1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.10"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
149 {"tmac_data_octets"},
153 {"tmac_pause_ctrl_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
226 {"new_rd_req_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
231 {"new_wr_req_rtry_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
331 {"prc_pcix_err_cnt"},
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
349 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
361 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
369 static void s2io_vlan_rx_register(struct net_device *dev,
370 struct vlan_group *grp)
372 struct s2io_nic *nic = dev->priv;
375 spin_lock_irqsave(&nic->tx_lock, flags);
377 spin_unlock_irqrestore(&nic->tx_lock, flags);
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
384 * Constants to be programmed into the Xena's registers, to configure
389 static const u64 herc_act_dtx_cfg[] = {
391 0x8000051536750000ULL, 0x80000515367500E0ULL,
393 0x8000051536750004ULL, 0x80000515367500E4ULL,
395 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
397 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
399 0x801205150D440000ULL, 0x801205150D4400E0ULL,
401 0x801205150D440004ULL, 0x801205150D4400E4ULL,
403 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
405 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
410 static const u64 xena_dtx_cfg[] = {
412 0x8000051500000000ULL, 0x80000515000000E0ULL,
414 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
416 0x8001051500000000ULL, 0x80010515000000E0ULL,
418 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
420 0x8002051500000000ULL, 0x80020515000000E0ULL,
422 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
427 * Constants for Fixing the MacAddress problem seen mostly on
430 static const u64 fix_mac[] = {
431 0x0060000000000000ULL, 0x0060600000000000ULL,
432 0x0040600000000000ULL, 0x0000600000000000ULL,
433 0x0020600000000000ULL, 0x0060600000000000ULL,
434 0x0020600000000000ULL, 0x0060600000000000ULL,
435 0x0020600000000000ULL, 0x0060600000000000ULL,
436 0x0020600000000000ULL, 0x0060600000000000ULL,
437 0x0020600000000000ULL, 0x0060600000000000ULL,
438 0x0020600000000000ULL, 0x0060600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0060600000000000ULL,
443 0x0020600000000000ULL, 0x0000600000000000ULL,
444 0x0040600000000000ULL, 0x0060600000000000ULL,
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable;
472 module_param_named(lro, lro_enable, uint, 0);
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475 * aggregation happens until we hit max IP pkt size(64K)
477 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts, 0);
480 S2IO_PARM_INT(napi, 1);
481 S2IO_PARM_INT(ufo, 0);
482 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
484 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488 static unsigned int rts_frm_len[MAX_RX_RINGS] =
489 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
491 module_param_array(tx_fifo_len, uint, NULL, 0);
492 module_param_array(rx_ring_sz, uint, NULL, 0);
493 module_param_array(rts_frm_len, uint, NULL, 0);
497 * This table lists all the devices that this driver supports.
499 static struct pci_device_id s2io_tbl[] __devinitdata = {
500 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501 PCI_ANY_ID, PCI_ANY_ID},
502 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503 PCI_ANY_ID, PCI_ANY_ID},
504 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
505 PCI_ANY_ID, PCI_ANY_ID},
506 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507 PCI_ANY_ID, PCI_ANY_ID},
511 MODULE_DEVICE_TABLE(pci, s2io_tbl);
513 static struct pci_error_handlers s2io_err_handler = {
514 .error_detected = s2io_io_error_detected,
515 .slot_reset = s2io_io_slot_reset,
516 .resume = s2io_io_resume,
519 static struct pci_driver s2io_driver = {
521 .id_table = s2io_tbl,
522 .probe = s2io_init_nic,
523 .remove = __devexit_p(s2io_rem_nic),
524 .err_handler = &s2io_err_handler,
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
531 * init_shared_mem - Allocation and Initialization of Memory
532 * @nic: Device private variable.
533 * Description: The function allocates all the memory areas shared
534 * between the NIC and the driver. This includes Tx descriptors,
535 * Rx descriptors and the statistics block.
538 static int init_shared_mem(struct s2io_nic *nic)
541 void *tmp_v_addr, *tmp_v_addr_next;
542 dma_addr_t tmp_p_addr, tmp_p_addr_next;
543 struct RxD_block *pre_rxd_blk = NULL;
545 int lst_size, lst_per_page;
546 struct net_device *dev = nic->dev;
550 struct mac_info *mac_control;
551 struct config_param *config;
552 unsigned long long mem_allocated = 0;
554 mac_control = &nic->mac_control;
555 config = &nic->config;
558 /* Allocation and initialization of TXDLs in FIOFs */
560 for (i = 0; i < config->tx_fifo_num; i++) {
561 size += config->tx_cfg[i].fifo_len;
563 if (size > MAX_AVAILABLE_TXDS) {
564 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
565 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
569 lst_size = (sizeof(struct TxD) * config->max_txds);
570 lst_per_page = PAGE_SIZE / lst_size;
572 for (i = 0; i < config->tx_fifo_num; i++) {
573 int fifo_len = config->tx_cfg[i].fifo_len;
574 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
575 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
577 if (!mac_control->fifos[i].list_info) {
579 "Malloc failed for list_info\n");
582 mem_allocated += list_holder_size;
584 for (i = 0; i < config->tx_fifo_num; i++) {
585 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
587 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588 mac_control->fifos[i].tx_curr_put_info.fifo_len =
589 config->tx_cfg[i].fifo_len - 1;
590 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591 mac_control->fifos[i].tx_curr_get_info.fifo_len =
592 config->tx_cfg[i].fifo_len - 1;
593 mac_control->fifos[i].fifo_no = i;
594 mac_control->fifos[i].nic = nic;
595 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
597 for (j = 0; j < page_num; j++) {
601 tmp_v = pci_alloc_consistent(nic->pdev,
605 "pci_alloc_consistent ");
606 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
609 /* If we got a zero DMA address(can happen on
610 * certain platforms like PPC), reallocate.
611 * Store virtual address of page we don't want,
615 mac_control->zerodma_virt_addr = tmp_v;
617 "%s: Zero DMA address for TxDL. ", dev->name);
619 "Virtual address %p\n", tmp_v);
620 tmp_v = pci_alloc_consistent(nic->pdev,
624 "pci_alloc_consistent ");
625 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
628 mem_allocated += PAGE_SIZE;
630 while (k < lst_per_page) {
631 int l = (j * lst_per_page) + k;
632 if (l == config->tx_cfg[i].fifo_len)
634 mac_control->fifos[i].list_info[l].list_virt_addr =
635 tmp_v + (k * lst_size);
636 mac_control->fifos[i].list_info[l].list_phy_addr =
637 tmp_p + (k * lst_size);
643 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
644 if (!nic->ufo_in_band_v)
646 mem_allocated += (size * sizeof(u64));
648 /* Allocation and initialization of RXDs in Rings */
650 for (i = 0; i < config->rx_ring_num; i++) {
651 if (config->rx_cfg[i].num_rxd %
652 (rxd_count[nic->rxd_mode] + 1)) {
653 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
656 DBG_PRINT(ERR_DBG, "RxDs per Block");
659 size += config->rx_cfg[i].num_rxd;
660 mac_control->rings[i].block_count =
661 config->rx_cfg[i].num_rxd /
662 (rxd_count[nic->rxd_mode] + 1 );
663 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664 mac_control->rings[i].block_count;
666 if (nic->rxd_mode == RXD_MODE_1)
667 size = (size * (sizeof(struct RxD1)));
669 size = (size * (sizeof(struct RxD3)));
671 for (i = 0; i < config->rx_ring_num; i++) {
672 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673 mac_control->rings[i].rx_curr_get_info.offset = 0;
674 mac_control->rings[i].rx_curr_get_info.ring_len =
675 config->rx_cfg[i].num_rxd - 1;
676 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677 mac_control->rings[i].rx_curr_put_info.offset = 0;
678 mac_control->rings[i].rx_curr_put_info.ring_len =
679 config->rx_cfg[i].num_rxd - 1;
680 mac_control->rings[i].nic = nic;
681 mac_control->rings[i].ring_no = i;
683 blk_cnt = config->rx_cfg[i].num_rxd /
684 (rxd_count[nic->rxd_mode] + 1);
685 /* Allocating all the Rx blocks */
686 for (j = 0; j < blk_cnt; j++) {
687 struct rx_block_info *rx_blocks;
690 rx_blocks = &mac_control->rings[i].rx_blocks[j];
691 size = SIZE_OF_BLOCK; //size is always page size
692 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
694 if (tmp_v_addr == NULL) {
696 * In case of failure, free_shared_mem()
697 * is called, which should free any
698 * memory that was alloced till the
701 rx_blocks->block_virt_addr = tmp_v_addr;
704 mem_allocated += size;
705 memset(tmp_v_addr, 0, size);
706 rx_blocks->block_virt_addr = tmp_v_addr;
707 rx_blocks->block_dma_addr = tmp_p_addr;
708 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
709 rxd_count[nic->rxd_mode],
711 if (!rx_blocks->rxds)
714 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
715 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716 rx_blocks->rxds[l].virt_addr =
717 rx_blocks->block_virt_addr +
718 (rxd_size[nic->rxd_mode] * l);
719 rx_blocks->rxds[l].dma_addr =
720 rx_blocks->block_dma_addr +
721 (rxd_size[nic->rxd_mode] * l);
724 /* Interlinking all Rx Blocks */
725 for (j = 0; j < blk_cnt; j++) {
727 mac_control->rings[i].rx_blocks[j].block_virt_addr;
729 mac_control->rings[i].rx_blocks[(j + 1) %
730 blk_cnt].block_virt_addr;
732 mac_control->rings[i].rx_blocks[j].block_dma_addr;
734 mac_control->rings[i].rx_blocks[(j + 1) %
735 blk_cnt].block_dma_addr;
737 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
738 pre_rxd_blk->reserved_2_pNext_RxD_block =
739 (unsigned long) tmp_v_addr_next;
740 pre_rxd_blk->pNext_RxD_Blk_physical =
741 (u64) tmp_p_addr_next;
744 if (nic->rxd_mode == RXD_MODE_3B) {
746 * Allocation of Storages for buffer addresses in 2BUFF mode
747 * and the buffers as well.
749 for (i = 0; i < config->rx_ring_num; i++) {
750 blk_cnt = config->rx_cfg[i].num_rxd /
751 (rxd_count[nic->rxd_mode]+ 1);
752 mac_control->rings[i].ba =
753 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
755 if (!mac_control->rings[i].ba)
757 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
758 for (j = 0; j < blk_cnt; j++) {
760 mac_control->rings[i].ba[j] =
761 kmalloc((sizeof(struct buffAdd) *
762 (rxd_count[nic->rxd_mode] + 1)),
764 if (!mac_control->rings[i].ba[j])
766 mem_allocated += (sizeof(struct buffAdd) * \
767 (rxd_count[nic->rxd_mode] + 1));
768 while (k != rxd_count[nic->rxd_mode]) {
769 ba = &mac_control->rings[i].ba[j][k];
771 ba->ba_0_org = (void *) kmalloc
772 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
776 (BUF0_LEN + ALIGN_SIZE);
777 tmp = (unsigned long)ba->ba_0_org;
779 tmp &= ~((unsigned long) ALIGN_SIZE);
780 ba->ba_0 = (void *) tmp;
782 ba->ba_1_org = (void *) kmalloc
783 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
787 += (BUF1_LEN + ALIGN_SIZE);
788 tmp = (unsigned long) ba->ba_1_org;
790 tmp &= ~((unsigned long) ALIGN_SIZE);
791 ba->ba_1 = (void *) tmp;
798 /* Allocation and initialization of Statistics block */
799 size = sizeof(struct stat_block);
800 mac_control->stats_mem = pci_alloc_consistent
801 (nic->pdev, size, &mac_control->stats_mem_phy);
803 if (!mac_control->stats_mem) {
805 * In case of failure, free_shared_mem() is called, which
806 * should free any memory that was alloced till the
811 mem_allocated += size;
812 mac_control->stats_mem_sz = size;
814 tmp_v_addr = mac_control->stats_mem;
815 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
816 memset(tmp_v_addr, 0, size);
817 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818 (unsigned long long) tmp_p_addr);
819 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
824 * free_shared_mem - Free the allocated Memory
825 * @nic: Device private variable.
826 * Description: This function is to free all memory locations allocated by
827 * the init_shared_mem() function and return it to the kernel.
830 static void free_shared_mem(struct s2io_nic *nic)
832 int i, j, blk_cnt, size;
835 dma_addr_t tmp_p_addr;
836 struct mac_info *mac_control;
837 struct config_param *config;
838 int lst_size, lst_per_page;
839 struct net_device *dev;
847 mac_control = &nic->mac_control;
848 config = &nic->config;
850 lst_size = (sizeof(struct TxD) * config->max_txds);
851 lst_per_page = PAGE_SIZE / lst_size;
853 for (i = 0; i < config->tx_fifo_num; i++) {
854 ufo_size += config->tx_cfg[i].fifo_len;
855 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
857 for (j = 0; j < page_num; j++) {
858 int mem_blks = (j * lst_per_page);
859 if (!mac_control->fifos[i].list_info)
861 if (!mac_control->fifos[i].list_info[mem_blks].
864 pci_free_consistent(nic->pdev, PAGE_SIZE,
865 mac_control->fifos[i].
868 mac_control->fifos[i].
871 nic->mac_control.stats_info->sw_stat.mem_freed
874 /* If we got a zero DMA address during allocation,
877 if (mac_control->zerodma_virt_addr) {
878 pci_free_consistent(nic->pdev, PAGE_SIZE,
879 mac_control->zerodma_virt_addr,
882 "%s: Freeing TxDL with zero DMA addr. ",
884 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885 mac_control->zerodma_virt_addr);
886 nic->mac_control.stats_info->sw_stat.mem_freed
889 kfree(mac_control->fifos[i].list_info);
890 nic->mac_control.stats_info->sw_stat.mem_freed +=
891 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
894 size = SIZE_OF_BLOCK;
895 for (i = 0; i < config->rx_ring_num; i++) {
896 blk_cnt = mac_control->rings[i].block_count;
897 for (j = 0; j < blk_cnt; j++) {
898 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
900 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
902 if (tmp_v_addr == NULL)
904 pci_free_consistent(nic->pdev, size,
905 tmp_v_addr, tmp_p_addr);
906 nic->mac_control.stats_info->sw_stat.mem_freed += size;
907 kfree(mac_control->rings[i].rx_blocks[j].rxds);
908 nic->mac_control.stats_info->sw_stat.mem_freed +=
909 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
913 if (nic->rxd_mode == RXD_MODE_3B) {
914 /* Freeing buffer storage addresses in 2BUFF mode. */
915 for (i = 0; i < config->rx_ring_num; i++) {
916 blk_cnt = config->rx_cfg[i].num_rxd /
917 (rxd_count[nic->rxd_mode] + 1);
918 for (j = 0; j < blk_cnt; j++) {
920 if (!mac_control->rings[i].ba[j])
922 while (k != rxd_count[nic->rxd_mode]) {
924 &mac_control->rings[i].ba[j][k];
926 nic->mac_control.stats_info->sw_stat.\
927 mem_freed += (BUF0_LEN + ALIGN_SIZE);
929 nic->mac_control.stats_info->sw_stat.\
930 mem_freed += (BUF1_LEN + ALIGN_SIZE);
933 kfree(mac_control->rings[i].ba[j]);
934 nic->mac_control.stats_info->sw_stat.mem_freed +=
935 (sizeof(struct buffAdd) *
936 (rxd_count[nic->rxd_mode] + 1));
938 kfree(mac_control->rings[i].ba);
939 nic->mac_control.stats_info->sw_stat.mem_freed +=
940 (sizeof(struct buffAdd *) * blk_cnt);
944 if (mac_control->stats_mem) {
945 pci_free_consistent(nic->pdev,
946 mac_control->stats_mem_sz,
947 mac_control->stats_mem,
948 mac_control->stats_mem_phy);
949 nic->mac_control.stats_info->sw_stat.mem_freed +=
950 mac_control->stats_mem_sz;
952 if (nic->ufo_in_band_v) {
953 kfree(nic->ufo_in_band_v);
954 nic->mac_control.stats_info->sw_stat.mem_freed
955 += (ufo_size * sizeof(u64));
960 * s2io_verify_pci_mode -
963 static int s2io_verify_pci_mode(struct s2io_nic *nic)
965 struct XENA_dev_config __iomem *bar0 = nic->bar0;
966 register u64 val64 = 0;
969 val64 = readq(&bar0->pci_mode);
970 mode = (u8)GET_PCI_MODE(val64);
972 if ( val64 & PCI_MODE_UNKNOWN_MODE)
973 return -1; /* Unknown PCI mode */
977 #define NEC_VENID 0x1033
978 #define NEC_DEVID 0x0125
979 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
981 struct pci_dev *tdev = NULL;
982 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
984 if (tdev->bus == s2io_pdev->bus->parent)
992 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
994 * s2io_print_pci_mode -
996 static int s2io_print_pci_mode(struct s2io_nic *nic)
998 struct XENA_dev_config __iomem *bar0 = nic->bar0;
999 register u64 val64 = 0;
1001 struct config_param *config = &nic->config;
1003 val64 = readq(&bar0->pci_mode);
1004 mode = (u8)GET_PCI_MODE(val64);
1006 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007 return -1; /* Unknown PCI mode */
1009 config->bus_speed = bus_speed[mode];
1011 if (s2io_on_nec_bridge(nic->pdev)) {
1012 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1017 if (val64 & PCI_MODE_32_BITS) {
1018 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1020 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1024 case PCI_MODE_PCI_33:
1025 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1027 case PCI_MODE_PCI_66:
1028 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1030 case PCI_MODE_PCIX_M1_66:
1031 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1033 case PCI_MODE_PCIX_M1_100:
1034 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1036 case PCI_MODE_PCIX_M1_133:
1037 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1039 case PCI_MODE_PCIX_M2_66:
1040 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1042 case PCI_MODE_PCIX_M2_100:
1043 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1045 case PCI_MODE_PCIX_M2_133:
1046 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1049 return -1; /* Unsupported bus speed */
1056 * init_nic - Initialization of hardware
1057 * @nic: device peivate variable
1058 * Description: The function sequentially configures every block
1059 * of the H/W from their reset values.
1060 * Return Value: SUCCESS on success and
1061 * '-1' on failure (endian settings incorrect).
1064 static int init_nic(struct s2io_nic *nic)
1066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067 struct net_device *dev = nic->dev;
1068 register u64 val64 = 0;
1072 struct mac_info *mac_control;
1073 struct config_param *config;
1075 unsigned long long mem_share;
1078 mac_control = &nic->mac_control;
1079 config = &nic->config;
1081 /* to set the swapper controle on the card */
1082 if(s2io_set_swapper(nic)) {
1083 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1088 * Herc requires EOI to be removed from reset before XGXS, so..
1090 if (nic->device_type & XFRAME_II_DEVICE) {
1091 val64 = 0xA500000000ULL;
1092 writeq(val64, &bar0->sw_reset);
1094 val64 = readq(&bar0->sw_reset);
1097 /* Remove XGXS from reset state */
1099 writeq(val64, &bar0->sw_reset);
1101 val64 = readq(&bar0->sw_reset);
1103 /* Ensure that it's safe to access registers by checking
1104 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1106 if (nic->device_type == XFRAME_II_DEVICE) {
1107 for (i = 0; i < 50; i++) {
1108 val64 = readq(&bar0->adapter_status);
1109 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1117 /* Enable Receiving broadcasts */
1118 add = &bar0->mac_cfg;
1119 val64 = readq(&bar0->mac_cfg);
1120 val64 |= MAC_RMAC_BCAST_ENABLE;
1121 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1122 writel((u32) val64, add);
1123 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1124 writel((u32) (val64 >> 32), (add + 4));
1126 /* Read registers in all blocks */
1127 val64 = readq(&bar0->mac_int_mask);
1128 val64 = readq(&bar0->mc_int_mask);
1129 val64 = readq(&bar0->xgxs_int_mask);
1133 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1135 if (nic->device_type & XFRAME_II_DEVICE) {
1136 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1137 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1138 &bar0->dtx_control, UF);
1140 msleep(1); /* Necessary!! */
1144 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1145 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1146 &bar0->dtx_control, UF);
1147 val64 = readq(&bar0->dtx_control);
1152 /* Tx DMA Initialization */
1154 writeq(val64, &bar0->tx_fifo_partition_0);
1155 writeq(val64, &bar0->tx_fifo_partition_1);
1156 writeq(val64, &bar0->tx_fifo_partition_2);
1157 writeq(val64, &bar0->tx_fifo_partition_3);
1160 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1162 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1163 13) | vBIT(config->tx_cfg[i].fifo_priority,
1166 if (i == (config->tx_fifo_num - 1)) {
1173 writeq(val64, &bar0->tx_fifo_partition_0);
1177 writeq(val64, &bar0->tx_fifo_partition_1);
1181 writeq(val64, &bar0->tx_fifo_partition_2);
1185 writeq(val64, &bar0->tx_fifo_partition_3);
1191 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1192 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1194 if ((nic->device_type == XFRAME_I_DEVICE) &&
1195 (nic->pdev->revision < 4))
1196 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1198 val64 = readq(&bar0->tx_fifo_partition_0);
1199 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1200 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1203 * Initialization of Tx_PA_CONFIG register to ignore packet
1204 * integrity checking.
