------------- */
280 /* USB device number allocation bitmap */
282 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
286 * Allocated per bus (tree of devices) we have:
289 struct device *controller; /* host/master side hardware */
290 int busnum; /* Bus number (in order of reg) */
291 char *bus_name; /* stable id (PCI slot_name etc) */
292 u8 uses_dma; /* Does the host controller use DMA? */
293 u8 otg_port; /* 0, or number of OTG/HNP port */
294 unsigned is_b_host:1; /* true during some HNP roleswitches */
295 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
297 int devnum_next; /* Next open device number in
298 * round-robin allocation */
300 struct usb_devmap devmap; /* device address allocation map */
301 struct usb_device *root_hub; /* Root hub */
302 struct list_head bus_list; /* list of busses */
304 int bandwidth_allocated; /* on this bus: how much of the time
305 * reserved for periodic (intr/iso)
306 * requests is used, on average?
307 * Units: microseconds/frame.
308 * Limits: Full/low speed reserve 90%,
309 * while high speed reserves 80%.
311 int bandwidth_int_reqs; /* number of Interrupt requests */
312 int bandwidth_isoc_reqs; /* number of Isoc. requests */
314 #ifdef CONFIG_USB_DEVICEFS
315 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
317 struct class_device *class_dev; /* class device for this bus */
319 #if defined(CONFIG_USB_MON)
320 struct mon_bus *mon_bus; /* non-null when associated */
321 int monitored; /* non-zero when monitored */
325 /* ----------------------------------------------------------------------- */
327 /* This is arbitrary.
328 * From USB 2.0 spec Table 11-13, offset 7, a hub can
329 * have up to 255 ports. The most yet reported is 10.
331 * Current Wireless USB host hardware (Intel i1480 for example) allows
332 * up to 22 devices to connect. Upcoming hardware might raise that
333 * limit. Because the arrays need to add a bit for hub status data, we
334 * do 31, so plus one evens out to four bytes.
336 #define USB_MAXCHILDREN (31)
341 * struct usb_device - kernel's representation of a USB device
343 * FIXME: Write the kerneldoc!
345 * Usbcore drivers should not set usbdev->state directly. Instead use
346 * usb_set_device_state().
349 int devnum; /* Address on USB bus */
350 char devpath [16]; /* Use in messages: /port/port/... */
351 enum usb_device_state state; /* configured, not attached, etc */
352 enum usb_device_speed speed; /* high/full/low (or error) */
354 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
355 int ttport; /* device port on that tt hub */
357 unsigned int toggle[2]; /* one bit for each endpoint
358 * ([0] = IN, [1] = OUT) */
360 struct usb_device *parent; /* our hub, unless we're the root */
361 struct usb_bus *bus; /* Bus we're part of */
362 struct usb_host_endpoint ep0;
364 struct device dev; /* Generic device interface */
366 struct usb_device_descriptor descriptor;/* Descriptor */
367 struct usb_host_config *config; /* All of the configs */
369 struct usb_host_config *actconfig;/* the active configuration */
370 struct usb_host_endpoint *ep_in[16];
371 struct usb_host_endpoint *ep_out[16];
373 char **rawdescriptors; /* Raw descriptors for each config */
375 unsigned short bus_mA; /* Current available from the bus */
376 u8 portnum; /* Parent port number (origin 1) */
377 u8 level; /* Number of USB hub ancestors */
379 unsigned discon_suspended:1; /* Disconnected while suspended */
380 unsigned have_langid:1; /* whether string_langid is valid */
381 int string_langid; /* language ID for strings */
383 /* static strings from the device */
384 char *product; /* iProduct string, if present */
385 char *manufacturer; /* iManufacturer string, if present */
386 char *serial; /* iSerialNumber string, if present */
388 struct list_head filelist;
389 #ifdef CONFIG_USB_DEVICE_CLASS
390 struct device *usb_classdev;
392 #ifdef CONFIG_USB_DEVICEFS
393 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
396 * Child devices - these can be either new devices
397 * (if this is a hub device), or different instances
398 * of this same device.
400 * Each instance needs its own set of data structures.
