gfs2: make gfs2_holder.gh_owner_pid be a struct pid *
[linux-2.6] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58         struct block_device *bd;
59         struct buffer_head *bh
60                 = container_of(word, struct buffer_head, b_state);
61
62         smp_mb();
63         bd = bh->b_bdev;
64         if (bd)
65                 blk_run_address_space(bd->bd_inode->i_mapping);
66         io_schedule();
67         return 0;
68 }
69
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79         smp_mb__before_clear_bit();
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122         if (uptodate) {
123                 set_buffer_uptodate(bh);
124         } else {
125                 /* This happens, due to failed READA attempts. */
126                 clear_buffer_uptodate(bh);
127         }
128         unlock_buffer(bh);
129 }
130
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137         __end_buffer_read_notouch(bh, uptodate);
138         put_bh(bh);
139 }
140
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143         char b[BDEVNAME_SIZE];
144
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149                         buffer_io_error(bh);
150                         printk(KERN_WARNING "lost page write due to "
151                                         "I/O error on %s\n",
152                                        bdevname(bh->b_bdev, b));
153                 }
154                 set_buffer_write_io_error(bh);
155                 clear_buffer_uptodate(bh);
156         }
157         unlock_buffer(bh);
158         put_bh(bh);
159 }
160
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167         int ret = 0;
168
169         if (bdev)
170                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171         return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182         struct super_block *sb = get_super(bdev);
183         if (sb) {
184                 int res = fsync_super(sb);
185                 drop_super(sb);
186                 return res;
187         }
188         return sync_blockdev(bdev);
189 }
190
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:       blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202         struct super_block *sb;
203
204         down(&bdev->bd_mount_sem);
205         sb = get_super(bdev);
206         if (sb && !(sb->s_flags & MS_RDONLY)) {
207                 sb->s_frozen = SB_FREEZE_WRITE;
208                 smp_wmb();
209
210                 __fsync_super(sb);
211
212                 sb->s_frozen = SB_FREEZE_TRANS;
213                 smp_wmb();
214
215                 sync_blockdev(sb->s_bdev);
216
217                 if (sb->s_op->write_super_lockfs)
218                         sb->s_op->write_super_lockfs(sb);
219         }
220
221         sync_blockdev(bdev);
222         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:       blockdevice to unlock
229  * @sb:         associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235         if (sb) {
236                 BUG_ON(sb->s_bdev != bdev);
237
238                 if (sb->s_op->unlockfs)
239                         sb->s_op->unlockfs(sb);
240                 sb->s_frozen = SB_UNFROZEN;
241                 smp_wmb();
242                 wake_up(&sb->s_wait_unfrozen);
243                 drop_super(sb);
244         }
245
246         up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264         struct inode *bd_inode = bdev->bd_inode;
265         struct address_space *bd_mapping = bd_inode->i_mapping;
266         struct buffer_head *ret = NULL;
267         pgoff_t index;
268         struct buffer_head *bh;
269         struct buffer_head *head;
270         struct page *page;
271         int all_mapped = 1;
272
273         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274         page = find_get_page(bd_mapping, index);
275         if (!page)
276                 goto out;
277
278         spin_lock(&bd_mapping->private_lock);
279         if (!page_has_buffers(page))
280                 goto out_unlock;
281         head = page_buffers(page);
282         bh = head;
283         do {
284                 if (bh->b_blocknr == block) {
285                         ret = bh;
286                         get_bh(bh);
287                         goto out_unlock;
288                 }
289                 if (!buffer_mapped(bh))
290                         all_mapped = 0;
291                 bh = bh->b_this_page;
292         } while (bh != head);
293
294         /* we might be here because some of the buffers on this page are
295          * not mapped.  This is due to various races between
296          * file io on the block device and getblk.  It gets dealt with
297          * elsewhere, don't buffer_error if we had some unmapped buffers
298          */
299         if (all_mapped) {
300                 printk("__find_get_block_slow() failed. "
301                         "block=%llu, b_blocknr=%llu\n",
302                         (unsigned long long)block,
303                         (unsigned long long)bh->b_blocknr);
304                 printk("b_state=0x%08lx, b_size=%zu\n",
305                         bh->b_state, bh->b_size);
306                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307         }
308 out_unlock:
309         spin_unlock(&bd_mapping->private_lock);
310         page_cache_release(page);
311 out:
312         return ret;
313 }
314
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323   
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349         struct address_space *mapping = bdev->bd_inode->i_mapping;
350
351         if (mapping->nrpages == 0)
352                 return;
353
354         invalidate_bh_lrus();
355         invalidate_mapping_pages(mapping, 0, -1);
356 }
357
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363         struct zone **zones;
364         pg_data_t *pgdat;
365
366         wakeup_pdflush(1024);
367         yield();
368
369         for_each_online_pgdat(pgdat) {
370                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
371                 if (*zones)
372                         try_to_free_pages(zones, 0, GFP_NOFS);
373         }
374 }
375
376 /*
377  * I/O completion handler for block_read_full_page() - pages
378  * which come unlocked at the end of I/O.
379  */
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381 {
382         unsigned long flags;
383         struct buffer_head *first;
384         struct buffer_head *tmp;
385         struct page *page;
386         int page_uptodate = 1;
387
388         BUG_ON(!buffer_async_read(bh));
389
390         page = bh->b_page;
391         if (uptodate) {
392                 set_buffer_uptodate(bh);
393         } else {
394                 clear_buffer_uptodate(bh);
395                 if (printk_ratelimit())
396                         buffer_io_error(bh);
397                 SetPageError(page);
398         }
399
400         /*
401          * Be _very_ careful from here on. Bad things can happen if
402          * two buffer heads end IO at almost the same time and both
403          * decide that the page is now completely done.
404          */
405         first = page_buffers(page);
406         local_irq_save(flags);
407         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408         clear_buffer_async_read(bh);
409         unlock_buffer(bh);
410         tmp = bh;
411         do {
412                 if (!buffer_uptodate(tmp))
413                         page_uptodate = 0;
414                 if (buffer_async_read(tmp)) {
415                         BUG_ON(!buffer_locked(tmp));
416                         goto still_busy;
417                 }
418                 tmp = tmp->b_this_page;
419         } while (tmp != bh);
420         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421         local_irq_restore(flags);
422
423         /*
424          * If none of the buffers had errors and they are all
425          * uptodate then we can set the page uptodate.
426          */
427         if (page_uptodate && !PageError(page))
428                 SetPageUptodate(page);
429         unlock_page(page);
430         return;
431
432 still_busy:
433         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434         local_irq_restore(flags);
435         return;
436 }
437
438 /*
439  * Completion handler for block_write_full_page() - pages which are unlocked
440  * during I/O, and which have PageWriteback cleared upon I/O completion.
441  */
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
443 {
444         char b[BDEVNAME_SIZE];
445         unsigned long flags;
446         struct buffer_head *first;
447         struct buffer_head *tmp;
448         struct page *page;
449
450         BUG_ON(!buffer_async_write(bh));
451
452         page = bh->b_page;
453         if (uptodate) {
454                 set_buffer_uptodate(bh);
455         } else {
456                 if (printk_ratelimit()) {
457                         buffer_io_error(bh);
458                         printk(KERN_WARNING "lost page write due to "
459                                         "I/O error on %s\n",
460                                bdevname(bh->b_bdev, b));
461                 }
462                 set_bit(AS_EIO, &page->mapping->flags);
463                 set_buffer_write_io_error(bh);
464                 clear_buffer_uptodate(bh);
465                 SetPageError(page);
466         }
467
468         first = page_buffers(page);
469         local_irq_save(flags);
470         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471
472         clear_buffer_async_write(bh);
473         unlock_buffer(bh);
474         tmp = bh->b_this_page;
475         while (tmp != bh) {
476                 if (buffer_async_write(tmp)) {
477                         BUG_ON(!buffer_locked(tmp));
478                         goto still_busy;
479                 }
480                 tmp = tmp->b_this_page;
481         }
482         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483         local_irq_restore(flags);
484         end_page_writeback(page);
485         return;
486
487 still_busy:
488         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489         local_irq_restore(flags);
490         return;
491 }
492
493 /*
494  * If a page's buffers are under async readin (end_buffer_async_read
495  * completion) then there is a possibility that another thread of
496  * control could lock one of the buffers after it has completed
497  * but while some of the other buffers have not completed.  This
498  * locked buffer would confuse end_buffer_async_read() into not unlocking
499  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
500  * that this buffer is not under async I/O.
