2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mii.h>
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.13"
48 #define PFX DRV_NAME " "
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
54 #define MAX_RX_RING_SIZE 4096
55 #define RX_COPY_THRESHOLD 128
56 #define RX_BUF_SIZE 1536
57 #define PHY_RETRIES 1000
58 #define ETH_JUMBO_MTU 9000
59 #define TX_WATCHDOG (5 * HZ)
60 #define NAPI_WEIGHT 64
64 #define SKGE_EEPROM_MAGIC 0x9933aabb
67 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
68 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
69 MODULE_LICENSE("GPL");
70 MODULE_VERSION(DRV_VERSION);
72 static const u32 default_msg
73 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
74 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
76 static int debug = -1; /* defaults above */
77 module_param(debug, int, 0);
78 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
80 static const struct pci_device_id skge_id_table[] = {
81 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
83 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
85 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
87 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
89 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
90 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
91 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
94 MODULE_DEVICE_TABLE(pci, skge_id_table);
96 static int skge_up(struct net_device *dev);
97 static int skge_down(struct net_device *dev);
98 static void skge_phy_reset(struct skge_port *skge);
99 static void skge_tx_clean(struct net_device *dev);
100 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
101 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
102 static void genesis_get_stats(struct skge_port *skge, u64 *data);
103 static void yukon_get_stats(struct skge_port *skge, u64 *data);
104 static void yukon_init(struct skge_hw *hw, int port);
105 static void genesis_mac_init(struct skge_hw *hw, int port);
106 static void genesis_link_up(struct skge_port *skge);
107 static void skge_set_multicast(struct net_device *dev);
109 /* Avoid conditionals by using array */
110 static const int txqaddr[] = { Q_XA1, Q_XA2 };
111 static const int rxqaddr[] = { Q_R1, Q_R2 };
112 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
113 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
114 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
115 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
117 static int skge_get_regs_len(struct net_device *dev)
123 * Returns copy of whole control register region
124 * Note: skip RAM address register because accessing it will
127 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
130 const struct skge_port *skge = netdev_priv(dev);
131 const void __iomem *io = skge->hw->regs;
134 memset(p, 0, regs->len);
135 memcpy_fromio(p, io, B3_RAM_ADDR);
137 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
138 regs->len - B3_RI_WTO_R1);
141 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
142 static u32 wol_supported(const struct skge_hw *hw)
144 if (hw->chip_id == CHIP_ID_GENESIS)
147 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
150 return WAKE_MAGIC | WAKE_PHY;
153 static void skge_wol_init(struct skge_port *skge)
155 struct skge_hw *hw = skge->hw;
156 int port = skge->port;
159 skge_write16(hw, B0_CTST, CS_RST_CLR);
160 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
163 skge_write8(hw, B0_POWER_CTRL,
164 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
166 /* WA code for COMA mode -- clear PHY reset */
167 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
168 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
169 u32 reg = skge_read32(hw, B2_GP_IO);
172 skge_write32(hw, B2_GP_IO, reg);
175 skge_write32(hw, SK_REG(port, GPHY_CTRL),
177 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
178 GPC_ANEG_1 | GPC_RST_SET);
180 skge_write32(hw, SK_REG(port, GPHY_CTRL),
182 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
183 GPC_ANEG_1 | GPC_RST_CLR);
185 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
187 /* Force to 10/100 skge_reset will re-enable on resume */
188 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
189 PHY_AN_100FULL | PHY_AN_100HALF |
190 PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
192 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
193 gm_phy_write(hw, port, PHY_MARV_CTRL,
194 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
195 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
198 /* Set GMAC to no flow control and auto update for speed/duplex */
199 gma_write16(hw, port, GM_GP_CTRL,
200 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
201 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
203 /* Set WOL address */
204 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
205 skge->netdev->dev_addr, ETH_ALEN);
207 /* Turn on appropriate WOL control bits */
208 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
210 if (skge->wol & WAKE_PHY)
211 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
213 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
215 if (skge->wol & WAKE_MAGIC)
216 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
218 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
220 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
221 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
224 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
227 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
229 struct skge_port *skge = netdev_priv(dev);
231 wol->supported = wol_supported(skge->hw);
232 wol->wolopts = skge->wol;
235 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
237 struct skge_port *skge = netdev_priv(dev);
238 struct skge_hw *hw = skge->hw;
240 if ((wol->wolopts & ~wol_supported(hw))
241 || !device_can_wakeup(&hw->pdev->dev))
244 skge->wol = wol->wolopts;
246 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
251 /* Determine supported/advertised modes based on hardware.
252 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
254 static u32 skge_supported_modes(const struct skge_hw *hw)
259 supported = SUPPORTED_10baseT_Half
260 | SUPPORTED_10baseT_Full
261 | SUPPORTED_100baseT_Half
262 | SUPPORTED_100baseT_Full
263 | SUPPORTED_1000baseT_Half
264 | SUPPORTED_1000baseT_Full
265 | SUPPORTED_Autoneg| SUPPORTED_TP;
267 if (hw->chip_id == CHIP_ID_GENESIS)
268 supported &= ~(SUPPORTED_10baseT_Half
269 | SUPPORTED_10baseT_Full
270 | SUPPORTED_100baseT_Half
271 | SUPPORTED_100baseT_Full);
273 else if (hw->chip_id == CHIP_ID_YUKON)
274 supported &= ~SUPPORTED_1000baseT_Half;
276 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
277 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
282 static int skge_get_settings(struct net_device *dev,
283 struct ethtool_cmd *ecmd)
285 struct skge_port *skge = netdev_priv(dev);
286 struct skge_hw *hw = skge->hw;
288 ecmd->transceiver = XCVR_INTERNAL;
289 ecmd->supported = skge_supported_modes(hw);
292 ecmd->port = PORT_TP;
293 ecmd->phy_address = hw->phy_addr;
295 ecmd->port = PORT_FIBRE;
297 ecmd->advertising = skge->advertising;
298 ecmd->autoneg = skge->autoneg;
299 ecmd->speed = skge->speed;
300 ecmd->duplex = skge->duplex;
304 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
306 struct skge_port *skge = netdev_priv(dev);
307 const struct skge_hw *hw = skge->hw;
308 u32 supported = skge_supported_modes(hw);
311 if (ecmd->autoneg == AUTONEG_ENABLE) {
312 ecmd->advertising = supported;
318 switch (ecmd->speed) {
320 if (ecmd->duplex == DUPLEX_FULL)
321 setting = SUPPORTED_1000baseT_Full;
322 else if (ecmd->duplex == DUPLEX_HALF)
323 setting = SUPPORTED_1000baseT_Half;
328 if (ecmd->duplex == DUPLEX_FULL)
329 setting = SUPPORTED_100baseT_Full;
330 else if (ecmd->duplex == DUPLEX_HALF)
331 setting = SUPPORTED_100baseT_Half;
337 if (ecmd->duplex == DUPLEX_FULL)
338 setting = SUPPORTED_10baseT_Full;
339 else if (ecmd->duplex == DUPLEX_HALF)
340 setting = SUPPORTED_10baseT_Half;
348 if ((setting & supported) == 0)
351 skge->speed = ecmd->speed;
352 skge->duplex = ecmd->duplex;
355 skge->autoneg = ecmd->autoneg;
356 skge->advertising = ecmd->advertising;
358 if (netif_running(dev)) {
370 static void skge_get_drvinfo(struct net_device *dev,
371 struct ethtool_drvinfo *info)
373 struct skge_port *skge = netdev_priv(dev);
375 strcpy(info->driver, DRV_NAME);
376 strcpy(info->version, DRV_VERSION);
377 strcpy(info->fw_version, "N/A");
378 strcpy(info->bus_info, pci_name(skge->hw->pdev));
381 static const struct skge_stat {
382 char name[ETH_GSTRING_LEN];
386 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
387 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
389 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
390 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
391 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
392 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
393 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
394 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
395 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
396 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
398 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
399 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
400 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
401 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
402 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
403 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
405 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
406 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
407 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
408 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
409 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
412 static int skge_get_sset_count(struct net_device *dev, int sset)
416 return ARRAY_SIZE(skge_stats);
422 static void skge_get_ethtool_stats(struct net_device *dev,
423 struct ethtool_stats *stats, u64 *data)
425 struct skge_port *skge = netdev_priv(dev);
427 if (skge->hw->chip_id == CHIP_ID_GENESIS)
428 genesis_get_stats(skge, data);
430 yukon_get_stats(skge, data);
433 /* Use hardware MIB variables for critical path statistics and
434 * transmit feedback not reported at interrupt.
435 * Other errors are accounted for in interrupt handler.