403 int maxchild; /* Number of ports if hub */
404 struct usb_device *children[USB_MAXCHILDREN];
406 int pm_usage_cnt; /* usage counter for autosuspend */
407 u32 quirks; /* quirks of the whole device */
410 struct delayed_work autosuspend; /* for delayed autosuspends */
411 struct mutex pm_mutex; /* protects PM operations */
413 unsigned long last_busy; /* time of last use */
414 int autosuspend_delay; /* in jiffies */
416 unsigned auto_pm:1; /* autosuspend/resume in progress */
417 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */
418 unsigned reset_resume:1; /* needs reset instead of resume */
419 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */
420 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
421 unsigned autoresume_disabled:1; /* disabled by the user */
424 #define to_usb_device(d) container_of(d, struct usb_device, dev)
426 extern struct usb_device *usb_get_dev(struct usb_device *dev);
427 extern void usb_put_dev(struct usb_device *dev);
429 /* USB device locking */
430 #define usb_lock_device(udev) down(&(udev)->dev.sem)
431 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
432 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
433 extern int usb_lock_device_for_reset(struct usb_device *udev,
434 const struct usb_interface *iface);
436 /* USB port reset for device reinitialization */
437 extern int usb_reset_device(struct usb_device *dev);
438 extern int usb_reset_composite_device(struct usb_device *dev,
439 struct usb_interface *iface);
441 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
443 /* USB autosuspend and autoresume */
444 #ifdef CONFIG_USB_SUSPEND
445 extern int usb_autopm_set_interface(struct usb_interface *intf);
446 extern int usb_autopm_get_interface(struct usb_interface *intf);
447 extern void usb_autopm_put_interface(struct usb_interface *intf);
449 static inline void usb_autopm_enable(struct usb_interface *intf)
451 intf->pm_usage_cnt = 0;
452 usb_autopm_set_interface(intf);
455 static inline void usb_autopm_disable(struct usb_interface *intf)
457 intf->pm_usage_cnt = 1;
458 usb_autopm_set_interface(intf);
461 static inline void usb_mark_last_busy(struct usb_device *udev)
463 udev->last_busy = jiffies;
468 static inline int usb_autopm_set_interface(struct usb_interface *intf)
471 static inline int usb_autopm_get_interface(struct usb_interface *intf)
474 static inline void usb_autopm_put_interface(struct usb_interface *intf)
476 static inline void usb_autopm_enable(struct usb_interface *intf)
478 static inline void usb_autopm_disable(struct usb_interface *intf)
480 static inline void usb_mark_last_busy(struct usb_device *udev)
484 /*-------------------------------------------------------------------------*/
486 /* for drivers using iso endpoints */
487 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
489 /* used these for multi-interface device registration */
490 extern int usb_driver_claim_interface(struct usb_driver *driver,
491 struct usb_interface *iface, void* priv);
494 * usb_interface_claimed - returns true iff an interface is claimed
495 * @iface: the interface being checked
497 * Returns true (nonzero) iff the interface is claimed, else false (zero).
498 * Callers must own the driver model's usb bus readlock. So driver
499 * probe() entries don't need extra locking, but other call contexts
500 * may need to explicitly claim that lock.
503 static inline int usb_interface_claimed(struct usb_interface *iface) {
504 return (iface->dev.driver != NULL);
507 extern void usb_driver_release_interface(struct usb_driver *driver,
508 struct usb_interface *iface);
509 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
510 const struct usb_device_id *id);
511 extern int usb_match_one_id(struct usb_interface *interface,
512 const struct usb_device_id *id);
514 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
516 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
518 extern struct usb_host_interface *usb_altnum_to_altsetting(
519 const struct usb_interface *intf, unsigned int altnum);
523 * usb_make_path - returns stable device path in the usb tree
524 * @dev: the device whose path is being constructed
525 * @buf: where to put the string
526 * @size: how big is "buf"?
528 * Returns length of the string (> 0) or negative if size was too small.
530 * This identifier is intended to be "stable", reflecting physical paths in
531 * hardware such as physical bus addresses for host controllers or ports on
532 * USB hubs. That makes it stay the same until systems are physically
533 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
534 * controllers. Adding and removing devices, including virtual root hubs
535 * in host controller driver modules, does not change these path identifers;
536 * neither does rebooting or re-enumerating. These are more useful identifiers
537 * than changeable ("unstable") ones like bus numbers or device addresses.
539 * With a partial exception for devices connected to USB 2.0 root hubs, these
540 * identifiers are also predictable. So long as the device tree isn't changed,
541 * plugging any USB device into a given hub port always gives it the same path.
542 * Because of the use of "companion" controllers, devices connected to ports on
543 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
544 * high speed, and a different one if they are full or low speed.
546 static inline int usb_make_path (struct usb_device *dev, char *buf,
550 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
552 return (actual >= (int)size) ? -1 : actual;
555 /*-------------------------------------------------------------------------*/
558 * usb_endpoint_dir_in - check if the endpoint has IN direction
559 * @epd: endpoint to be checked
561 * Returns true if the endpoint is of type IN, otherwise it returns false.
563 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
565 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
569 * usb_endpoint_dir_out - check if the endpoint has OUT direction
570 * @epd: endpoint to be checked
572 * Returns true if the endpoint is of type OUT, otherwise it returns false.
574 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
576 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
580 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
581 * @epd: endpoint to be checked
583 * Returns true if the endpoint is of type bulk, otherwise it returns false.
585 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
587 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
588 USB_ENDPOINT_XFER_BULK);
592 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
593 * @epd: endpoint to be checked
595 * Returns true if the endpoint is of type control, otherwise it returns false.