501  *
502  * The page comes unlocked when it has no locked buffer_async buffers
503  * left.
504  *
505  * PageLocked prevents anyone starting new async I/O reads any of
506  * the buffers.
507  *
508  * PageWriteback is used to prevent simultaneous writeout of the same
509  * page.
510  *
511  * PageLocked prevents anyone from starting writeback of a page which is
512  * under read I/O (PageWriteback is only ever set against a locked page).
513  */
514 static void mark_buffer_async_read(struct buffer_head *bh)
515 {
516         bh->b_end_io = end_buffer_async_read;
517         set_buffer_async_read(bh);
518 }
519
520 void mark_buffer_async_write(struct buffer_head *bh)
521 {
522         bh->b_end_io = end_buffer_async_write;
523         set_buffer_async_write(bh);
524 }
525 EXPORT_SYMBOL(mark_buffer_async_write);
526
527
528 /*
529  * fs/buffer.c contains helper functions for buffer-backed address space's
530  * fsync functions.  A common requirement for buffer-based filesystems is
531  * that certain data from the backing blockdev needs to be written out for
532  * a successful fsync().  For example, ext2 indirect blocks need to be
533  * written back and waited upon before fsync() returns.
534  *
535  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537  * management of a list of dependent buffers at ->i_mapping->private_list.
538  *
539  * Locking is a little subtle: try_to_free_buffers() will remove buffers
540  * from their controlling inode's queue when they are being freed.  But
541  * try_to_free_buffers() will be operating against the *blockdev* mapping
542  * at the time, not against the S_ISREG file which depends on those buffers.
543  * So the locking for private_list is via the private_lock in the address_space
544  * which backs the buffers.  Which is different from the address_space 
545  * against which the buffers are listed.  So for a particular address_space,
546  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
547  * mapping->private_list will always be protected by the backing blockdev's
548  * ->private_lock.
549  *
550  * Which introduces a requirement: all buffers on an address_space's
551  * ->private_list must be from the same address_space: the blockdev's.
552  *
553  * address_spaces which do not place buffers at ->private_list via these
554  * utility functions are free to use private_lock and private_list for
555  * whatever they want.  The only requirement is that list_empty(private_list)
556  * be true at clear_inode() time.
557  *
558  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
559  * filesystems should do that.  invalidate_inode_buffers() should just go
560  * BUG_ON(!list_empty).
561  *
562  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
563  * take an address_space, not an inode.  And it should be called
564  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565  * queued up.
566  *
567  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568  * list if it is already on a list.  Because if the buffer is on a list,
569  * it *must* already be on the right one.  If not, the filesystem is being
570  * silly.  This will save a ton of locking.  But first we have to ensure
571  * that buffers are taken *off* the old inode's list when they are freed
572  * (presumably in truncate).  That requires careful auditing of all
573  * filesystems (do it inside bforget()).  It could also be done by bringing
574  * b_inode back.
575  */
576
577 /*
578  * The buffer's backing address_space's private_lock must be held
579  */
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
581 {
582         list_del_init(&bh->b_assoc_buffers);
583         WARN_ON(!bh->b_assoc_map);
584         if (buffer_write_io_error(bh))
585                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586         bh->b_assoc_map = NULL;
587 }
588
589 int inode_has_buffers(struct inode *inode)
590 {
591         return !list_empty(&inode->i_data.private_list);
592 }
593
594 /*
595  * osync is designed to support O_SYNC io.  It waits synchronously for
596  * all already-submitted IO to complete, but does not queue any new
597  * writes to the disk.
598  *
599  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600  * you dirty the buffers, and then use osync_inode_buffers to wait for
601  * completion.  Any other dirty buffers which are not yet queued for
602  * write will not be flushed to disk by the osync.
603  */
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605 {
606         struct buffer_head *bh;
607         struct list_head *p;
608         int err = 0;
609
610         spin_lock(lock);
611 repeat:
612         list_for_each_prev(p, list) {
613                 bh = BH_ENTRY(p);
614                 if (buffer_locked(bh)) {
615                         get_bh(bh);
616                         spin_unlock(lock);
617                         wait_on_buffer(bh);
618                         if (!buffer_uptodate(bh))
619                                 err = -EIO;
620                         brelse(bh);
621                         spin_lock(lock);
622                         goto repeat;
623                 }
624         }
625         spin_unlock(lock);
626         return err;
627 }
628
629 /**
630  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631  *                        buffers
632  * @mapping: the mapping which wants those buffers written
633  *
634  * Starts I/O against the buffers at mapping->private_list, and waits upon
635  * that I/O.
636  *
637  * Basically, this is a convenience function for fsync().
638  * @mapping is a file or directory which needs those buffers to be written for
639  * a successful fsync().
640  */
641 int sync_mapping_buffers(struct address_space *mapping)
642 {
643         struct address_space *buffer_mapping = mapping->assoc_mapping;
644
645         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646                 return 0;
647
648         return fsync_buffers_list(&buffer_mapping->private_lock,
649                                         &mapping->private_list);
650 }
651 EXPORT_SYMBOL(sync_mapping_buffers);
652
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660                         sector_t bblock, unsigned blocksize)
661 {
662         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663         if (bh) {
664                 if (buffer_dirty(bh))
665                         ll_rw_block(WRITE, 1, &bh);
666                 put_bh(bh);
667         }
668 }
669
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct address_space *buffer_mapping = bh->b_page->mapping;
674
675         mark_buffer_dirty(bh);
676         if (!mapping->assoc_mapping) {
677                 mapping->assoc_mapping = buffer_mapping;
678         } else {
679                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
680         }
681         if (list_empty(&bh->b_assoc_buffers)) {
682                 spin_lock(&buffer_mapping->private_lock);
683                 list_move_tail(&bh->b_assoc_buffers,
684                                 &mapping->private_list);
685                 bh->b_assoc_map = mapping;
686                 spin_unlock(&buffer_mapping->private_lock);
687         }
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
691 /*
692  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693  * dirty.
694  *
695  * If warn is true, then emit a warning if the page is not uptodate and has
696  * not been truncated.
697  */
698 static int __set_page_dirty(struct page *page,
699                 struct address_space *mapping, int warn)
700 {
701         if (unlikely(!mapping))
702                 return !TestSetPageDirty(page);
703
704         if (TestSetPageDirty(page))
705                 return 0;
706
707         write_lock_irq(&mapping->tree_lock);
708         if (page->mapping) {    /* Race with truncate? */
709                 WARN_ON_ONCE(warn && !PageUptodate(page));
710
711                 if (mapping_cap_account_dirty(mapping)) {
712                         __inc_zone_page_state(page, NR_FILE_DIRTY);
713                         __inc_bdi_stat(mapping->backing_dev_info,
714                                         BDI_RECLAIMABLE);
715                         task_io_account_write(PAGE_CACHE_SIZE);
716                 }
717                 radix_tree_tag_set(&mapping->page_tree,
718                                 page_index(page), PAGECACHE_TAG_DIRTY);
719         }
720         write_unlock_irq(&mapping->tree_lock);
721         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
722
723         return 1;
724 }
725
726 /*
727  * Add a page to the dirty page list.
728  *
729  * It is a sad fact of life that this function is called from several places
730  * deeply under spinlocking.  It may not sleep.
731  *
732  * If the page has buffers, the uptodate buffers are set dirty, to preserve
733  * dirty-state coherency between the page and the buffers.  It the page does
734  * not have buffers then when they are later attached they will all be set
735  * dirty.
736  *
737  * The buffers are dirtied before the page is dirtied.  There's a small race
738  * window in which a writepage caller may see the page cleanness but not the
739  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
740  * before the buffers, a concurrent writepage caller could clear the page dirty
741  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
742  * page on the dirty page list.
743  *
744  * We use private_lock to lock against try_to_free_buffers while using the
745  * page's buffer list.  Also use this to protect against clean buffers being
746  * added to the page after it was set dirty.
747  *
748  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
749  * address_space though.