1206 val64 = readq(&bar0->tx_pa_cfg);
1207 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1208 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1209 writeq(val64, &bar0->tx_pa_cfg);
1211 /* Rx DMA intialization. */
1213 for (i = 0; i < config->rx_ring_num; i++) {
1215 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1218 writeq(val64, &bar0->rx_queue_priority);
1221 * Allocating equal share of memory to all the
1225 if (nic->device_type & XFRAME_II_DEVICE)
1230 for (i = 0; i < config->rx_ring_num; i++) {
1233 mem_share = (mem_size / config->rx_ring_num +
1234 mem_size % config->rx_ring_num);
1235 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1238 mem_share = (mem_size / config->rx_ring_num);
1239 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1242 mem_share = (mem_size / config->rx_ring_num);
1243 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1246 mem_share = (mem_size / config->rx_ring_num);
1247 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1250 mem_share = (mem_size / config->rx_ring_num);
1251 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1254 mem_share = (mem_size / config->rx_ring_num);
1255 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1258 mem_share = (mem_size / config->rx_ring_num);
1259 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1262 mem_share = (mem_size / config->rx_ring_num);
1263 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1267 writeq(val64, &bar0->rx_queue_cfg);
1270 * Filling Tx round robin registers
1271 * as per the number of FIFOs
1273 switch (config->tx_fifo_num) {
1275 val64 = 0x0000000000000000ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_0);
1277 writeq(val64, &bar0->tx_w_round_robin_1);
1278 writeq(val64, &bar0->tx_w_round_robin_2);
1279 writeq(val64, &bar0->tx_w_round_robin_3);
1280 writeq(val64, &bar0->tx_w_round_robin_4);
1283 val64 = 0x0000010000010000ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_0);
1285 val64 = 0x0100000100000100ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_1);
1287 val64 = 0x0001000001000001ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_2);
1289 val64 = 0x0000010000010000ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_3);
1291 val64 = 0x0100000000000000ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_4);
1295 val64 = 0x0001000102000001ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_0);
1297 val64 = 0x0001020000010001ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_1);
1299 val64 = 0x0200000100010200ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_2);
1301 val64 = 0x0001000102000001ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_3);
1303 val64 = 0x0001020000000000ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_4);
1307 val64 = 0x0001020300010200ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_0);
1309 val64 = 0x0100000102030001ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_1);
1311 val64 = 0x0200010000010203ULL;
1312 writeq(val64, &bar0->tx_w_round_robin_2);
1313 val64 = 0x0001020001000001ULL;
1314 writeq(val64, &bar0->tx_w_round_robin_3);
1315 val64 = 0x0203000100000000ULL;
1316 writeq(val64, &bar0->tx_w_round_robin_4);
1319 val64 = 0x0001000203000102ULL;
1320 writeq(val64, &bar0->tx_w_round_robin_0);
1321 val64 = 0x0001020001030004ULL;
1322 writeq(val64, &bar0->tx_w_round_robin_1);
1323 val64 = 0x0001000203000102ULL;
1324 writeq(val64, &bar0->tx_w_round_robin_2);
1325 val64 = 0x0001020001030004ULL;
1326 writeq(val64, &bar0->tx_w_round_robin_3);
1327 val64 = 0x0001000000000000ULL;
1328 writeq(val64, &bar0->tx_w_round_robin_4);
1331 val64 = 0x0001020304000102ULL;
1332 writeq(val64, &bar0->tx_w_round_robin_0);
1333 val64 = 0x0304050001020001ULL;
1334 writeq(val64, &bar0->tx_w_round_robin_1);
1335 val64 = 0x0203000100000102ULL;
1336 writeq(val64, &bar0->tx_w_round_robin_2);
1337 val64 = 0x0304000102030405ULL;
1338 writeq(val64, &bar0->tx_w_round_robin_3);
1339 val64 = 0x0001000200000000ULL;
1340 writeq(val64, &bar0->tx_w_round_robin_4);
1343 val64 = 0x0001020001020300ULL;
1344 writeq(val64, &bar0->tx_w_round_robin_0);
1345 val64 = 0x0102030400010203ULL;
1346 writeq(val64, &bar0->tx_w_round_robin_1);
1347 val64 = 0x0405060001020001ULL;
1348 writeq(val64, &bar0->tx_w_round_robin_2);
1349 val64 = 0x0304050000010200ULL;
1350 writeq(val64, &bar0->tx_w_round_robin_3);
1351 val64 = 0x0102030000000000ULL;
1352 writeq(val64, &bar0->tx_w_round_robin_4);
1355 val64 = 0x0001020300040105ULL;
1356 writeq(val64, &bar0->tx_w_round_robin_0);
1357 val64 = 0x0200030106000204ULL;
1358 writeq(val64, &bar0->tx_w_round_robin_1);
1359 val64 = 0x0103000502010007ULL;
1360 writeq(val64, &bar0->tx_w_round_robin_2);
1361 val64 = 0x0304010002060500ULL;
1362 writeq(val64, &bar0->tx_w_round_robin_3);
1363 val64 = 0x0103020400000000ULL;
1364 writeq(val64, &bar0->tx_w_round_robin_4);
1368 /* Enable all configured Tx FIFO partitions */
1369 val64 = readq(&bar0->tx_fifo_partition_0);
1370 val64 |= (TX_FIFO_PARTITION_EN);
1371 writeq(val64, &bar0->tx_fifo_partition_0);
1373 /* Filling the Rx round robin registers as per the
1374 * number of Rings and steering based on QoS.
1376 switch (config->rx_ring_num) {
1378 val64 = 0x8080808080808080ULL;
1379 writeq(val64, &bar0->rts_qos_steering);
1382 val64 = 0x0000010000010000ULL;
1383 writeq(val64, &bar0->rx_w_round_robin_0);
1384 val64 = 0x0100000100000100ULL;
1385 writeq(val64, &bar0->rx_w_round_robin_1);
1386 val64 = 0x0001000001000001ULL;
1387 writeq(val64, &bar0->rx_w_round_robin_2);
1388 val64 = 0x0000010000010000ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_3);
1390 val64 = 0x0100000000000000ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_4);
1393 val64 = 0x8080808040404040ULL;
1394 writeq(val64, &bar0->rts_qos_steering);
1397 val64 = 0x0001000102000001ULL;
1398 writeq(val64, &bar0->rx_w_round_robin_0);
1399 val64 = 0x0001020000010001ULL;
1400 writeq(val64, &bar0->rx_w_round_robin_1);
1401 val64 = 0x0200000100010200ULL;
1402 writeq(val64, &bar0->rx_w_round_robin_2);
1403 val64 = 0x0001000102000001ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_3);
1405 val64 = 0x0001020000000000ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_4);
1408 val64 = 0x8080804040402020ULL;
1409 writeq(val64, &bar0->rts_qos_steering);
1412 val64 = 0x0001020300010200ULL;
1413 writeq(val64, &bar0->rx_w_round_robin_0);
1414 val64 = 0x0100000102030001ULL;
1415 writeq(val64, &bar0->rx_w_round_robin_1);
1416 val64 = 0x0200010000010203ULL;
1417 writeq(val64, &bar0->rx_w_round_robin_2);
1418 val64 = 0x0001020001000001ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_3);
1420 val64 = 0x0203000100000000ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_4);
1423 val64 = 0x8080404020201010ULL;
1424 writeq(val64, &bar0->rts_qos_steering);
1427 val64 = 0x0001000203000102ULL;
1428 writeq(val64, &bar0->rx_w_round_robin_0);
1429 val64 = 0x0001020001030004ULL;
1430 writeq(val64, &bar0->rx_w_round_robin_1);
1431 val64 = 0x0001000203000102ULL;
1432 writeq(val64, &bar0->rx_w_round_robin_2);
1433 val64 = 0x0001020001030004ULL;
1434 writeq(val64, &bar0->rx_w_round_robin_3);
1435 val64 = 0x0001000000000000ULL;
1436 writeq(val64, &bar0->rx_w_round_robin_4);
1438 val64 = 0x8080404020201008ULL;
1439 writeq(val64, &bar0->rts_qos_steering);
1442 val64 = 0x0001020304000102ULL;
1443 writeq(val64, &bar0->rx_w_round_robin_0);
1444 val64 = 0x0304050001020001ULL;
1445 writeq(val64, &bar0->rx_w_round_robin_1);
1446 val64 = 0x0203000100000102ULL;
1447 writeq(val64, &bar0->rx_w_round_robin_2);
1448 val64 = 0x0304000102030405ULL;
1449 writeq(val64, &bar0->rx_w_round_robin_3);
1450 val64 = 0x0001000200000000ULL;
1451 writeq(val64, &bar0->rx_w_round_robin_4);
1453 val64 = 0x8080404020100804ULL;
1454 writeq(val64, &bar0->rts_qos_steering);
1457 val64 = 0x0001020001020300ULL;
1458 writeq(val64, &bar0->rx_w_round_robin_0);
1459 val64 = 0x0102030400010203ULL;
1460 writeq(val64, &bar0->rx_w_round_robin_1);
1461 val64 = 0x0405060001020001ULL;
1462 writeq(val64, &bar0->rx_w_round_robin_2);
1463 val64 = 0x0304050000010200ULL;
1464 writeq(val64, &bar0->rx_w_round_robin_3);
1465 val64 = 0x0102030000000000ULL;
1466 writeq(val64, &bar0->rx_w_round_robin_4);
1468 val64 = 0x8080402010080402ULL;
1469 writeq(val64, &bar0->rts_qos_steering);
1472 val64 = 0x0001020300040105ULL;
1473 writeq(val64, &bar0->rx_w_round_robin_0);
1474 val64 = 0x0200030106000204ULL;
1475 writeq(val64, &bar0->rx_w_round_robin_1);
1476 val64 = 0x0103000502010007ULL;
1477 writeq(val64, &bar0->rx_w_round_robin_2);
1478 val64 = 0x0304010002060500ULL;
1479 writeq(val64, &bar0->rx_w_round_robin_3);
1480 val64 = 0x0103020400000000ULL;
1481 writeq(val64, &bar0->rx_w_round_robin_4);
1483 val64 = 0x8040201008040201ULL;
1484 writeq(val64, &bar0->rts_qos_steering);
1490 for (i = 0; i < 8; i++)
1491 writeq(val64, &bar0->rts_frm_len_n[i]);
1493 /* Set the default rts frame length for the rings configured */
1494 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1495 for (i = 0 ; i < config->rx_ring_num ; i++)
1496 writeq(val64, &bar0->rts_frm_len_n[i]);
1498 /* Set the frame length for the configured rings
1499 * desired by the user
1501 for (i = 0; i < config->rx_ring_num; i++) {
1502 /* If rts_frm_len[i] == 0 then it is assumed that user not
1503 * specified frame length steering.
1504 * If the user provides the frame length then program
1505 * the rts_frm_len register for those values or else
1506 * leave it as it is.
1508 if (rts_frm_len[i] != 0) {
1509 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1510 &bar0->rts_frm_len_n[i]);
1514 /* Disable differentiated services steering logic */
1515 for (i = 0; i < 64; i++) {
1516 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1517 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1519 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1524 /* Program statistics memory */
1525 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1527 if (nic->device_type == XFRAME_II_DEVICE) {
1528 val64 = STAT_BC(0x320);
1529 writeq(val64, &bar0->stat_byte_cnt);
1533 * Initializing the sampling rate for the device to calculate the
1534 * bandwidth utilization.
1536 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1537 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1538 writeq(val64, &bar0->mac_link_util);
1542 * Initializing the Transmit and Receive Traffic Interrupt
1546 * TTI Initialization. Default Tx timer gets us about
1547 * 250 interrupts per sec. Continuous interrupts are enabled
1550 if (nic->device_type == XFRAME_II_DEVICE) {
1551 int count = (nic->config.bus_speed * 125)/2;
1552 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1555 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1557 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1558 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1559 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1560 if (use_continuous_tx_intrs)
1561 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1562 writeq(val64, &bar0->tti_data1_mem);
1564 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1565 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1566 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1567 writeq(val64, &bar0->tti_data2_mem);
1569 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1570 writeq(val64, &bar0->tti_command_mem);
1573 * Once the operation completes, the Strobe bit of the command
1574 * register will be reset. We poll for this particular condition
1575 * We wait for a maximum of 500ms for the operation to complete,
1576 * if it's not complete by then we return error.
1580 val64 = readq(&bar0->tti_command_mem);
1581 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1585 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1593 /* RTI Initialization */
1594 if (nic->device_type == XFRAME_II_DEVICE) {
1596 * Programmed to generate Apprx 500 Intrs per
1599 int count = (nic->config.bus_speed * 125)/4;
1600 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1602 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1603 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1604 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1605 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1607 writeq(val64, &bar0->rti_data1_mem);
1609 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1610 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1611 if (nic->config.intr_type == MSI_X)
1612 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1613 RTI_DATA2_MEM_RX_UFC_D(0x40));
1615 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1616 RTI_DATA2_MEM_RX_UFC_D(0x80));
1617 writeq(val64, &bar0->rti_data2_mem);
1619 for (i = 0; i < config->rx_ring_num; i++) {
1620 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1621 | RTI_CMD_MEM_OFFSET(i);
1622 writeq(val64, &bar0->rti_command_mem);
1625 * Once the operation completes, the Strobe bit of the
1626 * command register will be reset. We poll for this
1627 * particular condition. We wait for a maximum of 500ms
1628 * for the operation to complete, if it's not complete
1629 * by then we return error.
1633 val64 = readq(&bar0->rti_command_mem);
1634 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1638 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1648 * Initializing proper values as Pause threshold into all
1649 * the 8 Queues on Rx side.
1651 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1652 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1654 /* Disable RMAC PAD STRIPPING */
1655 add = &bar0->mac_cfg;
1656 val64 = readq(&bar0->mac_cfg);
1657 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1658 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1659 writel((u32) (val64), add);
1660 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1661 writel((u32) (val64 >> 32), (add + 4));
1662 val64 = readq(&bar0->mac_cfg);
1664 /* Enable FCS stripping by adapter */
1665 add = &bar0->mac_cfg;
1666 val64 = readq(&bar0->mac_cfg);
1667 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1668 if (nic->device_type == XFRAME_II_DEVICE)
1669 writeq(val64, &bar0->mac_cfg);
1671 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1672 writel((u32) (val64), add);
1673 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1674 writel((u32) (val64 >> 32), (add + 4));
1678 * Set the time value to be inserted in the pause frame
1679 * generated by xena.
1681 val64 = readq(&bar0->rmac_pause_cfg);
1682 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1683 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1684 writeq(val64, &bar0->rmac_pause_cfg);
1687 * Set the Threshold Limit for Generating the pause frame
1688 * If the amount of data in any Queue exceeds ratio of
1689 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1690 * pause frame is generated
1693 for (i = 0; i < 4; i++) {
1695 (((u64) 0xFF00 | nic->mac_control.
1696 mc_pause_threshold_q0q3)
1699 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1702 for (i = 0; i < 4; i++) {
1704 (((u64) 0xFF00 | nic->mac_control.
1705 mc_pause_threshold_q4q7)
1708 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1711 * TxDMA will stop Read request if the number of read split has
1712 * exceeded the limit pointed by shared_splits
1714 val64 = readq(&bar0->pic_control);
1715 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1716 writeq(val64, &bar0->pic_control);
1718 if (nic->config.bus_speed == 266) {
1719 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1720 writeq(0x0, &bar0->read_retry_delay);
1721 writeq(0x0, &bar0->write_retry_delay);
1725 * Programming the Herc to split every write transaction
1726 * that does not start on an ADB to reduce disconnects.
1728 if (nic->device_type == XFRAME_II_DEVICE) {
1729 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1730 MISC_LINK_STABILITY_PRD(3);
1731 writeq(val64, &bar0->misc_control);
1732 val64 = readq(&bar0->pic_control2);
1733 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1734 writeq(val64, &bar0->pic_control2);
1736 if (strstr(nic->product_name, "CX4")) {
1737 val64 = TMAC_AVG_IPG(0x17);
1738 writeq(val64, &bar0->tmac_avg_ipg);
1743 #define LINK_UP_DOWN_INTERRUPT 1
1744 #define MAC_RMAC_ERR_TIMER 2
1746 static int s2io_link_fault_indication(struct s2io_nic *nic)
1748 if (nic->config.intr_type != INTA)
1749 return MAC_RMAC_ERR_TIMER;
1750 if (nic->device_type == XFRAME_II_DEVICE)
1751 return LINK_UP_DOWN_INTERRUPT;
1753 return MAC_RMAC_ERR_TIMER;
1757 * do_s2io_write_bits - update alarm bits in alarm register
1758 * @value: alarm bits
1759 * @flag: interrupt status
1760 * @addr: address value
1761 * Description: update alarm bits in alarm register
1765 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1769 temp64 = readq(addr);
1771 if(flag == ENABLE_INTRS)
1772 temp64 &= ~((u64) value);
1774 temp64 |= ((u64) value);
1775 writeq(temp64, addr);
1778 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1780 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1781 register u64 gen_int_mask = 0;
1783 if (mask & TX_DMA_INTR) {
1785 gen_int_mask |= TXDMA_INT_M;
1787 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1788 TXDMA_PCC_INT | TXDMA_TTI_INT |
1789 TXDMA_LSO_INT | TXDMA_TPA_INT |
1790 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1792 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1793 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1794 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1795 &bar0->pfc_err_mask);
1797 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1798 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1799 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1801 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1802 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1803 PCC_N_SERR | PCC_6_COF_OV_ERR |
1804 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1805 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1806 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1808 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1809 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1811 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1812 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1813 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1814 flag, &bar0->lso_err_mask);
1816 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1817 flag, &bar0->tpa_err_mask);
1819 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1823 if (mask & TX_MAC_INTR) {
1824 gen_int_mask |= TXMAC_INT_M;
1825 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1826 &bar0->mac_int_mask);
1827 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1828 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1829 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1830 flag, &bar0->mac_tmac_err_mask);
1833 if (mask & TX_XGXS_INTR) {
1834 gen_int_mask |= TXXGXS_INT_M;
1835 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1836 &bar0->xgxs_int_mask);
1837 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1838 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1839 flag, &bar0->xgxs_txgxs_err_mask);
1842 if (mask & RX_DMA_INTR) {
1843 gen_int_mask |= RXDMA_INT_M;
1844 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1845 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1846 flag, &bar0->rxdma_int_mask);
1847 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1848 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1849 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1850 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1851 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1852 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1853 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1854 &bar0->prc_pcix_err_mask);
1855 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1856 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1857 &bar0->rpa_err_mask);
1858 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1859 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1860 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1861 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1862 flag, &bar0->rda_err_mask);
1863 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1864 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1865 flag, &bar0->rti_err_mask);
1868 if (mask & RX_MAC_INTR) {
1869 gen_int_mask |= RXMAC_INT_M;
1870 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1871 &bar0->mac_int_mask);
1872 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1873 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1874 RMAC_DOUBLE_ECC_ERR |
1875 RMAC_LINK_STATE_CHANGE_INT,
1876 flag, &bar0->mac_rmac_err_mask);
1879 if (mask & RX_XGXS_INTR)
1881 gen_int_mask |= RXXGXS_INT_M;
1882 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1883 &bar0->xgxs_int_mask);
1884 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1885 &bar0->xgxs_rxgxs_err_mask);
1888 if (mask & MC_INTR) {
1889 gen_int_mask |= MC_INT_M;
1890 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1891 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1892 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1893 &bar0->mc_err_mask);
1895 nic->general_int_mask = gen_int_mask;
1897 /* Remove this line when alarm interrupts are enabled */
1898 nic->general_int_mask = 0;
1901 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1902 * @nic: device private variable,
1903 * @mask: A mask indicating which Intr block must be modified and,
1904 * @flag: A flag indicating whether to enable or disable the Intrs.
1905 * Description: This function will either disable or enable the interrupts
1906 * depending on the flag argument. The mask argument can be used to
1907 * enable/disable any Intr block.
1908 * Return Value: NONE.
1911 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1913 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1914 register u64 temp64 = 0, intr_mask = 0;
1916 intr_mask = nic->general_int_mask;
1918 /* Top level interrupt classification */
1919 /* PIC Interrupts */
1920 if (mask & TX_PIC_INTR) {
1921 /* Enable PIC Intrs in the general intr mask register */
1922 intr_mask |= TXPIC_INT_M;
1923 if (flag == ENABLE_INTRS) {
1925 * If Hercules adapter enable GPIO otherwise
1926 * disable all PCIX, Flash, MDIO, IIC and GPIO
1927 * interrupts for now.
1930 if (s2io_link_fault_indication(nic) ==
1931 LINK_UP_DOWN_INTERRUPT ) {
1932 do_s2io_write_bits(PIC_INT_GPIO, flag,
1933 &bar0->pic_int_mask);
1934 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1935 &bar0->gpio_int_mask);
1937 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1938 } else if (flag == DISABLE_INTRS) {
1940 * Disable PIC Intrs in the general
1941 * intr mask register
1943 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1947 /* Tx traffic interrupts */
1948 if (mask & TX_TRAFFIC_INTR) {
1949 intr_mask |= TXTRAFFIC_INT_M;
1950 if (flag == ENABLE_INTRS) {
1952 * Enable all the Tx side interrupts
1953 * writing 0 Enables all 64 TX interrupt levels
1955 writeq(0x0, &bar0->tx_traffic_mask);
1956 } else if (flag == DISABLE_INTRS) {
1958 * Disable Tx Traffic Intrs in the general intr mask
1961 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1965 /* Rx traffic interrupts */
1966 if (mask & RX_TRAFFIC_INTR) {
1967 intr_mask |= RXTRAFFIC_INT_M;
1968 if (flag == ENABLE_INTRS) {
1969 /* writing 0 Enables all 8 RX interrupt levels */
1970 writeq(0x0, &bar0->rx_traffic_mask);
1971 } else if (flag == DISABLE_INTRS) {
1973 * Disable Rx Traffic Intrs in the general intr mask
1976 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1980 temp64 = readq(&bar0->general_int_mask);
1981 if (flag == ENABLE_INTRS)
1982 temp64 &= ~((u64) intr_mask);
1984 temp64 = DISABLE_ALL_INTRS;
1985 writeq(temp64, &bar0->general_int_mask);
1987 nic->general_int_mask = readq(&bar0->general_int_mask);
1991 * verify_pcc_quiescent- Checks for PCC quiescent state
1992 * Return: 1 If PCC is quiescence
1993 * 0 If PCC is not quiescence
1995 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1998 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1999 u64 val64 = readq(&bar0->adapter_status);
2001 herc = (sp->device_type == XFRAME_II_DEVICE);
2003 if (flag == FALSE) {
2004 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2005 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2008 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2012 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2013 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2014 ADAPTER_STATUS_RMAC_PCC_IDLE))
2017 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2018 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2026 * verify_xena_quiescence - Checks whether the H/W is ready
2027 * Description: Returns whether the H/W is ready to go or not. Depending
2028 * on whether adapter enable bit was written or not the comparison
2029 * differs and the calling function passes the input argument flag to
2031 * Return: 1 If xena is quiescence
2032 * 0 If Xena is not quiescence
2035 static int verify_xena_quiescence(struct s2io_nic *sp)
2038 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2039 u64 val64 = readq(&bar0->adapter_status);
2040 mode = s2io_verify_pci_mode(sp);
2042 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2043 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2046 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2047 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2050 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2051 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2054 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2055 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2058 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2059 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2062 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2063 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2066 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2067 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2070 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2071 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2076 * In PCI 33 mode, the P_PLL is not used, and therefore,
2077 * the the P_PLL_LOCK bit in the adapter_status register will
2080 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2081 sp->device_type == XFRAME_II_DEVICE && mode !=
2083 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2086 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2087 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2088 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2095 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2096 * @sp: Pointer to device specifc structure
2098 * New procedure to clear mac address reading problems on Alpha platforms
2102 static void fix_mac_address(struct s2io_nic * sp)
2104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2108 while (fix_mac[i] != END_SIGN) {
2109 writeq(fix_mac[i++], &bar0->gpio_control);
2111 val64 = readq(&bar0->gpio_control);
2116 * start_nic - Turns the device on
2117 * @nic : device private variable.
2119 * This function actually turns the device on. Before this function is
2120 * called,all Registers are configured from their reset states
2121 * and shared memory is allocated but the NIC is still quiescent. On
2122 * calling this function, the device interrupts are cleared and the NIC is
2123 * literally switched on by writing into the adapter control register.
2125 * SUCCESS on success and -1 on failure.