597 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
599 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
600 USB_ENDPOINT_XFER_CONTROL);
604 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
605 * @epd: endpoint to be checked
607 * Returns true if the endpoint is of type interrupt, otherwise it returns
610 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
612 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
613 USB_ENDPOINT_XFER_INT);
617 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
618 * @epd: endpoint to be checked
620 * Returns true if the endpoint is of type isochronous, otherwise it returns
623 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
625 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
626 USB_ENDPOINT_XFER_ISOC);
630 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
631 * @epd: endpoint to be checked
633 * Returns true if the endpoint has bulk transfer type and IN direction,
634 * otherwise it returns false.
636 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
638 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
642 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
643 * @epd: endpoint to be checked
645 * Returns true if the endpoint has bulk transfer type and OUT direction,
646 * otherwise it returns false.
648 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
650 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
654 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
655 * @epd: endpoint to be checked
657 * Returns true if the endpoint has interrupt transfer type and IN direction,
658 * otherwise it returns false.
660 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
662 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
666 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
667 * @epd: endpoint to be checked
669 * Returns true if the endpoint has interrupt transfer type and OUT direction,
670 * otherwise it returns false.
672 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
674 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
678 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
679 * @epd: endpoint to be checked
681 * Returns true if the endpoint has isochronous transfer type and IN direction,
682 * otherwise it returns false.
684 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
686 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
690 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
691 * @epd: endpoint to be checked
693 * Returns true if the endpoint has isochronous transfer type and OUT direction,
694 * otherwise it returns false.
696 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
698 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
701 /*-------------------------------------------------------------------------*/
703 #define USB_DEVICE_ID_MATCH_DEVICE \
704 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
705 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
706 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
707 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
708 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
709 #define USB_DEVICE_ID_MATCH_DEV_INFO \
710 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
711 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
712 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
713 #define USB_DEVICE_ID_MATCH_INT_INFO \
714 (USB_DEVICE_ID_MATCH_INT_CLASS | \
715 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
716 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
719 * USB_DEVICE - macro used to describe a specific usb device
720 * @vend: the 16 bit USB Vendor ID
721 * @prod: the 16 bit USB Product ID
723 * This macro is used to create a struct usb_device_id that matches a
726 #define USB_DEVICE(vend,prod) \
727 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
730 * USB_DEVICE_VER - macro used to describe a specific usb device with a
732 * @vend: the 16 bit USB Vendor ID
733 * @prod: the 16 bit USB Product ID
734 * @lo: the bcdDevice_lo value
735 * @hi: the bcdDevice_hi value
737 * This macro is used to create a struct usb_device_id that matches a
738 * specific device, with a version range.
740 #define USB_DEVICE_VER(vend,prod,lo,hi) \
741 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
742 .idVendor = (vend), .idProduct = (prod), \
743 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
746 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb
747 * device with a specific interface protocol
748 * @vend: the 16 bit USB Vendor ID
749 * @prod: the 16 bit USB Product ID
750 * @pr: bInterfaceProtocol value
752 * This macro is used to create a struct usb_device_id that matches a
753 * specific interface protocol of devices.
755 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \
756 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
757 .idVendor = (vend), \
758 .idProduct = (prod), \
759 .bInterfaceProtocol = (pr)
762 * USB_DEVICE_INFO - macro used to describe a class of usb devices
763 * @cl: bDeviceClass value
764 * @sc: bDeviceSubClass value
765 * @pr: bDeviceProtocol value
767 * This macro is used to create a struct usb_device_id that matches a
768 * specific class of devices.
770 #define USB_DEVICE_INFO(cl,sc,pr) \
771 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
772 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
775 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
776 * @cl: bInterfaceClass value
777 * @sc: bInterfaceSubClass value
778 * @pr: bInterfaceProtocol value
780 * This macro is used to create a struct usb_device_id that matches a
781 * specific class of interfaces.
783 #define USB_INTERFACE_INFO(cl,sc,pr) \
784 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
785 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
788 * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device
789 * with a class of usb interfaces
790 * @vend: the 16 bit USB Vendor ID
791 * @prod: the 16 bit USB Product ID
792 * @cl: bInterfaceClass value
793 * @sc: bInterfaceSubClass value
794 * @pr: bInterfaceProtocol value
796 * This macro is used to create a struct usb_device_id that matches a
797 * specific device with a specific class of interfaces.
799 * This is especially useful when explicitly matching devices that have
800 * vendor specific bDeviceClass values, but standards-compliant interfaces.
802 #define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \
803 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
804 | USB_DEVICE_ID_MATCH_DEVICE, \
805 .idVendor = (vend), .idProduct = (prod), \
806 .bInterfaceClass = (cl), \
807 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
809 /* ----------------------------------------------------------------------- */
811 /* Stuff for dynamic usb ids */
814 struct list_head list;
818 struct list_head node;
819 struct usb_device_id id;
822 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
823 struct device_driver *driver,
824 const char *buf, size_t count);
827 * struct usbdrv_wrap - wrapper for driver-model structure
828 * @driver: The driver-model core driver structure.