750  */
751 int __set_page_dirty_buffers(struct page *page)
752 {
753         struct address_space *mapping = page_mapping(page);
754
755         if (unlikely(!mapping))
756                 return !TestSetPageDirty(page);
757
758         spin_lock(&mapping->private_lock);
759         if (page_has_buffers(page)) {
760                 struct buffer_head *head = page_buffers(page);
761                 struct buffer_head *bh = head;
762
763                 do {
764                         set_buffer_dirty(bh);
765                         bh = bh->b_this_page;
766                 } while (bh != head);
767         }
768         spin_unlock(&mapping->private_lock);
769
770         return __set_page_dirty(page, mapping, 1);
771 }
772 EXPORT_SYMBOL(__set_page_dirty_buffers);
773
774 /*
775  * Write out and wait upon a list of buffers.
776  *
777  * We have conflicting pressures: we want to make sure that all
778  * initially dirty buffers get waited on, but that any subsequently
779  * dirtied buffers don't.  After all, we don't want fsync to last
780  * forever if somebody is actively writing to the file.
781  *
782  * Do this in two main stages: first we copy dirty buffers to a
783  * temporary inode list, queueing the writes as we go.  Then we clean
784  * up, waiting for those writes to complete.
785  * 
786  * During this second stage, any subsequent updates to the file may end
787  * up refiling the buffer on the original inode's dirty list again, so
788  * there is a chance we will end up with a buffer queued for write but
789  * not yet completed on that list.  So, as a final cleanup we go through
790  * the osync code to catch these locked, dirty buffers without requeuing
791  * any newly dirty buffers for write.
792  */
793 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
794 {
795         struct buffer_head *bh;
796         struct list_head tmp;
797         int err = 0, err2;
798
799         INIT_LIST_HEAD(&tmp);
800
801         spin_lock(lock);
802         while (!list_empty(list)) {
803                 bh = BH_ENTRY(list->next);
804                 __remove_assoc_queue(bh);
805                 if (buffer_dirty(bh) || buffer_locked(bh)) {
806                         list_add(&bh->b_assoc_buffers, &tmp);
807                         if (buffer_dirty(bh)) {
808                                 get_bh(bh);
809                                 spin_unlock(lock);
810                                 /*
811                                  * Ensure any pending I/O completes so that
812                                  * ll_rw_block() actually writes the current
813                                  * contents - it is a noop if I/O is still in
814                                  * flight on potentially older contents.
815                                  */
816                                 ll_rw_block(SWRITE, 1, &bh);
817                                 brelse(bh);
818                                 spin_lock(lock);
819                         }
820                 }
821         }
822
823         while (!list_empty(&tmp)) {
824                 bh = BH_ENTRY(tmp.prev);
825                 list_del_init(&bh->b_assoc_buffers);
826                 get_bh(bh);
827                 spin_unlock(lock);
828                 wait_on_buffer(bh);
829                 if (!buffer_uptodate(bh))
830                         err = -EIO;
831                 brelse(bh);
832                 spin_lock(lock);
833         }
834         
835         spin_unlock(lock);
836         err2 = osync_buffers_list(lock, list);
837         if (err)
838                 return err;
839         else
840                 return err2;
841 }
842
843 /*
844  * Invalidate any and all dirty buffers on a given inode.  We are
845  * probably unmounting the fs, but that doesn't mean we have already
846  * done a sync().  Just drop the buffers from the inode list.
847  *
848  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
849  * assumes that all the buffers are against the blockdev.  Not true
850  * for reiserfs.
851  */
852 void invalidate_inode_buffers(struct inode *inode)
853 {
854         if (inode_has_buffers(inode)) {
855                 struct address_space *mapping = &inode->i_data;
856                 struct list_head *list = &mapping->private_list;
857                 struct address_space *buffer_mapping = mapping->assoc_mapping;
858
859                 spin_lock(&buffer_mapping->private_lock);
860                 while (!list_empty(list))
861                         __remove_assoc_queue(BH_ENTRY(list->next));
862                 spin_unlock(&buffer_mapping->private_lock);
863         }
864 }
865
866 /*
867  * Remove any clean buffers from the inode's buffer list.  This is called
868  * when we're trying to free the inode itself.  Those buffers can pin it.
869  *
870  * Returns true if all buffers were removed.
871  */
872 int remove_inode_buffers(struct inode *inode)
873 {
874         int ret = 1;
875
876         if (inode_has_buffers(inode)) {
877                 struct address_space *mapping = &inode->i_data;
878                 struct list_head *list = &mapping->private_list;
879                 struct address_space *buffer_mapping = mapping->assoc_mapping;
880
881                 spin_lock(&buffer_mapping->private_lock);
882                 while (!list_empty(list)) {
883                         struct buffer_head *bh = BH_ENTRY(list->next);
884                         if (buffer_dirty(bh)) {
885                                 ret = 0;
886                                 break;
887                         }
888                         __remove_assoc_queue(bh);
889                 }
890                 spin_unlock(&buffer_mapping->private_lock);
891         }
892         return ret;
893 }
894
895 /*
896  * Create the appropriate buffers when given a page for data area and
897  * the size of each buffer.. Use the bh->b_this_page linked list to
898  * follow the buffers created.  Return NULL if unable to create more
899  * buffers.
900  *
901  * The retry flag is used to differentiate async IO (paging, swapping)
902  * which may not fail from ordinary buffer allocations.
903  */
904 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
905                 int retry)
906 {
907         struct buffer_head *bh, *head;
908         long offset;
909
910 try_again:
911         head = NULL;
912         offset = PAGE_SIZE;
913         while ((offset -= size) >= 0) {
914                 bh = alloc_buffer_head(GFP_NOFS);
915                 if (!bh)
916                         goto no_grow;
917
918                 bh->b_bdev = NULL;
919                 bh->b_this_page = head;
920                 bh->b_blocknr = -1;
921                 head = bh;
922
923                 bh->b_state = 0;
924                 atomic_set(&bh->b_count, 0);
925                 bh->b_private = NULL;
926                 bh->b_size = size;
927
928                 /* Link the buffer to its page */
929                 set_bh_page(bh, page, offset);
930
931                 init_buffer(bh, NULL, NULL);
932         }
933         return head;
934 /*
935  * In case anything failed, we just free everything we got.
936  */
937 no_grow:
938         if (head) {
939                 do {
940                         bh = head;
941                         head = head->b_this_page;
942                         free_buffer_head(bh);
943                 } while (head);
944         }
945
946         /*
947          * Return failure for non-async IO requests.  Async IO requests
948          * are not allowed to fail, so we have to wait until buffer heads
949          * become available.  But we don't want tasks sleeping with 
950          * partially complete buffers, so all were released above.
951          */
952         if (!retry)
953                 return NULL;
954
955         /* We're _really_ low on memory. Now we just
956          * wait for old buffer heads to become free due to
957          * finishing IO.  Since this is an async request and
958          * the reserve list is empty, we're sure there are 
959          * async buffer heads in use.
960          */
961         free_more_memory();
962         goto try_again;
963 }
964 EXPORT_SYMBOL_GPL(alloc_page_buffers);
965
966 static inline void
967 link_dev_buffers(struct page *page, struct buffer_head *head)
968 {
969         struct buffer_head *bh, *tail;
970
971         bh = head;
972         do {
973                 tail = bh;
974                 bh = bh->b_this_page;
975         } while (bh);
976         tail->b_this_page = head;
977         attach_page_buffers(page, head);
978 }
979
980 /*
981  * Initialise the state of a blockdev page's buffers.
982  */ 
983 static void
984 init_page_buffers(struct page *page, struct block_device *bdev,
985                         sector_t block, int size)
986 {
987         struct buffer_head *head = page_buffers(page);
988         struct buffer_head *bh = head;
989         int uptodate = PageUptodate(page);
990
991         do {
992                 if (!buffer_mapped(bh)) {
993                         init_buffer(bh, NULL, NULL);
994                         bh->b_bdev = bdev;
995                         bh->b_blocknr = block;
996                         if (uptodate)
997                                 set_buffer_uptodate(bh);
998                         set_buffer_mapped(bh);
999                 }
1000                 block++;
1001                 bh = bh->b_this_page;
1002         } while (bh != head);
1003 }
1004
1005 /*
1006  * Create the page-cache page that contains the requested block.
1007  *
1008  * This is user purely for blockdev mappings.