437 static struct net_device_stats *skge_get_stats(struct net_device *dev)
439 struct skge_port *skge = netdev_priv(dev);
440 u64 data[ARRAY_SIZE(skge_stats)];
442 if (skge->hw->chip_id == CHIP_ID_GENESIS)
443 genesis_get_stats(skge, data);
445 yukon_get_stats(skge, data);
447 dev->stats.tx_bytes = data[0];
448 dev->stats.rx_bytes = data[1];
449 dev->stats.tx_packets = data[2] + data[4] + data[6];
450 dev->stats.rx_packets = data[3] + data[5] + data[7];
451 dev->stats.multicast = data[3] + data[5];
452 dev->stats.collisions = data[10];
453 dev->stats.tx_aborted_errors = data[12];
458 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
464 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
465 memcpy(data + i * ETH_GSTRING_LEN,
466 skge_stats[i].name, ETH_GSTRING_LEN);
471 static void skge_get_ring_param(struct net_device *dev,
472 struct ethtool_ringparam *p)
474 struct skge_port *skge = netdev_priv(dev);
476 p->rx_max_pending = MAX_RX_RING_SIZE;
477 p->tx_max_pending = MAX_TX_RING_SIZE;
478 p->rx_mini_max_pending = 0;
479 p->rx_jumbo_max_pending = 0;
481 p->rx_pending = skge->rx_ring.count;
482 p->tx_pending = skge->tx_ring.count;
483 p->rx_mini_pending = 0;
484 p->rx_jumbo_pending = 0;
487 static int skge_set_ring_param(struct net_device *dev,
488 struct ethtool_ringparam *p)
490 struct skge_port *skge = netdev_priv(dev);
493 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
494 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
497 skge->rx_ring.count = p->rx_pending;
498 skge->tx_ring.count = p->tx_pending;
500 if (netif_running(dev)) {
510 static u32 skge_get_msglevel(struct net_device *netdev)
512 struct skge_port *skge = netdev_priv(netdev);
513 return skge->msg_enable;
516 static void skge_set_msglevel(struct net_device *netdev, u32 value)
518 struct skge_port *skge = netdev_priv(netdev);
519 skge->msg_enable = value;
522 static int skge_nway_reset(struct net_device *dev)
524 struct skge_port *skge = netdev_priv(dev);
526 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
529 skge_phy_reset(skge);
533 static int skge_set_sg(struct net_device *dev, u32 data)
535 struct skge_port *skge = netdev_priv(dev);
536 struct skge_hw *hw = skge->hw;
538 if (hw->chip_id == CHIP_ID_GENESIS && data)
540 return ethtool_op_set_sg(dev, data);
543 static int skge_set_tx_csum(struct net_device *dev, u32 data)
545 struct skge_port *skge = netdev_priv(dev);
546 struct skge_hw *hw = skge->hw;
548 if (hw->chip_id == CHIP_ID_GENESIS && data)
551 return ethtool_op_set_tx_csum(dev, data);
554 static u32 skge_get_rx_csum(struct net_device *dev)
556 struct skge_port *skge = netdev_priv(dev);
558 return skge->rx_csum;
561 /* Only Yukon supports checksum offload. */
562 static int skge_set_rx_csum(struct net_device *dev, u32 data)
564 struct skge_port *skge = netdev_priv(dev);
566 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
569 skge->rx_csum = data;
573 static void skge_get_pauseparam(struct net_device *dev,
574 struct ethtool_pauseparam *ecmd)
576 struct skge_port *skge = netdev_priv(dev);
578 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
579 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
580 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
582 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
585 static int skge_set_pauseparam(struct net_device *dev,
586 struct ethtool_pauseparam *ecmd)
588 struct skge_port *skge = netdev_priv(dev);
589 struct ethtool_pauseparam old;
592 skge_get_pauseparam(dev, &old);
594 if (ecmd->autoneg != old.autoneg)
595 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
597 if (ecmd->rx_pause && ecmd->tx_pause)
598 skge->flow_control = FLOW_MODE_SYMMETRIC;
599 else if (ecmd->rx_pause && !ecmd->tx_pause)
600 skge->flow_control = FLOW_MODE_SYM_OR_REM;
601 else if (!ecmd->rx_pause && ecmd->tx_pause)
602 skge->flow_control = FLOW_MODE_LOC_SEND;
604 skge->flow_control = FLOW_MODE_NONE;
607 if (netif_running(dev)) {
619 /* Chip internal frequency for clock calculations */
620 static inline u32 hwkhz(const struct skge_hw *hw)
622 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
625 /* Chip HZ to microseconds */
626 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
628 return (ticks * 1000) / hwkhz(hw);
631 /* Microseconds to chip HZ */
632 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
634 return hwkhz(hw) * usec / 1000;
637 static int skge_get_coalesce(struct net_device *dev,
638 struct ethtool_coalesce *ecmd)
640 struct skge_port *skge = netdev_priv(dev);
641 struct skge_hw *hw = skge->hw;
642 int port = skge->port;
644 ecmd->rx_coalesce_usecs = 0;
645 ecmd->tx_coalesce_usecs = 0;
647 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
648 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
649 u32 msk = skge_read32(hw, B2_IRQM_MSK);
651 if (msk & rxirqmask[port])
652 ecmd->rx_coalesce_usecs = delay;
653 if (msk & txirqmask[port])
654 ecmd->tx_coalesce_usecs = delay;
660 /* Note: interrupt timer is per board, but can turn on/off per port */
661 static int skge_set_coalesce(struct net_device *dev,
662 struct ethtool_coalesce *ecmd)
664 struct skge_port *skge = netdev_priv(dev);
665 struct skge_hw *hw = skge->hw;
666 int port = skge->port;
667 u32 msk = skge_read32(hw, B2_IRQM_MSK);
670 if (ecmd->rx_coalesce_usecs == 0)
671 msk &= ~rxirqmask[port];
672 else if (ecmd->rx_coalesce_usecs < 25 ||
673 ecmd->rx_coalesce_usecs > 33333)
676 msk |= rxirqmask[port];
677 delay = ecmd->rx_coalesce_usecs;
680 if (ecmd->tx_coalesce_usecs == 0)
681 msk &= ~txirqmask[port];
682 else if (ecmd->tx_coalesce_usecs < 25 ||
683 ecmd->tx_coalesce_usecs > 33333)
686 msk |= txirqmask[port];
687 delay = min(delay, ecmd->rx_coalesce_usecs);
690 skge_write32(hw, B2_IRQM_MSK, msk);
692 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
694 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
695 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
700 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
701 static void skge_led(struct skge_port *skge, enum led_mode mode)
703 struct skge_hw *hw = skge->hw;
704 int port = skge->port;
706 spin_lock_bh(&hw->phy_lock);
707 if (hw->chip_id == CHIP_ID_GENESIS) {
710 if (hw->phy_type == SK_PHY_BCOM)
711 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
713 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
714 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
716 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
717 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
718 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
722 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
723 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
725 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
726 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
731 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
732 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
733 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
735 if (hw->phy_type == SK_PHY_BCOM)
736 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
738 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
739 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
740 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
747 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
748 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
749 PHY_M_LED_MO_DUP(MO_LED_OFF) |
750 PHY_M_LED_MO_10(MO_LED_OFF) |
751 PHY_M_LED_MO_100(MO_LED_OFF) |
752 PHY_M_LED_MO_1000(MO_LED_OFF) |
753 PHY_M_LED_MO_RX(MO_LED_OFF));
756 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
757 PHY_M_LED_PULS_DUR(PULS_170MS) |
758 PHY_M_LED_BLINK_RT(BLINK_84MS) |
762 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
763 PHY_M_LED_MO_RX(MO_LED_OFF) |
764 (skge->speed == SPEED_100 ?
765 PHY_M_LED_MO_100(MO_LED_ON) : 0));
768 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
769 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
770 PHY_M_LED_MO_DUP(MO_LED_ON) |
771 PHY_M_LED_MO_10(MO_LED_ON) |
772 PHY_M_LED_MO_100(MO_LED_ON) |
773 PHY_M_LED_MO_1000(MO_LED_ON) |
774 PHY_M_LED_MO_RX(MO_LED_ON));
777 spin_unlock_bh(&hw->phy_lock);
780 /* blink LED's for finding board */
781 static int skge_phys_id(struct net_device *dev, u32 data)
783 struct skge_port *skge = netdev_priv(dev);
785 enum led_mode mode = LED_MODE_TST;
787 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
788 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
793 skge_led(skge, mode);
794 mode ^= LED_MODE_TST;
796 if (msleep_interruptible(BLINK_MS))
801 /* back to regular LED state */
802 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
807 static int skge_get_eeprom_len(struct net_device *dev)
809 struct skge_port *skge = netdev_priv(dev);
812 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2);
813 return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
816 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
820 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
823 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
824 } while (!(offset & PCI_VPD_ADDR_F));
826 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
830 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
832 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
833 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
834 offset | PCI_VPD_ADDR_F);
837 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
838 } while (offset & PCI_VPD_ADDR_F);
841 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
844 struct skge_port *skge = netdev_priv(dev);
845 struct pci_dev *pdev = skge->hw->pdev;
846 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
847 int length = eeprom->len;
848 u16 offset = eeprom->offset;
853 eeprom->magic = SKGE_EEPROM_MAGIC;
856 u32 val = skge_vpd_read(pdev, cap, offset);
857 int n = min_t(int, length, sizeof(val));
859 memcpy(data, &val, n);
867 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
870 struct skge_port *skge = netdev_priv(dev);
871 struct pci_dev *pdev = skge->hw->pdev;
872 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
873 int length = eeprom->len;
874 u16 offset = eeprom->offset;
879 if (eeprom->magic != SKGE_EEPROM_MAGIC)
884 int n = min_t(int, length, sizeof(val));
887 val = skge_vpd_read(pdev, cap, offset);
888 memcpy(&val, data, n);
890 skge_vpd_write(pdev, cap, offset, val);
899 static const struct ethtool_ops skge_ethtool_ops = {
900 .get_settings = skge_get_settings,
901 .set_settings = skge_set_settings,
902 .get_drvinfo = skge_get_drvinfo,
903 .get_regs_len = skge_get_regs_len,
904 .get_regs = skge_get_regs,
905 .get_wol = skge_get_wol,
906 .set_wol = skge_set_wol,
907 .get_msglevel = skge_get_msglevel,
908 .set_msglevel = skge_set_msglevel,
909 .nway_reset = skge_nway_reset,
910 .get_link = ethtool_op_get_link,
911 .get_eeprom_len = skge_get_eeprom_len,
912 .get_eeprom = skge_get_eeprom,
913 .set_eeprom = skge_set_eeprom,
914 .get_ringparam = skge_get_ring_param,
915 .set_ringparam = skge_set_ring_param,
916 .get_pauseparam = skge_get_pauseparam,
917 .set_pauseparam = skge_set_pauseparam,
918 .get_coalesce = skge_get_coalesce,
919 .set_coalesce = skge_set_coalesce,
920 .set_sg = skge_set_sg,
921 .set_tx_csum = skge_set_tx_csum,
922 .get_rx_csum = skge_get_rx_csum,
923 .set_rx_csum = skge_set_rx_csum,
924 .get_strings = skge_get_strings,
925 .phys_id = skge_phys_id,
926 .get_sset_count = skge_get_sset_count,
927 .get_ethtool_stats = skge_get_ethtool_stats,
931 * Allocate ring elements and chain them together
932 * One-to-one association of board descriptors with ring elements
934 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
936 struct skge_tx_desc *d;
937 struct skge_element *e;
940 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
944 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
946 if (i == ring->count - 1) {
947 e->next = ring->start;
948 d->next_offset = base;
951 d->next_offset = base + (i+1) * sizeof(*d);
954 ring->to_use = ring->to_clean = ring->start;
959 /* Allocate and setup a new buffer for receiving */
960 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
961 struct sk_buff *skb, unsigned int bufsize)
963 struct skge_rx_desc *rd = e->desc;
966 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
970 rd->dma_hi = map >> 32;
972 rd->csum1_start = ETH_HLEN;
973 rd->csum2_start = ETH_HLEN;
979 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
980 pci_unmap_addr_set(e, mapaddr, map);
981 pci_unmap_len_set(e, maplen, bufsize);
984 /* Resume receiving using existing skb,
985 * Note: DMA address is not changed by chip.
986 * MTU not changed while receiver active.
988 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
990 struct skge_rx_desc *rd = e->desc;
993 rd->csum2_start = ETH_HLEN;
997 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
1001 /* Free all buffers in receive ring, assumes receiver stopped */
1002 static void skge_rx_clean(struct skge_port *skge)
1004 struct skge_hw *hw = skge->hw;
1005 struct skge_ring *ring = &skge->rx_ring;
1006 struct skge_element *e;
1010 struct skge_rx_desc *rd = e->desc;
1013 pci_unmap_single(hw->pdev,
1014 pci_unmap_addr(e, mapaddr),
1015 pci_unmap_len(e, maplen),
1016 PCI_DMA_FROMDEVICE);
1017 dev_kfree_skb(e->skb);
1020 } while ((e = e->next) != ring->start);
1024 /* Allocate buffers for receive ring
1025 * For receive: to_clean is next received frame.