2128 static int start_nic(struct s2io_nic *nic)
2130 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2131 struct net_device *dev = nic->dev;
2132 register u64 val64 = 0;
2134 struct mac_info *mac_control;
2135 struct config_param *config;
2137 mac_control = &nic->mac_control;
2138 config = &nic->config;
2140 /* PRC Initialization and configuration */
2141 for (i = 0; i < config->rx_ring_num; i++) {
2142 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2143 &bar0->prc_rxd0_n[i]);
2145 val64 = readq(&bar0->prc_ctrl_n[i]);
2146 if (nic->rxd_mode == RXD_MODE_1)
2147 val64 |= PRC_CTRL_RC_ENABLED;
2149 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2150 if (nic->device_type == XFRAME_II_DEVICE)
2151 val64 |= PRC_CTRL_GROUP_READS;
2152 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2153 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2154 writeq(val64, &bar0->prc_ctrl_n[i]);
2157 if (nic->rxd_mode == RXD_MODE_3B) {
2158 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2159 val64 = readq(&bar0->rx_pa_cfg);
2160 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2161 writeq(val64, &bar0->rx_pa_cfg);
2164 if (vlan_tag_strip == 0) {
2165 val64 = readq(&bar0->rx_pa_cfg);
2166 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2167 writeq(val64, &bar0->rx_pa_cfg);
2168 vlan_strip_flag = 0;
2172 * Enabling MC-RLDRAM. After enabling the device, we timeout
2173 * for around 100ms, which is approximately the time required
2174 * for the device to be ready for operation.
2176 val64 = readq(&bar0->mc_rldram_mrs);
2177 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2178 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2179 val64 = readq(&bar0->mc_rldram_mrs);
2181 msleep(100); /* Delay by around 100 ms. */
2183 /* Enabling ECC Protection. */
2184 val64 = readq(&bar0->adapter_control);
2185 val64 &= ~ADAPTER_ECC_EN;
2186 writeq(val64, &bar0->adapter_control);
2189 * Verify if the device is ready to be enabled, if so enable
2192 val64 = readq(&bar0->adapter_status);
2193 if (!verify_xena_quiescence(nic)) {
2194 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2195 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2196 (unsigned long long) val64);
2201 * With some switches, link might be already up at this point.
2202 * Because of this weird behavior, when we enable laser,
2203 * we may not get link. We need to handle this. We cannot
2204 * figure out which switch is misbehaving. So we are forced to
2205 * make a global change.
2208 /* Enabling Laser. */
2209 val64 = readq(&bar0->adapter_control);
2210 val64 |= ADAPTER_EOI_TX_ON;
2211 writeq(val64, &bar0->adapter_control);
2213 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2215 * Dont see link state interrupts initally on some switches,
2216 * so directly scheduling the link state task here.
2218 schedule_work(&nic->set_link_task);
2220 /* SXE-002: Initialize link and activity LED */
2221 subid = nic->pdev->subsystem_device;
2222 if (((subid & 0xFF) >= 0x07) &&
2223 (nic->device_type == XFRAME_I_DEVICE)) {
2224 val64 = readq(&bar0->gpio_control);
2225 val64 |= 0x0000800000000000ULL;
2226 writeq(val64, &bar0->gpio_control);
2227 val64 = 0x0411040400000000ULL;
2228 writeq(val64, (void __iomem *)bar0 + 0x2700);
2234 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2236 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2237 TxD *txdlp, int get_off)
2239 struct s2io_nic *nic = fifo_data->nic;
2240 struct sk_buff *skb;
2245 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2246 pci_unmap_single(nic->pdev, (dma_addr_t)
2247 txds->Buffer_Pointer, sizeof(u64),
2252 skb = (struct sk_buff *) ((unsigned long)
2253 txds->Host_Control);
2255 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2258 pci_unmap_single(nic->pdev, (dma_addr_t)
2259 txds->Buffer_Pointer,
2260 skb->len - skb->data_len,
2262 frg_cnt = skb_shinfo(skb)->nr_frags;
2265 for (j = 0; j < frg_cnt; j++, txds++) {
2266 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2267 if (!txds->Buffer_Pointer)
2269 pci_unmap_page(nic->pdev, (dma_addr_t)
2270 txds->Buffer_Pointer,
2271 frag->size, PCI_DMA_TODEVICE);
2274 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2279 * free_tx_buffers - Free all queued Tx buffers
2280 * @nic : device private variable.
2282 * Free all queued Tx buffers.
2283 * Return Value: void
2286 static void free_tx_buffers(struct s2io_nic *nic)
2288 struct net_device *dev = nic->dev;
2289 struct sk_buff *skb;
2292 struct mac_info *mac_control;
2293 struct config_param *config;
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2299 for (i = 0; i < config->tx_fifo_num; i++) {
2300 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2301 txdp = (struct TxD *) \
2302 mac_control->fifos[i].list_info[j].list_virt_addr;
2303 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2305 nic->mac_control.stats_info->sw_stat.mem_freed
2312 "%s:forcibly freeing %d skbs on FIFO%d\n",
2314 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2315 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2320 * stop_nic - To stop the nic
2321 * @nic ; device private variable.
2323 * This function does exactly the opposite of what the start_nic()
2324 * function does. This function is called to stop the device.
2329 static void stop_nic(struct s2io_nic *nic)
2331 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2332 register u64 val64 = 0;
2334 struct mac_info *mac_control;
2335 struct config_param *config;
2337 mac_control = &nic->mac_control;
2338 config = &nic->config;
2340 /* Disable all interrupts */
2341 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2342 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2343 interruptible |= TX_PIC_INTR;
2344 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2346 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2347 val64 = readq(&bar0->adapter_control);
2348 val64 &= ~(ADAPTER_CNTL_EN);
2349 writeq(val64, &bar0->adapter_control);
2353 * fill_rx_buffers - Allocates the Rx side skbs
2354 * @nic: device private variable
2355 * @ring_no: ring number
2357 * The function allocates Rx side skbs and puts the physical
2358 * address of these buffers into the RxD buffer pointers, so that the NIC
2359 * can DMA the received frame into these locations.
2360 * The NIC supports 3 receive modes, viz
2362 * 2. three buffer and
2363 * 3. Five buffer modes.
2364 * Each mode defines how many fragments the received frame will be split
2365 * up into by the NIC. The frame is split into L3 header, L4 Header,
2366 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2367 * is split into 3 fragments. As of now only single buffer mode is
2370 * SUCCESS on success or an appropriate -ve value on failure.
2373 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2375 struct net_device *dev = nic->dev;
2376 struct sk_buff *skb;
2378 int off, off1, size, block_no, block_no1;
2381 struct mac_info *mac_control;
2382 struct config_param *config;
2385 unsigned long flags;
2386 struct RxD_t *first_rxdp = NULL;
2387 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2390 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2392 mac_control = &nic->mac_control;
2393 config = &nic->config;
2394 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2395 atomic_read(&nic->rx_bufs_left[ring_no]);
2397 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2398 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2399 while (alloc_tab < alloc_cnt) {
2400 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2402 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2404 rxdp = mac_control->rings[ring_no].
2405 rx_blocks[block_no].rxds[off].virt_addr;
2407 if ((block_no == block_no1) && (off == off1) &&
2408 (rxdp->Host_Control)) {
2409 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2411 DBG_PRINT(INTR_DBG, " info equated\n");
2414 if (off && (off == rxd_count[nic->rxd_mode])) {
2415 mac_control->rings[ring_no].rx_curr_put_info.
2417 if (mac_control->rings[ring_no].rx_curr_put_info.
2418 block_index == mac_control->rings[ring_no].
2420 mac_control->rings[ring_no].rx_curr_put_info.
2422 block_no = mac_control->rings[ring_no].
2423 rx_curr_put_info.block_index;
2424 if (off == rxd_count[nic->rxd_mode])
2426 mac_control->rings[ring_no].rx_curr_put_info.
2428 rxdp = mac_control->rings[ring_no].
2429 rx_blocks[block_no].block_virt_addr;
2430 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2434 spin_lock_irqsave(&nic->put_lock, flags);
2435 mac_control->rings[ring_no].put_pos =
2436 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2437 spin_unlock_irqrestore(&nic->put_lock, flags);
2439 mac_control->rings[ring_no].put_pos =
2440 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2442 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2443 ((nic->rxd_mode == RXD_MODE_3B) &&
2444 (rxdp->Control_2 & s2BIT(0)))) {
2445 mac_control->rings[ring_no].rx_curr_put_info.
2449 /* calculate size of skb based on ring mode */
2450 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2451 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2452 if (nic->rxd_mode == RXD_MODE_1)
2453 size += NET_IP_ALIGN;
2455 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2458 skb = dev_alloc_skb(size);
2460 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2461 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2464 first_rxdp->Control_1 |= RXD_OWN_XENA;
2466 nic->mac_control.stats_info->sw_stat. \
2467 mem_alloc_fail_cnt++;
2470 nic->mac_control.stats_info->sw_stat.mem_allocated
2472 if (nic->rxd_mode == RXD_MODE_1) {
2473 /* 1 buffer mode - normal operation mode */
2474 rxdp1 = (struct RxD1*)rxdp;
2475 memset(rxdp, 0, sizeof(struct RxD1));
2476 skb_reserve(skb, NET_IP_ALIGN);
2477 rxdp1->Buffer0_ptr = pci_map_single
2478 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2479 PCI_DMA_FROMDEVICE);
2480 if( (rxdp1->Buffer0_ptr == 0) ||
2481 (rxdp1->Buffer0_ptr ==
2483 goto pci_map_failed;
2486 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2488 } else if (nic->rxd_mode == RXD_MODE_3B) {
2491 * 2 buffer mode provides 128
2492 * byte aligned receive buffers.
2495 rxdp3 = (struct RxD3*)rxdp;
2496 /* save buffer pointers to avoid frequent dma mapping */
2497 Buffer0_ptr = rxdp3->Buffer0_ptr;
2498 Buffer1_ptr = rxdp3->Buffer1_ptr;
2499 memset(rxdp, 0, sizeof(struct RxD3));
2500 /* restore the buffer pointers for dma sync*/
2501 rxdp3->Buffer0_ptr = Buffer0_ptr;
2502 rxdp3->Buffer1_ptr = Buffer1_ptr;
2504 ba = &mac_control->rings[ring_no].ba[block_no][off];
2505 skb_reserve(skb, BUF0_LEN);
2506 tmp = (u64)(unsigned long) skb->data;
2509 skb->data = (void *) (unsigned long)tmp;
2510 skb_reset_tail_pointer(skb);
2512 if (!(rxdp3->Buffer0_ptr))
2513 rxdp3->Buffer0_ptr =
2514 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2515 PCI_DMA_FROMDEVICE);
2517 pci_dma_sync_single_for_device(nic->pdev,
2518 (dma_addr_t) rxdp3->Buffer0_ptr,
2519 BUF0_LEN, PCI_DMA_FROMDEVICE);
2520 if( (rxdp3->Buffer0_ptr == 0) ||
2521 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2522 goto pci_map_failed;
2524 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2525 if (nic->rxd_mode == RXD_MODE_3B) {
2526 /* Two buffer mode */
2529 * Buffer2 will have L3/L4 header plus
2532 rxdp3->Buffer2_ptr = pci_map_single
2533 (nic->pdev, skb->data, dev->mtu + 4,
2534 PCI_DMA_FROMDEVICE);
2536 if( (rxdp3->Buffer2_ptr == 0) ||
2537 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2538 goto pci_map_failed;
2540 rxdp3->Buffer1_ptr =
2541 pci_map_single(nic->pdev,
2543 PCI_DMA_FROMDEVICE);
2544 if( (rxdp3->Buffer1_ptr == 0) ||
2545 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2548 (dma_addr_t)rxdp3->Buffer2_ptr,
2550 PCI_DMA_FROMDEVICE);
2551 goto pci_map_failed;
2553 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2554 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2557 rxdp->Control_2 |= s2BIT(0);
2559 rxdp->Host_Control = (unsigned long) (skb);
2560 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2561 rxdp->Control_1 |= RXD_OWN_XENA;
2563 if (off == (rxd_count[nic->rxd_mode] + 1))
2565 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2567 rxdp->Control_2 |= SET_RXD_MARKER;
2568 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2571 first_rxdp->Control_1 |= RXD_OWN_XENA;
2575 atomic_inc(&nic->rx_bufs_left[ring_no]);
2580 /* Transfer ownership of first descriptor to adapter just before
2581 * exiting. Before that, use memory barrier so that ownership
2582 * and other fields are seen by adapter correctly.
2586 first_rxdp->Control_1 |= RXD_OWN_XENA;
2591 stats->pci_map_fail_cnt++;
2592 stats->mem_freed += skb->truesize;
2593 dev_kfree_skb_irq(skb);
2597 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2599 struct net_device *dev = sp->dev;
2601 struct sk_buff *skb;
2603 struct mac_info *mac_control;
2608 mac_control = &sp->mac_control;
2609 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2610 rxdp = mac_control->rings[ring_no].
2611 rx_blocks[blk].rxds[j].virt_addr;
2612 skb = (struct sk_buff *)
2613 ((unsigned long) rxdp->Host_Control);
2617 if (sp->rxd_mode == RXD_MODE_1) {
2618 rxdp1 = (struct RxD1*)rxdp;
2619 pci_unmap_single(sp->pdev, (dma_addr_t)
2622 HEADER_ETHERNET_II_802_3_SIZE
2623 + HEADER_802_2_SIZE +
2625 PCI_DMA_FROMDEVICE);
2626 memset(rxdp, 0, sizeof(struct RxD1));
2627 } else if(sp->rxd_mode == RXD_MODE_3B) {
2628 rxdp3 = (struct RxD3*)rxdp;
2629 ba = &mac_control->rings[ring_no].
2631 pci_unmap_single(sp->pdev, (dma_addr_t)
2634 PCI_DMA_FROMDEVICE);
2635 pci_unmap_single(sp->pdev, (dma_addr_t)
2638 PCI_DMA_FROMDEVICE);
2639 pci_unmap_single(sp->pdev, (dma_addr_t)
2642 PCI_DMA_FROMDEVICE);
2643 memset(rxdp, 0, sizeof(struct RxD3));
2645 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2647 atomic_dec(&sp->rx_bufs_left[ring_no]);
2652 * free_rx_buffers - Frees all Rx buffers
2653 * @sp: device private variable.
2655 * This function will free all Rx buffers allocated by host.
2660 static void free_rx_buffers(struct s2io_nic *sp)
2662 struct net_device *dev = sp->dev;
2663 int i, blk = 0, buf_cnt = 0;
2664 struct mac_info *mac_control;
2665 struct config_param *config;
2667 mac_control = &sp->mac_control;
2668 config = &sp->config;
2670 for (i = 0; i < config->rx_ring_num; i++) {
2671 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2672 free_rxd_blk(sp,i,blk);
2674 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2675 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2676 mac_control->rings[i].rx_curr_put_info.offset = 0;
2677 mac_control->rings[i].rx_curr_get_info.offset = 0;
2678 atomic_set(&sp->rx_bufs_left[i], 0);
2679 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2680 dev->name, buf_cnt, i);
2685 * s2io_poll - Rx interrupt handler for NAPI support
2686 * @napi : pointer to the napi structure.
2687 * @budget : The number of packets that were budgeted to be processed
2688 * during one pass through the 'Poll" function.
2690 * Comes into picture only if NAPI support has been incorporated. It does
2691 * the same thing that rx_intr_handler does, but not in a interrupt context
2692 * also It will process only a given number of packets.
2694 * 0 on success and 1 if there are No Rx packets to be processed.
2697 static int s2io_poll(struct napi_struct *napi, int budget)
2699 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2700 struct net_device *dev = nic->dev;
2701 int pkt_cnt = 0, org_pkts_to_process;
2702 struct mac_info *mac_control;
2703 struct config_param *config;
2704 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2707 if (!is_s2io_card_up(nic))
2710 mac_control = &nic->mac_control;
2711 config = &nic->config;
2713 nic->pkts_to_process = budget;
2714 org_pkts_to_process = nic->pkts_to_process;
2716 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2717 readl(&bar0->rx_traffic_int);
2719 for (i = 0; i < config->rx_ring_num; i++) {
2720 rx_intr_handler(&mac_control->rings[i]);
2721 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2722 if (!nic->pkts_to_process) {
2723 /* Quota for the current iteration has been met */
2728 netif_rx_complete(dev, napi);
2730 for (i = 0; i < config->rx_ring_num; i++) {
2731 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2732 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2733 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2737 /* Re enable the Rx interrupts. */
2738 writeq(0x0, &bar0->rx_traffic_mask);
2739 readl(&bar0->rx_traffic_mask);
2743 for (i = 0; i < config->rx_ring_num; i++) {
2744 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2745 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2746 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2753 #ifdef CONFIG_NET_POLL_CONTROLLER
2755 * s2io_netpoll - netpoll event handler entry point
2756 * @dev : pointer to the device structure.
2758 * This function will be called by upper layer to check for events on the
2759 * interface in situations where interrupts are disabled. It is used for
2760 * specific in-kernel networking tasks, such as remote consoles and kernel
2761 * debugging over the network (example netdump in RedHat).
2763 static void s2io_netpoll(struct net_device *dev)
2765 struct s2io_nic *nic = dev->priv;
2766 struct mac_info *mac_control;
2767 struct config_param *config;
2768 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2769 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2772 if (pci_channel_offline(nic->pdev))
2775 disable_irq(dev->irq);
2777 mac_control = &nic->mac_control;
2778 config = &nic->config;
2780 writeq(val64, &bar0->rx_traffic_int);
2781 writeq(val64, &bar0->tx_traffic_int);
2783 /* we need to free up the transmitted skbufs or else netpoll will
2784 * run out of skbs and will fail and eventually netpoll application such
2785 * as netdump will fail.
2787 for (i = 0; i < config->tx_fifo_num; i++)
2788 tx_intr_handler(&mac_control->fifos[i]);
2790 /* check for received packet and indicate up to network */
2791 for (i = 0; i < config->rx_ring_num; i++)
2792 rx_intr_handler(&mac_control->rings[i]);
2794 for (i = 0; i < config->rx_ring_num; i++) {
2795 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2796 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2797 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2801 enable_irq(dev->irq);
2807 * rx_intr_handler - Rx interrupt handler
2808 * @nic: device private variable.
2810 * If the interrupt is because of a received frame or if the
2811 * receive ring contains fresh as yet un-processed frames,this function is
2812 * called. It picks out the RxD at which place the last Rx processing had
2813 * stopped and sends the skb to the OSM's Rx handler and then increments
2818 static void rx_intr_handler(struct ring_info *ring_data)
2820 struct s2io_nic *nic = ring_data->nic;
2821 struct net_device *dev = (struct net_device *) nic->dev;
2822 int get_block, put_block, put_offset;
2823 struct rx_curr_get_info get_info, put_info;
2825 struct sk_buff *skb;
2831 spin_lock(&nic->rx_lock);
2833 get_info = ring_data->rx_curr_get_info;
2834 get_block = get_info.block_index;
2835 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2836 put_block = put_info.block_index;
2837 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2839 spin_lock(&nic->put_lock);
2840 put_offset = ring_data->put_pos;
2841 spin_unlock(&nic->put_lock);
2843 put_offset = ring_data->put_pos;
2845 while (RXD_IS_UP2DT(rxdp)) {
2847 * If your are next to put index then it's
2848 * FIFO full condition
2850 if ((get_block == put_block) &&
2851 (get_info.offset + 1) == put_info.offset) {
2852 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2855 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2857 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2859 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2860 spin_unlock(&nic->rx_lock);
2863 if (nic->rxd_mode == RXD_MODE_1) {
2864 rxdp1 = (struct RxD1*)rxdp;
2865 pci_unmap_single(nic->pdev, (dma_addr_t)
2868 HEADER_ETHERNET_II_802_3_SIZE +
2871 PCI_DMA_FROMDEVICE);
2872 } else if (nic->rxd_mode == RXD_MODE_3B) {
2873 rxdp3 = (struct RxD3*)rxdp;
2874 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2876 BUF0_LEN, PCI_DMA_FROMDEVICE);
2877 pci_unmap_single(nic->pdev, (dma_addr_t)
2880 PCI_DMA_FROMDEVICE);
2882 prefetch(skb->data);
2883 rx_osm_handler(ring_data, rxdp);
2885 ring_data->rx_curr_get_info.offset = get_info.offset;
2886 rxdp = ring_data->rx_blocks[get_block].
2887 rxds[get_info.offset].virt_addr;
2888 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2889 get_info.offset = 0;
2890 ring_data->rx_curr_get_info.offset = get_info.offset;
2892 if (get_block == ring_data->block_count)
2894 ring_data->rx_curr_get_info.block_index = get_block;
2895 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2898 nic->pkts_to_process -= 1;
2899 if ((napi) && (!nic->pkts_to_process))
2902 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2906 /* Clear all LRO sessions before exiting */
2907 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2908 struct lro *lro = &nic->lro0_n[i];
2910 update_L3L4_header(nic, lro);
2911 queue_rx_frame(lro->parent);
2912 clear_lro_session(lro);
2917 spin_unlock(&nic->rx_lock);
2921 * tx_intr_handler - Transmit interrupt handler
2922 * @nic : device private variable
2924 * If an interrupt was raised to indicate DMA complete of the
2925 * Tx packet, this function is called. It identifies the last TxD
2926 * whose buffer was freed and frees all skbs whose data have already
2927 * DMA'ed into the NICs internal memory.
2932 static void tx_intr_handler(struct fifo_info *fifo_data)
2934 struct s2io_nic *nic = fifo_data->nic;
2935 struct net_device *dev = (struct net_device *) nic->dev;
2936 struct tx_curr_get_info get_info, put_info;
2937 struct sk_buff *skb;
2941 get_info = fifo_data->tx_curr_get_info;
2942 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2943 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2945 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2946 (get_info.offset != put_info.offset) &&
2947 (txdlp->Host_Control)) {
2948 /* Check for TxD errors */
2949 if (txdlp->Control_1 & TXD_T_CODE) {
2950 unsigned long long err;
2951 err = txdlp->Control_1 & TXD_T_CODE;
2953 nic->mac_control.stats_info->sw_stat.
2957 /* update t_code statistics */
2958 err_mask = err >> 48;
2961 nic->mac_control.stats_info->sw_stat.
2966 nic->mac_control.stats_info->sw_stat.
2967 tx_desc_abort_cnt++;
2971 nic->mac_control.stats_info->sw_stat.
2972 tx_parity_err_cnt++;
2976 nic->mac_control.stats_info->sw_stat.
2981 nic->mac_control.stats_info->sw_stat.