829 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
832 struct device_driver driver;
837 * struct usb_driver - identifies USB interface driver to usbcore
838 * @name: The driver name should be unique among USB drivers,
839 * and should normally be the same as the module name.
840 * @probe: Called to see if the driver is willing to manage a particular
841 * interface on a device. If it is, probe returns zero and uses
842 * dev_set_drvdata() to associate driver-specific data with the
843 * interface. It may also use usb_set_interface() to specify the
844 * appropriate altsetting. If unwilling to manage the interface,
845 * return a negative errno value.
846 * @disconnect: Called when the interface is no longer accessible, usually
847 * because its device has been (or is being) disconnected or the
848 * driver module is being unloaded.
849 * @ioctl: Used for drivers that want to talk to userspace through
850 * the "usbfs" filesystem. This lets devices provide ways to
851 * expose information to user space regardless of where they
852 * do (or don't) show up otherwise in the filesystem.
853 * @suspend: Called when the device is going to be suspended by the system.
854 * @resume: Called when the device is being resumed by the system.
855 * @reset_resume: Called when the suspended device has been reset instead
857 * @pre_reset: Called by usb_reset_composite_device() when the device
858 * is about to be reset.
859 * @post_reset: Called by usb_reset_composite_device() after the device
860 * has been reset, or in lieu of @resume following a reset-resume
861 * (i.e., the device is reset instead of being resumed, as might
862 * happen if power was lost). The second argument tells which is
864 * @id_table: USB drivers use ID table to support hotplugging.
865 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
866 * or your driver's probe function will never get called.
867 * @dynids: used internally to hold the list of dynamically added device
868 * ids for this driver.
869 * @drvwrap: Driver-model core structure wrapper.
870 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
871 * added to this driver by preventing the sysfs file from being created.
872 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
873 * for interfaces bound to this driver.
875 * USB interface drivers must provide a name, probe() and disconnect()
876 * methods, and an id_table. Other driver fields are optional.
878 * The id_table is used in hotplugging. It holds a set of descriptors,
879 * and specialized data may be associated with each entry. That table
880 * is used by both user and kernel mode hotplugging support.
882 * The probe() and disconnect() methods are called in a context where
883 * they can sleep, but they should avoid abusing the privilege. Most
884 * work to connect to a device should be done when the device is opened,
885 * and undone at the last close. The disconnect code needs to address
886 * concurrency issues with respect to open() and close() methods, as
887 * well as forcing all pending I/O requests to complete (by unlinking
888 * them as necessary, and blocking until the unlinks complete).
893 int (*probe) (struct usb_interface *intf,
894 const struct usb_device_id *id);
896 void (*disconnect) (struct usb_interface *intf);
898 int (*ioctl) (struct usb_interface *intf, unsigned int code,
901 int (*suspend) (struct usb_interface *intf, pm_message_t message);
902 int (*resume) (struct usb_interface *intf);
903 int (*reset_resume)(struct usb_interface *intf);
905 int (*pre_reset)(struct usb_interface *intf);
906 int (*post_reset)(struct usb_interface *intf);
908 const struct usb_device_id *id_table;
910 struct usb_dynids dynids;
911 struct usbdrv_wrap drvwrap;
912 unsigned int no_dynamic_id:1;
913 unsigned int supports_autosuspend:1;
915 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
918 * struct usb_device_driver - identifies USB device driver to usbcore
919 * @name: The driver name should be unique among USB drivers,
920 * and should normally be the same as the module name.
921 * @probe: Called to see if the driver is willing to manage a particular
922 * device. If it is, probe returns zero and uses dev_set_drvdata()
923 * to associate driver-specific data with the device. If unwilling
924 * to manage the device, return a negative errno value.
925 * @disconnect: Called when the device is no longer accessible, usually
926 * because it has been (or is being) disconnected or the driver's
927 * module is being unloaded.
928 * @suspend: Called when the device is going to be suspended by the system.
929 * @resume: Called when the device is being resumed by the system.
930 * @drvwrap: Driver-model core structure wrapper.
931 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
932 * for devices bound to this driver.
934 * USB drivers must provide all the fields listed above except drvwrap.
936 struct usb_device_driver {
939 int (*probe) (struct usb_device *udev);
940 void (*disconnect) (struct usb_device *udev);
942 int (*suspend) (struct usb_device *udev, pm_message_t message);
943 int (*resume) (struct usb_device *udev);
944 struct usbdrv_wrap drvwrap;
945 unsigned int supports_autosuspend:1;
947 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
950 extern struct bus_type usb_bus_type;
953 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
954 * @name: the usb class device name for this driver. Will show up in sysfs.
955 * @fops: pointer to the struct file_operations of this driver.
956 * @minor_base: the start of the minor range for this driver.
958 * This structure is used for the usb_register_dev() and
959 * usb_unregister_dev() functions, to consolidate a number of the
960 * parameters used for them.