1027 static int skge_rx_fill(struct net_device *dev)
1029 struct skge_port *skge = netdev_priv(dev);
1030 struct skge_ring *ring = &skge->rx_ring;
1031 struct skge_element *e;
1035 struct sk_buff *skb;
1037 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1042 skb_reserve(skb, NET_IP_ALIGN);
1043 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1044 } while ( (e = e->next) != ring->start);
1046 ring->to_clean = ring->start;
1050 static const char *skge_pause(enum pause_status status)
1053 case FLOW_STAT_NONE:
1055 case FLOW_STAT_REM_SEND:
1057 case FLOW_STAT_LOC_SEND:
1059 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1062 return "indeterminated";
1067 static void skge_link_up(struct skge_port *skge)
1069 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1070 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1072 netif_carrier_on(skge->netdev);
1073 netif_wake_queue(skge->netdev);
1075 if (netif_msg_link(skge)) {
1076 printk(KERN_INFO PFX
1077 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1078 skge->netdev->name, skge->speed,
1079 skge->duplex == DUPLEX_FULL ? "full" : "half",
1080 skge_pause(skge->flow_status));
1084 static void skge_link_down(struct skge_port *skge)
1086 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1087 netif_carrier_off(skge->netdev);
1088 netif_stop_queue(skge->netdev);
1090 if (netif_msg_link(skge))
1091 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
1095 static void xm_link_down(struct skge_hw *hw, int port)
1097 struct net_device *dev = hw->dev[port];
1098 struct skge_port *skge = netdev_priv(dev);
1100 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1102 if (netif_carrier_ok(dev))
1103 skge_link_down(skge);
1106 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1110 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1111 *val = xm_read16(hw, port, XM_PHY_DATA);
1113 if (hw->phy_type == SK_PHY_XMAC)
1116 for (i = 0; i < PHY_RETRIES; i++) {
1117 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1124 *val = xm_read16(hw, port, XM_PHY_DATA);
1129 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1132 if (__xm_phy_read(hw, port, reg, &v))
1133 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1134 hw->dev[port]->name);
1138 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1142 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1143 for (i = 0; i < PHY_RETRIES; i++) {
1144 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1151 xm_write16(hw, port, XM_PHY_DATA, val);
1152 for (i = 0; i < PHY_RETRIES; i++) {
1153 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1160 static void genesis_init(struct skge_hw *hw)
1162 /* set blink source counter */
1163 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1164 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1166 /* configure mac arbiter */
1167 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1169 /* configure mac arbiter timeout values */
1170 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1171 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1172 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1173 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1175 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1176 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1177 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1178 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1180 /* configure packet arbiter timeout */
1181 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1182 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1183 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1184 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1185 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1188 static void genesis_reset(struct skge_hw *hw, int port)
1190 const u8 zero[8] = { 0 };
1193 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1195 /* reset the statistics module */
1196 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1197 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1198 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1199 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1200 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1202 /* disable Broadcom PHY IRQ */
1203 if (hw->phy_type == SK_PHY_BCOM)
1204 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1206 xm_outhash(hw, port, XM_HSM, zero);
1208 /* Flush TX and RX fifo */
1209 reg = xm_read32(hw, port, XM_MODE);
1210 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1211 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1215 /* Convert mode to MII values */
1216 static const u16 phy_pause_map[] = {
1217 [FLOW_MODE_NONE] = 0,
1218 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1219 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1220 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1223 /* special defines for FIBER (88E1011S only) */
1224 static const u16 fiber_pause_map[] = {
1225 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1226 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1227 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1228 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1232 /* Check status of Broadcom phy link */
1233 static void bcom_check_link(struct skge_hw *hw, int port)
1235 struct net_device *dev = hw->dev[port];
1236 struct skge_port *skge = netdev_priv(dev);
1239 /* read twice because of latch */
1240 xm_phy_read(hw, port, PHY_BCOM_STAT);
1241 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1243 if ((status & PHY_ST_LSYNC) == 0) {
1244 xm_link_down(hw, port);
1248 if (skge->autoneg == AUTONEG_ENABLE) {
1251 if (!(status & PHY_ST_AN_OVER))
1254 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1255 if (lpa & PHY_B_AN_RF) {
1256 printk(KERN_NOTICE PFX "%s: remote fault\n",
1261 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1263 /* Check Duplex mismatch */
1264 switch (aux & PHY_B_AS_AN_RES_MSK) {
1265 case PHY_B_RES_1000FD:
1266 skge->duplex = DUPLEX_FULL;
1268 case PHY_B_RES_1000HD:
1269 skge->duplex = DUPLEX_HALF;
1272 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1277 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1278 switch (aux & PHY_B_AS_PAUSE_MSK) {
1279 case PHY_B_AS_PAUSE_MSK:
1280 skge->flow_status = FLOW_STAT_SYMMETRIC;
1283 skge->flow_status = FLOW_STAT_REM_SEND;
1286 skge->flow_status = FLOW_STAT_LOC_SEND;
1289 skge->flow_status = FLOW_STAT_NONE;
1291 skge->speed = SPEED_1000;
1294 if (!netif_carrier_ok(dev))
1295 genesis_link_up(skge);
1298 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1299 * Phy on for 100 or 10Mbit operation
1301 static void bcom_phy_init(struct skge_port *skge)
1303 struct skge_hw *hw = skge->hw;
1304 int port = skge->port;
1306 u16 id1, r, ext, ctl;
1308 /* magic workaround patterns for Broadcom */
1309 static const struct {
1313 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1314 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1315 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1316 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1318 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1319 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1322 /* read Id from external PHY (all have the same address) */
1323 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1325 /* Optimize MDIO transfer by suppressing preamble. */
1326 r = xm_read16(hw, port, XM_MMU_CMD);
1328 xm_write16(hw, port, XM_MMU_CMD,r);
1331 case PHY_BCOM_ID1_C0:
1333 * Workaround BCOM Errata for the C0 type.
1334 * Write magic patterns to reserved registers.
1336 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1337 xm_phy_write(hw, port,
1338 C0hack[i].reg, C0hack[i].val);
1341 case PHY_BCOM_ID1_A1:
1343 * Workaround BCOM Errata for the A1 type.
1344 * Write magic patterns to reserved registers.
1346 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1347 xm_phy_write(hw, port,
1348 A1hack[i].reg, A1hack[i].val);
1353 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1354 * Disable Power Management after reset.
1356 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1357 r |= PHY_B_AC_DIS_PM;
1358 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1361 xm_read16(hw, port, XM_ISRC);
1363 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1364 ctl = PHY_CT_SP1000; /* always 1000mbit */
1366 if (skge->autoneg == AUTONEG_ENABLE) {
1368 * Workaround BCOM Errata #1 for the C5 type.
1369 * 1000Base-T Link Acquisition Failure in Slave Mode
1370 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1372 u16 adv = PHY_B_1000C_RD;
1373 if (skge->advertising & ADVERTISED_1000baseT_Half)
1374 adv |= PHY_B_1000C_AHD;
1375 if (skge->advertising & ADVERTISED_1000baseT_Full)
1376 adv |= PHY_B_1000C_AFD;
1377 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1379 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1381 if (skge->duplex == DUPLEX_FULL)
1382 ctl |= PHY_CT_DUP_MD;
1383 /* Force to slave */
1384 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1387 /* Set autonegotiation pause parameters */
1388 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1389 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1391 /* Handle Jumbo frames */
1392 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1393 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1394 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1396 ext |= PHY_B_PEC_HIGH_LA;
1400 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1401 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1403 /* Use link status change interrupt */
1404 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1407 static void xm_phy_init(struct skge_port *skge)
1409 struct skge_hw *hw = skge->hw;
1410 int port = skge->port;
1413 if (skge->autoneg == AUTONEG_ENABLE) {
1414 if (skge->advertising & ADVERTISED_1000baseT_Half)
1415 ctrl |= PHY_X_AN_HD;
1416 if (skge->advertising & ADVERTISED_1000baseT_Full)
1417 ctrl |= PHY_X_AN_FD;
1419 ctrl |= fiber_pause_map[skge->flow_control];
1421 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1423 /* Restart Auto-negotiation */
1424 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1426 /* Set DuplexMode in Config register */
1427 if (skge->duplex == DUPLEX_FULL)
1428 ctrl |= PHY_CT_DUP_MD;
1430 * Do NOT enable Auto-negotiation here. This would hold
1431 * the link down because no IDLEs are transmitted
1435 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1437 /* Poll PHY for status changes */
1438 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1441 static int xm_check_link(struct net_device *dev)
1443 struct skge_port *skge = netdev_priv(dev);
1444 struct skge_hw *hw = skge->hw;
1445 int port = skge->port;
1448 /* read twice because of latch */
1449 xm_phy_read(hw, port, PHY_XMAC_STAT);
1450 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1452 if ((status & PHY_ST_LSYNC) == 0) {
1453 xm_link_down(hw, port);
1457 if (skge->autoneg == AUTONEG_ENABLE) {
1460 if (!(status & PHY_ST_AN_OVER))
1463 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1464 if (lpa & PHY_B_AN_RF) {
1465 printk(KERN_NOTICE PFX "%s: remote fault\n",
1470 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1472 /* Check Duplex mismatch */
1473 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1475 skge->duplex = DUPLEX_FULL;
1478 skge->duplex = DUPLEX_HALF;
1481 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1486 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1487 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1488 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1489 (lpa & PHY_X_P_SYM_MD))
1490 skge->flow_status = FLOW_STAT_SYMMETRIC;
1491 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1492 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1493 /* Enable PAUSE receive, disable PAUSE transmit */
1494 skge->flow_status = FLOW_STAT_REM_SEND;
1495 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1496 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1497 /* Disable PAUSE receive, enable PAUSE transmit */
1498 skge->flow_status = FLOW_STAT_LOC_SEND;
1500 skge->flow_status = FLOW_STAT_NONE;
1502 skge->speed = SPEED_1000;
1505 if (!netif_carrier_ok(dev))
1506 genesis_link_up(skge);
1510 /* Poll to check for link coming up.
1512 * Since internal PHY is wired to a level triggered pin, can't
1513 * get an interrupt when carrier is detected, need to poll for
1516 static void xm_link_timer(unsigned long arg)
1518 struct skge_port *skge = (struct skge_port *) arg;
1519 struct net_device *dev = skge->netdev;
1520 struct skge_hw *hw = skge->hw;
1521 int port = skge->port;
1523 unsigned long flags;
1525 if (!netif_running(dev))
1528 spin_lock_irqsave(&hw->phy_lock, flags);
1531 * Verify that the link by checking GPIO register three times.
1532 * This pin has the signal from the link_sync pin connected to it.
1534 for (i = 0; i < 3; i++) {
1535 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1539 /* Re-enable interrupt to detect link down */
1540 if (xm_check_link(dev)) {
1541 u16 msk = xm_read16(hw, port, XM_IMSK);
1542 msk &= ~XM_IS_INP_ASS;
1543 xm_write16(hw, port, XM_IMSK, msk);
1544 xm_read16(hw, port, XM_ISRC);
1547 mod_timer(&skge->link_timer,
1548 round_jiffies(jiffies + LINK_HZ));
1550 spin_unlock_irqrestore(&hw->phy_lock, flags);
1553 static void genesis_mac_init(struct skge_hw *hw, int port)
1555 struct net_device *dev = hw->dev[port];
1556 struct skge_port *skge = netdev_priv(dev);
1557 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1560 const u8 zero[6] = { 0 };
1562 for (i = 0; i < 10; i++) {
1563 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1565 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1570 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1573 /* Unreset the XMAC. */
1574 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1577 * Perform additional initialization for external PHYs,
1578 * namely for the 1000baseTX cards that use the XMAC's
1581 if (hw->phy_type != SK_PHY_XMAC) {
1582 /* Take external Phy out of reset */
1583 r = skge_read32(hw, B2_GP_IO);
1585 r |= GP_DIR_0|GP_IO_0;
1587 r |= GP_DIR_2|GP_IO_2;
1589 skge_write32(hw, B2_GP_IO, r);
1591 /* Enable GMII interface */
1592 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1596 switch(hw->phy_type) {
1601 bcom_phy_init(skge);
1602 bcom_check_link(hw, port);
1605 /* Set Station Address */
1606 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1608 /* We don't use match addresses so clear */
1609 for (i = 1; i < 16; i++)
1610 xm_outaddr(hw, port, XM_EXM(i), zero);
1612 /* Clear MIB counters */
1613 xm_write16(hw, port, XM_STAT_CMD,
1614 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1615 /* Clear two times according to Errata #3 */
1616 xm_write16(hw, port, XM_STAT_CMD,
1617 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1619 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1620 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1622 /* We don't need the FCS appended to the packet. */
1623 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1625 r |= XM_RX_BIG_PK_OK;
1627 if (skge->duplex == DUPLEX_HALF) {
1629 * If in manual half duplex mode the other side might be in
1630 * full duplex mode, so ignore if a carrier extension is not seen
1631 * on frames received
1633 r |= XM_RX_DIS_CEXT;
1635 xm_write16(hw, port, XM_RX_CMD, r);
1637 /* We want short frames padded to 60 bytes. */
1638 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1640 /* Increase threshold for jumbo frames on dual port */
1641 if (hw->ports > 1 && jumbo)
1642 xm_write16(hw, port, XM_TX_THR, 1020);
1644 xm_write16(hw, port, XM_TX_THR, 512);
1647 * Enable the reception of all error frames. This is is
1648 * a necessary evil due to the design of the XMAC. The
1649 * XMAC's receive FIFO is only 8K in size, however jumbo
1650 * frames can be up to 9000 bytes in length. When bad
1651 * frame filtering is enabled, the XMAC's RX FIFO operates
1652 * in 'store and forward' mode. For this to work, the
1653 * entire frame has to fit into the FIFO, but that means
1654 * that jumbo frames larger than 8192 bytes will be
1655 * truncated. Disabling all bad frame filtering causes
1656 * the RX FIFO to operate in streaming mode, in which
1657 * case the XMAC will start transferring frames out of the
1658 * RX FIFO as soon as the FIFO threshold is reached.