2982 tx_list_proc_err_cnt++;
2987 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2989 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2991 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2995 /* Updating the statistics block */
2996 nic->stats.tx_bytes += skb->len;
2997 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2998 dev_kfree_skb_irq(skb);
3001 if (get_info.offset == get_info.fifo_len + 1)
3002 get_info.offset = 0;
3003 txdlp = (struct TxD *) fifo_data->list_info
3004 [get_info.offset].list_virt_addr;
3005 fifo_data->tx_curr_get_info.offset =
3009 spin_lock(&nic->tx_lock);
3010 if (netif_queue_stopped(dev))
3011 netif_wake_queue(dev);
3012 spin_unlock(&nic->tx_lock);
3016 * s2io_mdio_write - Function to write in to MDIO registers
3017 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3018 * @addr : address value
3019 * @value : data value
3020 * @dev : pointer to net_device structure
3022 * This function is used to write values to the MDIO registers
3025 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3028 struct s2io_nic *sp = dev->priv;
3029 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3031 //address transaction
3032 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3033 | MDIO_MMD_DEV_ADDR(mmd_type)
3034 | MDIO_MMS_PRT_ADDR(0x0);
3035 writeq(val64, &bar0->mdio_control);
3036 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3037 writeq(val64, &bar0->mdio_control);
3042 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3043 | MDIO_MMD_DEV_ADDR(mmd_type)
3044 | MDIO_MMS_PRT_ADDR(0x0)
3045 | MDIO_MDIO_DATA(value)
3046 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3047 writeq(val64, &bar0->mdio_control);
3048 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3049 writeq(val64, &bar0->mdio_control);
3053 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3054 | MDIO_MMD_DEV_ADDR(mmd_type)
3055 | MDIO_MMS_PRT_ADDR(0x0)
3056 | MDIO_OP(MDIO_OP_READ_TRANS);
3057 writeq(val64, &bar0->mdio_control);
3058 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3059 writeq(val64, &bar0->mdio_control);
3065 * s2io_mdio_read - Function to write in to MDIO registers
3066 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3067 * @addr : address value
3068 * @dev : pointer to net_device structure
3070 * This function is used to read values to the MDIO registers
3073 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3077 struct s2io_nic *sp = dev->priv;
3078 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3080 /* address transaction */
3081 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3082 | MDIO_MMD_DEV_ADDR(mmd_type)
3083 | MDIO_MMS_PRT_ADDR(0x0);
3084 writeq(val64, &bar0->mdio_control);
3085 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3086 writeq(val64, &bar0->mdio_control);
3089 /* Data transaction */
3091 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3092 | MDIO_MMD_DEV_ADDR(mmd_type)
3093 | MDIO_MMS_PRT_ADDR(0x0)
3094 | MDIO_OP(MDIO_OP_READ_TRANS);
3095 writeq(val64, &bar0->mdio_control);
3096 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3097 writeq(val64, &bar0->mdio_control);
3100 /* Read the value from regs */
3101 rval64 = readq(&bar0->mdio_control);
3102 rval64 = rval64 & 0xFFFF0000;
3103 rval64 = rval64 >> 16;
3107 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3108 * @counter : couter value to be updated
3109 * @flag : flag to indicate the status
3110 * @type : counter type
3112 * This function is to check the status of the xpak counters value
3116 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3121 for(i = 0; i <index; i++)
3126 *counter = *counter + 1;
3127 val64 = *regs_stat & mask;
3128 val64 = val64 >> (index * 0x2);
3135 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3136 "service. Excessive temperatures may "
3137 "result in premature transceiver "
3141 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3142 "service Excessive bias currents may "
3143 "indicate imminent laser diode "
3147 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3148 "service Excessive laser output "
3149 "power may saturate far-end "
3153 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3158 val64 = val64 << (index * 0x2);
3159 *regs_stat = (*regs_stat & (~mask)) | (val64);
3162 *regs_stat = *regs_stat & (~mask);
3167 * s2io_updt_xpak_counter - Function to update the xpak counters
3168 * @dev : pointer to net_device struct
3170 * This function is to upate the status of the xpak counters value
3173 static void s2io_updt_xpak_counter(struct net_device *dev)
3181 struct s2io_nic *sp = dev->priv;
3182 struct stat_block *stat_info = sp->mac_control.stats_info;
3184 /* Check the communication with the MDIO slave */
3187 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3188 if((val64 == 0xFFFF) || (val64 == 0x0000))
3190 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3191 "Returned %llx\n", (unsigned long long)val64);
3195 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3198 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3199 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3200 (unsigned long long)val64);
3204 /* Loading the DOM register to MDIO register */
3206 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3207 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3209 /* Reading the Alarm flags */
3212 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3214 flag = CHECKBIT(val64, 0x7);
3216 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3217 &stat_info->xpak_stat.xpak_regs_stat,
3220 if(CHECKBIT(val64, 0x6))
3221 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3223 flag = CHECKBIT(val64, 0x3);
3225 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3226 &stat_info->xpak_stat.xpak_regs_stat,
3229 if(CHECKBIT(val64, 0x2))
3230 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3232 flag = CHECKBIT(val64, 0x1);
3234 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3235 &stat_info->xpak_stat.xpak_regs_stat,
3238 if(CHECKBIT(val64, 0x0))
3239 stat_info->xpak_stat.alarm_laser_output_power_low++;
3241 /* Reading the Warning flags */
3244 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3246 if(CHECKBIT(val64, 0x7))
3247 stat_info->xpak_stat.warn_transceiver_temp_high++;
3249 if(CHECKBIT(val64, 0x6))
3250 stat_info->xpak_stat.warn_transceiver_temp_low++;
3252 if(CHECKBIT(val64, 0x3))
3253 stat_info->xpak_stat.warn_laser_bias_current_high++;
3255 if(CHECKBIT(val64, 0x2))
3256 stat_info->xpak_stat.warn_laser_bias_current_low++;
3258 if(CHECKBIT(val64, 0x1))
3259 stat_info->xpak_stat.warn_laser_output_power_high++;
3261 if(CHECKBIT(val64, 0x0))
3262 stat_info->xpak_stat.warn_laser_output_power_low++;
3266 * wait_for_cmd_complete - waits for a command to complete.
3267 * @sp : private member of the device structure, which is a pointer to the
3268 * s2io_nic structure.
3269 * Description: Function that waits for a command to Write into RMAC
3270 * ADDR DATA registers to be completed and returns either success or
3271 * error depending on whether the command was complete or not.
3273 * SUCCESS on success and FAILURE on failure.
3276 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3279 int ret = FAILURE, cnt = 0, delay = 1;
3282 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3286 val64 = readq(addr);
3287 if (bit_state == S2IO_BIT_RESET) {
3288 if (!(val64 & busy_bit)) {
3293 if (!(val64 & busy_bit)) {
3310 * check_pci_device_id - Checks if the device id is supported
3312 * Description: Function to check if the pci device id is supported by driver.
3313 * Return value: Actual device id if supported else PCI_ANY_ID
3315 static u16 check_pci_device_id(u16 id)
3318 case PCI_DEVICE_ID_HERC_WIN:
3319 case PCI_DEVICE_ID_HERC_UNI:
3320 return XFRAME_II_DEVICE;
3321 case PCI_DEVICE_ID_S2IO_UNI:
3322 case PCI_DEVICE_ID_S2IO_WIN:
3323 return XFRAME_I_DEVICE;
3330 * s2io_reset - Resets the card.
3331 * @sp : private member of the device structure.
3332 * Description: Function to Reset the card. This function then also
3333 * restores the previously saved PCI configuration space registers as
3334 * the card reset also resets the configuration space.
3339 static void s2io_reset(struct s2io_nic * sp)
3341 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3346 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3347 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3349 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3350 __FUNCTION__, sp->dev->name);
3352 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3353 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3355 val64 = SW_RESET_ALL;
3356 writeq(val64, &bar0->sw_reset);
3357 if (strstr(sp->product_name, "CX4")) {
3361 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3363 /* Restore the PCI state saved during initialization. */
3364 pci_restore_state(sp->pdev);
3365 pci_read_config_word(sp->pdev, 0x2, &val16);
3366 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3371 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3372 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3375 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3379 /* Set swapper to enable I/O register access */
3380 s2io_set_swapper(sp);
3382 /* Restore the MSIX table entries from local variables */
3383 restore_xmsi_data(sp);
3385 /* Clear certain PCI/PCI-X fields after reset */
3386 if (sp->device_type == XFRAME_II_DEVICE) {
3387 /* Clear "detected parity error" bit */
3388 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3390 /* Clearing PCIX Ecc status register */
3391 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3393 /* Clearing PCI_STATUS error reflected here */
3394 writeq(s2BIT(62), &bar0->txpic_int_reg);
3397 /* Reset device statistics maintained by OS */
3398 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3400 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3401 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3402 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3403 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3404 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3405 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3406 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3407 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3408 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3409 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3410 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3411 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3412 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3413 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3414 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3415 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3416 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3417 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3418 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3420 /* SXE-002: Configure link and activity LED to turn it off */
3421 subid = sp->pdev->subsystem_device;
3422 if (((subid & 0xFF) >= 0x07) &&
3423 (sp->device_type == XFRAME_I_DEVICE)) {
3424 val64 = readq(&bar0->gpio_control);
3425 val64 |= 0x0000800000000000ULL;
3426 writeq(val64, &bar0->gpio_control);
3427 val64 = 0x0411040400000000ULL;
3428 writeq(val64, (void __iomem *)bar0 + 0x2700);
3432 * Clear spurious ECC interrupts that would have occured on
3433 * XFRAME II cards after reset.
3435 if (sp->device_type == XFRAME_II_DEVICE) {
3436 val64 = readq(&bar0->pcc_err_reg);
3437 writeq(val64, &bar0->pcc_err_reg);
3440 /* restore the previously assigned mac address */
3441 do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3443 sp->device_enabled_once = FALSE;
3447 * s2io_set_swapper - to set the swapper controle on the card
3448 * @sp : private member of the device structure,
3449 * pointer to the s2io_nic structure.
3450 * Description: Function to set the swapper control on the card
3451 * correctly depending on the 'endianness' of the system.
3453 * SUCCESS on success and FAILURE on failure.
3456 static int s2io_set_swapper(struct s2io_nic * sp)
3458 struct net_device *dev = sp->dev;
3459 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3460 u64 val64, valt, valr;
3463 * Set proper endian settings and verify the same by reading
3464 * the PIF Feed-back register.
3467 val64 = readq(&bar0->pif_rd_swapper_fb);
3468 if (val64 != 0x0123456789ABCDEFULL) {
3470 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3471 0x8100008181000081ULL, /* FE=1, SE=0 */
3472 0x4200004242000042ULL, /* FE=0, SE=1 */
3473 0}; /* FE=0, SE=0 */
3476 writeq(value[i], &bar0->swapper_ctrl);
3477 val64 = readq(&bar0->pif_rd_swapper_fb);
3478 if (val64 == 0x0123456789ABCDEFULL)
3483 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3485 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3486 (unsigned long long) val64);
3491 valr = readq(&bar0->swapper_ctrl);
3494 valt = 0x0123456789ABCDEFULL;
3495 writeq(valt, &bar0->xmsi_address);
3496 val64 = readq(&bar0->xmsi_address);
3500 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3501 0x0081810000818100ULL, /* FE=1, SE=0 */
3502 0x0042420000424200ULL, /* FE=0, SE=1 */
3503 0}; /* FE=0, SE=0 */
3506 writeq((value[i] | valr), &bar0->swapper_ctrl);
3507 writeq(valt, &bar0->xmsi_address);
3508 val64 = readq(&bar0->xmsi_address);
3514 unsigned long long x = val64;
3515 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3516 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3520 val64 = readq(&bar0->swapper_ctrl);
3521 val64 &= 0xFFFF000000000000ULL;
3525 * The device by default set to a big endian format, so a
3526 * big endian driver need not set anything.
3528 val64 |= (SWAPPER_CTRL_TXP_FE |
3529 SWAPPER_CTRL_TXP_SE |
3530 SWAPPER_CTRL_TXD_R_FE |
3531 SWAPPER_CTRL_TXD_W_FE |
3532 SWAPPER_CTRL_TXF_R_FE |
3533 SWAPPER_CTRL_RXD_R_FE |
3534 SWAPPER_CTRL_RXD_W_FE |
3535 SWAPPER_CTRL_RXF_W_FE |
3536 SWAPPER_CTRL_XMSI_FE |
3537 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3538 if (sp->config.intr_type == INTA)
3539 val64 |= SWAPPER_CTRL_XMSI_SE;
3540 writeq(val64, &bar0->swapper_ctrl);
3543 * Initially we enable all bits to make it accessible by the
3544 * driver, then we selectively enable only those bits that
3547 val64 |= (SWAPPER_CTRL_TXP_FE |
3548 SWAPPER_CTRL_TXP_SE |
3549 SWAPPER_CTRL_TXD_R_FE |
3550 SWAPPER_CTRL_TXD_R_SE |
3551 SWAPPER_CTRL_TXD_W_FE |
3552 SWAPPER_CTRL_TXD_W_SE |
3553 SWAPPER_CTRL_TXF_R_FE |
3554 SWAPPER_CTRL_RXD_R_FE |
3555 SWAPPER_CTRL_RXD_R_SE |
3556 SWAPPER_CTRL_RXD_W_FE |
3557 SWAPPER_CTRL_RXD_W_SE |
3558 SWAPPER_CTRL_RXF_W_FE |
3559 SWAPPER_CTRL_XMSI_FE |
3560 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3561 if (sp->config.intr_type == INTA)
3562 val64 |= SWAPPER_CTRL_XMSI_SE;
3563 writeq(val64, &bar0->swapper_ctrl);
3565 val64 = readq(&bar0->swapper_ctrl);
3568 * Verifying if endian settings are accurate by reading a
3569 * feedback register.
3571 val64 = readq(&bar0->pif_rd_swapper_fb);
3572 if (val64 != 0x0123456789ABCDEFULL) {
3573 /* Endian settings are incorrect, calls for another dekko. */
3574 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3576 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3577 (unsigned long long) val64);
3584 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3586 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3588 int ret = 0, cnt = 0;
3591 val64 = readq(&bar0->xmsi_access);
3592 if (!(val64 & s2BIT(15)))
3598 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3605 static void restore_xmsi_data(struct s2io_nic *nic)
3607 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3611 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3612 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3613 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3614 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3615 writeq(val64, &bar0->xmsi_access);
3616 if (wait_for_msix_trans(nic, i)) {
3617 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3623 static void store_xmsi_data(struct s2io_nic *nic)
3625 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3626 u64 val64, addr, data;
3629 /* Store and display */
3630 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3631 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3632 writeq(val64, &bar0->xmsi_access);
3633 if (wait_for_msix_trans(nic, i)) {
3634 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3637 addr = readq(&bar0->xmsi_address);
3638 data = readq(&bar0->xmsi_data);
3640 nic->msix_info[i].addr = addr;
3641 nic->msix_info[i].data = data;
3646 static int s2io_enable_msi_x(struct s2io_nic *nic)
3648 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3650 u16 msi_control; /* Temp variable */
3651 int ret, i, j, msix_indx = 1;
3653 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3655 if (!nic->entries) {
3656 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3658 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3661 nic->mac_control.stats_info->sw_stat.mem_allocated
3662 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3665 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3667 if (!nic->s2io_entries) {
3668 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3670 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3671 kfree(nic->entries);
3672 nic->mac_control.stats_info->sw_stat.mem_freed
3673 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3676 nic->mac_control.stats_info->sw_stat.mem_allocated
3677 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3679 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3680 nic->entries[i].entry = i;
3681 nic->s2io_entries[i].entry = i;
3682 nic->s2io_entries[i].arg = NULL;
3683 nic->s2io_entries[i].in_use = 0;
3686 tx_mat = readq(&bar0->tx_mat0_n[0]);
3687 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3688 tx_mat |= TX_MAT_SET(i, msix_indx);
3689 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3690 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3691 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3693 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3695 rx_mat = readq(&bar0->rx_mat);
3696 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3697 rx_mat |= RX_MAT_SET(j, msix_indx);
3698 nic->s2io_entries[msix_indx].arg
3699 = &nic->mac_control.rings[j];
3700 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3701 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3703 writeq(rx_mat, &bar0->rx_mat);
3705 nic->avail_msix_vectors = 0;
3706 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3707 /* We fail init if error or we get less vectors than min required */
3708 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3709 nic->avail_msix_vectors = ret;
3710 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3713 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3714 kfree(nic->entries);
3715 nic->mac_control.stats_info->sw_stat.mem_freed
3716 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3717 kfree(nic->s2io_entries);
3718 nic->mac_control.stats_info->sw_stat.mem_freed
3719 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3720 nic->entries = NULL;
3721 nic->s2io_entries = NULL;
3722 nic->avail_msix_vectors = 0;
3725 if (!nic->avail_msix_vectors)
3726 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3729 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3730 * in the herc NIC. (Temp change, needs to be removed later)
3732 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3733 msi_control |= 0x1; /* Enable MSI */
3734 pci_write_config_word(nic->pdev, 0x42, msi_control);
3739 /* Handle software interrupt used during MSI(X) test */
3740 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3742 struct s2io_nic *sp = dev_id;
3744 sp->msi_detected = 1;
3745 wake_up(&sp->msi_wait);
3750 /* Test interrupt path by forcing a a software IRQ */
3751 static int s2io_test_msi(struct s2io_nic *sp)
3753 struct pci_dev *pdev = sp->pdev;
3754 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3758 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3761 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3762 sp->dev->name, pci_name(pdev), pdev->irq);
3766 init_waitqueue_head (&sp->msi_wait);
3767 sp->msi_detected = 0;
3769 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3770 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3771 val64 |= SCHED_INT_CTRL_TIMER_EN;
3772 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3773 writeq(val64, &bar0->scheduled_int_ctrl);
3775 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3777 if (!sp->msi_detected) {
3778 /* MSI(X) test failed, go back to INTx mode */
3779 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3780 "using MSI(X) during test\n", sp->dev->name,
3786 free_irq(sp->entries[1].vector, sp);
3788 writeq(saved64, &bar0->scheduled_int_ctrl);
3793 static void remove_msix_isr(struct s2io_nic *sp)
3798 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3799 if (sp->s2io_entries[i].in_use ==
3800 MSIX_REGISTERED_SUCCESS) {
3801 int vector = sp->entries[i].vector;
3802 void *arg = sp->s2io_entries[i].arg;
3803 free_irq(vector, arg);
3808 kfree(sp->s2io_entries);
3810 sp->s2io_entries = NULL;
3812 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3813 msi_control &= 0xFFFE; /* Disable MSI */
3814 pci_write_config_word(sp->pdev, 0x42, msi_control);
3816 pci_disable_msix(sp->pdev);
3819 static void remove_inta_isr(struct s2io_nic *sp)
3821 struct net_device *dev = sp->dev;
3823 free_irq(sp->pdev->irq, dev);
3826 /* ********************************************************* *
3827 * Functions defined below concern the OS part of the driver *
3828 * ********************************************************* */
3831 * s2io_open - open entry point of the driver
3832 * @dev : pointer to the device structure.
3834 * This function is the open entry point of the driver. It mainly calls a
3835 * function to allocate Rx buffers and inserts them into the buffer
3836 * descriptors and then enables the Rx part of the NIC.
3838 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3842 static int s2io_open(struct net_device *dev)
3844 struct s2io_nic *sp = dev->priv;
3848 * Make sure you have link off by default every time
3849 * Nic is initialized
3851 netif_carrier_off(dev);
3852 sp->last_link_state = 0;
3854 napi_enable(&sp->napi);
3856 if (sp->config.intr_type == MSI_X) {
3857 int ret = s2io_enable_msi_x(sp);
3860 ret = s2io_test_msi(sp);
3861 /* rollback MSI-X, will re-enable during add_isr() */
3862 remove_msix_isr(sp);
3867 "%s: MSI-X requested but failed to enable\n",
3869 sp->config.intr_type = INTA;
3873 /* NAPI doesn't work well with MSI(X) */
3874 if (sp->config.intr_type != INTA) {
3876 sp->config.napi = 0;
3879 /* Initialize H/W and enable interrupts */
3880 err = s2io_card_up(sp);
3882 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3884 goto hw_init_failed;
3887 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3888 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3891 goto hw_init_failed;
3894 netif_start_queue(dev);
3898 napi_disable(&sp->napi);
3899 if (sp->config.intr_type == MSI_X) {
3902 sp->mac_control.stats_info->sw_stat.mem_freed
3903 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3905 if (sp->s2io_entries) {
3906 kfree(sp->s2io_entries);
3907 sp->mac_control.stats_info->sw_stat.mem_freed
3908 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3915 * s2io_close -close entry point of the driver
3916 * @dev : device pointer.
3918 * This is the stop entry point of the driver. It needs to undo exactly
3919 * whatever was done by the open entry point,thus it's usually referred to
3920 * as the close function.Among other things this function mainly stops the
3921 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3923 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3927 static int s2io_close(struct net_device *dev)
3929 struct s2io_nic *sp = dev->priv;
3931 /* Return if the device is already closed *
3932 * Can happen when s2io_card_up failed in change_mtu *
3934 if (!is_s2io_card_up(sp))
3937 netif_stop_queue(dev);
3938 napi_disable(&sp->napi);
3939 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3946 * s2io_xmit - Tx entry point of te driver
3947 * @skb : the socket buffer containing the Tx data.
3948 * @dev : device pointer.
3950 * This function is the Tx entry point of the driver. S2IO NIC supports
3951 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3952 * NOTE: when device cant queue the pkt,just the trans_start variable will
3955 * 0 on success & 1 on failure.
3958 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3960 struct s2io_nic *sp = dev->priv;
3961 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3964 struct TxFIFO_element __iomem *tx_fifo;
3965 unsigned long flags;
3967 int vlan_priority = 0;
3968 struct mac_info *mac_control;
3969 struct config_param *config;
3971 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3973 mac_control = &sp->mac_control;
3974 config = &sp->config;
3976 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3978 if (unlikely(skb->len <= 0)) {
3979 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3980 dev_kfree_skb_any(skb);
3984 spin_lock_irqsave(&sp->tx_lock, flags);
3985 if (!is_s2io_card_up(sp)) {
3986 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3988 spin_unlock_irqrestore(&sp->tx_lock, flags);
3994 /* Get Fifo number to Transmit based on vlan priority */
3995 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3996 vlan_tag = vlan_tx_tag_get(skb);
3997 vlan_priority = vlan_tag >> 13;
3998 queue = config->fifo_mapping[vlan_priority];
4001 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4002 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4003 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4006 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4007 /* Avoid "put" pointer going beyond "get" pointer */
4008 if (txdp->Host_Control ||
4009 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4010 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4011 netif_stop_queue(dev);
4013 spin_unlock_irqrestore(&sp->tx_lock, flags);
4017 offload_type = s2io_offload_type(skb);
4018 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4019 txdp->Control_1 |= TXD_TCP_LSO_EN;
4020 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4022 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4024 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4027 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4028 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4029 txdp->Control_2 |= config->tx_intr_type;
4031 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4032 txdp->Control_2 |= TXD_VLAN_ENABLE;
4033 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4036 frg_len = skb->len - skb->data_len;
4037 if (offload_type == SKB_GSO_UDP) {
4040 ufo_size = s2io_udp_mss(skb);
4042 txdp->Control_1 |= TXD_UFO_EN;
4043 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4044 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4046 sp->ufo_in_band_v[put_off] =
4047 (u64)skb_shinfo(skb)->ip6_frag_id;
4049 sp->ufo_in_band_v[put_off] =
4050 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4052 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4053 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4055 sizeof(u64), PCI_DMA_TODEVICE);
4056 if((txdp->Buffer_Pointer == 0) ||
4057 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4058 goto pci_map_failed;
4062 txdp->Buffer_Pointer = pci_map_single
4063 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4064 if((txdp->Buffer_Pointer == 0) ||
4065 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4066 goto pci_map_failed;
4068 txdp->Host_Control = (unsigned long) skb;
4069 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4070 if (offload_type == SKB_GSO_UDP)
4071 txdp->Control_1 |= TXD_UFO_EN;
4073 frg_cnt = skb_shinfo(skb)->nr_frags;
4074 /* For fragmented SKB. */
4075 for (i = 0; i < frg_cnt; i++) {
4076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4077 /* A '0' length fragment will be ignored */
4081 txdp->Buffer_Pointer = (u64) pci_map_page
4082 (sp->pdev, frag->page, frag->page_offset,
4083 frag->size, PCI_DMA_TODEVICE);
4084 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4085 if (offload_type == SKB_GSO_UDP)
4086 txdp->Control_1 |= TXD_UFO_EN;
4088 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4090 if (offload_type == SKB_GSO_UDP)
4091 frg_cnt++; /* as Txd0 was used for inband header */
4093 tx_fifo = mac_control->tx_FIFO_start[queue];
4094 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4095 writeq(val64, &tx_fifo->TxDL_Pointer);
4097 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4100 val64 |= TX_FIFO_SPECIAL_FUNC;
4102 writeq(val64, &tx_fifo->List_Control);
4107 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4109 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4111 /* Avoid "put" pointer going beyond "get" pointer */
4112 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4113 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4115 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4117 netif_stop_queue(dev);
4119 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4120 dev->trans_start = jiffies;
4121 spin_unlock_irqrestore(&sp->tx_lock, flags);
4125 stats->pci_map_fail_cnt++;
4126 netif_stop_queue(dev);
4127 stats->mem_freed += skb->truesize;
4129 spin_unlock_irqrestore(&sp->tx_lock, flags);
4134 s2io_alarm_handle(unsigned long data)
4136 struct s2io_nic *sp = (struct s2io_nic *)data;
4137 struct net_device *dev = sp->dev;
4139 s2io_handle_errors(dev);
4140 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4143 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4145 int rxb_size, level;
4148 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4149 level = rx_buffer_level(sp, rxb_size, rng_n);
4151 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4153 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4154 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4155 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4156 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4158 clear_bit(0, (&sp->tasklet_status));
4161 clear_bit(0, (&sp->tasklet_status));
4162 } else if (level == LOW)
4163 tasklet_schedule(&sp->task);
4165 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4166 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4167 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4172 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4174 struct ring_info *ring = (struct ring_info *)dev_id;
4175 struct s2io_nic *sp = ring->nic;
4177 if (!is_s2io_card_up(sp))
4180 rx_intr_handler(ring);
4181 s2io_chk_rx_buffers(sp, ring->ring_no);
4186 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4188 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4189 struct s2io_nic *sp = fifo->nic;
4191 if (!is_s2io_card_up(sp))
4194 tx_intr_handler(fifo);
4197 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4199 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4202 val64 = readq(&bar0->pic_int_status);
4203 if (val64 & PIC_INT_GPIO) {
4204 val64 = readq(&bar0->gpio_int_reg);
4205 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4206 (val64 & GPIO_INT_REG_LINK_UP)) {
4208 * This is unstable state so clear both up/down
4209 * interrupt and adapter to re-evaluate the link state.