962 struct usb_class_driver {
964 const struct file_operations *fops;
969 * use these in module_init()/module_exit()
970 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
972 extern int usb_register_driver(struct usb_driver *, struct module *,
974 static inline int usb_register(struct usb_driver *driver)
976 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
978 extern void usb_deregister(struct usb_driver *);
980 extern int usb_register_device_driver(struct usb_device_driver *,
982 extern void usb_deregister_device_driver(struct usb_device_driver *);
984 extern int usb_register_dev(struct usb_interface *intf,
985 struct usb_class_driver *class_driver);
986 extern void usb_deregister_dev(struct usb_interface *intf,
987 struct usb_class_driver *class_driver);
989 extern int usb_disabled(void);
991 /* ----------------------------------------------------------------------- */
994 * URB support, for asynchronous request completions
998 * urb->transfer_flags:
1000 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1001 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1003 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1004 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
1005 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1006 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1007 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1009 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1011 struct usb_iso_packet_descriptor {
1012 unsigned int offset;
1013 unsigned int length; /* expected length */
1014 unsigned int actual_length;
1021 struct list_head urb_list;
1022 wait_queue_head_t wait;
1026 static inline void init_usb_anchor(struct usb_anchor *anchor)
1028 INIT_LIST_HEAD(&anchor->urb_list);
1029 init_waitqueue_head(&anchor->wait);
1030 spin_lock_init(&anchor->lock);
1033 typedef void (*usb_complete_t)(struct urb *);
1036 * struct urb - USB Request Block
1037 * @urb_list: For use by current owner of the URB.
1038 * @anchor_list: membership in the list of an anchor
1039 * @anchor: to anchor URBs to a common mooring
1040 * @pipe: Holds endpoint number, direction, type, and more.
1041 * Create these values with the eight macros available;
1042 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1043 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1044 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1045 * numbers range from zero to fifteen. Note that "in" endpoint two
1046 * is a different endpoint (and pipe) from "out" endpoint two.
1047 * The current configuration controls the existence, type, and
1048 * maximum packet size of any given endpoint.
1049 * @dev: Identifies the USB device to perform the request.
1050 * @status: This is read in non-iso completion functions to get the
1051 * status of the particular request. ISO requests only use it
1052 * to tell whether the URB was unlinked; detailed status for
1053 * each frame is in the fields of the iso_frame-desc.
1054 * @transfer_flags: A variety of flags may be used to affect how URB
1055 * submission, unlinking, or operation are handled. Different
1056 * kinds of URB can use different flags.
1057 * @transfer_buffer: This identifies the buffer to (or from) which
1058 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1059 * is set). This buffer must be suitable for DMA; allocate it with
1060 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1061 * of this buffer will be modified. This buffer is used for the data
1062 * stage of control transfers.
1063 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1064 * the device driver is saying that it provided this DMA address,
1065 * which the host controller driver should use in preference to the
1067 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1068 * be broken up into chunks according to the current maximum packet
1069 * size for the endpoint, which is a function of the configuration
1070 * and is encoded in the pipe. When the length is zero, neither
1071 * transfer_buffer nor transfer_dma is used.
1072 * @actual_length: This is read in non-iso completion functions, and
1073 * it tells how many bytes (out of transfer_buffer_length) were
1074 * transferred. It will normally be the same as requested, unless
1075 * either an error was reported or a short read was performed.
1076 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1077 * short reads be reported as errors.
1078 * @setup_packet: Only used for control transfers, this points to eight bytes
1079 * of setup data. Control transfers always start by sending this data
1080 * to the device. Then transfer_buffer is read or written, if needed.
1081 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1082 * device driver has provided this DMA address for the setup packet.
1083 * The host controller driver should use this in preference to
1085 * @start_frame: Returns the initial frame for isochronous transfers.
1086 * @number_of_packets: Lists the number of ISO transfer buffers.
1087 * @interval: Specifies the polling interval for interrupt or isochronous
1088 * transfers. The units are frames (milliseconds) for for full and low
1089 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1090 * @error_count: Returns the number of ISO transfers that reported errors.
1091 * @context: For use in completion functions. This normally points to
1092 * request-specific driver context.
1093 * @complete: Completion handler. This URB is passed as the parameter to the
1094 * completion function. The completion function may then do what
1095 * it likes with the URB, including resubmitting or freeing it.
1096 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1097 * collect the transfer status for each buffer.
1099 * This structure identifies USB transfer requests. URBs must be allocated by
1100 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1101 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1102 * are submitted using usb_submit_urb(), and pending requests may be canceled
1103 * using usb_unlink_urb() or usb_kill_urb().
1105 * Data Transfer Buffers:
1107 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1108 * taken from the general page pool. That is provided by transfer_buffer
1109 * (control requests also use setup_packet), and host controller drivers
1110 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1111 * mapping operations can be expensive on some platforms (perhaps using a dma
1112 * bounce buffer or talking to an IOMMU),
1113 * although they're cheap on commodity x86 and ppc hardware.