1660 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1664 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1665 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1666 * and 'Octets Rx OK Hi Cnt Ov'.
1668 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1671 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1672 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1673 * and 'Octets Tx OK Hi Cnt Ov'.
1675 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1677 /* Configure MAC arbiter */
1678 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1680 /* configure timeout values */
1681 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1682 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1683 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1684 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1686 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1687 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1688 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1689 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1691 /* Configure Rx MAC FIFO */
1692 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1693 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1694 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1696 /* Configure Tx MAC FIFO */
1697 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1698 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1699 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1702 /* Enable frame flushing if jumbo frames used */
1703 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1705 /* enable timeout timers if normal frames */
1706 skge_write16(hw, B3_PA_CTRL,
1707 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1711 static void genesis_stop(struct skge_port *skge)
1713 struct skge_hw *hw = skge->hw;
1714 int port = skge->port;
1715 unsigned retries = 1000;
1718 /* Disable Tx and Rx */
1719 cmd = xm_read16(hw, port, XM_MMU_CMD);
1720 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1721 xm_write16(hw, port, XM_MMU_CMD, cmd);
1723 genesis_reset(hw, port);
1725 /* Clear Tx packet arbiter timeout IRQ */
1726 skge_write16(hw, B3_PA_CTRL,
1727 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1730 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1732 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1733 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1735 } while (--retries > 0);
1737 /* For external PHYs there must be special handling */
1738 if (hw->phy_type != SK_PHY_XMAC) {
1739 u32 reg = skge_read32(hw, B2_GP_IO);
1747 skge_write32(hw, B2_GP_IO, reg);
1748 skge_read32(hw, B2_GP_IO);
1751 xm_write16(hw, port, XM_MMU_CMD,
1752 xm_read16(hw, port, XM_MMU_CMD)
1753 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1755 xm_read16(hw, port, XM_MMU_CMD);
1759 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1761 struct skge_hw *hw = skge->hw;
1762 int port = skge->port;
1764 unsigned long timeout = jiffies + HZ;
1766 xm_write16(hw, port,
1767 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1769 /* wait for update to complete */
1770 while (xm_read16(hw, port, XM_STAT_CMD)
1771 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1772 if (time_after(jiffies, timeout))
1777 /* special case for 64 bit octet counter */
1778 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1779 | xm_read32(hw, port, XM_TXO_OK_LO);
1780 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1781 | xm_read32(hw, port, XM_RXO_OK_LO);
1783 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1784 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1787 static void genesis_mac_intr(struct skge_hw *hw, int port)
1789 struct net_device *dev = hw->dev[port];
1790 struct skge_port *skge = netdev_priv(dev);
1791 u16 status = xm_read16(hw, port, XM_ISRC);
1793 if (netif_msg_intr(skge))
1794 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1797 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1798 xm_link_down(hw, port);
1799 mod_timer(&skge->link_timer, jiffies + 1);
1802 if (status & XM_IS_TXF_UR) {
1803 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1804 ++dev->stats.tx_fifo_errors;
1808 static void genesis_link_up(struct skge_port *skge)
1810 struct skge_hw *hw = skge->hw;
1811 int port = skge->port;
1815 cmd = xm_read16(hw, port, XM_MMU_CMD);
1818 * enabling pause frame reception is required for 1000BT
1819 * because the XMAC is not reset if the link is going down
1821 if (skge->flow_status == FLOW_STAT_NONE ||
1822 skge->flow_status == FLOW_STAT_LOC_SEND)
1823 /* Disable Pause Frame Reception */
1824 cmd |= XM_MMU_IGN_PF;
1826 /* Enable Pause Frame Reception */
1827 cmd &= ~XM_MMU_IGN_PF;
1829 xm_write16(hw, port, XM_MMU_CMD, cmd);
1831 mode = xm_read32(hw, port, XM_MODE);
1832 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1833 skge->flow_status == FLOW_STAT_LOC_SEND) {
1835 * Configure Pause Frame Generation
1836 * Use internal and external Pause Frame Generation.
1837 * Sending pause frames is edge triggered.
1838 * Send a Pause frame with the maximum pause time if
1839 * internal oder external FIFO full condition occurs.
1840 * Send a zero pause time frame to re-start transmission.
1842 /* XM_PAUSE_DA = '010000C28001' (default) */
1843 /* XM_MAC_PTIME = 0xffff (maximum) */
1844 /* remember this value is defined in big endian (!) */
1845 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1847 mode |= XM_PAUSE_MODE;
1848 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1851 * disable pause frame generation is required for 1000BT
1852 * because the XMAC is not reset if the link is going down
1854 /* Disable Pause Mode in Mode Register */
1855 mode &= ~XM_PAUSE_MODE;
1857 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1860 xm_write32(hw, port, XM_MODE, mode);
1862 /* Turn on detection of Tx underrun */
1863 msk = xm_read16(hw, port, XM_IMSK);
1864 msk &= ~XM_IS_TXF_UR;
1865 xm_write16(hw, port, XM_IMSK, msk);
1867 xm_read16(hw, port, XM_ISRC);
1869 /* get MMU Command Reg. */
1870 cmd = xm_read16(hw, port, XM_MMU_CMD);
1871 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1872 cmd |= XM_MMU_GMII_FD;
1875 * Workaround BCOM Errata (#10523) for all BCom Phys
1876 * Enable Power Management after link up
1878 if (hw->phy_type == SK_PHY_BCOM) {
1879 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1880 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1881 & ~PHY_B_AC_DIS_PM);
1882 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1886 xm_write16(hw, port, XM_MMU_CMD,
1887 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1892 static inline void bcom_phy_intr(struct skge_port *skge)
1894 struct skge_hw *hw = skge->hw;
1895 int port = skge->port;
1898 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1899 if (netif_msg_intr(skge))
1900 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1901 skge->netdev->name, isrc);
1903 if (isrc & PHY_B_IS_PSE)
1904 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1905 hw->dev[port]->name);
1907 /* Workaround BCom Errata:
1908 * enable and disable loopback mode if "NO HCD" occurs.
1910 if (isrc & PHY_B_IS_NO_HDCL) {
1911 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1912 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1913 ctrl | PHY_CT_LOOP);
1914 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1915 ctrl & ~PHY_CT_LOOP);
1918 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1919 bcom_check_link(hw, port);
1923 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1927 gma_write16(hw, port, GM_SMI_DATA, val);
1928 gma_write16(hw, port, GM_SMI_CTRL,
1929 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1930 for (i = 0; i < PHY_RETRIES; i++) {
1933 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1937 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1938 hw->dev[port]->name);
1942 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1946 gma_write16(hw, port, GM_SMI_CTRL,
1947 GM_SMI_CT_PHY_AD(hw->phy_addr)
1948 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1950 for (i = 0; i < PHY_RETRIES; i++) {
1952 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1958 *val = gma_read16(hw, port, GM_SMI_DATA);
1962 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1965 if (__gm_phy_read(hw, port, reg, &v))
1966 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1967 hw->dev[port]->name);
1971 /* Marvell Phy Initialization */
1972 static void yukon_init(struct skge_hw *hw, int port)
1974 struct skge_port *skge = netdev_priv(hw->dev[port]);
1975 u16 ctrl, ct1000, adv;
1977 if (skge->autoneg == AUTONEG_ENABLE) {
1978 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1980 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1981 PHY_M_EC_MAC_S_MSK);
1982 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1984 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1986 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1989 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1990 if (skge->autoneg == AUTONEG_DISABLE)
1991 ctrl &= ~PHY_CT_ANE;
1993 ctrl |= PHY_CT_RESET;
1994 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2000 if (skge->autoneg == AUTONEG_ENABLE) {
2002 if (skge->advertising & ADVERTISED_1000baseT_Full)
2003 ct1000 |= PHY_M_1000C_AFD;
2004 if (skge->advertising & ADVERTISED_1000baseT_Half)
2005 ct1000 |= PHY_M_1000C_AHD;
2006 if (skge->advertising & ADVERTISED_100baseT_Full)
2007 adv |= PHY_M_AN_100_FD;
2008 if (skge->advertising & ADVERTISED_100baseT_Half)
2009 adv |= PHY_M_AN_100_HD;
2010 if (skge->advertising & ADVERTISED_10baseT_Full)
2011 adv |= PHY_M_AN_10_FD;
2012 if (skge->advertising & ADVERTISED_10baseT_Half)
2013 adv |= PHY_M_AN_10_HD;
2015 /* Set Flow-control capabilities */
2016 adv |= phy_pause_map[skge->flow_control];
2018 if (skge->advertising & ADVERTISED_1000baseT_Full)
2019 adv |= PHY_M_AN_1000X_AFD;
2020 if (skge->advertising & ADVERTISED_1000baseT_Half)
2021 adv |= PHY_M_AN_1000X_AHD;
2023 adv |= fiber_pause_map[skge->flow_control];
2026 /* Restart Auto-negotiation */
2027 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2029 /* forced speed/duplex settings */
2030 ct1000 = PHY_M_1000C_MSE;
2032 if (skge->duplex == DUPLEX_FULL)
2033 ctrl |= PHY_CT_DUP_MD;
2035 switch (skge->speed) {
2037 ctrl |= PHY_CT_SP1000;
2040 ctrl |= PHY_CT_SP100;
2044 ctrl |= PHY_CT_RESET;
2047 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2049 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2050 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2052 /* Enable phy interrupt on autonegotiation complete (or link up) */
2053 if (skge->autoneg == AUTONEG_ENABLE)
2054 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2056 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2059 static void yukon_reset(struct skge_hw *hw, int port)
2061 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2062 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2063 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2064 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2065 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2067 gma_write16(hw, port, GM_RX_CTRL,
2068 gma_read16(hw, port, GM_RX_CTRL)
2069 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2072 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2073 static int is_yukon_lite_a0(struct skge_hw *hw)
2078 if (hw->chip_id != CHIP_ID_YUKON)
2081 reg = skge_read32(hw, B2_FAR);
2082 skge_write8(hw, B2_FAR + 3, 0xff);
2083 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2084 skge_write32(hw, B2_FAR, reg);
2088 static void yukon_mac_init(struct skge_hw *hw, int port)
2090 struct skge_port *skge = netdev_priv(hw->dev[port]);
2093 const u8 *addr = hw->dev[port]->dev_addr;
2095 /* WA code for COMA mode -- set PHY reset */
2096 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2097 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2098 reg = skge_read32(hw, B2_GP_IO);
2099 reg |= GP_DIR_9 | GP_IO_9;