4211 val64 |= GPIO_INT_REG_LINK_DOWN;
4212 val64 |= GPIO_INT_REG_LINK_UP;
4213 writeq(val64, &bar0->gpio_int_reg);
4214 val64 = readq(&bar0->gpio_int_mask);
4215 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4216 GPIO_INT_MASK_LINK_DOWN);
4217 writeq(val64, &bar0->gpio_int_mask);
4219 else if (val64 & GPIO_INT_REG_LINK_UP) {
4220 val64 = readq(&bar0->adapter_status);
4221 /* Enable Adapter */
4222 val64 = readq(&bar0->adapter_control);
4223 val64 |= ADAPTER_CNTL_EN;
4224 writeq(val64, &bar0->adapter_control);
4225 val64 |= ADAPTER_LED_ON;
4226 writeq(val64, &bar0->adapter_control);
4227 if (!sp->device_enabled_once)
4228 sp->device_enabled_once = 1;
4230 s2io_link(sp, LINK_UP);
4232 * unmask link down interrupt and mask link-up
4235 val64 = readq(&bar0->gpio_int_mask);
4236 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4237 val64 |= GPIO_INT_MASK_LINK_UP;
4238 writeq(val64, &bar0->gpio_int_mask);
4240 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4241 val64 = readq(&bar0->adapter_status);
4242 s2io_link(sp, LINK_DOWN);
4243 /* Link is down so unmaks link up interrupt */
4244 val64 = readq(&bar0->gpio_int_mask);
4245 val64 &= ~GPIO_INT_MASK_LINK_UP;
4246 val64 |= GPIO_INT_MASK_LINK_DOWN;
4247 writeq(val64, &bar0->gpio_int_mask);
4250 val64 = readq(&bar0->adapter_control);
4251 val64 = val64 &(~ADAPTER_LED_ON);
4252 writeq(val64, &bar0->adapter_control);
4255 val64 = readq(&bar0->gpio_int_mask);
4259 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4260 * @value: alarm bits
4261 * @addr: address value
4262 * @cnt: counter variable
4263 * Description: Check for alarm and increment the counter
4265 * 1 - if alarm bit set
4266 * 0 - if alarm bit is not set
4268 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4269 unsigned long long *cnt)
4272 val64 = readq(addr);
4273 if ( val64 & value ) {
4274 writeq(val64, addr);
4283 * s2io_handle_errors - Xframe error indication handler
4284 * @nic: device private variable
4285 * Description: Handle alarms such as loss of link, single or
4286 * double ECC errors, critical and serious errors.
4290 static void s2io_handle_errors(void * dev_id)
4292 struct net_device *dev = (struct net_device *) dev_id;
4293 struct s2io_nic *sp = dev->priv;
4294 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4295 u64 temp64 = 0,val64=0;
4298 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4299 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4301 if (!is_s2io_card_up(sp))
4304 if (pci_channel_offline(sp->pdev))
4307 memset(&sw_stat->ring_full_cnt, 0,
4308 sizeof(sw_stat->ring_full_cnt));
4310 /* Handling the XPAK counters update */
4311 if(stats->xpak_timer_count < 72000) {
4312 /* waiting for an hour */
4313 stats->xpak_timer_count++;
4315 s2io_updt_xpak_counter(dev);
4316 /* reset the count to zero */
4317 stats->xpak_timer_count = 0;
4320 /* Handling link status change error Intr */
4321 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4322 val64 = readq(&bar0->mac_rmac_err_reg);
4323 writeq(val64, &bar0->mac_rmac_err_reg);
4324 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4325 schedule_work(&sp->set_link_task);
4328 /* In case of a serious error, the device will be Reset. */
4329 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4330 &sw_stat->serious_err_cnt))
4333 /* Check for data parity error */
4334 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4335 &sw_stat->parity_err_cnt))
4338 /* Check for ring full counter */
4339 if (sp->device_type == XFRAME_II_DEVICE) {
4340 val64 = readq(&bar0->ring_bump_counter1);
4341 for (i=0; i<4; i++) {
4342 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4343 temp64 >>= 64 - ((i+1)*16);
4344 sw_stat->ring_full_cnt[i] += temp64;
4347 val64 = readq(&bar0->ring_bump_counter2);
4348 for (i=0; i<4; i++) {
4349 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4350 temp64 >>= 64 - ((i+1)*16);
4351 sw_stat->ring_full_cnt[i+4] += temp64;
4355 val64 = readq(&bar0->txdma_int_status);
4356 /*check for pfc_err*/
4357 if (val64 & TXDMA_PFC_INT) {
4358 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4359 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4360 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4361 &sw_stat->pfc_err_cnt))
4363 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4364 &sw_stat->pfc_err_cnt);
4367 /*check for tda_err*/
4368 if (val64 & TXDMA_TDA_INT) {
4369 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4370 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4371 &sw_stat->tda_err_cnt))
4373 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4374 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4376 /*check for pcc_err*/
4377 if (val64 & TXDMA_PCC_INT) {
4378 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4379 | PCC_N_SERR | PCC_6_COF_OV_ERR
4380 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4381 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4382 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4383 &sw_stat->pcc_err_cnt))
4385 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4386 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4389 /*check for tti_err*/
4390 if (val64 & TXDMA_TTI_INT) {
4391 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4392 &sw_stat->tti_err_cnt))
4394 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4395 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4398 /*check for lso_err*/
4399 if (val64 & TXDMA_LSO_INT) {
4400 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4401 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4402 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4404 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4405 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4408 /*check for tpa_err*/
4409 if (val64 & TXDMA_TPA_INT) {
4410 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4411 &sw_stat->tpa_err_cnt))
4413 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4414 &sw_stat->tpa_err_cnt);
4417 /*check for sm_err*/
4418 if (val64 & TXDMA_SM_INT) {
4419 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4420 &sw_stat->sm_err_cnt))
4424 val64 = readq(&bar0->mac_int_status);
4425 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4426 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4427 &bar0->mac_tmac_err_reg,
4428 &sw_stat->mac_tmac_err_cnt))
4430 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4431 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4432 &bar0->mac_tmac_err_reg,
4433 &sw_stat->mac_tmac_err_cnt);
4436 val64 = readq(&bar0->xgxs_int_status);
4437 if (val64 & XGXS_INT_STATUS_TXGXS) {
4438 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4439 &bar0->xgxs_txgxs_err_reg,
4440 &sw_stat->xgxs_txgxs_err_cnt))
4442 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4443 &bar0->xgxs_txgxs_err_reg,
4444 &sw_stat->xgxs_txgxs_err_cnt);
4447 val64 = readq(&bar0->rxdma_int_status);
4448 if (val64 & RXDMA_INT_RC_INT_M) {
4449 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4450 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4451 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4453 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4454 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4455 &sw_stat->rc_err_cnt);
4456 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4457 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4458 &sw_stat->prc_pcix_err_cnt))
4460 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4461 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4462 &sw_stat->prc_pcix_err_cnt);
4465 if (val64 & RXDMA_INT_RPA_INT_M) {
4466 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4467 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4469 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4470 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4473 if (val64 & RXDMA_INT_RDA_INT_M) {
4474 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4475 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4476 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4477 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4479 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4480 | RDA_MISC_ERR | RDA_PCIX_ERR,
4481 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4484 if (val64 & RXDMA_INT_RTI_INT_M) {
4485 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4486 &sw_stat->rti_err_cnt))
4488 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4489 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4492 val64 = readq(&bar0->mac_int_status);
4493 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4494 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4495 &bar0->mac_rmac_err_reg,
4496 &sw_stat->mac_rmac_err_cnt))
4498 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4499 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4500 &sw_stat->mac_rmac_err_cnt);
4503 val64 = readq(&bar0->xgxs_int_status);
4504 if (val64 & XGXS_INT_STATUS_RXGXS) {
4505 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4506 &bar0->xgxs_rxgxs_err_reg,
4507 &sw_stat->xgxs_rxgxs_err_cnt))
4511 val64 = readq(&bar0->mc_int_status);
4512 if(val64 & MC_INT_STATUS_MC_INT) {
4513 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4514 &sw_stat->mc_err_cnt))
4517 /* Handling Ecc errors */
4518 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4519 writeq(val64, &bar0->mc_err_reg);
4520 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4521 sw_stat->double_ecc_errs++;
4522 if (sp->device_type != XFRAME_II_DEVICE) {
4524 * Reset XframeI only if critical error
4527 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4528 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4532 sw_stat->single_ecc_errs++;
4538 netif_stop_queue(dev);
4539 schedule_work(&sp->rst_timer_task);
4540 sw_stat->soft_reset_cnt++;
4545 * s2io_isr - ISR handler of the device .
4546 * @irq: the irq of the device.
4547 * @dev_id: a void pointer to the dev structure of the NIC.
4548 * Description: This function is the ISR handler of the device. It
4549 * identifies the reason for the interrupt and calls the relevant
4550 * service routines. As a contongency measure, this ISR allocates the
4551 * recv buffers, if their numbers are below the panic value which is
4552 * presently set to 25% of the original number of rcv buffers allocated.
4554 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4555 * IRQ_NONE: will be returned if interrupt is not from our device
4557 static irqreturn_t s2io_isr(int irq, void *dev_id)
4559 struct net_device *dev = (struct net_device *) dev_id;
4560 struct s2io_nic *sp = dev->priv;
4561 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4564 struct mac_info *mac_control;
4565 struct config_param *config;
4567 /* Pretend we handled any irq's from a disconnected card */
4568 if (pci_channel_offline(sp->pdev))
4571 if (!is_s2io_card_up(sp))
4574 mac_control = &sp->mac_control;
4575 config = &sp->config;
4578 * Identify the cause for interrupt and call the appropriate
4579 * interrupt handler. Causes for the interrupt could be;
4584 reason = readq(&bar0->general_int_status);
4586 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4587 /* Nothing much can be done. Get out */
4591 if (reason & (GEN_INTR_RXTRAFFIC |
4592 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4594 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4597 if (reason & GEN_INTR_RXTRAFFIC) {
4598 if (likely(netif_rx_schedule_prep(dev,
4600 __netif_rx_schedule(dev, &sp->napi);
4601 writeq(S2IO_MINUS_ONE,
4602 &bar0->rx_traffic_mask);
4604 writeq(S2IO_MINUS_ONE,
4605 &bar0->rx_traffic_int);
4609 * rx_traffic_int reg is an R1 register, writing all 1's
4610 * will ensure that the actual interrupt causing bit
4611 * get's cleared and hence a read can be avoided.
4613 if (reason & GEN_INTR_RXTRAFFIC)
4614 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4616 for (i = 0; i < config->rx_ring_num; i++)
4617 rx_intr_handler(&mac_control->rings[i]);
4621 * tx_traffic_int reg is an R1 register, writing all 1's
4622 * will ensure that the actual interrupt causing bit get's
4623 * cleared and hence a read can be avoided.
4625 if (reason & GEN_INTR_TXTRAFFIC)
4626 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4628 for (i = 0; i < config->tx_fifo_num; i++)
4629 tx_intr_handler(&mac_control->fifos[i]);
4631 if (reason & GEN_INTR_TXPIC)
4632 s2io_txpic_intr_handle(sp);
4635 * Reallocate the buffers from the interrupt handler itself.
4637 if (!config->napi) {
4638 for (i = 0; i < config->rx_ring_num; i++)
4639 s2io_chk_rx_buffers(sp, i);
4641 writeq(sp->general_int_mask, &bar0->general_int_mask);
4642 readl(&bar0->general_int_status);
4648 /* The interrupt was not raised by us */
4658 static void s2io_updt_stats(struct s2io_nic *sp)
4660 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4664 if (is_s2io_card_up(sp)) {
4665 /* Apprx 30us on a 133 MHz bus */
4666 val64 = SET_UPDT_CLICKS(10) |
4667 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4668 writeq(val64, &bar0->stat_cfg);
4671 val64 = readq(&bar0->stat_cfg);
4672 if (!(val64 & s2BIT(0)))
4676 break; /* Updt failed */
4682 * s2io_get_stats - Updates the device statistics structure.
4683 * @dev : pointer to the device structure.
4685 * This function updates the device statistics structure in the s2io_nic
4686 * structure and returns a pointer to the same.
4688 * pointer to the updated net_device_stats structure.
4691 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4693 struct s2io_nic *sp = dev->priv;
4694 struct mac_info *mac_control;
4695 struct config_param *config;
4698 mac_control = &sp->mac_control;
4699 config = &sp->config;
4701 /* Configure Stats for immediate updt */
4702 s2io_updt_stats(sp);
4704 sp->stats.tx_packets =
4705 le32_to_cpu(mac_control->stats_info->tmac_frms);
4706 sp->stats.tx_errors =
4707 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4708 sp->stats.rx_errors =
4709 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4710 sp->stats.multicast =
4711 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4712 sp->stats.rx_length_errors =
4713 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4715 return (&sp->stats);
4719 * s2io_set_multicast - entry point for multicast address enable/disable.
4720 * @dev : pointer to the device structure
4722 * This function is a driver entry point which gets called by the kernel
4723 * whenever multicast addresses must be enabled/disabled. This also gets
4724 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4725 * determine, if multicast address must be enabled or if promiscuous mode
4726 * is to be disabled etc.
4731 static void s2io_set_multicast(struct net_device *dev)
4734 struct dev_mc_list *mclist;
4735 struct s2io_nic *sp = dev->priv;
4736 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4737 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4739 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4742 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4743 /* Enable all Multicast addresses */
4744 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4745 &bar0->rmac_addr_data0_mem);
4746 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4747 &bar0->rmac_addr_data1_mem);
4748 val64 = RMAC_ADDR_CMD_MEM_WE |
4749 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4750 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4751 writeq(val64, &bar0->rmac_addr_cmd_mem);
4752 /* Wait till command completes */
4753 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4754 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4758 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4759 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4760 /* Disable all Multicast addresses */
4761 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4762 &bar0->rmac_addr_data0_mem);
4763 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4764 &bar0->rmac_addr_data1_mem);
4765 val64 = RMAC_ADDR_CMD_MEM_WE |
4766 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4767 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4768 writeq(val64, &bar0->rmac_addr_cmd_mem);
4769 /* Wait till command completes */
4770 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4771 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4775 sp->all_multi_pos = 0;
4778 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4779 /* Put the NIC into promiscuous mode */
4780 add = &bar0->mac_cfg;
4781 val64 = readq(&bar0->mac_cfg);
4782 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4784 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4785 writel((u32) val64, add);
4786 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4787 writel((u32) (val64 >> 32), (add + 4));
4789 if (vlan_tag_strip != 1) {
4790 val64 = readq(&bar0->rx_pa_cfg);
4791 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4792 writeq(val64, &bar0->rx_pa_cfg);
4793 vlan_strip_flag = 0;
4796 val64 = readq(&bar0->mac_cfg);
4797 sp->promisc_flg = 1;
4798 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4800 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4801 /* Remove the NIC from promiscuous mode */
4802 add = &bar0->mac_cfg;
4803 val64 = readq(&bar0->mac_cfg);
4804 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4807 writel((u32) val64, add);
4808 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4809 writel((u32) (val64 >> 32), (add + 4));
4811 if (vlan_tag_strip != 0) {
4812 val64 = readq(&bar0->rx_pa_cfg);
4813 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4814 writeq(val64, &bar0->rx_pa_cfg);
4815 vlan_strip_flag = 1;
4818 val64 = readq(&bar0->mac_cfg);
4819 sp->promisc_flg = 0;
4820 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4824 /* Update individual M_CAST address list */
4825 if ((!sp->m_cast_flg) && dev->mc_count) {
4827 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4828 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4830 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4831 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4835 prev_cnt = sp->mc_addr_count;
4836 sp->mc_addr_count = dev->mc_count;
4838 /* Clear out the previous list of Mc in the H/W. */
4839 for (i = 0; i < prev_cnt; i++) {
4840 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4841 &bar0->rmac_addr_data0_mem);
4842 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4843 &bar0->rmac_addr_data1_mem);
4844 val64 = RMAC_ADDR_CMD_MEM_WE |
4845 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4846 RMAC_ADDR_CMD_MEM_OFFSET
4847 (MAC_MC_ADDR_START_OFFSET + i);
4848 writeq(val64, &bar0->rmac_addr_cmd_mem);
4850 /* Wait for command completes */
4851 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4852 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4854 DBG_PRINT(ERR_DBG, "%s: Adding ",
4856 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4861 /* Create the new Rx filter list and update the same in H/W. */
4862 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4863 i++, mclist = mclist->next) {
4864 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4867 for (j = 0; j < ETH_ALEN; j++) {
4868 mac_addr |= mclist->dmi_addr[j];
4872 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4873 &bar0->rmac_addr_data0_mem);
4874 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4875 &bar0->rmac_addr_data1_mem);
4876 val64 = RMAC_ADDR_CMD_MEM_WE |
4877 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4878 RMAC_ADDR_CMD_MEM_OFFSET
4879 (i + MAC_MC_ADDR_START_OFFSET);
4880 writeq(val64, &bar0->rmac_addr_cmd_mem);
4882 /* Wait for command completes */
4883 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4884 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4886 DBG_PRINT(ERR_DBG, "%s: Adding ",
4888 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4895 /* add unicast MAC address to CAM */
4896 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4899 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4901 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4902 &bar0->rmac_addr_data0_mem);
4905 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4906 RMAC_ADDR_CMD_MEM_OFFSET(off);
4907 writeq(val64, &bar0->rmac_addr_cmd_mem);
4909 /* Wait till command completes */
4910 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4911 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4913 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4920 * s2io_set_mac_addr driver entry point
4922 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4924 struct sockaddr *addr = p;
4926 if (!is_valid_ether_addr(addr->sa_data))
4929 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4931 /* store the MAC address in CAM */
4932 return (do_s2io_prog_unicast(dev, dev->dev_addr));
4936 * do_s2io_prog_unicast - Programs the Xframe mac address
4937 * @dev : pointer to the device structure.
4938 * @addr: a uchar pointer to the new mac address which is to be set.
4939 * Description : This procedure will program the Xframe to receive
4940 * frames with new Mac Address
4941 * Return value: SUCCESS on success and an appropriate (-)ve integer
4942 * as defined in errno.h file on failure.
4944 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4946 struct s2io_nic *sp = dev->priv;
4947 register u64 mac_addr = 0, perm_addr = 0;
4951 * Set the new MAC address as the new unicast filter and reflect this
4952 * change on the device address registered with the OS. It will be
4955 for (i = 0; i < ETH_ALEN; i++) {
4957 mac_addr |= addr[i];
4959 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4962 /* check if the dev_addr is different than perm_addr */
4963 if (mac_addr == perm_addr)
4966 /* Update the internal structure with this new mac address */
4967 do_s2io_copy_mac_addr(sp, 0, mac_addr);
4968 return (do_s2io_add_unicast(sp, mac_addr, 0));
4972 * s2io_ethtool_sset - Sets different link parameters.
4973 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4974 * @info: pointer to the structure with parameters given by ethtool to set
4977 * The function sets different link parameters provided by the user onto
4983 static int s2io_ethtool_sset(struct net_device *dev,
4984 struct ethtool_cmd *info)
4986 struct s2io_nic *sp = dev->priv;
4987 if ((info->autoneg == AUTONEG_ENABLE) ||
4988 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4991 s2io_close(sp->dev);
4999 * s2io_ethtol_gset - Return link specific information.
5000 * @sp : private member of the device structure, pointer to the
5001 * s2io_nic structure.
5002 * @info : pointer to the structure with parameters given by ethtool
5003 * to return link information.
5005 * Returns link specific information like speed, duplex etc.. to ethtool.
5007 * return 0 on success.
5010 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5012 struct s2io_nic *sp = dev->priv;
5013 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5014 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5015 info->port = PORT_FIBRE;
5017 /* info->transceiver */
5018 info->transceiver = XCVR_EXTERNAL;
5020 if (netif_carrier_ok(sp->dev)) {
5021 info->speed = 10000;
5022 info->duplex = DUPLEX_FULL;
5028 info->autoneg = AUTONEG_DISABLE;
5033 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5034 * @sp : private member of the device structure, which is a pointer to the
5035 * s2io_nic structure.
5036 * @info : pointer to the structure with parameters given by ethtool to
5037 * return driver information.
5039 * Returns driver specefic information like name, version etc.. to ethtool.