1009  */
1010 static struct page *
1011 grow_dev_page(struct block_device *bdev, sector_t block,
1012                 pgoff_t index, int size)
1013 {
1014         struct inode *inode = bdev->bd_inode;
1015         struct page *page;
1016         struct buffer_head *bh;
1017
1018         page = find_or_create_page(inode->i_mapping, index,
1019                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1020         if (!page)
1021                 return NULL;
1022
1023         BUG_ON(!PageLocked(page));
1024
1025         if (page_has_buffers(page)) {
1026                 bh = page_buffers(page);
1027                 if (bh->b_size == size) {
1028                         init_page_buffers(page, bdev, block, size);
1029                         return page;
1030                 }
1031                 if (!try_to_free_buffers(page))
1032                         goto failed;
1033         }
1034
1035         /*
1036          * Allocate some buffers for this page
1037          */
1038         bh = alloc_page_buffers(page, size, 0);
1039         if (!bh)
1040                 goto failed;
1041
1042         /*
1043          * Link the page to the buffers and initialise them.  Take the
1044          * lock to be atomic wrt __find_get_block(), which does not
1045          * run under the page lock.
1046          */
1047         spin_lock(&inode->i_mapping->private_lock);
1048         link_dev_buffers(page, bh);
1049         init_page_buffers(page, bdev, block, size);
1050         spin_unlock(&inode->i_mapping->private_lock);
1051         return page;
1052
1053 failed:
1054         BUG();
1055         unlock_page(page);
1056         page_cache_release(page);
1057         return NULL;
1058 }
1059
1060 /*
1061  * Create buffers for the specified block device block's page.  If
1062  * that page was dirty, the buffers are set dirty also.
1063  */
1064 static int
1065 grow_buffers(struct block_device *bdev, sector_t block, int size)
1066 {
1067         struct page *page;
1068         pgoff_t index;
1069         int sizebits;
1070
1071         sizebits = -1;
1072         do {
1073                 sizebits++;
1074         } while ((size << sizebits) < PAGE_SIZE);
1075
1076         index = block >> sizebits;
1077
1078         /*
1079          * Check for a block which wants to lie outside our maximum possible
1080          * pagecache index.  (this comparison is done using sector_t types).
1081          */
1082         if (unlikely(index != block >> sizebits)) {
1083                 char b[BDEVNAME_SIZE];
1084
1085                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1086                         "device %s\n",
1087                         __FUNCTION__, (unsigned long long)block,
1088                         bdevname(bdev, b));
1089                 return -EIO;
1090         }
1091         block = index << sizebits;
1092         /* Create a page with the proper size buffers.. */
1093         page = grow_dev_page(bdev, block, index, size);
1094         if (!page)
1095                 return 0;
1096         unlock_page(page);
1097         page_cache_release(page);
1098         return 1;
1099 }
1100
1101 static struct buffer_head *
1102 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1103 {
1104         /* Size must be multiple of hard sectorsize */
1105         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1106                         (size < 512 || size > PAGE_SIZE))) {
1107                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1108                                         size);
1109                 printk(KERN_ERR "hardsect size: %d\n",
1110                                         bdev_hardsect_size(bdev));
1111
1112                 dump_stack();
1113                 return NULL;
1114         }
1115
1116         for (;;) {
1117                 struct buffer_head * bh;
1118                 int ret;
1119
1120                 bh = __find_get_block(bdev, block, size);
1121                 if (bh)
1122                         return bh;
1123
1124                 ret = grow_buffers(bdev, block, size);
1125                 if (ret < 0)
1126                         return NULL;
1127                 if (ret == 0)
1128                         free_more_memory();
1129         }
1130 }
1131
1132 /*
1133  * The relationship between dirty buffers and dirty pages:
1134  *
1135  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1136  * the page is tagged dirty in its radix tree.
1137  *
1138  * At all times, the dirtiness of the buffers represents the dirtiness of
1139  * subsections of the page.  If the page has buffers, the page dirty bit is
1140  * merely a hint about the true dirty state.
1141  *
1142  * When a page is set dirty in its entirety, all its buffers are marked dirty
1143  * (if the page has buffers).
1144  *
1145  * When a buffer is marked dirty, its page is dirtied, but the page's other
1146  * buffers are not.
1147  *
1148  * Also.  When blockdev buffers are explicitly read with bread(), they
1149  * individually become uptodate.  But their backing page remains not
1150  * uptodate - even if all of its buffers are uptodate.  A subsequent
1151  * block_read_full_page() against that page will discover all the uptodate
1152  * buffers, will set the page uptodate and will perform no I/O.
1153  */
1154
1155 /**
1156  * mark_buffer_dirty - mark a buffer_head as needing writeout
1157  * @bh: the buffer_head to mark dirty
1158  *
1159  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1160  * backing page dirty, then tag the page as dirty in its address_space's radix
1161  * tree and then attach the address_space's inode to its superblock's dirty
1162  * inode list.
1163  *
1164  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1165  * mapping->tree_lock and the global inode_lock.
1166  */
1167 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1168 {
1169         WARN_ON_ONCE(!buffer_uptodate(bh));
1170         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1171                 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1172 }
1173
1174 /*
1175  * Decrement a buffer_head's reference count.  If all buffers against a page
1176  * have zero reference count, are clean and unlocked, and if the page is clean
1177  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1178  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1179  * a page but it ends up not being freed, and buffers may later be reattached).
1180  */
1181 void __brelse(struct buffer_head * buf)
1182 {
1183         if (atomic_read(&buf->b_count)) {
1184                 put_bh(buf);
1185                 return;
1186         }
1187         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1188         WARN_ON(1);
1189 }
1190
1191 /*
1192  * bforget() is like brelse(), except it discards any
1193  * potentially dirty data.
1194  */
1195 void __bforget(struct buffer_head *bh)
1196 {
1197         clear_buffer_dirty(bh);
1198         if (!list_empty(&bh->b_assoc_buffers)) {
1199                 struct address_space *buffer_mapping = bh->b_page->mapping;
1200
1201                 spin_lock(&buffer_mapping->private_lock);
1202                 list_del_init(&bh->b_assoc_buffers);
1203                 bh->b_assoc_map = NULL;
1204                 spin_unlock(&buffer_mapping->private_lock);
1205         }
1206         __brelse(bh);
1207 }
1208
1209 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210 {
1211         lock_buffer(bh);
1212         if (buffer_uptodate(bh)) {
1213                 unlock_buffer(bh);
1214                 return bh;
1215         } else {
1216                 get_bh(bh);
1217                 bh->b_end_io = end_buffer_read_sync;
1218                 submit_bh(READ, bh);
1219                 wait_on_buffer(bh);
1220                 if (buffer_uptodate(bh))
1221                         return bh;
1222         }
1223         brelse(bh);
1224         return NULL;
1225 }
1226
1227 /*
1228  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1229  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1230  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1231  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1232  * CPU's LRUs at the same time.
1233  *
1234  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235  * sb_find_get_block().
1236  *
1237  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1238  * a local interrupt disable for that.
1239  */
1240
1241 #define BH_LRU_SIZE     8
1242
1243 struct bh_lru {
1244         struct buffer_head *bhs[BH_LRU_SIZE];
1245 };
1246
1247 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248
1249 #ifdef CONFIG_SMP
1250 #define bh_lru_lock()   local_irq_disable()
1251 #define bh_lru_unlock() local_irq_enable()
1252 #else
1253 #define bh_lru_lock()   preempt_disable()
1254 #define bh_lru_unlock() preempt_enable()
1255 #endif
1256
1257 static inline void check_irqs_on(void)
1258 {
1259 #ifdef irqs_disabled
1260         BUG_ON(irqs_disabled());
1261 #endif
1262 }
1263
1264 /*
1265  * The LRU management algorithm is dopey-but-simple.  Sorry.