2100 skge_write32(hw, B2_GP_IO, reg);
2104 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2105 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2107 /* WA code for COMA mode -- clear PHY reset */
2108 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2109 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2110 reg = skge_read32(hw, B2_GP_IO);
2113 skge_write32(hw, B2_GP_IO, reg);
2116 /* Set hardware config mode */
2117 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2118 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2119 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2121 /* Clear GMC reset */
2122 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2123 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2124 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2126 if (skge->autoneg == AUTONEG_DISABLE) {
2127 reg = GM_GPCR_AU_ALL_DIS;
2128 gma_write16(hw, port, GM_GP_CTRL,
2129 gma_read16(hw, port, GM_GP_CTRL) | reg);
2131 switch (skge->speed) {
2133 reg &= ~GM_GPCR_SPEED_100;
2134 reg |= GM_GPCR_SPEED_1000;
2137 reg &= ~GM_GPCR_SPEED_1000;
2138 reg |= GM_GPCR_SPEED_100;
2141 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2145 if (skge->duplex == DUPLEX_FULL)
2146 reg |= GM_GPCR_DUP_FULL;
2148 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2150 switch (skge->flow_control) {
2151 case FLOW_MODE_NONE:
2152 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2153 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2155 case FLOW_MODE_LOC_SEND:
2156 /* disable Rx flow-control */
2157 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2159 case FLOW_MODE_SYMMETRIC:
2160 case FLOW_MODE_SYM_OR_REM:
2161 /* enable Tx & Rx flow-control */
2165 gma_write16(hw, port, GM_GP_CTRL, reg);
2166 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2168 yukon_init(hw, port);
2171 reg = gma_read16(hw, port, GM_PHY_ADDR);
2172 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2174 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2175 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2176 gma_write16(hw, port, GM_PHY_ADDR, reg);
2178 /* transmit control */
2179 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2181 /* receive control reg: unicast + multicast + no FCS */
2182 gma_write16(hw, port, GM_RX_CTRL,
2183 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2185 /* transmit flow control */
2186 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2188 /* transmit parameter */
2189 gma_write16(hw, port, GM_TX_PARAM,
2190 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2191 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2192 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2194 /* configure the Serial Mode Register */
2195 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2197 | IPG_DATA_VAL(IPG_DATA_DEF);
2199 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2200 reg |= GM_SMOD_JUMBO_ENA;
2202 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2204 /* physical address: used for pause frames */
2205 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2206 /* virtual address for data */
2207 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2209 /* enable interrupt mask for counter overflows */
2210 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2211 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2212 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2214 /* Initialize Mac Fifo */
2216 /* Configure Rx MAC FIFO */
2217 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2218 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2220 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2221 if (is_yukon_lite_a0(hw))
2222 reg &= ~GMF_RX_F_FL_ON;
2224 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2225 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2227 * because Pause Packet Truncation in GMAC is not working
2228 * we have to increase the Flush Threshold to 64 bytes
2229 * in order to flush pause packets in Rx FIFO on Yukon-1
2231 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2233 /* Configure Tx MAC FIFO */
2234 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2235 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2238 /* Go into power down mode */
2239 static void yukon_suspend(struct skge_hw *hw, int port)
2243 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2244 ctrl |= PHY_M_PC_POL_R_DIS;
2245 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2247 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2248 ctrl |= PHY_CT_RESET;
2249 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2251 /* switch IEEE compatible power down mode on */
2252 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2253 ctrl |= PHY_CT_PDOWN;
2254 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2257 static void yukon_stop(struct skge_port *skge)
2259 struct skge_hw *hw = skge->hw;
2260 int port = skge->port;
2262 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2263 yukon_reset(hw, port);
2265 gma_write16(hw, port, GM_GP_CTRL,
2266 gma_read16(hw, port, GM_GP_CTRL)
2267 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2268 gma_read16(hw, port, GM_GP_CTRL);
2270 yukon_suspend(hw, port);
2272 /* set GPHY Control reset */
2273 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2274 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2277 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2279 struct skge_hw *hw = skge->hw;
2280 int port = skge->port;
2283 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2284 | gma_read32(hw, port, GM_TXO_OK_LO);
2285 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2286 | gma_read32(hw, port, GM_RXO_OK_LO);
2288 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2289 data[i] = gma_read32(hw, port,
2290 skge_stats[i].gma_offset);
2293 static void yukon_mac_intr(struct skge_hw *hw, int port)
2295 struct net_device *dev = hw->dev[port];
2296 struct skge_port *skge = netdev_priv(dev);
2297 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2299 if (netif_msg_intr(skge))
2300 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2303 if (status & GM_IS_RX_FF_OR) {
2304 ++dev->stats.rx_fifo_errors;
2305 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2308 if (status & GM_IS_TX_FF_UR) {
2309 ++dev->stats.tx_fifo_errors;
2310 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2315 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2317 switch (aux & PHY_M_PS_SPEED_MSK) {
2318 case PHY_M_PS_SPEED_1000:
2320 case PHY_M_PS_SPEED_100:
2327 static void yukon_link_up(struct skge_port *skge)
2329 struct skge_hw *hw = skge->hw;
2330 int port = skge->port;
2333 /* Enable Transmit FIFO Underrun */
2334 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2336 reg = gma_read16(hw, port, GM_GP_CTRL);
2337 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2338 reg |= GM_GPCR_DUP_FULL;
2341 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2342 gma_write16(hw, port, GM_GP_CTRL, reg);
2344 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2348 static void yukon_link_down(struct skge_port *skge)
2350 struct skge_hw *hw = skge->hw;
2351 int port = skge->port;
2354 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2355 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2356 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2358 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2359 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2360 ctrl |= PHY_M_AN_ASP;
2361 /* restore Asymmetric Pause bit */
2362 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2365 skge_link_down(skge);
2367 yukon_init(hw, port);
2370 static void yukon_phy_intr(struct skge_port *skge)
2372 struct skge_hw *hw = skge->hw;
2373 int port = skge->port;
2374 const char *reason = NULL;
2375 u16 istatus, phystat;
2377 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2378 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2380 if (netif_msg_intr(skge))
2381 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2382 skge->netdev->name, istatus, phystat);
2384 if (istatus & PHY_M_IS_AN_COMPL) {
2385 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2387 reason = "remote fault";
2391 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2392 reason = "master/slave fault";
2396 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2397 reason = "speed/duplex";
2401 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2402 ? DUPLEX_FULL : DUPLEX_HALF;
2403 skge->speed = yukon_speed(hw, phystat);
2405 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2406 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2407 case PHY_M_PS_PAUSE_MSK:
2408 skge->flow_status = FLOW_STAT_SYMMETRIC;
2410 case PHY_M_PS_RX_P_EN:
2411 skge->flow_status = FLOW_STAT_REM_SEND;
2413 case PHY_M_PS_TX_P_EN:
2414 skge->flow_status = FLOW_STAT_LOC_SEND;
2417 skge->flow_status = FLOW_STAT_NONE;
2420 if (skge->flow_status == FLOW_STAT_NONE ||
2421 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2422 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2424 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2425 yukon_link_up(skge);
2429 if (istatus & PHY_M_IS_LSP_CHANGE)
2430 skge->speed = yukon_speed(hw, phystat);
2432 if (istatus & PHY_M_IS_DUP_CHANGE)
2433 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2434 if (istatus & PHY_M_IS_LST_CHANGE) {
2435 if (phystat & PHY_M_PS_LINK_UP)
2436 yukon_link_up(skge);
2438 yukon_link_down(skge);
2442 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2443 skge->netdev->name, reason);
2445 /* XXX restart autonegotiation? */
2448 static void skge_phy_reset(struct skge_port *skge)
2450 struct skge_hw *hw = skge->hw;
2451 int port = skge->port;
2452 struct net_device *dev = hw->dev[port];
2454 netif_stop_queue(skge->netdev);
2455 netif_carrier_off(skge->netdev);
2457 spin_lock_bh(&hw->phy_lock);
2458 if (hw->chip_id == CHIP_ID_GENESIS) {
2459 genesis_reset(hw, port);
2460 genesis_mac_init(hw, port);
2462 yukon_reset(hw, port);
2463 yukon_init(hw, port);
2465 spin_unlock_bh(&hw->phy_lock);
2467 skge_set_multicast(dev);
2470 /* Basic MII support */
2471 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2473 struct mii_ioctl_data *data = if_mii(ifr);
2474 struct skge_port *skge = netdev_priv(dev);
2475 struct skge_hw *hw = skge->hw;
2476 int err = -EOPNOTSUPP;
2478 if (!netif_running(dev))
2479 return -ENODEV; /* Phy still in reset */
2483 data->phy_id = hw->phy_addr;
2488 spin_lock_bh(&hw->phy_lock);
2489 if (hw->chip_id == CHIP_ID_GENESIS)
2490 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2492 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2493 spin_unlock_bh(&hw->phy_lock);
2494 data->val_out = val;
2499 if (!capable(CAP_NET_ADMIN))
2502 spin_lock_bh(&hw->phy_lock);
2503 if (hw->chip_id == CHIP_ID_GENESIS)
2504 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2507 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2509 spin_unlock_bh(&hw->phy_lock);
2515 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2521 end = start + len - 1;
2523 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2524 skge_write32(hw, RB_ADDR(q, RB_START), start);
2525 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2526 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2527 skge_write32(hw, RB_ADDR(q, RB_END), end);
2529 if (q == Q_R1 || q == Q_R2) {
2530 /* Set thresholds on receive queue's */
2531 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2533 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2536 /* Enable store & forward on Tx queue's because
2537 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2539 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2542 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2545 /* Setup Bus Memory Interface */
2546 static void skge_qset(struct skge_port *skge, u16 q,
2547 const struct skge_element *e)
2549 struct skge_hw *hw = skge->hw;
2550 u32 watermark = 0x600;