1115 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1116 * which tell the host controller driver that no such mapping is needed since
1117 * the device driver is DMA-aware. For example, a device driver might
1118 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1119 * When these transfer flags are provided, host controller drivers will
1120 * attempt to use the dma addresses found in the transfer_dma and/or
1121 * setup_dma fields rather than determining a dma address themselves. (Note
1122 * that transfer_buffer and setup_packet must still be set because not all
1123 * host controllers use DMA, nor do virtual root hubs).
1127 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1128 * zero), and complete fields. All URBs must also initialize
1129 * transfer_buffer and transfer_buffer_length. They may provide the
1130 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1131 * to be treated as errors; that flag is invalid for write requests.
1134 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1135 * should always terminate with a short packet, even if it means adding an
1136 * extra zero length packet.
1138 * Control URBs must provide a setup_packet. The setup_packet and
1139 * transfer_buffer may each be mapped for DMA or not, independently of
1140 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1141 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1142 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1144 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1145 * or, for highspeed devices, 125 microsecond units)
1146 * to poll for transfers. After the URB has been submitted, the interval
1147 * field reflects how the transfer was actually scheduled.
1148 * The polling interval may be more frequent than requested.
1149 * For example, some controllers have a maximum interval of 32 milliseconds,
1150 * while others support intervals of up to 1024 milliseconds.
1151 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1152 * endpoints, as well as high speed interrupt endpoints, the encoding of
1153 * the transfer interval in the endpoint descriptor is logarithmic.
1154 * Device drivers must convert that value to linear units themselves.)
1156 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1157 * the host controller to schedule the transfer as soon as bandwidth
1158 * utilization allows, and then set start_frame to reflect the actual frame
1159 * selected during submission. Otherwise drivers must specify the start_frame
1160 * and handle the case where the transfer can't begin then. However, drivers
1161 * won't know how bandwidth is currently allocated, and while they can
1162 * find the current frame using usb_get_current_frame_number () they can't
1163 * know the range for that frame number. (Ranges for frame counter values
1164 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1166 * Isochronous URBs have a different data transfer model, in part because
1167 * the quality of service is only "best effort". Callers provide specially
1168 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1169 * at the end. Each such packet is an individual ISO transfer. Isochronous
1170 * URBs are normally queued, submitted by drivers to arrange that
1171 * transfers are at least double buffered, and then explicitly resubmitted
1172 * in completion handlers, so
1173 * that data (such as audio or video) streams at as constant a rate as the
1174 * host controller scheduler can support.
1176 * Completion Callbacks:
1178 * The completion callback is made in_interrupt(), and one of the first
1179 * things that a completion handler should do is check the status field.
1180 * The status field is provided for all URBs. It is used to report
1181 * unlinked URBs, and status for all non-ISO transfers. It should not
1182 * be examined before the URB is returned to the completion handler.
1184 * The context field is normally used to link URBs back to the relevant
1185 * driver or request state.
1187 * When the completion callback is invoked for non-isochronous URBs, the
1188 * actual_length field tells how many bytes were transferred. This field
1189 * is updated even when the URB terminated with an error or was unlinked.
1191 * ISO transfer status is reported in the status and actual_length fields
1192 * of the iso_frame_desc array, and the number of errors is reported in
1193 * error_count. Completion callbacks for ISO transfers will normally
1194 * (re)submit URBs to ensure a constant transfer rate.
1196 * Note that even fields marked "public" should not be touched by the driver
1197 * when the urb is owned by the hcd, that is, since the call to
1198 * usb_submit_urb() till the entry into the completion routine.
1202 /* private: usb core and host controller only fields in the urb */
1203 struct kref kref; /* reference count of the URB */
1204 spinlock_t lock; /* lock for the URB */
1205 void *hcpriv; /* private data for host controller */
1206 atomic_t use_count; /* concurrent submissions counter */
1207 u8 reject; /* submissions will fail */
1209 /* public: documented fields in the urb that can be used by drivers */
1210 struct list_head urb_list; /* list head for use by the urb's
1212 struct list_head anchor_list; /* the URB may be anchored by the driver */
1213 struct usb_anchor *anchor;
1214 struct usb_device *dev; /* (in) pointer to associated device */
1215 unsigned int pipe; /* (in) pipe information */
1216 int status; /* (return) non-ISO status */
1217 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1218 void *transfer_buffer; /* (in) associated data buffer */
1219 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1220 int transfer_buffer_length; /* (in) data buffer length */
1221 int actual_length; /* (return) actual transfer length */
1222 unsigned char *setup_packet; /* (in) setup packet (control only) */
1223 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1224 int start_frame; /* (modify) start frame (ISO) */
1225 int number_of_packets; /* (in) number of ISO packets */
1226 int interval; /* (modify) transfer interval
1228 int error_count; /* (return) number of ISO errors */
1229 void *context; /* (in) context for completion */
1230 usb_complete_t complete; /* (in) completion routine */
1231 struct usb_iso_packet_descriptor iso_frame_desc[0];
1235 /* ----------------------------------------------------------------------- */
1238 * usb_fill_control_urb - initializes a control urb
1239 * @urb: pointer to the urb to initialize.