1266  */
1267 static void bh_lru_install(struct buffer_head *bh)
1268 {
1269         struct buffer_head *evictee = NULL;
1270         struct bh_lru *lru;
1271
1272         check_irqs_on();
1273         bh_lru_lock();
1274         lru = &__get_cpu_var(bh_lrus);
1275         if (lru->bhs[0] != bh) {
1276                 struct buffer_head *bhs[BH_LRU_SIZE];
1277                 int in;
1278                 int out = 0;
1279
1280                 get_bh(bh);
1281                 bhs[out++] = bh;
1282                 for (in = 0; in < BH_LRU_SIZE; in++) {
1283                         struct buffer_head *bh2 = lru->bhs[in];
1284
1285                         if (bh2 == bh) {
1286                                 __brelse(bh2);
1287                         } else {
1288                                 if (out >= BH_LRU_SIZE) {
1289                                         BUG_ON(evictee != NULL);
1290                                         evictee = bh2;
1291                                 } else {
1292                                         bhs[out++] = bh2;
1293                                 }
1294                         }
1295                 }
1296                 while (out < BH_LRU_SIZE)
1297                         bhs[out++] = NULL;
1298                 memcpy(lru->bhs, bhs, sizeof(bhs));
1299         }
1300         bh_lru_unlock();
1301
1302         if (evictee)
1303                 __brelse(evictee);
1304 }
1305
1306 /*
1307  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1308  */
1309 static struct buffer_head *
1310 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1311 {
1312         struct buffer_head *ret = NULL;
1313         struct bh_lru *lru;
1314         unsigned int i;
1315
1316         check_irqs_on();
1317         bh_lru_lock();
1318         lru = &__get_cpu_var(bh_lrus);
1319         for (i = 0; i < BH_LRU_SIZE; i++) {
1320                 struct buffer_head *bh = lru->bhs[i];
1321
1322                 if (bh && bh->b_bdev == bdev &&
1323                                 bh->b_blocknr == block && bh->b_size == size) {
1324                         if (i) {
1325                                 while (i) {
1326                                         lru->bhs[i] = lru->bhs[i - 1];
1327                                         i--;
1328                                 }
1329                                 lru->bhs[0] = bh;
1330                         }
1331                         get_bh(bh);
1332                         ret = bh;
1333                         break;
1334                 }
1335         }
1336         bh_lru_unlock();
1337         return ret;
1338 }
1339
1340 /*
1341  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1342  * it in the LRU and mark it as accessed.  If it is not present then return
1343  * NULL
1344  */
1345 struct buffer_head *
1346 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1347 {
1348         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349
1350         if (bh == NULL) {
1351                 bh = __find_get_block_slow(bdev, block);
1352                 if (bh)
1353                         bh_lru_install(bh);
1354         }
1355         if (bh)
1356                 touch_buffer(bh);
1357         return bh;
1358 }
1359 EXPORT_SYMBOL(__find_get_block);
1360
1361 /*
1362  * __getblk will locate (and, if necessary, create) the buffer_head
1363  * which corresponds to the passed block_device, block and size. The
1364  * returned buffer has its reference count incremented.
1365  *
1366  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1367  * illegal block number, __getblk() will happily return a buffer_head
1368  * which represents the non-existent block.  Very weird.
1369  *
1370  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371  * attempt is failing.  FIXME, perhaps?
1372  */
1373 struct buffer_head *
1374 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1375 {
1376         struct buffer_head *bh = __find_get_block(bdev, block, size);
1377
1378         might_sleep();
1379         if (bh == NULL)
1380                 bh = __getblk_slow(bdev, block, size);
1381         return bh;
1382 }
1383 EXPORT_SYMBOL(__getblk);
1384
1385 /*
1386  * Do async read-ahead on a buffer..
1387  */
1388 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1389 {
1390         struct buffer_head *bh = __getblk(bdev, block, size);
1391         if (likely(bh)) {
1392                 ll_rw_block(READA, 1, &bh);
1393                 brelse(bh);
1394         }
1395 }
1396 EXPORT_SYMBOL(__breadahead);
1397
1398 /**
1399  *  __bread() - reads a specified block and returns the bh
1400  *  @bdev: the block_device to read from
1401  *  @block: number of block
1402  *  @size: size (in bytes) to read
1403  * 
1404  *  Reads a specified block, and returns buffer head that contains it.
1405  *  It returns NULL if the block was unreadable.
1406  */
1407 struct buffer_head *
1408 __bread(struct block_device *bdev, sector_t block, unsigned size)
1409 {
1410         struct buffer_head *bh = __getblk(bdev, block, size);
1411
1412         if (likely(bh) && !buffer_uptodate(bh))
1413                 bh = __bread_slow(bh);
1414         return bh;
1415 }
1416 EXPORT_SYMBOL(__bread);
1417
1418 /*
1419  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420  * This doesn't race because it runs in each cpu either in irq
1421  * or with preempt disabled.
1422  */
1423 static void invalidate_bh_lru(void *arg)
1424 {
1425         struct bh_lru *b = &get_cpu_var(bh_lrus);
1426         int i;
1427
1428         for (i = 0; i < BH_LRU_SIZE; i++) {
1429                 brelse(b->bhs[i]);
1430                 b->bhs[i] = NULL;
1431         }
1432         put_cpu_var(bh_lrus);
1433 }
1434         
1435 void invalidate_bh_lrus(void)
1436 {
1437         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1438 }
1439
1440 void set_bh_page(struct buffer_head *bh,
1441                 struct page *page, unsigned long offset)
1442 {
1443         bh->b_page = page;
1444         BUG_ON(offset >= PAGE_SIZE);
1445         if (PageHighMem(page))
1446                 /*
1447                  * This catches illegal uses and preserves the offset:
1448                  */
1449                 bh->b_data = (char *)(0 + offset);
1450         else
1451                 bh->b_data = page_address(page) + offset;
1452 }
1453 EXPORT_SYMBOL(set_bh_page);
1454
1455 /*
1456  * Called when truncating a buffer on a page completely.
1457  */
1458 static void discard_buffer(struct buffer_head * bh)
1459 {
1460         lock_buffer(bh);
1461         clear_buffer_dirty(bh);
1462         bh->b_bdev = NULL;
1463         clear_buffer_mapped(bh);
1464         clear_buffer_req(bh);
1465         clear_buffer_new(bh);
1466         clear_buffer_delay(bh);
1467         clear_buffer_unwritten(bh);
1468         unlock_buffer(bh);
1469 }
1470
1471 /**
1472  * block_invalidatepage - invalidate part of all of a buffer-backed page
1473  *
1474  * @page: the page which is affected
1475  * @offset: the index of the truncation point
1476  *
1477  * block_invalidatepage() is called when all or part of the page has become
1478  * invalidatedby a truncate operation.
1479  *
1480  * block_invalidatepage() does not have to release all buffers, but it must
1481  * ensure that no dirty buffer is left outside @offset and that no I/O
1482  * is underway against any of the blocks which are outside the truncation
1483  * point.  Because the caller is about to free (and possibly reuse) those
1484  * blocks on-disk.
1485  */
1486 void block_invalidatepage(struct page *page, unsigned long offset)
1487 {
1488         struct buffer_head *head, *bh, *next;
1489         unsigned int curr_off = 0;
1490
1491         BUG_ON(!PageLocked(page));
1492         if (!page_has_buffers(page))
1493                 goto out;
1494
1495         head = page_buffers(page);
1496         bh = head;
1497         do {
1498                 unsigned int next_off = curr_off + bh->b_size;
1499                 next = bh->b_this_page;
1500
1501                 /*
1502                  * is this block fully invalidated?
1503                  */
1504                 if (offset <= curr_off)
1505                         discard_buffer(bh);
1506                 curr_off = next_off;
1507                 bh = next;
1508         } while (bh != head);
1509
1510         /*
1511          * We release buffers only if the entire page is being invalidated.
1512          * The get_block cached value has been unconditionally invalidated,
1513          * so real IO is not possible anymore.
1514          */
1515         if (offset == 0)
1516                 try_to_release_page(page, 0);
1517 out:
1518         return;
1519 }
1520 EXPORT_SYMBOL(block_invalidatepage);
1521
1522 /*
1523  * We attach and possibly dirty the buffers atomically wrt
1524  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1525  * is already excluded via the page lock.
1526  */
1527 void create_empty_buffers(struct page *page,
1528                         unsigned long blocksize, unsigned long b_state)
1529 {
1530         struct buffer_head *bh, *head, *tail;
1531
1532         head = alloc_page_buffers(page, blocksize, 1);
1533         bh = head;
1534         do {
1535                 bh->b_state |= b_state;
1536                 tail = bh;
1537                 bh = bh->b_this_page;
1538         } while (bh);
1539         tail->b_this_page = head;
1540
1541         spin_lock(&page->mapping->private_lock);
1542         if (PageUptodate(page) || PageDirty(page)) {
1543                 bh = head;
1544                 do {
1545                         if (PageDirty(page))
1546                                 set_buffer_dirty(bh);
1547                         if (PageUptodate(page))
1548                                 set_buffer_uptodate(bh);
1549                         bh = bh->b_this_page;
1550                 } while (bh != head);
1551         }
1552         attach_page_buffers(page, head);
1553         spin_unlock(&page->mapping->private_lock);
1554 }
1555 EXPORT_SYMBOL(create_empty_buffers);
1556
1557 /*
1558  * We are taking a block for data and we don't want any output from any
1559  * buffer-cache aliases starting from return from that function and
1560  * until the moment when something will explicitly mark the buffer
1561  * dirty (hopefully that will not happen until we will free that block ;-)
1562  * We don't even need to mark it not-uptodate - nobody can expect
1563  * anything from a newly allocated buffer anyway. We used to used
1564  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1565  * don't want to mark the alias unmapped, for example - it would confuse
1566  * anyone who might pick it with bread() afterwards...