2551 u64 base = skge->dma + (e->desc - skge->mem);
2553 /* optimization to reduce window on 32bit/33mhz */
2554 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2557 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2558 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2559 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2560 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2563 static int skge_up(struct net_device *dev)
2565 struct skge_port *skge = netdev_priv(dev);
2566 struct skge_hw *hw = skge->hw;
2567 int port = skge->port;
2568 u32 chunk, ram_addr;
2569 size_t rx_size, tx_size;
2572 if (!is_valid_ether_addr(dev->dev_addr))
2575 if (netif_msg_ifup(skge))
2576 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2578 if (dev->mtu > RX_BUF_SIZE)
2579 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2581 skge->rx_buf_size = RX_BUF_SIZE;
2584 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2585 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2586 skge->mem_size = tx_size + rx_size;
2587 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2591 BUG_ON(skge->dma & 7);
2593 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2594 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2599 memset(skge->mem, 0, skge->mem_size);
2601 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2605 err = skge_rx_fill(dev);
2609 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2610 skge->dma + rx_size);
2614 /* Initialize MAC */
2615 spin_lock_bh(&hw->phy_lock);
2616 if (hw->chip_id == CHIP_ID_GENESIS)
2617 genesis_mac_init(hw, port);
2619 yukon_mac_init(hw, port);
2620 spin_unlock_bh(&hw->phy_lock);
2622 /* Configure RAMbuffers - equally between ports and tx/rx */
2623 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2624 ram_addr = hw->ram_offset + 2 * chunk * port;
2626 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2627 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2629 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2630 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2631 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2633 /* Start receiver BMU */
2635 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2636 skge_led(skge, LED_MODE_ON);
2638 spin_lock_irq(&hw->hw_lock);
2639 hw->intr_mask |= portmask[port];
2640 skge_write32(hw, B0_IMSK, hw->intr_mask);
2641 spin_unlock_irq(&hw->hw_lock);
2643 napi_enable(&skge->napi);
2647 skge_rx_clean(skge);
2648 kfree(skge->rx_ring.start);
2650 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2657 static void skge_rx_stop(struct skge_hw *hw, int port)
2659 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2660 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2661 RB_RST_SET|RB_DIS_OP_MD);
2662 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2665 static int skge_down(struct net_device *dev)
2667 struct skge_port *skge = netdev_priv(dev);
2668 struct skge_hw *hw = skge->hw;
2669 int port = skge->port;
2671 if (skge->mem == NULL)
2674 if (netif_msg_ifdown(skge))
2675 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2677 netif_stop_queue(dev);
2679 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2680 del_timer_sync(&skge->link_timer);
2682 napi_disable(&skge->napi);
2683 netif_carrier_off(dev);
2685 spin_lock_irq(&hw->hw_lock);
2686 hw->intr_mask &= ~portmask[port];
2687 skge_write32(hw, B0_IMSK, hw->intr_mask);
2688 spin_unlock_irq(&hw->hw_lock);
2690 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2691 if (hw->chip_id == CHIP_ID_GENESIS)
2696 /* Stop transmitter */
2697 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2698 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2699 RB_RST_SET|RB_DIS_OP_MD);
2702 /* Disable Force Sync bit and Enable Alloc bit */
2703 skge_write8(hw, SK_REG(port, TXA_CTRL),
2704 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2706 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2707 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2708 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2710 /* Reset PCI FIFO */
2711 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2712 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2714 /* Reset the RAM Buffer async Tx queue */
2715 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2717 skge_rx_stop(hw, port);
2719 if (hw->chip_id == CHIP_ID_GENESIS) {
2720 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2721 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2723 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2724 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2727 skge_led(skge, LED_MODE_OFF);
2729 netif_tx_lock_bh(dev);
2731 netif_tx_unlock_bh(dev);
2733 skge_rx_clean(skge);
2735 kfree(skge->rx_ring.start);
2736 kfree(skge->tx_ring.start);
2737 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2742 static inline int skge_avail(const struct skge_ring *ring)
2745 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2746 + (ring->to_clean - ring->to_use) - 1;
2749 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2751 struct skge_port *skge = netdev_priv(dev);
2752 struct skge_hw *hw = skge->hw;
2753 struct skge_element *e;
2754 struct skge_tx_desc *td;
2759 if (skb_padto(skb, ETH_ZLEN))
2760 return NETDEV_TX_OK;
2762 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2763 return NETDEV_TX_BUSY;
2765 e = skge->tx_ring.to_use;
2767 BUG_ON(td->control & BMU_OWN);
2769 len = skb_headlen(skb);
2770 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2771 pci_unmap_addr_set(e, mapaddr, map);
2772 pci_unmap_len_set(e, maplen, len);
2775 td->dma_hi = map >> 32;
2777 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2778 const int offset = skb_transport_offset(skb);
2780 /* This seems backwards, but it is what the sk98lin
2781 * does. Looks like hardware is wrong?
2783 if (ipip_hdr(skb)->protocol == IPPROTO_UDP
2784 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2785 control = BMU_TCP_CHECK;
2787 control = BMU_UDP_CHECK;
2790 td->csum_start = offset;
2791 td->csum_write = offset + skb->csum_offset;
2793 control = BMU_CHECK;
2795 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2796 control |= BMU_EOF| BMU_IRQ_EOF;
2798 struct skge_tx_desc *tf = td;
2800 control |= BMU_STFWD;
2801 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2802 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2804 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2805 frag->size, PCI_DMA_TODEVICE);
2810 BUG_ON(tf->control & BMU_OWN);
2813 tf->dma_hi = (u64) map >> 32;
2814 pci_unmap_addr_set(e, mapaddr, map);
2815 pci_unmap_len_set(e, maplen, frag->size);
2817 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2819 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2821 /* Make sure all the descriptors written */
2823 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2826 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2828 if (unlikely(netif_msg_tx_queued(skge)))
2829 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2830 dev->name, e - skge->tx_ring.start, skb->len);
2832 skge->tx_ring.to_use = e->next;
2835 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2836 pr_debug("%s: transmit queue full\n", dev->name);
2837 netif_stop_queue(dev);
2840 dev->trans_start = jiffies;
2842 return NETDEV_TX_OK;
2846 /* Free resources associated with this reing element */
2847 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2850 struct pci_dev *pdev = skge->hw->pdev;
2852 /* skb header vs. fragment */
2853 if (control & BMU_STF)
2854 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2855 pci_unmap_len(e, maplen),
2858 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2859 pci_unmap_len(e, maplen),
2862 if (control & BMU_EOF) {
2863 if (unlikely(netif_msg_tx_done(skge)))
2864 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2865 skge->netdev->name, e - skge->tx_ring.start);
2867 dev_kfree_skb(e->skb);
2871 /* Free all buffers in transmit ring */
2872 static void skge_tx_clean(struct net_device *dev)
2874 struct skge_port *skge = netdev_priv(dev);
2875 struct skge_element *e;
2877 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2878 struct skge_tx_desc *td = e->desc;
2879 skge_tx_free(skge, e, td->control);
2883 skge->tx_ring.to_clean = e;
2884 netif_wake_queue(dev);
2887 static void skge_tx_timeout(struct net_device *dev)
2889 struct skge_port *skge = netdev_priv(dev);
2891 if (netif_msg_timer(skge))
2892 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2894 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2898 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2902 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2905 if (!netif_running(dev)) {
2921 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2923 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2927 crc = ether_crc_le(ETH_ALEN, addr);
2929 filter[bit/8] |= 1 << (bit%8);
2932 static void genesis_set_multicast(struct net_device *dev)
2934 struct skge_port *skge = netdev_priv(dev);
2935 struct skge_hw *hw = skge->hw;
2936 int port = skge->port;
2937 int i, count = dev->mc_count;
2938 struct dev_mc_list *list = dev->mc_list;
2942 mode = xm_read32(hw, port, XM_MODE);
2943 mode |= XM_MD_ENA_HASH;
2944 if (dev->flags & IFF_PROMISC)
2945 mode |= XM_MD_ENA_PROM;
2947 mode &= ~XM_MD_ENA_PROM;
2949 if (dev->flags & IFF_ALLMULTI)
2950 memset(filter, 0xff, sizeof(filter));
2952 memset(filter, 0, sizeof(filter));
2954 if (skge->flow_status == FLOW_STAT_REM_SEND
2955 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2956 genesis_add_filter(filter, pause_mc_addr);
2958 for (i = 0; list && i < count; i++, list = list->next)
2959 genesis_add_filter(filter, list->dmi_addr);
2962 xm_write32(hw, port, XM_MODE, mode);
2963 xm_outhash(hw, port, XM_HSM, filter);
2966 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2968 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2969 filter[bit/8] |= 1 << (bit%8);
2972 static void yukon_set_multicast(struct net_device *dev)
2974 struct skge_port *skge = netdev_priv(dev);
2975 struct skge_hw *hw = skge->hw;
2976 int port = skge->port;
2977 struct dev_mc_list *list = dev->mc_list;
2978 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
2979 || skge->flow_status == FLOW_STAT_SYMMETRIC);
2983 memset(filter, 0, sizeof(filter));
2985 reg = gma_read16(hw, port, GM_RX_CTRL);
2986 reg |= GM_RXCR_UCF_ENA;
2988 if (dev->flags & IFF_PROMISC) /* promiscuous */
2989 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2990 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2991 memset(filter, 0xff, sizeof(filter));
2992 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
2993 reg &= ~GM_RXCR_MCF_ENA;
2996 reg |= GM_RXCR_MCF_ENA;
2999 yukon_add_filter(filter, pause_mc_addr);
3001 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
3002 yukon_add_filter(filter, list->dmi_addr);
3006 gma_write16(hw, port, GM_MC_ADDR_H1,
3007 (u16)filter[0] | ((u16)filter[1] << 8));
3008 gma_write16(hw, port, GM_MC_ADDR_H2,
3009 (u16)filter[2] | ((u16)filter[3] << 8));
3010 gma_write16(hw, port, GM_MC_ADDR_H3,
3011 (u16)filter[4] | ((u16)filter[5] << 8));
3012 gma_write16(hw, port, GM_MC_ADDR_H4,
3013 (u16)filter[6] | ((u16)filter[7] << 8));
3015 gma_write16(hw, port, GM_RX_CTRL, reg);
3018 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3020 if (hw->chip_id == CHIP_ID_GENESIS)
3021 return status >> XMR_FS_LEN_SHIFT;
3023 return status >> GMR_FS_LEN_SHIFT;
3026 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3028 if (hw->chip_id == CHIP_ID_GENESIS)
3029 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3031 return (status & GMR_FS_ANY_ERR) ||
3032 (status & GMR_FS_RX_OK) == 0;
3035 static void skge_set_multicast(struct net_device *dev)
3037 struct skge_port *skge = netdev_priv(dev);
3038 struct skge_hw *hw = skge->hw;
3040 if (hw->chip_id == CHIP_ID_GENESIS)
3041 genesis_set_multicast(dev);
3043 yukon_set_multicast(dev);
3048 /* Get receive buffer from descriptor.