1240 * @dev: pointer to the struct usb_device for this urb.
1241 * @pipe: the endpoint pipe
1242 * @setup_packet: pointer to the setup_packet buffer
1243 * @transfer_buffer: pointer to the transfer buffer
1244 * @buffer_length: length of the transfer buffer
1245 * @complete_fn: pointer to the usb_complete_t function
1246 * @context: what to set the urb context to.
1248 * Initializes a control urb with the proper information needed to submit
1251 static inline void usb_fill_control_urb (struct urb *urb,
1252 struct usb_device *dev,
1254 unsigned char *setup_packet,
1255 void *transfer_buffer,
1257 usb_complete_t complete_fn,
1260 spin_lock_init(&urb->lock);
1263 urb->setup_packet = setup_packet;
1264 urb->transfer_buffer = transfer_buffer;
1265 urb->transfer_buffer_length = buffer_length;
1266 urb->complete = complete_fn;
1267 urb->context = context;
1271 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1272 * @urb: pointer to the urb to initialize.
1273 * @dev: pointer to the struct usb_device for this urb.
1274 * @pipe: the endpoint pipe
1275 * @transfer_buffer: pointer to the transfer buffer
1276 * @buffer_length: length of the transfer buffer
1277 * @complete_fn: pointer to the usb_complete_t function
1278 * @context: what to set the urb context to.
1280 * Initializes a bulk urb with the proper information needed to submit it
1283 static inline void usb_fill_bulk_urb (struct urb *urb,
1284 struct usb_device *dev,
1286 void *transfer_buffer,
1288 usb_complete_t complete_fn,
1291 spin_lock_init(&urb->lock);
1294 urb->transfer_buffer = transfer_buffer;
1295 urb->transfer_buffer_length = buffer_length;
1296 urb->complete = complete_fn;
1297 urb->context = context;
1301 * usb_fill_int_urb - macro to help initialize a interrupt urb
1302 * @urb: pointer to the urb to initialize.
1303 * @dev: pointer to the struct usb_device for this urb.
1304 * @pipe: the endpoint pipe
1305 * @transfer_buffer: pointer to the transfer buffer
1306 * @buffer_length: length of the transfer buffer
1307 * @complete_fn: pointer to the usb_complete_t function
1308 * @context: what to set the urb context to.
1309 * @interval: what to set the urb interval to, encoded like
1310 * the endpoint descriptor's bInterval value.
1312 * Initializes a interrupt urb with the proper information needed to submit
1314 * Note that high speed interrupt endpoints use a logarithmic encoding of
1315 * the endpoint interval, and express polling intervals in microframes
1316 * (eight per millisecond) rather than in frames (one per millisecond).
1318 static inline void usb_fill_int_urb (struct urb *urb,
1319 struct usb_device *dev,
1321 void *transfer_buffer,
1323 usb_complete_t complete_fn,
1327 spin_lock_init(&urb->lock);
1330 urb->transfer_buffer = transfer_buffer;
1331 urb->transfer_buffer_length = buffer_length;
1332 urb->complete = complete_fn;
1333 urb->context = context;
1334 if (dev->speed == USB_SPEED_HIGH)
1335 urb->interval = 1 << (interval - 1);
1337 urb->interval = interval;
1338 urb->start_frame = -1;
1341 extern void usb_init_urb(struct urb *urb);
1342 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1343 extern void usb_free_urb(struct urb *urb);
1344 #define usb_put_urb usb_free_urb
1345 extern struct urb *usb_get_urb(struct urb *urb);
1346 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1347 extern int usb_unlink_urb(struct urb *urb);
1348 extern void usb_kill_urb(struct urb *urb);
1349 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1350 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1351 extern void usb_unanchor_urb(struct urb *urb);
1352 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1353 unsigned int timeout);
1355 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1356 gfp_t mem_flags, dma_addr_t *dma);
1357 void usb_buffer_free (struct usb_device *dev, size_t size,
1358 void *addr, dma_addr_t dma);
1361 struct urb *usb_buffer_map (struct urb *urb);
1362 void usb_buffer_dmasync (struct urb *urb);
1363 void usb_buffer_unmap (struct urb *urb);
1367 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1368 struct scatterlist *sg, int nents);
1370 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1371 struct scatterlist *sg, int n_hw_ents);
1373 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1374 struct scatterlist *sg, int n_hw_ents);
1376 /*-------------------------------------------------------------------*
1377 * SYNCHRONOUS CALL SUPPORT *
1378 *-------------------------------------------------------------------*/
1380 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1381 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1382 void *data, __u16 size, int timeout);
1383 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1384 void *data, int len, int *actual_length, int timeout);
1385 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1386 void *data, int len, int *actual_length,
1389 /* wrappers around usb_control_msg() for the most common standard requests */
1390 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1391 unsigned char descindex, void *buf, int size);
1392 extern int usb_get_status(struct usb_device *dev,
1393 int type, int target, void *data);
1394 extern int usb_string(struct usb_device *dev, int index,
1395 char *buf, size_t size);
1397 /* wrappers that also update important state inside usbcore */
1398 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1399 extern int usb_reset_configuration(struct usb_device *dev);
1400 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1402 /* this request isn't really synchronous, but it belongs with the others */
1403 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1406 * timeouts, in milliseconds, used for sending/receiving control messages
1407 * they typically complete within a few frames (msec) after they're issued
1408 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1409 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1411 #define USB_CTRL_GET_TIMEOUT 5000
1412 #define USB_CTRL_SET_TIMEOUT 5000
1416 * struct usb_sg_request - support for scatter/gather I/O
1417 * @status: zero indicates success, else negative errno
1418 * @bytes: counts bytes transferred.