5044 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5045 struct ethtool_drvinfo *info)
5047 struct s2io_nic *sp = dev->priv;
5049 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5050 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5051 strncpy(info->fw_version, "", sizeof(info->fw_version));
5052 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5053 info->regdump_len = XENA_REG_SPACE;
5054 info->eedump_len = XENA_EEPROM_SPACE;
5058 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5059 * @sp: private member of the device structure, which is a pointer to the
5060 * s2io_nic structure.
5061 * @regs : pointer to the structure with parameters given by ethtool for
5062 * dumping the registers.
5063 * @reg_space: The input argumnet into which all the registers are dumped.
5065 * Dumps the entire register space of xFrame NIC into the user given
5071 static void s2io_ethtool_gregs(struct net_device *dev,
5072 struct ethtool_regs *regs, void *space)
5076 u8 *reg_space = (u8 *) space;
5077 struct s2io_nic *sp = dev->priv;
5079 regs->len = XENA_REG_SPACE;
5080 regs->version = sp->pdev->subsystem_device;
5082 for (i = 0; i < regs->len; i += 8) {
5083 reg = readq(sp->bar0 + i);
5084 memcpy((reg_space + i), ®, 8);
5089 * s2io_phy_id - timer function that alternates adapter LED.
5090 * @data : address of the private member of the device structure, which
5091 * is a pointer to the s2io_nic structure, provided as an u32.
5092 * Description: This is actually the timer function that alternates the
5093 * adapter LED bit of the adapter control bit to set/reset every time on
5094 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5095 * once every second.
5097 static void s2io_phy_id(unsigned long data)
5099 struct s2io_nic *sp = (struct s2io_nic *) data;
5100 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5104 subid = sp->pdev->subsystem_device;
5105 if ((sp->device_type == XFRAME_II_DEVICE) ||
5106 ((subid & 0xFF) >= 0x07)) {
5107 val64 = readq(&bar0->gpio_control);
5108 val64 ^= GPIO_CTRL_GPIO_0;
5109 writeq(val64, &bar0->gpio_control);
5111 val64 = readq(&bar0->adapter_control);
5112 val64 ^= ADAPTER_LED_ON;
5113 writeq(val64, &bar0->adapter_control);
5116 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5120 * s2io_ethtool_idnic - To physically identify the nic on the system.
5121 * @sp : private member of the device structure, which is a pointer to the
5122 * s2io_nic structure.
5123 * @id : pointer to the structure with identification parameters given by
5125 * Description: Used to physically identify the NIC on the system.
5126 * The Link LED will blink for a time specified by the user for
5128 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5129 * identification is possible only if it's link is up.
5131 * int , returns 0 on success
5134 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5136 u64 val64 = 0, last_gpio_ctrl_val;
5137 struct s2io_nic *sp = dev->priv;
5138 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5141 subid = sp->pdev->subsystem_device;
5142 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5143 if ((sp->device_type == XFRAME_I_DEVICE) &&
5144 ((subid & 0xFF) < 0x07)) {
5145 val64 = readq(&bar0->adapter_control);
5146 if (!(val64 & ADAPTER_CNTL_EN)) {
5148 "Adapter Link down, cannot blink LED\n");
5152 if (sp->id_timer.function == NULL) {
5153 init_timer(&sp->id_timer);
5154 sp->id_timer.function = s2io_phy_id;
5155 sp->id_timer.data = (unsigned long) sp;
5157 mod_timer(&sp->id_timer, jiffies);
5159 msleep_interruptible(data * HZ);
5161 msleep_interruptible(MAX_FLICKER_TIME);
5162 del_timer_sync(&sp->id_timer);
5164 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5165 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5166 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5172 static void s2io_ethtool_gringparam(struct net_device *dev,
5173 struct ethtool_ringparam *ering)
5175 struct s2io_nic *sp = dev->priv;
5176 int i,tx_desc_count=0,rx_desc_count=0;
5178 if (sp->rxd_mode == RXD_MODE_1)
5179 ering->rx_max_pending = MAX_RX_DESC_1;
5180 else if (sp->rxd_mode == RXD_MODE_3B)
5181 ering->rx_max_pending = MAX_RX_DESC_2;
5183 ering->tx_max_pending = MAX_TX_DESC;
5184 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5185 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5187 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5188 ering->tx_pending = tx_desc_count;
5190 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5191 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5193 ering->rx_pending = rx_desc_count;
5195 ering->rx_mini_max_pending = 0;
5196 ering->rx_mini_pending = 0;
5197 if(sp->rxd_mode == RXD_MODE_1)
5198 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5199 else if (sp->rxd_mode == RXD_MODE_3B)
5200 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5201 ering->rx_jumbo_pending = rx_desc_count;
5205 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5206 * @sp : private member of the device structure, which is a pointer to the
5207 * s2io_nic structure.
5208 * @ep : pointer to the structure with pause parameters given by ethtool.
5210 * Returns the Pause frame generation and reception capability of the NIC.
5214 static void s2io_ethtool_getpause_data(struct net_device *dev,
5215 struct ethtool_pauseparam *ep)
5218 struct s2io_nic *sp = dev->priv;
5219 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5221 val64 = readq(&bar0->rmac_pause_cfg);
5222 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5223 ep->tx_pause = TRUE;
5224 if (val64 & RMAC_PAUSE_RX_ENABLE)
5225 ep->rx_pause = TRUE;
5226 ep->autoneg = FALSE;
5230 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5231 * @sp : private member of the device structure, which is a pointer to the
5232 * s2io_nic structure.
5233 * @ep : pointer to the structure with pause parameters given by ethtool.
5235 * It can be used to set or reset Pause frame generation or reception
5236 * support of the NIC.
5238 * int, returns 0 on Success
5241 static int s2io_ethtool_setpause_data(struct net_device *dev,
5242 struct ethtool_pauseparam *ep)
5245 struct s2io_nic *sp = dev->priv;
5246 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5248 val64 = readq(&bar0->rmac_pause_cfg);
5250 val64 |= RMAC_PAUSE_GEN_ENABLE;
5252 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5254 val64 |= RMAC_PAUSE_RX_ENABLE;
5256 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5257 writeq(val64, &bar0->rmac_pause_cfg);
5262 * read_eeprom - reads 4 bytes of data from user given offset.
5263 * @sp : private member of the device structure, which is a pointer to the
5264 * s2io_nic structure.
5265 * @off : offset at which the data must be written
5266 * @data : Its an output parameter where the data read at the given
5269 * Will read 4 bytes of data from the user given offset and return the
5271 * NOTE: Will allow to read only part of the EEPROM visible through the
5274 * -1 on failure and 0 on success.
5277 #define S2IO_DEV_ID 5
5278 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5283 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5285 if (sp->device_type == XFRAME_I_DEVICE) {
5286 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5287 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5288 I2C_CONTROL_CNTL_START;
5289 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5291 while (exit_cnt < 5) {
5292 val64 = readq(&bar0->i2c_control);
5293 if (I2C_CONTROL_CNTL_END(val64)) {
5294 *data = I2C_CONTROL_GET_DATA(val64);
5303 if (sp->device_type == XFRAME_II_DEVICE) {
5304 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5305 SPI_CONTROL_BYTECNT(0x3) |
5306 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5307 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5308 val64 |= SPI_CONTROL_REQ;
5309 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5310 while (exit_cnt < 5) {
5311 val64 = readq(&bar0->spi_control);
5312 if (val64 & SPI_CONTROL_NACK) {
5315 } else if (val64 & SPI_CONTROL_DONE) {
5316 *data = readq(&bar0->spi_data);
5329 * write_eeprom - actually writes the relevant part of the data value.
5330 * @sp : private member of the device structure, which is a pointer to the
5331 * s2io_nic structure.
5332 * @off : offset at which the data must be written
5333 * @data : The data that is to be written
5334 * @cnt : Number of bytes of the data that are actually to be written into
5335 * the Eeprom. (max of 3)
5337 * Actually writes the relevant part of the data value into the Eeprom
5338 * through the I2C bus.
5340 * 0 on success, -1 on failure.
5343 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5345 int exit_cnt = 0, ret = -1;
5347 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5349 if (sp->device_type == XFRAME_I_DEVICE) {
5350 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5351 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5352 I2C_CONTROL_CNTL_START;
5353 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5355 while (exit_cnt < 5) {
5356 val64 = readq(&bar0->i2c_control);
5357 if (I2C_CONTROL_CNTL_END(val64)) {
5358 if (!(val64 & I2C_CONTROL_NACK))
5367 if (sp->device_type == XFRAME_II_DEVICE) {
5368 int write_cnt = (cnt == 8) ? 0 : cnt;
5369 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5371 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5372 SPI_CONTROL_BYTECNT(write_cnt) |
5373 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5374 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5375 val64 |= SPI_CONTROL_REQ;
5376 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5377 while (exit_cnt < 5) {
5378 val64 = readq(&bar0->spi_control);
5379 if (val64 & SPI_CONTROL_NACK) {
5382 } else if (val64 & SPI_CONTROL_DONE) {
5392 static void s2io_vpd_read(struct s2io_nic *nic)
5396 int i=0, cnt, fail = 0;
5397 int vpd_addr = 0x80;
5399 if (nic->device_type == XFRAME_II_DEVICE) {
5400 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5404 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5407 strcpy(nic->serial_num, "NOT AVAILABLE");
5409 vpd_data = kmalloc(256, GFP_KERNEL);
5411 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5414 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5416 for (i = 0; i < 256; i +=4 ) {
5417 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5418 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5419 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5420 for (cnt = 0; cnt <5; cnt++) {
5422 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5427 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5431 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5432 (u32 *)&vpd_data[i]);
5436 /* read serial number of adapter */
5437 for (cnt = 0; cnt < 256; cnt++) {
5438 if ((vpd_data[cnt] == 'S') &&
5439 (vpd_data[cnt+1] == 'N') &&
5440 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5441 memset(nic->serial_num, 0, VPD_STRING_LEN);
5442 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5449 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5450 memset(nic->product_name, 0, vpd_data[1]);
5451 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5454 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5458 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5459 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5460 * @eeprom : pointer to the user level structure provided by ethtool,
5461 * containing all relevant information.
5462 * @data_buf : user defined value to be written into Eeprom.
5463 * Description: Reads the values stored in the Eeprom at given offset
5464 * for a given length. Stores these values int the input argument data
5465 * buffer 'data_buf' and returns these to the caller (ethtool.)
5470 static int s2io_ethtool_geeprom(struct net_device *dev,
5471 struct ethtool_eeprom *eeprom, u8 * data_buf)
5475 struct s2io_nic *sp = dev->priv;
5477 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5479 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5480 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5482 for (i = 0; i < eeprom->len; i += 4) {
5483 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5484 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5488 memcpy((data_buf + i), &valid, 4);
5494 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5495 * @sp : private member of the device structure, which is a pointer to the
5496 * s2io_nic structure.
5497 * @eeprom : pointer to the user level structure provided by ethtool,
5498 * containing all relevant information.
5499 * @data_buf ; user defined value to be written into Eeprom.
5501 * Tries to write the user provided value in the Eeprom, at the offset
5502 * given by the user.
5504 * 0 on success, -EFAULT on failure.
5507 static int s2io_ethtool_seeprom(struct net_device *dev,
5508 struct ethtool_eeprom *eeprom,
5511 int len = eeprom->len, cnt = 0;
5512 u64 valid = 0, data;
5513 struct s2io_nic *sp = dev->priv;
5515 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5517 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5518 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5524 data = (u32) data_buf[cnt] & 0x000000FF;
5526 valid = (u32) (data << 24);
5530 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5532 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5534 "write into the specified offset\n");
5545 * s2io_register_test - reads and writes into all clock domains.
5546 * @sp : private member of the device structure, which is a pointer to the
5547 * s2io_nic structure.
5548 * @data : variable that returns the result of each of the test conducted b
5551 * Read and write into all clock domains. The NIC has 3 clock domains,
5552 * see that registers in all the three regions are accessible.
5557 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5559 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5560 u64 val64 = 0, exp_val;
5563 val64 = readq(&bar0->pif_rd_swapper_fb);
5564 if (val64 != 0x123456789abcdefULL) {
5566 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5569 val64 = readq(&bar0->rmac_pause_cfg);
5570 if (val64 != 0xc000ffff00000000ULL) {
5572 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5575 val64 = readq(&bar0->rx_queue_cfg);
5576 if (sp->device_type == XFRAME_II_DEVICE)
5577 exp_val = 0x0404040404040404ULL;
5579 exp_val = 0x0808080808080808ULL;
5580 if (val64 != exp_val) {
5582 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5585 val64 = readq(&bar0->xgxs_efifo_cfg);
5586 if (val64 != 0x000000001923141EULL) {
5588 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5591 val64 = 0x5A5A5A5A5A5A5A5AULL;
5592 writeq(val64, &bar0->xmsi_data);
5593 val64 = readq(&bar0->xmsi_data);
5594 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5596 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5599 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5600 writeq(val64, &bar0->xmsi_data);
5601 val64 = readq(&bar0->xmsi_data);
5602 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5604 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5612 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5613 * @sp : private member of the device structure, which is a pointer to the
5614 * s2io_nic structure.
5615 * @data:variable that returns the result of each of the test conducted by
5618 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5624 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5627 u64 ret_data, org_4F0, org_7F0;
5628 u8 saved_4F0 = 0, saved_7F0 = 0;
5629 struct net_device *dev = sp->dev;
5631 /* Test Write Error at offset 0 */
5632 /* Note that SPI interface allows write access to all areas
5633 * of EEPROM. Hence doing all negative testing only for Xframe I.
5635 if (sp->device_type == XFRAME_I_DEVICE)
5636 if (!write_eeprom(sp, 0, 0, 3))
5639 /* Save current values at offsets 0x4F0 and 0x7F0 */
5640 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5642 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5645 /* Test Write at offset 4f0 */
5646 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5648 if (read_eeprom(sp, 0x4F0, &ret_data))
5651 if (ret_data != 0x012345) {
5652 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5653 "Data written %llx Data read %llx\n",
5654 dev->name, (unsigned long long)0x12345,
5655 (unsigned long long)ret_data);
5659 /* Reset the EEPROM data go FFFF */
5660 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5662 /* Test Write Request Error at offset 0x7c */
5663 if (sp->device_type == XFRAME_I_DEVICE)
5664 if (!write_eeprom(sp, 0x07C, 0, 3))
5667 /* Test Write Request at offset 0x7f0 */
5668 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5670 if (read_eeprom(sp, 0x7F0, &ret_data))
5673 if (ret_data != 0x012345) {
5674 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5675 "Data written %llx Data read %llx\n",
5676 dev->name, (unsigned long long)0x12345,
5677 (unsigned long long)ret_data);
5681 /* Reset the EEPROM data go FFFF */
5682 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5684 if (sp->device_type == XFRAME_I_DEVICE) {
5685 /* Test Write Error at offset 0x80 */
5686 if (!write_eeprom(sp, 0x080, 0, 3))
5689 /* Test Write Error at offset 0xfc */
5690 if (!write_eeprom(sp, 0x0FC, 0, 3))
5693 /* Test Write Error at offset 0x100 */
5694 if (!write_eeprom(sp, 0x100, 0, 3))
5697 /* Test Write Error at offset 4ec */
5698 if (!write_eeprom(sp, 0x4EC, 0, 3))
5702 /* Restore values at offsets 0x4F0 and 0x7F0 */
5704 write_eeprom(sp, 0x4F0, org_4F0, 3);
5706 write_eeprom(sp, 0x7F0, org_7F0, 3);
5713 * s2io_bist_test - invokes the MemBist test of the card .
5714 * @sp : private member of the device structure, which is a pointer to the
5715 * s2io_nic structure.
5716 * @data:variable that returns the result of each of the test conducted by
5719 * This invokes the MemBist test of the card. We give around
5720 * 2 secs time for the Test to complete. If it's still not complete
5721 * within this peiod, we consider that the test failed.
5723 * 0 on success and -1 on failure.
5726 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5729 int cnt = 0, ret = -1;
5731 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5732 bist |= PCI_BIST_START;
5733 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5736 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5737 if (!(bist & PCI_BIST_START)) {
5738 *data = (bist & PCI_BIST_CODE_MASK);
5750 * s2io-link_test - verifies the link state of the nic
5751 * @sp ; private member of the device structure, which is a pointer to the
5752 * s2io_nic structure.
5753 * @data: variable that returns the result of each of the test conducted by
5756 * The function verifies the link state of the NIC and updates the input
5757 * argument 'data' appropriately.
5762 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5764 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5767 val64 = readq(&bar0->adapter_status);
5768 if(!(LINK_IS_UP(val64)))
5777 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5778 * @sp - private member of the device structure, which is a pointer to the
5779 * s2io_nic structure.
5780 * @data - variable that returns the result of each of the test
5781 * conducted by the driver.
5783 * This is one of the offline test that tests the read and write
5784 * access to the RldRam chip on the NIC.
5789 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5791 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5793 int cnt, iteration = 0, test_fail = 0;
5795 val64 = readq(&bar0->adapter_control);
5796 val64 &= ~ADAPTER_ECC_EN;
5797 writeq(val64, &bar0->adapter_control);
5799 val64 = readq(&bar0->mc_rldram_test_ctrl);
5800 val64 |= MC_RLDRAM_TEST_MODE;
5801 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5803 val64 = readq(&bar0->mc_rldram_mrs);
5804 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5805 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5807 val64 |= MC_RLDRAM_MRS_ENABLE;
5808 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5810 while (iteration < 2) {
5811 val64 = 0x55555555aaaa0000ULL;
5812 if (iteration == 1) {
5813 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5815 writeq(val64, &bar0->mc_rldram_test_d0);
5817 val64 = 0xaaaa5a5555550000ULL;
5818 if (iteration == 1) {
5819 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5821 writeq(val64, &bar0->mc_rldram_test_d1);
5823 val64 = 0x55aaaaaaaa5a0000ULL;
5824 if (iteration == 1) {
5825 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5827 writeq(val64, &bar0->mc_rldram_test_d2);
5829 val64 = (u64) (0x0000003ffffe0100ULL);
5830 writeq(val64, &bar0->mc_rldram_test_add);
5832 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5834 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5836 for (cnt = 0; cnt < 5; cnt++) {
5837 val64 = readq(&bar0->mc_rldram_test_ctrl);
5838 if (val64 & MC_RLDRAM_TEST_DONE)
5846 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5847 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5849 for (cnt = 0; cnt < 5; cnt++) {
5850 val64 = readq(&bar0->mc_rldram_test_ctrl);
5851 if (val64 & MC_RLDRAM_TEST_DONE)
5859 val64 = readq(&bar0->mc_rldram_test_ctrl);
5860 if (!(val64 & MC_RLDRAM_TEST_PASS))
5868 /* Bring the adapter out of test mode */
5869 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5875 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5876 * @sp : private member of the device structure, which is a pointer to the
5877 * s2io_nic structure.
5878 * @ethtest : pointer to a ethtool command specific structure that will be
5879 * returned to the user.
5880 * @data : variable that returns the result of each of the test
5881 * conducted by the driver.
5883 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5884 * the health of the card.
5889 static void s2io_ethtool_test(struct net_device *dev,
5890 struct ethtool_test *ethtest,
5893 struct s2io_nic *sp = dev->priv;
5894 int orig_state = netif_running(sp->dev);
5896 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5897 /* Offline Tests. */
5899 s2io_close(sp->dev);
5901 if (s2io_register_test(sp, &data[0]))
5902 ethtest->flags |= ETH_TEST_FL_FAILED;
5906 if (s2io_rldram_test(sp, &data[3]))
5907 ethtest->flags |= ETH_TEST_FL_FAILED;
5911 if (s2io_eeprom_test(sp, &data[1]))
5912 ethtest->flags |= ETH_TEST_FL_FAILED;
5914 if (s2io_bist_test(sp, &data[4]))
5915 ethtest->flags |= ETH_TEST_FL_FAILED;
5925 "%s: is not up, cannot run test\n",
5934 if (s2io_link_test(sp, &data[2]))
5935 ethtest->flags |= ETH_TEST_FL_FAILED;
5944 static void s2io_get_ethtool_stats(struct net_device *dev,
5945 struct ethtool_stats *estats,
5949 struct s2io_nic *sp = dev->priv;
5950 struct stat_block *stat_info = sp->mac_control.stats_info;
5952 s2io_updt_stats(sp);
5954 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5955 le32_to_cpu(stat_info->tmac_frms);
5957 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5958 le32_to_cpu(stat_info->tmac_data_octets);
5959 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5961 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5962 le32_to_cpu(stat_info->tmac_mcst_frms);
5964 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5965 le32_to_cpu(stat_info->tmac_bcst_frms);
5966 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5968 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5969 le32_to_cpu(stat_info->tmac_ttl_octets);
5971 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5972 le32_to_cpu(stat_info->tmac_ucst_frms);
5974 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5975 le32_to_cpu(stat_info->tmac_nucst_frms);
5977 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5978 le32_to_cpu(stat_info->tmac_any_err_frms);
5979 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5980 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5982 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5983 le32_to_cpu(stat_info->tmac_vld_ip);
5985 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5986 le32_to_cpu(stat_info->tmac_drop_ip);
5988 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5989 le32_to_cpu(stat_info->tmac_icmp);
5991 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5992 le32_to_cpu(stat_info->tmac_rst_tcp);
5993 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5994 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5995 le32_to_cpu(stat_info->tmac_udp);
5997 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5998 le32_to_cpu(stat_info->rmac_vld_frms);
6000 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6001 le32_to_cpu(stat_info->rmac_data_octets);
6002 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6003 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6005 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6006 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6008 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6009 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6010 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6011 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6012 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6013 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6014 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6016 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6017 le32_to_cpu(stat_info->rmac_ttl_octets);
6019 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6020 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6022 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6023 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6025 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6026 le32_to_cpu(stat_info->rmac_discarded_frms);
6028 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6029 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6030 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6031 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6033 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6034 le32_to_cpu(stat_info->rmac_usized_frms);
6036 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6037 le32_to_cpu(stat_info->rmac_osized_frms);
6039 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6040 le32_to_cpu(stat_info->rmac_frag_frms);
6042 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6043 le32_to_cpu(stat_info->rmac_jabber_frms);
6044 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6045 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6046 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6047 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6048 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6049 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6051 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6052 le32_to_cpu(stat_info->rmac_ip);
6053 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6054 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6056 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6057 le32_to_cpu(stat_info->rmac_drop_ip);
6059 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6060 le32_to_cpu(stat_info->rmac_icmp);
6061 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6063 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6064 le32_to_cpu(stat_info->rmac_udp);
6066 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6067 le32_to_cpu(stat_info->rmac_err_drp_udp);
6068 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6069 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6070 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6071 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6072 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6073 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6074 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6075 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6076 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6077 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6078 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6079 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6080 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6081 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6082 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6083 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6084 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6086 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6087 le32_to_cpu(stat_info->rmac_pause_cnt);
6088 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6089 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6091 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6092 le32_to_cpu(stat_info->rmac_accepted_ip);
6093 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6094 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6095 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6096 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6097 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6098 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6099 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6100 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6101 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6102 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6103 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6104 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6105 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6106 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6107 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6108 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6109 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6110 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6111 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6113 /* Enhanced statistics exist only for Hercules */
6114 if(sp->device_type == XFRAME_II_DEVICE) {
6116 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6118 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6120 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6121 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6122 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6123 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6124 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6125 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6126 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6127 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6128 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6129 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6130 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6131 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6132 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6133 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6137 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6138 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6139 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6140 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6141 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6142 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6143 for (k = 0; k < MAX_RX_RINGS; k++)
6144 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6145 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6146 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6147 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6148 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6149 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6150 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6151 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6152 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6153 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6154 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6155 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6156 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6157 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6158 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6159 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6160 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6161 if (stat_info->sw_stat.num_aggregations) {
6162 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6165 * Since 64-bit divide does not work on all platforms,
6166 * do repeated subtraction.