3049 * Handles copy of small buffers and reallocation failures
3051 static struct sk_buff *skge_rx_get(struct net_device *dev,
3052 struct skge_element *e,
3053 u32 control, u32 status, u16 csum)
3055 struct skge_port *skge = netdev_priv(dev);
3056 struct sk_buff *skb;
3057 u16 len = control & BMU_BBC;
3059 if (unlikely(netif_msg_rx_status(skge)))
3060 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
3061 dev->name, e - skge->rx_ring.start,
3064 if (len > skge->rx_buf_size)
3067 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3070 if (bad_phy_status(skge->hw, status))
3073 if (phy_length(skge->hw, status) != len)
3076 if (len < RX_COPY_THRESHOLD) {
3077 skb = netdev_alloc_skb(dev, len + 2);
3081 skb_reserve(skb, 2);
3082 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3083 pci_unmap_addr(e, mapaddr),
3084 len, PCI_DMA_FROMDEVICE);
3085 skb_copy_from_linear_data(e->skb, skb->data, len);
3086 pci_dma_sync_single_for_device(skge->hw->pdev,
3087 pci_unmap_addr(e, mapaddr),
3088 len, PCI_DMA_FROMDEVICE);
3089 skge_rx_reuse(e, skge->rx_buf_size);
3091 struct sk_buff *nskb;
3092 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
3096 skb_reserve(nskb, NET_IP_ALIGN);
3097 pci_unmap_single(skge->hw->pdev,
3098 pci_unmap_addr(e, mapaddr),
3099 pci_unmap_len(e, maplen),
3100 PCI_DMA_FROMDEVICE);
3102 prefetch(skb->data);
3103 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3107 if (skge->rx_csum) {
3109 skb->ip_summed = CHECKSUM_COMPLETE;
3112 skb->protocol = eth_type_trans(skb, dev);
3117 if (netif_msg_rx_err(skge))
3118 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
3119 dev->name, e - skge->rx_ring.start,
3122 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3123 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3124 dev->stats.rx_length_errors++;
3125 if (status & XMR_FS_FRA_ERR)
3126 dev->stats.rx_frame_errors++;
3127 if (status & XMR_FS_FCS_ERR)
3128 dev->stats.rx_crc_errors++;
3130 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3131 dev->stats.rx_length_errors++;
3132 if (status & GMR_FS_FRAGMENT)
3133 dev->stats.rx_frame_errors++;
3134 if (status & GMR_FS_CRC_ERR)
3135 dev->stats.rx_crc_errors++;
3139 skge_rx_reuse(e, skge->rx_buf_size);
3143 /* Free all buffers in Tx ring which are no longer owned by device */
3144 static void skge_tx_done(struct net_device *dev)
3146 struct skge_port *skge = netdev_priv(dev);
3147 struct skge_ring *ring = &skge->tx_ring;
3148 struct skge_element *e;
3150 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3152 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3153 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3155 if (control & BMU_OWN)
3158 skge_tx_free(skge, e, control);
3160 skge->tx_ring.to_clean = e;
3162 /* Can run lockless until we need to synchronize to restart queue. */
3165 if (unlikely(netif_queue_stopped(dev) &&
3166 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3168 if (unlikely(netif_queue_stopped(dev) &&
3169 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3170 netif_wake_queue(dev);
3173 netif_tx_unlock(dev);
3177 static int skge_poll(struct napi_struct *napi, int to_do)
3179 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3180 struct net_device *dev = skge->netdev;
3181 struct skge_hw *hw = skge->hw;
3182 struct skge_ring *ring = &skge->rx_ring;
3183 struct skge_element *e;
3188 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3190 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3191 struct skge_rx_desc *rd = e->desc;
3192 struct sk_buff *skb;
3196 control = rd->control;
3197 if (control & BMU_OWN)
3200 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3202 netif_receive_skb(skb);
3209 /* restart receiver */
3211 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3213 if (work_done < to_do) {
3214 unsigned long flags;
3216 spin_lock_irqsave(&hw->hw_lock, flags);
3217 __netif_rx_complete(napi);
3218 hw->intr_mask |= napimask[skge->port];
3219 skge_write32(hw, B0_IMSK, hw->intr_mask);
3220 skge_read32(hw, B0_IMSK);
3221 spin_unlock_irqrestore(&hw->hw_lock, flags);
3227 /* Parity errors seem to happen when Genesis is connected to a switch
3228 * with no other ports present. Heartbeat error??
3230 static void skge_mac_parity(struct skge_hw *hw, int port)
3232 struct net_device *dev = hw->dev[port];
3234 ++dev->stats.tx_heartbeat_errors;
3236 if (hw->chip_id == CHIP_ID_GENESIS)
3237 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3240 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3241 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3242 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3243 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3246 static void skge_mac_intr(struct skge_hw *hw, int port)
3248 if (hw->chip_id == CHIP_ID_GENESIS)
3249 genesis_mac_intr(hw, port);
3251 yukon_mac_intr(hw, port);
3254 /* Handle device specific framing and timeout interrupts */
3255 static void skge_error_irq(struct skge_hw *hw)
3257 struct pci_dev *pdev = hw->pdev;
3258 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3260 if (hw->chip_id == CHIP_ID_GENESIS) {
3261 /* clear xmac errors */
3262 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3263 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3264 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3265 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3267 /* Timestamp (unused) overflow */
3268 if (hwstatus & IS_IRQ_TIST_OV)
3269 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3272 if (hwstatus & IS_RAM_RD_PAR) {
3273 dev_err(&pdev->dev, "Ram read data parity error\n");
3274 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3277 if (hwstatus & IS_RAM_WR_PAR) {
3278 dev_err(&pdev->dev, "Ram write data parity error\n");
3279 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3282 if (hwstatus & IS_M1_PAR_ERR)
3283 skge_mac_parity(hw, 0);
3285 if (hwstatus & IS_M2_PAR_ERR)
3286 skge_mac_parity(hw, 1);
3288 if (hwstatus & IS_R1_PAR_ERR) {
3289 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3291 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3294 if (hwstatus & IS_R2_PAR_ERR) {
3295 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3297 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3300 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3301 u16 pci_status, pci_cmd;
3303 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3304 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3306 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3307 pci_cmd, pci_status);
3309 /* Write the error bits back to clear them. */
3310 pci_status &= PCI_STATUS_ERROR_BITS;
3311 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3312 pci_write_config_word(pdev, PCI_COMMAND,
3313 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3314 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3315 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3317 /* if error still set then just ignore it */
3318 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3319 if (hwstatus & IS_IRQ_STAT) {
3320 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3321 hw->intr_mask &= ~IS_HW_ERR;
3327 * Interrupt from PHY are handled in tasklet (softirq)
3328 * because accessing phy registers requires spin wait which might
3329 * cause excess interrupt latency.
3331 static void skge_extirq(unsigned long arg)
3333 struct skge_hw *hw = (struct skge_hw *) arg;
3336 for (port = 0; port < hw->ports; port++) {
3337 struct net_device *dev = hw->dev[port];
3339 if (netif_running(dev)) {
3340 struct skge_port *skge = netdev_priv(dev);
3342 spin_lock(&hw->phy_lock);
3343 if (hw->chip_id != CHIP_ID_GENESIS)
3344 yukon_phy_intr(skge);
3345 else if (hw->phy_type == SK_PHY_BCOM)
3346 bcom_phy_intr(skge);
3347 spin_unlock(&hw->phy_lock);
3351 spin_lock_irq(&hw->hw_lock);
3352 hw->intr_mask |= IS_EXT_REG;
3353 skge_write32(hw, B0_IMSK, hw->intr_mask);
3354 skge_read32(hw, B0_IMSK);
3355 spin_unlock_irq(&hw->hw_lock);
3358 static irqreturn_t skge_intr(int irq, void *dev_id)
3360 struct skge_hw *hw = dev_id;
3364 spin_lock(&hw->hw_lock);
3365 /* Reading this register masks IRQ */
3366 status = skge_read32(hw, B0_SP_ISRC);
3367 if (status == 0 || status == ~0)
3371 status &= hw->intr_mask;
3372 if (status & IS_EXT_REG) {
3373 hw->intr_mask &= ~IS_EXT_REG;
3374 tasklet_schedule(&hw->phy_task);
3377 if (status & (IS_XA1_F|IS_R1_F)) {
3378 struct skge_port *skge = netdev_priv(hw->dev[0]);
3379 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3380 netif_rx_schedule(&skge->napi);
3383 if (status & IS_PA_TO_TX1)
3384 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3386 if (status & IS_PA_TO_RX1) {
3387 ++hw->dev[0]->stats.rx_over_errors;
3388 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3392 if (status & IS_MAC1)
3393 skge_mac_intr(hw, 0);
3396 struct skge_port *skge = netdev_priv(hw->dev[1]);
3398 if (status & (IS_XA2_F|IS_R2_F)) {
3399 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3400 netif_rx_schedule(&skge->napi);
3403 if (status & IS_PA_TO_RX2) {
3404 ++hw->dev[1]->stats.rx_over_errors;
3405 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3408 if (status & IS_PA_TO_TX2)
3409 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3411 if (status & IS_MAC2)
3412 skge_mac_intr(hw, 1);
3415 if (status & IS_HW_ERR)
3418 skge_write32(hw, B0_IMSK, hw->intr_mask);
3419 skge_read32(hw, B0_IMSK);
3421 spin_unlock(&hw->hw_lock);
3423 return IRQ_RETVAL(handled);
3426 #ifdef CONFIG_NET_POLL_CONTROLLER
3427 static void skge_netpoll(struct net_device *dev)
3429 struct skge_port *skge = netdev_priv(dev);
3431 disable_irq(dev->irq);
3432 skge_intr(dev->irq, skge->hw);
3433 enable_irq(dev->irq);
3437 static int skge_set_mac_address(struct net_device *dev, void *p)
3439 struct skge_port *skge = netdev_priv(dev);
3440 struct skge_hw *hw = skge->hw;
3441 unsigned port = skge->port;
3442 const struct sockaddr *addr = p;
3445 if (!is_valid_ether_addr(addr->sa_data))
3446 return -EADDRNOTAVAIL;
3448 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3450 if (!netif_running(dev)) {
3451 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3452 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3455 spin_lock_bh(&hw->phy_lock);
3456 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3457 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3459 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3460 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3462 if (hw->chip_id == CHIP_ID_GENESIS)
3463 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3465 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3466 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3469 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3470 spin_unlock_bh(&hw->phy_lock);
3476 static const struct {
3480 { CHIP_ID_GENESIS, "Genesis" },
3481 { CHIP_ID_YUKON, "Yukon" },
3482 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3483 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3486 static const char *skge_board_name(const struct skge_hw *hw)
3489 static char buf[16];
3491 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3492 if (skge_chips[i].id == hw->chip_id)
3493 return skge_chips[i].name;
3495 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3501 * Setup the board data structure, but don't bring up
3504 static int skge_reset(struct skge_hw *hw)
3507 u16 ctst, pci_status;
3508 u8 t8, mac_cfg, pmd_type;
3511 ctst = skge_read16(hw, B0_CTST);
3514 skge_write8(hw, B0_CTST, CS_RST_SET);
3515 skge_write8(hw, B0_CTST, CS_RST_CLR);
3517 /* clear PCI errors, if any */
3518 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3519 skge_write8(hw, B2_TST_CTRL2, 0);
3521 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3522 pci_write_config_word(hw->pdev, PCI_STATUS,
3523 pci_status | PCI_STATUS_ERROR_BITS);
3524 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3525 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3527 /* restore CLK_RUN bits (for Yukon-Lite) */
3528 skge_write16(hw, B0_CTST,
3529 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3531 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3532 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3533 pmd_type = skge_read8(hw, B2_PMD_TYP);
3534 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3536 switch (hw->chip_id) {
3537 case CHIP_ID_GENESIS:
3538 switch (hw->phy_type) {
3540 hw->phy_addr = PHY_ADDR_XMAC;
3543 hw->phy_addr = PHY_ADDR_BCOM;
3546 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3553 case CHIP_ID_YUKON_LITE:
3554 case CHIP_ID_YUKON_LP:
3555 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3558 hw->phy_addr = PHY_ADDR_MARV;
3562 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3567 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3568 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3569 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3571 /* read the adapters RAM size */
3572 t8 = skge_read8(hw, B2_E_0);