1420 * These requests are initialized using usb_sg_init(), and then are used
1421 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1422 * members of the request object aren't for driver access.
1424 * The status and bytecount values are valid only after usb_sg_wait()
1425 * returns. If the status is zero, then the bytecount matches the total
1428 * After an error completion, drivers may need to clear a halt condition
1431 struct usb_sg_request {
1436 * members below are private: to usbcore,
1437 * and are not provided for driver access!
1441 struct usb_device *dev;
1443 struct scatterlist *sg;
1450 struct completion complete;
1454 struct usb_sg_request *io,
1455 struct usb_device *dev,
1458 struct scatterlist *sg,
1463 void usb_sg_cancel (struct usb_sg_request *io);
1464 void usb_sg_wait (struct usb_sg_request *io);
1467 /* ----------------------------------------------------------------------- */
1470 * For various legacy reasons, Linux has a small cookie that's paired with
1471 * a struct usb_device to identify an endpoint queue. Queue characteristics
1472 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1473 * an unsigned int encoded as:
1475 * - direction: bit 7 (0 = Host-to-Device [Out],
1476 * 1 = Device-to-Host [In] ...
1477 * like endpoint bEndpointAddress)
1478 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1479 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1480 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1481 * 10 = control, 11 = bulk)
1483 * Given the device address and endpoint descriptor, pipes are redundant.
1486 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1487 /* (yet ... they're the values used by usbfs) */
1488 #define PIPE_ISOCHRONOUS 0
1489 #define PIPE_INTERRUPT 1
1490 #define PIPE_CONTROL 2
1493 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1494 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1496 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1497 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1499 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1500 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1501 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1502 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1503 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1505 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1506 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1507 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1508 #define usb_settoggle(dev, ep, out, bit) \
1509 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1513 static inline unsigned int __create_pipe(struct usb_device *dev,
1514 unsigned int endpoint)
1516 return (dev->devnum << 8) | (endpoint << 15);
1519 /* Create various pipes... */
1520 #define usb_sndctrlpipe(dev,endpoint) \
1521 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1522 #define usb_rcvctrlpipe(dev,endpoint) \
1523 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1524 #define usb_sndisocpipe(dev,endpoint) \
1525 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1526 #define usb_rcvisocpipe(dev,endpoint) \
1527 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1528 #define usb_sndbulkpipe(dev,endpoint) \
1529 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1530 #define usb_rcvbulkpipe(dev,endpoint) \
1531 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1532 #define usb_sndintpipe(dev,endpoint) \
1533 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1534 #define usb_rcvintpipe(dev,endpoint) \
1535 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1537 /*-------------------------------------------------------------------------*/
1540 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1542 struct usb_host_endpoint *ep;
1543 unsigned epnum = usb_pipeendpoint(pipe);
1546 WARN_ON(usb_pipein(pipe));
1547 ep = udev->ep_out[epnum];
1549 WARN_ON(usb_pipeout(pipe));
1550 ep = udev->ep_in[epnum];
1555 /* NOTE: only 0x07ff bits are for packet size... */
1556 return le16_to_cpu(ep->desc.wMaxPacketSize);
1559 /* ----------------------------------------------------------------------- */
1561 /* Events from the usb core */
1562 #define USB_DEVICE_ADD 0x0001
1563 #define USB_DEVICE_REMOVE 0x0002
1564 #define USB_BUS_ADD 0x0003
1565 #define USB_BUS_REMOVE 0x0004
1566 extern void usb_register_notify(struct notifier_block *nb);
1567 extern void usb_unregister_notify(struct notifier_block *nb);
1570 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1573 #define dbg(format, arg...) do {} while (0)
1576 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1578 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1580 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1584 #endif /* __KERNEL__ */