6168 while (tmp >= stat_info->sw_stat.num_aggregations) {
6169 tmp -= stat_info->sw_stat.num_aggregations;
6172 tmp_stats[i++] = count;
6176 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6177 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6178 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6179 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6180 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6181 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6182 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6183 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6184 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6186 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6187 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6188 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6189 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6190 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6192 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6193 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6194 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6195 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6196 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6197 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6198 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6199 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6200 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6201 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6202 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6203 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6204 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6205 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6206 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6207 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6208 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6209 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6210 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6211 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6212 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6213 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6214 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6215 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6216 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6217 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6220 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6222 return (XENA_REG_SPACE);
6226 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6228 struct s2io_nic *sp = dev->priv;
6230 return (sp->rx_csum);
6233 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6235 struct s2io_nic *sp = dev->priv;
6245 static int s2io_get_eeprom_len(struct net_device *dev)
6247 return (XENA_EEPROM_SPACE);
6250 static int s2io_get_sset_count(struct net_device *dev, int sset)
6252 struct s2io_nic *sp = dev->priv;
6256 return S2IO_TEST_LEN;
6258 switch(sp->device_type) {
6259 case XFRAME_I_DEVICE:
6260 return XFRAME_I_STAT_LEN;
6261 case XFRAME_II_DEVICE:
6262 return XFRAME_II_STAT_LEN;
6271 static void s2io_ethtool_get_strings(struct net_device *dev,
6272 u32 stringset, u8 * data)
6275 struct s2io_nic *sp = dev->priv;
6277 switch (stringset) {
6279 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6282 stat_size = sizeof(ethtool_xena_stats_keys);
6283 memcpy(data, ðtool_xena_stats_keys,stat_size);
6284 if(sp->device_type == XFRAME_II_DEVICE) {
6285 memcpy(data + stat_size,
6286 ðtool_enhanced_stats_keys,
6287 sizeof(ethtool_enhanced_stats_keys));
6288 stat_size += sizeof(ethtool_enhanced_stats_keys);
6291 memcpy(data + stat_size, ðtool_driver_stats_keys,
6292 sizeof(ethtool_driver_stats_keys));
6296 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6299 dev->features |= NETIF_F_IP_CSUM;
6301 dev->features &= ~NETIF_F_IP_CSUM;
6306 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6308 return (dev->features & NETIF_F_TSO) != 0;
6310 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6313 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6315 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6320 static const struct ethtool_ops netdev_ethtool_ops = {
6321 .get_settings = s2io_ethtool_gset,
6322 .set_settings = s2io_ethtool_sset,
6323 .get_drvinfo = s2io_ethtool_gdrvinfo,
6324 .get_regs_len = s2io_ethtool_get_regs_len,
6325 .get_regs = s2io_ethtool_gregs,
6326 .get_link = ethtool_op_get_link,
6327 .get_eeprom_len = s2io_get_eeprom_len,
6328 .get_eeprom = s2io_ethtool_geeprom,
6329 .set_eeprom = s2io_ethtool_seeprom,
6330 .get_ringparam = s2io_ethtool_gringparam,
6331 .get_pauseparam = s2io_ethtool_getpause_data,
6332 .set_pauseparam = s2io_ethtool_setpause_data,
6333 .get_rx_csum = s2io_ethtool_get_rx_csum,
6334 .set_rx_csum = s2io_ethtool_set_rx_csum,
6335 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6336 .set_sg = ethtool_op_set_sg,
6337 .get_tso = s2io_ethtool_op_get_tso,
6338 .set_tso = s2io_ethtool_op_set_tso,
6339 .set_ufo = ethtool_op_set_ufo,
6340 .self_test = s2io_ethtool_test,
6341 .get_strings = s2io_ethtool_get_strings,
6342 .phys_id = s2io_ethtool_idnic,
6343 .get_ethtool_stats = s2io_get_ethtool_stats,
6344 .get_sset_count = s2io_get_sset_count,
6348 * s2io_ioctl - Entry point for the Ioctl
6349 * @dev : Device pointer.
6350 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6351 * a proprietary structure used to pass information to the driver.
6352 * @cmd : This is used to distinguish between the different commands that
6353 * can be passed to the IOCTL functions.
6355 * Currently there are no special functionality supported in IOCTL, hence
6356 * function always return EOPNOTSUPPORTED
6359 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6365 * s2io_change_mtu - entry point to change MTU size for the device.
6366 * @dev : device pointer.
6367 * @new_mtu : the new MTU size for the device.
6368 * Description: A driver entry point to change MTU size for the device.
6369 * Before changing the MTU the device must be stopped.
6371 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6375 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6377 struct s2io_nic *sp = dev->priv;
6380 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6381 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6387 if (netif_running(dev)) {
6389 netif_stop_queue(dev);
6390 ret = s2io_card_up(sp);
6392 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6396 if (netif_queue_stopped(dev))
6397 netif_wake_queue(dev);
6398 } else { /* Device is down */
6399 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6400 u64 val64 = new_mtu;
6402 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6409 * s2io_tasklet - Bottom half of the ISR.
6410 * @dev_adr : address of the device structure in dma_addr_t format.
6412 * This is the tasklet or the bottom half of the ISR. This is
6413 * an extension of the ISR which is scheduled by the scheduler to be run
6414 * when the load on the CPU is low. All low priority tasks of the ISR can
6415 * be pushed into the tasklet. For now the tasklet is used only to
6416 * replenish the Rx buffers in the Rx buffer descriptors.
6421 static void s2io_tasklet(unsigned long dev_addr)
6423 struct net_device *dev = (struct net_device *) dev_addr;
6424 struct s2io_nic *sp = dev->priv;
6426 struct mac_info *mac_control;
6427 struct config_param *config;
6429 mac_control = &sp->mac_control;
6430 config = &sp->config;
6432 if (!TASKLET_IN_USE) {
6433 for (i = 0; i < config->rx_ring_num; i++) {
6434 ret = fill_rx_buffers(sp, i);
6435 if (ret == -ENOMEM) {
6436 DBG_PRINT(INFO_DBG, "%s: Out of ",
6438 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6440 } else if (ret == -EFILL) {
6442 "%s: Rx Ring %d is full\n",
6447 clear_bit(0, (&sp->tasklet_status));
6452 * s2io_set_link - Set the LInk status
6453 * @data: long pointer to device private structue
6454 * Description: Sets the link status for the adapter
6457 static void s2io_set_link(struct work_struct *work)
6459 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6460 struct net_device *dev = nic->dev;
6461 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6467 if (!netif_running(dev))
6470 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6471 /* The card is being reset, no point doing anything */
6475 subid = nic->pdev->subsystem_device;
6476 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6478 * Allow a small delay for the NICs self initiated
6479 * cleanup to complete.
6484 val64 = readq(&bar0->adapter_status);
6485 if (LINK_IS_UP(val64)) {
6486 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6487 if (verify_xena_quiescence(nic)) {
6488 val64 = readq(&bar0->adapter_control);
6489 val64 |= ADAPTER_CNTL_EN;
6490 writeq(val64, &bar0->adapter_control);
6491 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6492 nic->device_type, subid)) {
6493 val64 = readq(&bar0->gpio_control);
6494 val64 |= GPIO_CTRL_GPIO_0;
6495 writeq(val64, &bar0->gpio_control);
6496 val64 = readq(&bar0->gpio_control);
6498 val64 |= ADAPTER_LED_ON;
6499 writeq(val64, &bar0->adapter_control);
6501 nic->device_enabled_once = TRUE;
6503 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6504 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6505 netif_stop_queue(dev);
6508 val64 = readq(&bar0->adapter_control);
6509 val64 |= ADAPTER_LED_ON;
6510 writeq(val64, &bar0->adapter_control);
6511 s2io_link(nic, LINK_UP);
6513 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6515 val64 = readq(&bar0->gpio_control);
6516 val64 &= ~GPIO_CTRL_GPIO_0;
6517 writeq(val64, &bar0->gpio_control);
6518 val64 = readq(&bar0->gpio_control);
6521 val64 = readq(&bar0->adapter_control);
6522 val64 = val64 &(~ADAPTER_LED_ON);
6523 writeq(val64, &bar0->adapter_control);
6524 s2io_link(nic, LINK_DOWN);
6526 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6532 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6534 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6535 u64 *temp2, int size)
6537 struct net_device *dev = sp->dev;
6538 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6540 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6541 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6544 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6546 * As Rx frame are not going to be processed,
6547 * using same mapped address for the Rxd
6550 rxdp1->Buffer0_ptr = *temp0;
6552 *skb = dev_alloc_skb(size);
6554 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6555 DBG_PRINT(INFO_DBG, "memory to allocate ");
6556 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6557 sp->mac_control.stats_info->sw_stat. \
6558 mem_alloc_fail_cnt++;
6561 sp->mac_control.stats_info->sw_stat.mem_allocated
6562 += (*skb)->truesize;
6563 /* storing the mapped addr in a temp variable
6564 * such it will be used for next rxd whose
6565 * Host Control is NULL
6567 rxdp1->Buffer0_ptr = *temp0 =
6568 pci_map_single( sp->pdev, (*skb)->data,
6569 size - NET_IP_ALIGN,
6570 PCI_DMA_FROMDEVICE);
6571 if( (rxdp1->Buffer0_ptr == 0) ||
6572 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6573 goto memalloc_failed;
6575 rxdp->Host_Control = (unsigned long) (*skb);
6577 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6578 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6579 /* Two buffer Mode */
6581 rxdp3->Buffer2_ptr = *temp2;
6582 rxdp3->Buffer0_ptr = *temp0;
6583 rxdp3->Buffer1_ptr = *temp1;
6585 *skb = dev_alloc_skb(size);
6587 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6588 DBG_PRINT(INFO_DBG, "memory to allocate ");
6589 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6590 sp->mac_control.stats_info->sw_stat. \
6591 mem_alloc_fail_cnt++;
6594 sp->mac_control.stats_info->sw_stat.mem_allocated
6595 += (*skb)->truesize;
6596 rxdp3->Buffer2_ptr = *temp2 =
6597 pci_map_single(sp->pdev, (*skb)->data,
6599 PCI_DMA_FROMDEVICE);
6600 if( (rxdp3->Buffer2_ptr == 0) ||
6601 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6602 goto memalloc_failed;
6604 rxdp3->Buffer0_ptr = *temp0 =
6605 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6606 PCI_DMA_FROMDEVICE);
6607 if( (rxdp3->Buffer0_ptr == 0) ||
6608 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6609 pci_unmap_single (sp->pdev,
6610 (dma_addr_t)rxdp3->Buffer2_ptr,
6611 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6612 goto memalloc_failed;
6614 rxdp->Host_Control = (unsigned long) (*skb);
6616 /* Buffer-1 will be dummy buffer not used */
6617 rxdp3->Buffer1_ptr = *temp1 =
6618 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6619 PCI_DMA_FROMDEVICE);
6620 if( (rxdp3->Buffer1_ptr == 0) ||
6621 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6622 pci_unmap_single (sp->pdev,
6623 (dma_addr_t)rxdp3->Buffer0_ptr,
6624 BUF0_LEN, PCI_DMA_FROMDEVICE);
6625 pci_unmap_single (sp->pdev,
6626 (dma_addr_t)rxdp3->Buffer2_ptr,
6627 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6628 goto memalloc_failed;
6634 stats->pci_map_fail_cnt++;
6635 stats->mem_freed += (*skb)->truesize;
6636 dev_kfree_skb(*skb);
6640 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6643 struct net_device *dev = sp->dev;
6644 if (sp->rxd_mode == RXD_MODE_1) {
6645 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6646 } else if (sp->rxd_mode == RXD_MODE_3B) {
6647 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6648 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6649 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6653 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6655 int i, j, k, blk_cnt = 0, size;
6656 struct mac_info * mac_control = &sp->mac_control;
6657 struct config_param *config = &sp->config;
6658 struct net_device *dev = sp->dev;
6659 struct RxD_t *rxdp = NULL;
6660 struct sk_buff *skb = NULL;
6661 struct buffAdd *ba = NULL;
6662 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6664 /* Calculate the size based on ring mode */
6665 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6666 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6667 if (sp->rxd_mode == RXD_MODE_1)
6668 size += NET_IP_ALIGN;
6669 else if (sp->rxd_mode == RXD_MODE_3B)
6670 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6672 for (i = 0; i < config->rx_ring_num; i++) {
6673 blk_cnt = config->rx_cfg[i].num_rxd /
6674 (rxd_count[sp->rxd_mode] +1);
6676 for (j = 0; j < blk_cnt; j++) {
6677 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6678 rxdp = mac_control->rings[i].
6679 rx_blocks[j].rxds[k].virt_addr;
6680 if(sp->rxd_mode == RXD_MODE_3B)
6681 ba = &mac_control->rings[i].ba[j][k];
6682 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6683 &skb,(u64 *)&temp0_64,
6690 set_rxd_buffer_size(sp, rxdp, size);
6692 /* flip the Ownership bit to Hardware */
6693 rxdp->Control_1 |= RXD_OWN_XENA;
6701 static int s2io_add_isr(struct s2io_nic * sp)
6704 struct net_device *dev = sp->dev;
6707 if (sp->config.intr_type == MSI_X)
6708 ret = s2io_enable_msi_x(sp);
6710 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6711 sp->config.intr_type = INTA;
6714 /* Store the values of the MSIX table in the struct s2io_nic structure */
6715 store_xmsi_data(sp);
6717 /* After proper initialization of H/W, register ISR */
6718 if (sp->config.intr_type == MSI_X) {
6719 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6721 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6722 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6723 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6725 err = request_irq(sp->entries[i].vector,
6726 s2io_msix_fifo_handle, 0, sp->desc[i],
6727 sp->s2io_entries[i].arg);
6728 /* If either data or addr is zero print it */
6729 if(!(sp->msix_info[i].addr &&
6730 sp->msix_info[i].data)) {
6731 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6732 "Data:0x%lx\n",sp->desc[i],
6733 (unsigned long long)
6734 sp->msix_info[i].addr,
6736 ntohl(sp->msix_info[i].data));
6741 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6743 err = request_irq(sp->entries[i].vector,
6744 s2io_msix_ring_handle, 0, sp->desc[i],
6745 sp->s2io_entries[i].arg);
6746 /* If either data or addr is zero print it */
6747 if(!(sp->msix_info[i].addr &&
6748 sp->msix_info[i].data)) {
6749 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6750 "Data:0x%lx\n",sp->desc[i],
6751 (unsigned long long)
6752 sp->msix_info[i].addr,
6754 ntohl(sp->msix_info[i].data));
6760 remove_msix_isr(sp);
6761 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6762 "failed\n", dev->name, i);
6763 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6765 sp->config.intr_type = INTA;
6768 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6771 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6773 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6777 if (sp->config.intr_type == INTA) {
6778 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6781 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6788 static void s2io_rem_isr(struct s2io_nic * sp)
6790 if (sp->config.intr_type == MSI_X)
6791 remove_msix_isr(sp);
6793 remove_inta_isr(sp);
6796 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6799 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6800 unsigned long flags;
6801 register u64 val64 = 0;
6803 if (!is_s2io_card_up(sp))
6806 del_timer_sync(&sp->alarm_timer);
6807 /* If s2io_set_link task is executing, wait till it completes. */
6808 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6811 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6813 /* disable Tx and Rx traffic on the NIC */
6820 tasklet_kill(&sp->task);
6822 /* Check if the device is Quiescent and then Reset the NIC */
6824 /* As per the HW requirement we need to replenish the
6825 * receive buffer to avoid the ring bump. Since there is
6826 * no intention of processing the Rx frame at this pointwe are
6827 * just settting the ownership bit of rxd in Each Rx
6828 * ring to HW and set the appropriate buffer size
6829 * based on the ring mode
6831 rxd_owner_bit_reset(sp);
6833 val64 = readq(&bar0->adapter_status);
6834 if (verify_xena_quiescence(sp)) {
6835 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6843 "s2io_close:Device not Quiescent ");
6844 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6845 (unsigned long long) val64);
6852 spin_lock_irqsave(&sp->tx_lock, flags);
6853 /* Free all Tx buffers */
6854 free_tx_buffers(sp);
6855 spin_unlock_irqrestore(&sp->tx_lock, flags);
6857 /* Free all Rx buffers */
6858 spin_lock_irqsave(&sp->rx_lock, flags);
6859 free_rx_buffers(sp);
6860 spin_unlock_irqrestore(&sp->rx_lock, flags);
6862 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6865 static void s2io_card_down(struct s2io_nic * sp)
6867 do_s2io_card_down(sp, 1);
6870 static int s2io_card_up(struct s2io_nic * sp)
6873 struct mac_info *mac_control;
6874 struct config_param *config;
6875 struct net_device *dev = (struct net_device *) sp->dev;
6878 /* Initialize the H/W I/O registers */
6881 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6889 * Initializing the Rx buffers. For now we are considering only 1
6890 * Rx ring and initializing buffers into 30 Rx blocks
6892 mac_control = &sp->mac_control;
6893 config = &sp->config;
6895 for (i = 0; i < config->rx_ring_num; i++) {
6896 if ((ret = fill_rx_buffers(sp, i))) {
6897 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6900 free_rx_buffers(sp);
6903 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6904 atomic_read(&sp->rx_bufs_left[i]));
6906 /* Maintain the state prior to the open */
6907 if (sp->promisc_flg)
6908 sp->promisc_flg = 0;
6909 if (sp->m_cast_flg) {
6911 sp->all_multi_pos= 0;
6914 /* Setting its receive mode */
6915 s2io_set_multicast(dev);
6918 /* Initialize max aggregatable pkts per session based on MTU */
6919 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6920 /* Check if we can use(if specified) user provided value */
6921 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6922 sp->lro_max_aggr_per_sess = lro_max_pkts;
6925 /* Enable Rx Traffic and interrupts on the NIC */
6926 if (start_nic(sp)) {
6927 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6929 free_rx_buffers(sp);
6933 /* Add interrupt service routine */
6934 if (s2io_add_isr(sp) != 0) {
6935 if (sp->config.intr_type == MSI_X)
6938 free_rx_buffers(sp);
6942 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6944 /* Enable tasklet for the device */
6945 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6947 /* Enable select interrupts */
6948 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6949 if (sp->config.intr_type != INTA)
6950 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6952 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6953 interruptible |= TX_PIC_INTR;
6954 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6957 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6962 * s2io_restart_nic - Resets the NIC.
6963 * @data : long pointer to the device private structure
6965 * This function is scheduled to be run by the s2io_tx_watchdog
6966 * function after 0.5 secs to reset the NIC. The idea is to reduce
6967 * the run time of the watch dog routine which is run holding a
6971 static void s2io_restart_nic(struct work_struct *work)
6973 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6974 struct net_device *dev = sp->dev;
6978 if (!netif_running(dev))
6982 if (s2io_card_up(sp)) {
6983 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6986 netif_wake_queue(dev);
6987 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6994 * s2io_tx_watchdog - Watchdog for transmit side.
6995 * @dev : Pointer to net device structure
6997 * This function is triggered if the Tx Queue is stopped
6998 * for a pre-defined amount of time when the Interface is still up.
6999 * If the Interface is jammed in such a situation, the hardware is
7000 * reset (by s2io_close) and restarted again (by s2io_open) to
7001 * overcome any problem that might have been caused in the hardware.
7006 static void s2io_tx_watchdog(struct net_device *dev)
7008 struct s2io_nic *sp = dev->priv;
7010 if (netif_carrier_ok(dev)) {
7011 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7012 schedule_work(&sp->rst_timer_task);
7013 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7018 * rx_osm_handler - To perform some OS related operations on SKB.
7019 * @sp: private member of the device structure,pointer to s2io_nic structure.
7020 * @skb : the socket buffer pointer.
7021 * @len : length of the packet
7022 * @cksum : FCS checksum of the frame.
7023 * @ring_no : the ring from which this RxD was extracted.
7025 * This function is called by the Rx interrupt serivce routine to perform
7026 * some OS related operations on the SKB before passing it to the upper
7027 * layers. It mainly checks if the checksum is OK, if so adds it to the
7028 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7029 * to the upper layer. If the checksum is wrong, it increments the Rx
7030 * packet error count, frees the SKB and returns error.
7032 * SUCCESS on success and -1 on failure.
7034 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7036 struct s2io_nic *sp = ring_data->nic;
7037 struct net_device *dev = (struct net_device *) sp->dev;
7038 struct sk_buff *skb = (struct sk_buff *)
7039 ((unsigned long) rxdp->Host_Control);
7040 int ring_no = ring_data->ring_no;
7041 u16 l3_csum, l4_csum;
7042 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7049 /* Check for parity error */
7051 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7053 err_mask = err >> 48;
7056 sp->mac_control.stats_info->sw_stat.
7057 rx_parity_err_cnt++;
7061 sp->mac_control.stats_info->sw_stat.
7066 sp->mac_control.stats_info->sw_stat.
7067 rx_parity_abort_cnt++;
7071 sp->mac_control.stats_info->sw_stat.
7076 sp->mac_control.stats_info->sw_stat.
7081 sp->mac_control.stats_info->sw_stat.
7086 sp->mac_control.stats_info->sw_stat.
7087 rx_buf_size_err_cnt++;
7091 sp->mac_control.stats_info->sw_stat.
7092 rx_rxd_corrupt_cnt++;
7096 sp->mac_control.stats_info->sw_stat.
7101 * Drop the packet if bad transfer code. Exception being
7102 * 0x5, which could be due to unsupported IPv6 extension header.
7103 * In this case, we let stack handle the packet.
7104 * Note that in this case, since checksum will be incorrect,
7105 * stack will validate the same.
7107 if (err_mask != 0x5) {
7108 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7109 dev->name, err_mask);
7110 sp->stats.rx_crc_errors++;
7111 sp->mac_control.stats_info->sw_stat.mem_freed
7114 atomic_dec(&sp->rx_bufs_left[ring_no]);
7115 rxdp->Host_Control = 0;
7120 /* Updating statistics */
7121 sp->stats.rx_packets++;
7122 rxdp->Host_Control = 0;
7123 if (sp->rxd_mode == RXD_MODE_1) {
7124 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7126 sp->stats.rx_bytes += len;
7129 } else if (sp->rxd_mode == RXD_MODE_3B) {
7130 int get_block = ring_data->rx_curr_get_info.block_index;
7131 int get_off = ring_data->rx_curr_get_info.offset;
7132 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7133 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7134 unsigned char *buff = skb_push(skb, buf0_len);
7136 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7137 sp->stats.rx_bytes += buf0_len + buf2_len;
7138 memcpy(buff, ba->ba_0, buf0_len);
7139 skb_put(skb, buf2_len);
7142 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7143 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7145 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7146 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7147 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7149 * NIC verifies if the Checksum of the received
7150 * frame is Ok or not and accordingly returns
7151 * a flag in the RxD.