1567  *
1568  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1569  * be writeout I/O going on against recently-freed buffers.  We don't
1570  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1571  * only if we really need to.  That happens here.
1572  */
1573 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1574 {
1575         struct buffer_head *old_bh;
1576
1577         might_sleep();
1578
1579         old_bh = __find_get_block_slow(bdev, block);
1580         if (old_bh) {
1581                 clear_buffer_dirty(old_bh);
1582                 wait_on_buffer(old_bh);
1583                 clear_buffer_req(old_bh);
1584                 __brelse(old_bh);
1585         }
1586 }
1587 EXPORT_SYMBOL(unmap_underlying_metadata);
1588
1589 /*
1590  * NOTE! All mapped/uptodate combinations are valid:
1591  *
1592  *      Mapped  Uptodate        Meaning
1593  *
1594  *      No      No              "unknown" - must do get_block()
1595  *      No      Yes             "hole" - zero-filled
1596  *      Yes     No              "allocated" - allocated on disk, not read in
1597  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1598  *
1599  * "Dirty" is valid only with the last case (mapped+uptodate).
1600  */
1601
1602 /*
1603  * While block_write_full_page is writing back the dirty buffers under
1604  * the page lock, whoever dirtied the buffers may decide to clean them
1605  * again at any time.  We handle that by only looking at the buffer
1606  * state inside lock_buffer().
1607  *
1608  * If block_write_full_page() is called for regular writeback
1609  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610  * locked buffer.   This only can happen if someone has written the buffer
1611  * directly, with submit_bh().  At the address_space level PageWriteback
1612  * prevents this contention from occurring.
1613  */
1614 static int __block_write_full_page(struct inode *inode, struct page *page,
1615                         get_block_t *get_block, struct writeback_control *wbc)
1616 {
1617         int err;
1618         sector_t block;
1619         sector_t last_block;
1620         struct buffer_head *bh, *head;
1621         const unsigned blocksize = 1 << inode->i_blkbits;
1622         int nr_underway = 0;
1623
1624         BUG_ON(!PageLocked(page));
1625
1626         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1627
1628         if (!page_has_buffers(page)) {
1629                 create_empty_buffers(page, blocksize,
1630                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1631         }
1632
1633         /*
1634          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1635          * here, and the (potentially unmapped) buffers may become dirty at
1636          * any time.  If a buffer becomes dirty here after we've inspected it
1637          * then we just miss that fact, and the page stays dirty.
1638          *
1639          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1640          * handle that here by just cleaning them.
1641          */
1642
1643         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1644         head = page_buffers(page);
1645         bh = head;
1646
1647         /*
1648          * Get all the dirty buffers mapped to disk addresses and
1649          * handle any aliases from the underlying blockdev's mapping.
1650          */
1651         do {
1652                 if (block > last_block) {
1653                         /*
1654                          * mapped buffers outside i_size will occur, because
1655                          * this page can be outside i_size when there is a
1656                          * truncate in progress.
1657                          */
1658                         /*
1659                          * The buffer was zeroed by block_write_full_page()
1660                          */
1661                         clear_buffer_dirty(bh);
1662                         set_buffer_uptodate(bh);
1663                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1664                         WARN_ON(bh->b_size != blocksize);
1665                         err = get_block(inode, block, bh, 1);
1666                         if (err)
1667                                 goto recover;
1668                         if (buffer_new(bh)) {
1669                                 /* blockdev mappings never come here */
1670                                 clear_buffer_new(bh);
1671                                 unmap_underlying_metadata(bh->b_bdev,
1672                                                         bh->b_blocknr);
1673                         }
1674                 }
1675                 bh = bh->b_this_page;
1676                 block++;
1677         } while (bh != head);
1678
1679         do {
1680                 if (!buffer_mapped(bh))
1681                         continue;
1682                 /*
1683                  * If it's a fully non-blocking write attempt and we cannot
1684                  * lock the buffer then redirty the page.  Note that this can
1685                  * potentially cause a busy-wait loop from pdflush and kswapd
1686                  * activity, but those code paths have their own higher-level
1687                  * throttling.
1688                  */
1689                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1690                         lock_buffer(bh);
1691                 } else if (test_set_buffer_locked(bh)) {
1692                         redirty_page_for_writepage(wbc, page);
1693                         continue;
1694                 }
1695                 if (test_clear_buffer_dirty(bh)) {
1696                         mark_buffer_async_write(bh);
1697                 } else {
1698                         unlock_buffer(bh);
1699                 }
1700         } while ((bh = bh->b_this_page) != head);
1701
1702         /*
1703          * The page and its buffers are protected by PageWriteback(), so we can
1704          * drop the bh refcounts early.
1705          */
1706         BUG_ON(PageWriteback(page));
1707         set_page_writeback(page);
1708
1709         do {
1710                 struct buffer_head *next = bh->b_this_page;
1711                 if (buffer_async_write(bh)) {
1712                         submit_bh(WRITE, bh);
1713                         nr_underway++;
1714                 }
1715                 bh = next;
1716         } while (bh != head);
1717         unlock_page(page);
1718
1719         err = 0;
1720 done:
1721         if (nr_underway == 0) {
1722                 /*
1723                  * The page was marked dirty, but the buffers were
1724                  * clean.  Someone wrote them back by hand with
1725                  * ll_rw_block/submit_bh.  A rare case.
1726                  */
1727                 end_page_writeback(page);
1728
1729                 /*
1730                  * The page and buffer_heads can be released at any time from
1731                  * here on.
1732                  */
1733         }
1734         return err;
1735
1736 recover:
1737         /*
1738          * ENOSPC, or some other error.  We may already have added some
1739          * blocks to the file, so we need to write these out to avoid
1740          * exposing stale data.
1741          * The page is currently locked and not marked for writeback
1742          */
1743         bh = head;
1744         /* Recovery: lock and submit the mapped buffers */
1745         do {
1746                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1747                         lock_buffer(bh);
1748                         mark_buffer_async_write(bh);
1749                 } else {
1750                         /*
1751                          * The buffer may have been set dirty during
1752                          * attachment to a dirty page.
1753                          */
1754                         clear_buffer_dirty(bh);
1755                 }
1756         } while ((bh = bh->b_this_page) != head);
1757         SetPageError(page);
1758         BUG_ON(PageWriteback(page));
1759         mapping_set_error(page->mapping, err);
1760         set_page_writeback(page);
1761         do {
1762                 struct buffer_head *next = bh->b_this_page;
1763                 if (buffer_async_write(bh)) {
1764                         clear_buffer_dirty(bh);
1765                         submit_bh(WRITE, bh);
1766                         nr_underway++;
1767                 }
1768                 bh = next;
1769         } while (bh != head);
1770         unlock_page(page);
1771         goto done;
1772 }
1773
1774 /*
1775  * If a page has any new buffers, zero them out here, and mark them uptodate
1776  * and dirty so they'll be written out (in order to prevent uninitialised
1777  * block data from leaking). And clear the new bit.