3573 if (hw->chip_id == CHIP_ID_GENESIS) {
3575 /* special case: 4 x 64k x 36, offset = 0x80000 */
3576 hw->ram_size = 0x100000;
3577 hw->ram_offset = 0x80000;
3579 hw->ram_size = t8 * 512;
3582 hw->ram_size = 0x20000;
3584 hw->ram_size = t8 * 4096;
3586 hw->intr_mask = IS_HW_ERR;
3588 /* Use PHY IRQ for all but fiber based Genesis board */
3589 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3590 hw->intr_mask |= IS_EXT_REG;
3592 if (hw->chip_id == CHIP_ID_GENESIS)
3595 /* switch power to VCC (WA for VAUX problem) */
3596 skge_write8(hw, B0_POWER_CTRL,
3597 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3599 /* avoid boards with stuck Hardware error bits */
3600 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3601 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3602 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3603 hw->intr_mask &= ~IS_HW_ERR;
3606 /* Clear PHY COMA */
3607 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3608 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3609 reg &= ~PCI_PHY_COMA;
3610 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3611 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3614 for (i = 0; i < hw->ports; i++) {
3615 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3616 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3620 /* turn off hardware timer (unused) */
3621 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3622 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3623 skge_write8(hw, B0_LED, LED_STAT_ON);
3625 /* enable the Tx Arbiters */
3626 for (i = 0; i < hw->ports; i++)
3627 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3629 /* Initialize ram interface */
3630 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3632 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3633 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3634 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3635 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3636 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3637 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3638 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3639 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3640 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3641 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3642 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3643 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3645 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3647 /* Set interrupt moderation for Transmit only
3648 * Receive interrupts avoided by NAPI
3650 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3651 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3652 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3654 skge_write32(hw, B0_IMSK, hw->intr_mask);
3656 for (i = 0; i < hw->ports; i++) {
3657 if (hw->chip_id == CHIP_ID_GENESIS)
3658 genesis_reset(hw, i);
3667 #ifdef CONFIG_SKGE_DEBUG
3669 static struct dentry *skge_debug;
3671 static int skge_debug_show(struct seq_file *seq, void *v)
3673 struct net_device *dev = seq->private;
3674 const struct skge_port *skge = netdev_priv(dev);
3675 const struct skge_hw *hw = skge->hw;
3676 const struct skge_element *e;
3678 if (!netif_running(dev))
3681 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3682 skge_read32(hw, B0_IMSK));
3684 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3685 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3686 const struct skge_tx_desc *t = e->desc;
3687 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3688 t->control, t->dma_hi, t->dma_lo, t->status,
3689 t->csum_offs, t->csum_write, t->csum_start);
3692 seq_printf(seq, "\nRx Ring: \n");
3693 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3694 const struct skge_rx_desc *r = e->desc;
3696 if (r->control & BMU_OWN)
3699 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3700 r->control, r->dma_hi, r->dma_lo, r->status,
3701 r->timestamp, r->csum1, r->csum1_start);
3707 static int skge_debug_open(struct inode *inode, struct file *file)
3709 return single_open(file, skge_debug_show, inode->i_private);
3712 static const struct file_operations skge_debug_fops = {
3713 .owner = THIS_MODULE,
3714 .open = skge_debug_open,
3716 .llseek = seq_lseek,
3717 .release = single_release,
3721 * Use network device events to create/remove/rename
3722 * debugfs file entries
3724 static int skge_device_event(struct notifier_block *unused,
3725 unsigned long event, void *ptr)
3727 struct net_device *dev = ptr;
3728 struct skge_port *skge;
3731 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3734 skge = netdev_priv(dev);
3736 case NETDEV_CHANGENAME:
3737 if (skge->debugfs) {
3738 d = debugfs_rename(skge_debug, skge->debugfs,
3739 skge_debug, dev->name);
3743 pr_info(PFX "%s: rename failed\n", dev->name);
3744 debugfs_remove(skge->debugfs);
3749 case NETDEV_GOING_DOWN:
3750 if (skge->debugfs) {
3751 debugfs_remove(skge->debugfs);
3752 skge->debugfs = NULL;
3757 d = debugfs_create_file(dev->name, S_IRUGO,
3760 if (!d || IS_ERR(d))
3761 pr_info(PFX "%s: debugfs create failed\n",
3772 static struct notifier_block skge_notifier = {
3773 .notifier_call = skge_device_event,
3777 static __init void skge_debug_init(void)
3781 ent = debugfs_create_dir("skge", NULL);
3782 if (!ent || IS_ERR(ent)) {
3783 pr_info(PFX "debugfs create directory failed\n");
3788 register_netdevice_notifier(&skge_notifier);
3791 static __exit void skge_debug_cleanup(void)
3794 unregister_netdevice_notifier(&skge_notifier);
3795 debugfs_remove(skge_debug);
3801 #define skge_debug_init()
3802 #define skge_debug_cleanup()
3805 static const struct net_device_ops skge_netdev_ops = {
3806 .ndo_open = skge_up,
3807 .ndo_stop = skge_down,
3808 .ndo_start_xmit = skge_xmit_frame,
3809 .ndo_do_ioctl = skge_ioctl,
3810 .ndo_get_stats = skge_get_stats,
3811 .ndo_tx_timeout = skge_tx_timeout,
3812 .ndo_change_mtu = skge_change_mtu,
3813 .ndo_validate_addr = eth_validate_addr,
3814 .ndo_set_multicast_list = skge_set_multicast,
3815 .ndo_set_mac_address = skge_set_mac_address,
3816 #ifdef CONFIG_NET_POLL_CONTROLLER
3817 .ndo_poll_controller = skge_netpoll,
3822 /* Initialize network device */
3823 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3826 struct skge_port *skge;
3827 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3830 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3834 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3835 dev->netdev_ops = &skge_netdev_ops;
3836 dev->ethtool_ops = &skge_ethtool_ops;
3837 dev->watchdog_timeo = TX_WATCHDOG;
3838 dev->irq = hw->pdev->irq;
3841 dev->features |= NETIF_F_HIGHDMA;
3843 skge = netdev_priv(dev);
3844 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3847 skge->msg_enable = netif_msg_init(debug, default_msg);
3849 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3850 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3852 /* Auto speed and flow control */
3853 skge->autoneg = AUTONEG_ENABLE;
3854 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3857 skge->advertising = skge_supported_modes(hw);
3859 if (device_may_wakeup(&hw->pdev->dev))
3860 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3862 hw->dev[port] = dev;
3866 /* Only used for Genesis XMAC */
3867 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3869 if (hw->chip_id != CHIP_ID_GENESIS) {
3870 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3874 /* read the mac address */
3875 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3876 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3878 /* device is off until link detection */
3879 netif_carrier_off(dev);
3880 netif_stop_queue(dev);
3885 static void __devinit skge_show_addr(struct net_device *dev)
3887 const struct skge_port *skge = netdev_priv(dev);
3889 if (netif_msg_probe(skge))
3890 printk(KERN_INFO PFX "%s: addr %pM\n",
3891 dev->name, dev->dev_addr);
3894 static int __devinit skge_probe(struct pci_dev *pdev,
3895 const struct pci_device_id *ent)
3897 struct net_device *dev, *dev1;
3899 int err, using_dac = 0;
3901 err = pci_enable_device(pdev);
3903 dev_err(&pdev->dev, "cannot enable PCI device\n");
3907 err = pci_request_regions(pdev, DRV_NAME);
3909 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3910 goto err_out_disable_pdev;
3913 pci_set_master(pdev);
3915 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3917 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3918 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3920 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3924 dev_err(&pdev->dev, "no usable DMA configuration\n");
3925 goto err_out_free_regions;
3929 /* byte swap descriptors in hardware */
3933 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3934 reg |= PCI_REV_DESC;
3935 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3940 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3942 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3943 goto err_out_free_regions;
3947 spin_lock_init(&hw->hw_lock);
3948 spin_lock_init(&hw->phy_lock);
3949 tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
3951 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3953 dev_err(&pdev->dev, "cannot map device registers\n");
3954 goto err_out_free_hw;
3957 err = skge_reset(hw);
3959 goto err_out_iounmap;
3961 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3962 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3963 skge_board_name(hw), hw->chip_rev);
3965 dev = skge_devinit(hw, 0, using_dac);
3967 goto err_out_led_off;
3969 /* Some motherboards are broken and has zero in ROM. */
3970 if (!is_valid_ether_addr(dev->dev_addr))
3971 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3973 err = register_netdev(dev);
3975 dev_err(&pdev->dev, "cannot register net device\n");
3976 goto err_out_free_netdev;
3979 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3981 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3982 dev->name, pdev->irq);
3983 goto err_out_unregister;
3985 skge_show_addr(dev);
3987 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3988 if (register_netdev(dev1) == 0)
3989 skge_show_addr(dev1);
3991 /* Failure to register second port need not be fatal */
3992 dev_warn(&pdev->dev, "register of second port failed\n");
3997 pci_set_drvdata(pdev, hw);
4002 unregister_netdev(dev);
4003 err_out_free_netdev:
4006 skge_write16(hw, B0_LED, LED_STAT_OFF);
4011 err_out_free_regions:
4012 pci_release_regions(pdev);
4013 err_out_disable_pdev:
4014 pci_disable_device(pdev);
4015 pci_set_drvdata(pdev, NULL);
4020 static void __devexit skge_remove(struct pci_dev *pdev)
4022 struct skge_hw *hw = pci_get_drvdata(pdev);
4023 struct net_device *dev0, *dev1;
4028 flush_scheduled_work();
4030 if ((dev1 = hw->dev[1]))
4031 unregister_netdev(dev1);
4033 unregister_netdev(dev0);
4035 tasklet_disable(&hw->phy_task);
4037 spin_lock_irq(&hw->hw_lock);
4039 skge_write32(hw, B0_IMSK, 0);
4040 skge_read32(hw, B0_IMSK);
4041 spin_unlock_irq(&hw->hw_lock);
4043 skge_write16(hw, B0_LED, LED_STAT_OFF);
4044 skge_write8(hw, B0_CTST, CS_RST_SET);
4046 free_irq(pdev->irq, hw);
4047 pci_release_regions(pdev);
4048 pci_disable_device(pdev);
4055 pci_set_drvdata(pdev, NULL);
4059 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
4061 struct skge_hw *hw = pci_get_drvdata(pdev);
4062 int i, err, wol = 0;
4067 err = pci_save_state(pdev);
4071 for (i = 0; i < hw->ports; i++) {
4072 struct net_device *dev = hw->dev[i];
4073 struct skge_port *skge = netdev_priv(dev);
4075 if (netif_running(dev))
4078 skge_wol_init(skge);
4083 skge_write32(hw, B0_IMSK, 0);
4085 pci_prepare_to_sleep(pdev);
4090 static int skge_resume(struct pci_dev *pdev)
4092 struct skge_hw *hw = pci_get_drvdata(pdev);
4098 err = pci_back_from_sleep(pdev);
4102 err = pci_restore_state(pdev);
4106 err = skge_reset(hw);
4110 for (i = 0; i < hw->ports; i++) {
4111 struct net_device *dev = hw->dev[i];
4113 if (netif_running(dev)) {
4117 printk(KERN_ERR PFX "%s: could not up: %d\n",
4129 static void skge_shutdown(struct pci_dev *pdev)
4131 struct skge_hw *hw = pci_get_drvdata(pdev);
4137 for (i = 0; i < hw->ports; i++) {
4138 struct net_device *dev = hw->dev[i];
4139 struct skge_port *skge = netdev_priv(dev);
4142 skge_wol_init(skge);
4146 if (pci_enable_wake(pdev, PCI_D3cold, wol))
4147 pci_enable_wake(pdev, PCI_D3hot, wol);
4149 pci_disable_device(pdev);
4150 pci_set_power_state(pdev, PCI_D3hot);
4154 static struct pci_driver skge_driver = {
4156 .id_table = skge_id_table,
4157 .probe = skge_probe,
4158 .remove = __devexit_p(skge_remove),
4160 .suspend = skge_suspend,
4161 .resume = skge_resume,
4163 .shutdown = skge_shutdown,
4166 static int __init skge_init_module(void)
4169 return pci_register_driver(&skge_driver);
4172 static void __exit skge_cleanup_module(void)
4174 pci_unregister_driver(&skge_driver);
4175 skge_debug_cleanup();
4178 module_init(skge_init_module);
4179 module_exit(skge_cleanup_module);