7153 skb->ip_summed = CHECKSUM_UNNECESSARY;
7159 ret = s2io_club_tcp_session(skb->data, &tcp,
7163 case 3: /* Begin anew */
7166 case 1: /* Aggregate */
7168 lro_append_pkt(sp, lro,
7172 case 4: /* Flush session */
7174 lro_append_pkt(sp, lro,
7176 queue_rx_frame(lro->parent);
7177 clear_lro_session(lro);
7178 sp->mac_control.stats_info->
7179 sw_stat.flush_max_pkts++;
7182 case 2: /* Flush both */
7183 lro->parent->data_len =
7185 sp->mac_control.stats_info->
7186 sw_stat.sending_both++;
7187 queue_rx_frame(lro->parent);
7188 clear_lro_session(lro);
7190 case 0: /* sessions exceeded */
7191 case -1: /* non-TCP or not
7195 * First pkt in session not
7196 * L3/L4 aggregatable
7201 "%s: Samadhana!!\n",
7208 * Packet with erroneous checksum, let the
7209 * upper layers deal with it.
7211 skb->ip_summed = CHECKSUM_NONE;
7214 skb->ip_summed = CHECKSUM_NONE;
7216 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7218 skb->protocol = eth_type_trans(skb, dev);
7219 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7221 /* Queueing the vlan frame to the upper layer */
7223 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7224 RXD_GET_VLAN_TAG(rxdp->Control_2));
7226 vlan_hwaccel_rx(skb, sp->vlgrp,
7227 RXD_GET_VLAN_TAG(rxdp->Control_2));
7230 netif_receive_skb(skb);
7236 queue_rx_frame(skb);
7238 dev->last_rx = jiffies;
7240 atomic_dec(&sp->rx_bufs_left[ring_no]);
7245 * s2io_link - stops/starts the Tx queue.
7246 * @sp : private member of the device structure, which is a pointer to the
7247 * s2io_nic structure.
7248 * @link : inidicates whether link is UP/DOWN.
7250 * This function stops/starts the Tx queue depending on whether the link
7251 * status of the NIC is is down or up. This is called by the Alarm
7252 * interrupt handler whenever a link change interrupt comes up.
7257 static void s2io_link(struct s2io_nic * sp, int link)
7259 struct net_device *dev = (struct net_device *) sp->dev;
7261 if (link != sp->last_link_state) {
7262 if (link == LINK_DOWN) {
7263 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7264 netif_carrier_off(dev);
7265 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7266 sp->mac_control.stats_info->sw_stat.link_up_time =
7267 jiffies - sp->start_time;
7268 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7270 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7271 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7272 sp->mac_control.stats_info->sw_stat.link_down_time =
7273 jiffies - sp->start_time;
7274 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7275 netif_carrier_on(dev);
7278 sp->last_link_state = link;
7279 sp->start_time = jiffies;
7283 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7284 * @sp : private member of the device structure, which is a pointer to the
7285 * s2io_nic structure.
7287 * This function initializes a few of the PCI and PCI-X configuration registers
7288 * with recommended values.
7293 static void s2io_init_pci(struct s2io_nic * sp)
7295 u16 pci_cmd = 0, pcix_cmd = 0;
7297 /* Enable Data Parity Error Recovery in PCI-X command register. */
7298 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7300 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7302 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7305 /* Set the PErr Response bit in PCI command register. */
7306 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7307 pci_write_config_word(sp->pdev, PCI_COMMAND,
7308 (pci_cmd | PCI_COMMAND_PARITY));
7309 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7312 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7314 if ( tx_fifo_num > 8) {
7315 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7317 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7320 if ( rx_ring_num > 8) {
7321 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7323 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7326 if (*dev_intr_type != INTA)
7329 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7330 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7331 "Defaulting to INTA\n");
7332 *dev_intr_type = INTA;
7335 if ((*dev_intr_type == MSI_X) &&
7336 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7337 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7338 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7339 "Defaulting to INTA\n");
7340 *dev_intr_type = INTA;
7343 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7344 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7345 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7352 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7353 * or Traffic class respectively.
7354 * @nic: device peivate variable
7355 * Description: The function configures the receive steering to
7356 * desired receive ring.
7357 * Return Value: SUCCESS on success and
7358 * '-1' on failure (endian settings incorrect).
7360 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7362 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7363 register u64 val64 = 0;
7365 if (ds_codepoint > 63)
7368 val64 = RTS_DS_MEM_DATA(ring);
7369 writeq(val64, &bar0->rts_ds_mem_data);
7371 val64 = RTS_DS_MEM_CTRL_WE |
7372 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7373 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7375 writeq(val64, &bar0->rts_ds_mem_ctrl);
7377 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7378 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7383 * s2io_init_nic - Initialization of the adapter .
7384 * @pdev : structure containing the PCI related information of the device.
7385 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7387 * The function initializes an adapter identified by the pci_dec structure.
7388 * All OS related initialization including memory and device structure and
7389 * initlaization of the device private variable is done. Also the swapper
7390 * control register is initialized to enable read and write into the I/O
7391 * registers of the device.
7393 * returns 0 on success and negative on failure.
7396 static int __devinit
7397 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7399 struct s2io_nic *sp;
7400 struct net_device *dev;
7402 int dma_flag = FALSE;
7403 u32 mac_up, mac_down;
7404 u64 val64 = 0, tmp64 = 0;
7405 struct XENA_dev_config __iomem *bar0 = NULL;
7407 struct mac_info *mac_control;
7408 struct config_param *config;
7410 u8 dev_intr_type = intr_type;
7411 DECLARE_MAC_BUF(mac);
7413 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7416 if ((ret = pci_enable_device(pdev))) {
7418 "s2io_init_nic: pci_enable_device failed\n");
7422 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7423 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7425 if (pci_set_consistent_dma_mask
7426 (pdev, DMA_64BIT_MASK)) {
7428 "Unable to obtain 64bit DMA for \
7429 consistent allocations\n");
7430 pci_disable_device(pdev);
7433 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7434 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7436 pci_disable_device(pdev);
7439 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7440 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7441 pci_disable_device(pdev);
7445 dev = alloc_etherdev(sizeof(struct s2io_nic));
7447 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7448 pci_disable_device(pdev);
7449 pci_release_regions(pdev);
7453 pci_set_master(pdev);
7454 pci_set_drvdata(pdev, dev);
7455 SET_NETDEV_DEV(dev, &pdev->dev);
7457 /* Private member variable initialized to s2io NIC structure */
7459 memset(sp, 0, sizeof(struct s2io_nic));
7462 sp->high_dma_flag = dma_flag;
7463 sp->device_enabled_once = FALSE;
7464 if (rx_ring_mode == 1)
7465 sp->rxd_mode = RXD_MODE_1;
7466 if (rx_ring_mode == 2)
7467 sp->rxd_mode = RXD_MODE_3B;
7469 sp->config.intr_type = dev_intr_type;
7471 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7472 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7473 sp->device_type = XFRAME_II_DEVICE;
7475 sp->device_type = XFRAME_I_DEVICE;
7477 sp->lro = lro_enable;
7479 /* Initialize some PCI/PCI-X fields of the NIC. */
7483 * Setting the device configuration parameters.
7484 * Most of these parameters can be specified by the user during
7485 * module insertion as they are module loadable parameters. If
7486 * these parameters are not not specified during load time, they
7487 * are initialized with default values.
7489 mac_control = &sp->mac_control;
7490 config = &sp->config;
7492 config->napi = napi;
7494 /* Tx side parameters. */
7495 config->tx_fifo_num = tx_fifo_num;
7496 for (i = 0; i < MAX_TX_FIFOS; i++) {
7497 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7498 config->tx_cfg[i].fifo_priority = i;
7501 /* mapping the QoS priority to the configured fifos */
7502 for (i = 0; i < MAX_TX_FIFOS; i++)
7503 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7505 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7506 for (i = 0; i < config->tx_fifo_num; i++) {
7507 config->tx_cfg[i].f_no_snoop =
7508 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7509 if (config->tx_cfg[i].fifo_len < 65) {
7510 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7514 /* + 2 because one Txd for skb->data and one Txd for UFO */
7515 config->max_txds = MAX_SKB_FRAGS + 2;
7517 /* Rx side parameters. */
7518 config->rx_ring_num = rx_ring_num;
7519 for (i = 0; i < MAX_RX_RINGS; i++) {
7520 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7521 (rxd_count[sp->rxd_mode] + 1);
7522 config->rx_cfg[i].ring_priority = i;
7525 for (i = 0; i < rx_ring_num; i++) {
7526 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7527 config->rx_cfg[i].f_no_snoop =
7528 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7531 /* Setting Mac Control parameters */
7532 mac_control->rmac_pause_time = rmac_pause_time;
7533 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7534 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7537 /* Initialize Ring buffer parameters. */
7538 for (i = 0; i < config->rx_ring_num; i++)
7539 atomic_set(&sp->rx_bufs_left[i], 0);
7541 /* initialize the shared memory used by the NIC and the host */
7542 if (init_shared_mem(sp)) {
7543 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7546 goto mem_alloc_failed;
7549 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7550 pci_resource_len(pdev, 0));
7552 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7555 goto bar0_remap_failed;
7558 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7559 pci_resource_len(pdev, 2));
7561 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7564 goto bar1_remap_failed;
7567 dev->irq = pdev->irq;
7568 dev->base_addr = (unsigned long) sp->bar0;
7570 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7571 for (j = 0; j < MAX_TX_FIFOS; j++) {
7572 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7573 (sp->bar1 + (j * 0x00020000));
7576 /* Driver entry points */
7577 dev->open = &s2io_open;
7578 dev->stop = &s2io_close;
7579 dev->hard_start_xmit = &s2io_xmit;
7580 dev->get_stats = &s2io_get_stats;
7581 dev->set_multicast_list = &s2io_set_multicast;
7582 dev->do_ioctl = &s2io_ioctl;
7583 dev->set_mac_address = &s2io_set_mac_addr;
7584 dev->change_mtu = &s2io_change_mtu;
7585 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7586 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7587 dev->vlan_rx_register = s2io_vlan_rx_register;
7590 * will use eth_mac_addr() for dev->set_mac_address
7591 * mac address will be set every time dev->open() is called
7593 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7595 #ifdef CONFIG_NET_POLL_CONTROLLER
7596 dev->poll_controller = s2io_netpoll;
7599 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7600 if (sp->high_dma_flag == TRUE)
7601 dev->features |= NETIF_F_HIGHDMA;
7602 dev->features |= NETIF_F_TSO;
7603 dev->features |= NETIF_F_TSO6;
7604 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7605 dev->features |= NETIF_F_UFO;
7606 dev->features |= NETIF_F_HW_CSUM;
7609 dev->tx_timeout = &s2io_tx_watchdog;
7610 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7611 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7612 INIT_WORK(&sp->set_link_task, s2io_set_link);
7614 pci_save_state(sp->pdev);
7616 /* Setting swapper control on the NIC, for proper reset operation */
7617 if (s2io_set_swapper(sp)) {
7618 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7621 goto set_swap_failed;
7624 /* Verify if the Herc works on the slot its placed into */
7625 if (sp->device_type & XFRAME_II_DEVICE) {
7626 mode = s2io_verify_pci_mode(sp);
7628 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7629 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7631 goto set_swap_failed;
7635 /* Not needed for Herc */
7636 if (sp->device_type & XFRAME_I_DEVICE) {
7638 * Fix for all "FFs" MAC address problems observed on
7641 fix_mac_address(sp);
7646 * MAC address initialization.
7647 * For now only one mac address will be read and used.
7650 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7651 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7652 writeq(val64, &bar0->rmac_addr_cmd_mem);
7653 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7654 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7655 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7656 mac_down = (u32) tmp64;
7657 mac_up = (u32) (tmp64 >> 32);
7659 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7660 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7661 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7662 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7663 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7664 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7666 /* Set the factory defined MAC address initially */
7667 dev->addr_len = ETH_ALEN;
7668 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7669 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7671 /* Store the values of the MSIX table in the s2io_nic structure */
7672 store_xmsi_data(sp);
7673 /* reset Nic and bring it to known state */
7677 * Initialize the tasklet status and link state flags
7678 * and the card state parameter
7680 sp->tasklet_status = 0;
7683 /* Initialize spinlocks */
7684 spin_lock_init(&sp->tx_lock);
7687 spin_lock_init(&sp->put_lock);
7688 spin_lock_init(&sp->rx_lock);
7691 * SXE-002: Configure link and activity LED to init state
7694 subid = sp->pdev->subsystem_device;
7695 if ((subid & 0xFF) >= 0x07) {
7696 val64 = readq(&bar0->gpio_control);
7697 val64 |= 0x0000800000000000ULL;
7698 writeq(val64, &bar0->gpio_control);
7699 val64 = 0x0411040400000000ULL;
7700 writeq(val64, (void __iomem *) bar0 + 0x2700);
7701 val64 = readq(&bar0->gpio_control);
7704 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7706 if (register_netdev(dev)) {
7707 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7709 goto register_failed;
7712 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7713 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7714 sp->product_name, pdev->revision);
7715 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7716 s2io_driver_version);
7717 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7718 dev->name, print_mac(mac, dev->dev_addr));
7719 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7720 if (sp->device_type & XFRAME_II_DEVICE) {
7721 mode = s2io_print_pci_mode(sp);
7723 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7725 unregister_netdev(dev);
7726 goto set_swap_failed;
7729 switch(sp->rxd_mode) {
7731 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7735 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7741 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7742 switch(sp->config.intr_type) {
7744 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7747 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7751 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7754 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7755 " enabled\n", dev->name);
7756 /* Initialize device name */
7757 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7760 * Make Link state as off at this point, when the Link change
7761 * interrupt comes the state will be automatically changed to
7764 netif_carrier_off(dev);
7775 free_shared_mem(sp);
7776 pci_disable_device(pdev);
7777 pci_release_regions(pdev);
7778 pci_set_drvdata(pdev, NULL);
7785 * s2io_rem_nic - Free the PCI device
7786 * @pdev: structure containing the PCI related information of the device.
7787 * Description: This function is called by the Pci subsystem to release a
7788 * PCI device and free up all resource held up by the device. This could
7789 * be in response to a Hot plug event or when the driver is to be removed
7793 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7795 struct net_device *dev =
7796 (struct net_device *) pci_get_drvdata(pdev);
7797 struct s2io_nic *sp;
7800 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7804 flush_scheduled_work();
7807 unregister_netdev(dev);
7809 free_shared_mem(sp);
7812 pci_release_regions(pdev);
7813 pci_set_drvdata(pdev, NULL);
7815 pci_disable_device(pdev);
7819 * s2io_starter - Entry point for the driver
7820 * Description: This function is the entry point for the driver. It verifies
7821 * the module loadable parameters and initializes PCI configuration space.
7824 static int __init s2io_starter(void)
7826 return pci_register_driver(&s2io_driver);
7830 * s2io_closer - Cleanup routine for the driver
7831 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7834 static __exit void s2io_closer(void)
7836 pci_unregister_driver(&s2io_driver);
7837 DBG_PRINT(INIT_DBG, "cleanup done\n");
7840 module_init(s2io_starter);
7841 module_exit(s2io_closer);
7843 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7844 struct tcphdr **tcp, struct RxD_t *rxdp)
7847 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7849 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7850 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7856 * By default the VLAN field in the MAC is stripped by the card, if this
7857 * feature is turned off in rx_pa_cfg register, then the ip_off field
7858 * has to be shifted by a further 2 bytes
7861 case 0: /* DIX type */
7862 case 4: /* DIX type with VLAN */
7863 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7865 /* LLC, SNAP etc are considered non-mergeable */
7870 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7871 ip_len = (u8)((*ip)->ihl);
7873 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7878 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7881 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7882 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7883 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7888 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7890 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7893 static void initiate_new_session(struct lro *lro, u8 *l2h,
7894 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7896 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7900 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7901 lro->tcp_ack = ntohl(tcp->ack_seq);
7903 lro->total_len = ntohs(ip->tot_len);
7906 * check if we saw TCP timestamp. Other consistency checks have
7907 * already been done.
7909 if (tcp->doff == 8) {
7911 ptr = (u32 *)(tcp+1);
7913 lro->cur_tsval = *(ptr+1);
7914 lro->cur_tsecr = *(ptr+2);
7919 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7921 struct iphdr *ip = lro->iph;
7922 struct tcphdr *tcp = lro->tcph;
7924 struct stat_block *statinfo = sp->mac_control.stats_info;
7925 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7927 /* Update L3 header */
7928 ip->tot_len = htons(lro->total_len);
7930 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7933 /* Update L4 header */
7934 tcp->ack_seq = lro->tcp_ack;
7935 tcp->window = lro->window;
7937 /* Update tsecr field if this session has timestamps enabled */
7939 u32 *ptr = (u32 *)(tcp + 1);
7940 *(ptr+2) = lro->cur_tsecr;
7943 /* Update counters required for calculation of
7944 * average no. of packets aggregated.
7946 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7947 statinfo->sw_stat.num_aggregations++;
7950 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7951 struct tcphdr *tcp, u32 l4_pyld)
7953 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7954 lro->total_len += l4_pyld;
7955 lro->frags_len += l4_pyld;
7956 lro->tcp_next_seq += l4_pyld;
7959 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7960 lro->tcp_ack = tcp->ack_seq;
7961 lro->window = tcp->window;
7965 /* Update tsecr and tsval from this packet */
7966 ptr = (u32 *) (tcp + 1);
7967 lro->cur_tsval = *(ptr + 1);
7968 lro->cur_tsecr = *(ptr + 2);
7972 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7973 struct tcphdr *tcp, u32 tcp_pyld_len)
7977 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7979 if (!tcp_pyld_len) {
7980 /* Runt frame or a pure ack */
7984 if (ip->ihl != 5) /* IP has options */
7987 /* If we see CE codepoint in IP header, packet is not mergeable */
7988 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7991 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7992 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7993 tcp->ece || tcp->cwr || !tcp->ack) {
7995 * Currently recognize only the ack control word and
7996 * any other control field being set would result in
7997 * flushing the LRO session
8003 * Allow only one TCP timestamp option. Don't aggregate if
8004 * any other options are detected.
8006 if (tcp->doff != 5 && tcp->doff != 8)
8009 if (tcp->doff == 8) {
8010 ptr = (u8 *)(tcp + 1);
8011 while (*ptr == TCPOPT_NOP)
8013 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8016 /* Ensure timestamp value increases monotonically */
8018 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8021 /* timestamp echo reply should be non-zero */
8022 if (*((u32 *)(ptr+6)) == 0)
8030 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8031 struct RxD_t *rxdp, struct s2io_nic *sp)
8034 struct tcphdr *tcph;
8037 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8039 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8040 ip->saddr, ip->daddr);
8045 tcph = (struct tcphdr *)*tcp;
8046 *tcp_len = get_l4_pyld_length(ip, tcph);
8047 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8048 struct lro *l_lro = &sp->lro0_n[i];
8049 if (l_lro->in_use) {
8050 if (check_for_socket_match(l_lro, ip, tcph))
8052 /* Sock pair matched */
8055 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8056 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8057 "0x%x, actual 0x%x\n", __FUNCTION__,
8058 (*lro)->tcp_next_seq,
8061 sp->mac_control.stats_info->
8062 sw_stat.outof_sequence_pkts++;
8067 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8068 ret = 1; /* Aggregate */
8070 ret = 2; /* Flush both */
8076 /* Before searching for available LRO objects,
8077 * check if the pkt is L3/L4 aggregatable. If not
8078 * don't create new LRO session. Just send this
8081 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8085 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8086 struct lro *l_lro = &sp->lro0_n[i];
8087 if (!(l_lro->in_use)) {
8089 ret = 3; /* Begin anew */
8095 if (ret == 0) { /* sessions exceeded */
8096 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8104 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8107 update_L3L4_header(sp, *lro);
8110 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8111 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8112 update_L3L4_header(sp, *lro);
8113 ret = 4; /* Flush the LRO */
8117 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8125 static void clear_lro_session(struct lro *lro)
8127 static u16 lro_struct_size = sizeof(struct lro);
8129 memset(lro, 0, lro_struct_size);
8132 static void queue_rx_frame(struct sk_buff *skb)
8134 struct net_device *dev = skb->dev;
8136 skb->protocol = eth_type_trans(skb, dev);
8138 netif_receive_skb(skb);
8143 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8144 struct sk_buff *skb,
8147 struct sk_buff *first = lro->parent;
8149 first->len += tcp_len;
8150 first->data_len = lro->frags_len;
8151 skb_pull(skb, (skb->len - tcp_len));
8152 if (skb_shinfo(first)->frag_list)
8153 lro->last_frag->next = skb;
8155 skb_shinfo(first)->frag_list = skb;
8156 first->truesize += skb->truesize;
8157 lro->last_frag = skb;
8158 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8163 * s2io_io_error_detected - called when PCI error is detected
8164 * @pdev: Pointer to PCI device
8165 * @state: The current pci connection state
8167 * This function is called after a PCI bus error affecting
8168 * this device has been detected.
8170 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8171 pci_channel_state_t state)
8173 struct net_device *netdev = pci_get_drvdata(pdev);
8174 struct s2io_nic *sp = netdev->priv;
8176 netif_device_detach(netdev);
8178 if (netif_running(netdev)) {
8179 /* Bring down the card, while avoiding PCI I/O */
8180 do_s2io_card_down(sp, 0);
8182 pci_disable_device(pdev);
8184 return PCI_ERS_RESULT_NEED_RESET;
8188 * s2io_io_slot_reset - called after the pci bus has been reset.
8189 * @pdev: Pointer to PCI device
8191 * Restart the card from scratch, as if from a cold-boot.
8192 * At this point, the card has exprienced a hard reset,
8193 * followed by fixups by BIOS, and has its config space
8194 * set up identically to what it was at cold boot.
8196 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8198 struct net_device *netdev = pci_get_drvdata(pdev);
8199 struct s2io_nic *sp = netdev->priv;
8201 if (pci_enable_device(pdev)) {
8202 printk(KERN_ERR "s2io: "
8203 "Cannot re-enable PCI device after reset.\n");
8204 return PCI_ERS_RESULT_DISCONNECT;
8207 pci_set_master(pdev);
8210 return PCI_ERS_RESULT_RECOVERED;
8214 * s2io_io_resume - called when traffic can start flowing again.
8215 * @pdev: Pointer to PCI device
8217 * This callback is called when the error recovery driver tells
8218 * us that its OK to resume normal operation.
8220 static void s2io_io_resume(struct pci_dev *pdev)
8222 struct net_device *netdev = pci_get_drvdata(pdev);
8223 struct s2io_nic *sp = netdev->priv;
8225 if (netif_running(netdev)) {
8226 if (s2io_card_up(sp)) {
8227 printk(KERN_ERR "s2io: "
8228 "Can't bring device back up after reset.\n");
8232 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8234 printk(KERN_ERR "s2io: "
8235 "Can't resetore mac addr after reset.\n");
8240 netif_device_attach(netdev);
8241 netif_wake_queue(netdev);