1778  */
1779 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1780 {
1781         unsigned int block_start, block_end;
1782         struct buffer_head *head, *bh;
1783
1784         BUG_ON(!PageLocked(page));
1785         if (!page_has_buffers(page))
1786                 return;
1787
1788         bh = head = page_buffers(page);
1789         block_start = 0;
1790         do {
1791                 block_end = block_start + bh->b_size;
1792
1793                 if (buffer_new(bh)) {
1794                         if (block_end > from && block_start < to) {
1795                                 if (!PageUptodate(page)) {
1796                                         unsigned start, size;
1797
1798                                         start = max(from, block_start);
1799                                         size = min(to, block_end) - start;
1800
1801                                         zero_user(page, start, size);
1802                                         set_buffer_uptodate(bh);
1803                                 }
1804
1805                                 clear_buffer_new(bh);
1806                                 mark_buffer_dirty(bh);
1807                         }
1808                 }
1809
1810                 block_start = block_end;
1811                 bh = bh->b_this_page;
1812         } while (bh != head);
1813 }
1814 EXPORT_SYMBOL(page_zero_new_buffers);
1815
1816 static int __block_prepare_write(struct inode *inode, struct page *page,
1817                 unsigned from, unsigned to, get_block_t *get_block)
1818 {
1819         unsigned block_start, block_end;
1820         sector_t block;
1821         int err = 0;
1822         unsigned blocksize, bbits;
1823         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1824
1825         BUG_ON(!PageLocked(page));
1826         BUG_ON(from > PAGE_CACHE_SIZE);
1827         BUG_ON(to > PAGE_CACHE_SIZE);
1828         BUG_ON(from > to);
1829
1830         blocksize = 1 << inode->i_blkbits;
1831         if (!page_has_buffers(page))
1832                 create_empty_buffers(page, blocksize, 0);
1833         head = page_buffers(page);
1834
1835         bbits = inode->i_blkbits;
1836         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1837
1838         for(bh = head, block_start = 0; bh != head || !block_start;
1839             block++, block_start=block_end, bh = bh->b_this_page) {
1840                 block_end = block_start + blocksize;
1841                 if (block_end <= from || block_start >= to) {
1842                         if (PageUptodate(page)) {
1843                                 if (!buffer_uptodate(bh))
1844                                         set_buffer_uptodate(bh);
1845                         }
1846                         continue;
1847                 }
1848                 if (buffer_new(bh))
1849                         clear_buffer_new(bh);
1850                 if (!buffer_mapped(bh)) {
1851                         WARN_ON(bh->b_size != blocksize);
1852                         err = get_block(inode, block, bh, 1);
1853                         if (err)
1854                                 break;
1855                         if (buffer_new(bh)) {
1856                                 unmap_underlying_metadata(bh->b_bdev,
1857                                                         bh->b_blocknr);
1858                                 if (PageUptodate(page)) {
1859                                         clear_buffer_new(bh);
1860                                         set_buffer_uptodate(bh);
1861                                         mark_buffer_dirty(bh);
1862                                         continue;
1863                                 }
1864                                 if (block_end > to || block_start < from)
1865                                         zero_user_segments(page,
1866                                                 to, block_end,
1867                                                 block_start, from);
1868                                 continue;
1869                         }
1870                 }
1871                 if (PageUptodate(page)) {
1872                         if (!buffer_uptodate(bh))
1873                                 set_buffer_uptodate(bh);
1874                         continue; 
1875                 }
1876                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1877                     !buffer_unwritten(bh) &&
1878                      (block_start < from || block_end > to)) {
1879                         ll_rw_block(READ, 1, &bh);
1880                         *wait_bh++=bh;
1881                 }
1882         }
1883         /*
1884          * If we issued read requests - let them complete.
1885          */
1886         while(wait_bh > wait) {
1887                 wait_on_buffer(*--wait_bh);
1888                 if (!buffer_uptodate(*wait_bh))
1889                         err = -EIO;
1890         }
1891         if (unlikely(err))
1892                 page_zero_new_buffers(page, from, to);
1893         return err;
1894 }
1895
1896 static int __block_commit_write(struct inode *inode, struct page *page,
1897                 unsigned from, unsigned to)
1898 {
1899         unsigned block_start, block_end;
1900         int partial = 0;
1901         unsigned blocksize;
1902         struct buffer_head *bh, *head;
1903
1904         blocksize = 1 << inode->i_blkbits;
1905
1906         for(bh = head = page_buffers(page), block_start = 0;
1907             bh != head || !block_start;
1908             block_start=block_end, bh = bh->b_this_page) {
1909                 block_end = block_start + blocksize;
1910                 if (block_end <= from || block_start >= to) {
1911                         if (!buffer_uptodate(bh))
1912                                 partial = 1;
1913                 } else {
1914                         set_buffer_uptodate(bh);
1915                         mark_buffer_dirty(bh);
1916                 }
1917                 clear_buffer_new(bh);
1918         }
1919
1920         /*
1921          * If this is a partial write which happened to make all buffers
1922          * uptodate then we can optimize away a bogus readpage() for
1923          * the next read(). Here we 'discover' whether the page went
1924          * uptodate as a result of this (potentially partial) write.
1925          */
1926         if (!partial)
1927                 SetPageUptodate(page);
1928         return 0;
1929 }
1930
1931 /*
1932  * block_write_begin takes care of the basic task of block allocation and
1933  * bringing partial write blocks uptodate first.
1934  *
1935  * If *pagep is not NULL, then block_write_begin uses the locked page
1936  * at *pagep rather than allocating its own. In this case, the page will
1937  * not be unlocked or deallocated on failure.
1938  */
1939 int block_write_begin(struct file *file, struct address_space *mapping,
1940                         loff_t pos, unsigned len, unsigned flags,
1941                         struct page **pagep, void **fsdata,
1942                         get_block_t *get_block)
1943 {
1944         struct inode *inode = mapping->host;
1945         int status = 0;
1946         struct page *page;
1947         pgoff_t index;
1948         unsigned start, end;
1949         int ownpage = 0;
1950
1951         index = pos >> PAGE_CACHE_SHIFT;
1952         start = pos & (PAGE_CACHE_SIZE - 1);
1953         end = start + len;
1954
1955         page = *pagep;
1956         if (page == NULL) {
1957                 ownpage = 1;
1958                 page = __grab_cache_page(mapping, index);
1959                 if (!page) {
1960                         status = -ENOMEM;
1961                         goto out;
1962                 }
1963                 *pagep = page;
1964         } else
1965                 BUG_ON(!PageLocked(page));
1966
1967         status = __block_prepare_write(inode, page, start, end, get_block);
1968         if (unlikely(status)) {
1969                 ClearPageUptodate(page);
1970
1971                 if (ownpage) {
1972                         unlock_page(page);
1973                         page_cache_release(page);
1974                         *pagep = NULL;
1975
1976                         /*
1977                          * prepare_write() may have instantiated a few blocks
1978                          * outside i_size.  Trim these off again. Don't need
1979                          * i_size_read because we hold i_mutex.
1980                          */
1981                         if (pos + len > inode->i_size)
1982                                 vmtruncate(inode, inode->i_size);
1983                 }
1984                 goto out;
1985         }
1986
1987 out:
1988         return status;
1989 }
1990 EXPORT_SYMBOL(block_write_begin);
1991
1992 int block_write_end(struct file *file, struct address_space *mapping,
1993                         loff_t pos, unsigned len, unsigned copied,
1994                         struct page *page, void *fsdata)
1995 {
1996         struct inode *inode = mapping->host;
1997         unsigned start;
1998
1999         start = pos & (PAGE_CACHE_SIZE - 1);
2000
2001         if (unlikely(copied < len)) {
2002                 /*
2003                  * The buffers that were written will now be uptodate, so we
2004                  * don't have to worry about a readpage reading them and
2005                  * overwriting a partial write. However if we have encountered
2006                  * a short write and only partially written into a buffer, it
2007                  * will not be marked uptodate, so a readpage might come in and
2008                  * destroy our partial write.
2009                  *
2010                  * Do the simplest thing, and just treat any short write to a
2011                  * non uptodate page as a zero-length write, and force the
2012                  * caller to redo the whole thing.
2013                  */
2014                 if (!PageUptodate(page))
2015                         copied = 0;
2016
2017                 page_zero_new_buffers(page, start+copied, start+len);
2018         }
2019         flush_dcache_page(page);
2020
2021         /* This could be a short (even 0-length) commit */
2022         __block_commit_write(inode, page, start, start+copied);
2023
2024         return copied;
2025 }
2026 EXPORT_SYMBOL(block_write_end);
2027
2028 int generic_write_end(struct file *file, struct address_space *mapping,
2029                         loff_t pos, unsigned len, unsigned copied,
2030                         struct page *page, void *fsdata)
2031 {
2032         struct inode *inode = mapping->host;
2033
2034         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2035
2036         /*
2037          * No need to use i_size_read() here, the i_size
2038          * cannot change under us because we hold i_mutex.
2039          *
2040          * But it's important to update i_size while still holding page lock:
2041          * page writeout could otherwise come in and zero beyond i_size.
2042          */
2043         if (pos+copied > inode->i_size) {
2044                 i_size_write(inode, pos+copied);
2045                 mark_inode_dirty(inode);
2046         }
2047
2048         unlock_page(page);
2049         page_cache_release(page);
2050
2051         return copied;
2052 }
2053 EXPORT_SYMBOL(generic_write_end);
2054
2055 /*
2056  * Generic "read page" function for block devices that have the normal
2057  * get_block functionality. This is most of the block device filesystems.
2058  * Reads the page asynchronously --- the unlock_buffer() and
2059  * set/clear_buffer_uptodate() functions propagate buffer state into the
2060  * page struct once IO has completed.
2061  */
2062 int block_read_full_page(struct page *page, get_block_t *get_block)
2063 {
2064         struct inode *inode = page->mapping->host;
2065         sector_t iblock, lblock;
2066         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2067         unsigned int blocksize;
2068         int nr, i;
2069         int fully_mapped = 1;
2070
2071         BUG_ON(!PageLocked(page));
2072         blocksize = 1 << inode->i_blkbits;
2073         if (!page_has_buffers(page))
2074                 create_empty_buffers(page, blocksize, 0);
2075         head = page_buffers(page);
2076
2077         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2078         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2079         bh = head;
2080         nr = 0;
2081         i = 0;
2082
2083         do {
2084                 if (buffer_uptodate(bh))
2085                         continue;
2086
2087                 if (!buffer_mapped(bh)) {
2088                         int err = 0;
2089
2090                         fully_mapped = 0;
2091                         if (iblock < lblock) {
2092                                 WARN_ON(bh->b_size != blocksize);
2093                                 err = get_block(inode, iblock, bh, 0);
2094                                 if (err)
2095                                         SetPageError(page);
2096                         }
2097                         if (!buffer_mapped(bh)) {
2098                                 zero_user(page, i * blocksize, blocksize);
2099                                 if (!err)
2100                                         set_buffer_uptodate(bh);
2101                                 continue;
2102                         }
2103                         /*
2104                          * get_block() might have updated the buffer
2105                          * synchronously
2106                          */
2107                         if (buffer_uptodate(bh))
2108                                 continue;
2109                 }
2110                 arr[nr++] = bh;
2111         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2112
2113         if (fully_mapped)
2114                 SetPageMappedToDisk(page);
2115
2116         if (!nr) {
2117                 /*
2118                  * All buffers are uptodate - we can set the page uptodate
2119                  * as well. But not if get_block() returned an error.
2120                  */
2121                 if (!PageError(page))
2122                         SetPageUptodate(page);
2123                 unlock_page(page);
2124                 return 0;
2125         }
2126
2127         /* Stage two: lock the buffers */
2128         for (i = 0; i < nr; i++) {
2129                 bh = arr[i];
2130                 lock_buffer(bh);
2131                 mark_buffer_async_read(bh);
2132         }
2133
2134         /*
2135          * Stage 3: start the IO.  Check for uptodateness
2136          * inside the buffer lock in case another process reading
2137          * the underlying blockdev brought it uptodate (the sct fix).
2138          */
2139         for (i = 0; i < nr; i++) {
2140                 bh = arr[i];
2141                 if (buffer_uptodate(bh))
2142                         end_buffer_async_read(bh, 1);
2143                 else
2144                         submit_bh(READ, bh);
2145         }
2146         return 0;
2147 }
2148
2149 /* utility function for filesystems that need to do work on expanding
2150  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2151  * deal with the hole.  
2152  */
2153 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2154 {
2155         struct address_space *mapping = inode->i_mapping;
2156         struct page *page;
2157         void *fsdata;
2158         unsigned long limit;
2159         int err;
2160
2161         err = -EFBIG;
2162         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2163         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2164                 send_sig(SIGXFSZ, current, 0);
2165                 goto out;
2166         }
2167         if (size > inode->i_sb->s_maxbytes)
2168                 goto out;
2169
2170         err = pagecache_write_begin(NULL, mapping, size, 0,
2171                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2172                                 &page, &fsdata);
2173         if (err)
2174                 goto out;
2175
2176         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2177         BUG_ON(err > 0);
2178
2179 out:
2180         return err;
2181 }
2182
2183 int cont_expand_zero(struct file *file, struct address_space *mapping,
2184                         loff_t pos, loff_t *bytes)
2185 {
2186         struct inode *inode = mapping->host;
2187         unsigned blocksize = 1 << inode->i_blkbits;
2188         struct page *page;
2189         void *fsdata;
2190         pgoff_t index, curidx;
2191         loff_t curpos;
2192         unsigned zerofrom, offset, len;
2193         int err = 0;
2194
2195         index = pos >> PAGE_CACHE_SHIFT;
2196         offset = pos & ~PAGE_CACHE_MASK;
2197
2198         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2199                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2200                 if (zerofrom & (blocksize-1)) {
2201                         *bytes |= (blocksize-1);
2202                         (*bytes)++;
2203                 }
2204                 len = PAGE_CACHE_SIZE - zerofrom;
2205
2206                 err = pagecache_write_begin(file, mapping, curpos, len,
2207                                                 AOP_FLAG_UNINTERRUPTIBLE,
2208                                                 &page, &fsdata);
2209                 if (err)
2210                         goto out;
2211                 zero_user(page, zerofrom, len);
2212                 err = pagecache_write_end(file, mapping, curpos, len, len,
2213                                                 page, fsdata);
2214                 if (err < 0)
2215                         goto out;
2216                 BUG_ON(err != len);
2217                 err = 0;
2218         }
2219
2220         /* page covers the boundary, find the boundary offset */
2221         if (index == curidx) {
2222                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2223                 /* if we will expand the thing last block will be filled */
2224                 if (offset <= zerofrom) {
2225                         goto out;
2226                 }
2227                 if (zerofrom & (blocksize-1)) {
2228                         *bytes |= (blocksize-1);
2229                         (*bytes)++;
2230                 }
2231                 len = offset - zerofrom;
2232
2233                 err = pagecache_write_begin(file, mapping, curpos, len,
2234                                                 AOP_FLAG_UNINTERRUPTIBLE,
2235                                                 &page, &fsdata);
2236                 if (err)
2237                         goto out;
2238                 zero_user(page, zerofrom, len);
2239                 err = pagecache_write_end(file, mapping, curpos, len, len,
2240                                                 page, fsdata);
2241                 if (err < 0)
2242                         goto out;
2243                 BUG_ON(err != len);
2244                 err = 0;
2245         }
2246 out:
2247         return err;
2248 }
2249
2250 /*
2251  * For moronic filesystems that do not allow holes in file.
2252  * We may have to extend the file.
2253  */
2254 int cont_write_begin(struct file *file, struct address_space *mapping,
2255                         loff_t pos, unsigned len, unsigned flags,
2256                         struct page **pagep, void **fsdata,
2257                         get_block_t *get_block, loff_t *bytes)
2258 {
2259         struct inode *inode = mapping->host;
2260         unsigned blocksize = 1 << inode->i_blkbits;
2261         unsigned zerofrom;
2262         int err;
2263
2264         err = cont_expand_zero(file, mapping, pos, bytes);
2265         if (err)
2266                 goto out;
2267
2268         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2269         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2270                 *bytes |= (blocksize-1);
2271                 (*bytes)++;
2272         }
2273
2274         *pagep = NULL;
2275         err = block_write_begin(file, mapping, pos, len,
2276                                 flags, pagep, fsdata, get_block);
2277 out:
2278         return err;
2279 }
2280
2281 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2282                         get_block_t *get_block)
2283 {
2284         struct inode *inode = page->mapping->host;
2285         int err = __block_prepare_write(inode, page, from, to, get_block);
2286         if (err)
2287                 ClearPageUptodate(page);
2288         return err;
2289 }
2290
2291 int block_commit_write(struct page *page, unsigned from, unsigned to)
2292 {
2293         struct inode *inode = page->mapping->host;
2294         __block_commit_write(inode,page,from,to);
2295         return 0;
2296 }
2297
2298 int generic_commit_write(struct file *file, struct page *page,
2299                 unsigned from, unsigned to)
2300 {
2301         struct inode *inode = page->mapping->host;
2302         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2303         __block_commit_write(inode,page,from,to);
2304         /*
2305          * No need to use i_size_read() here, the i_size
2306          * cannot change under us because we hold i_mutex.
2307          */
2308         if (pos > inode->i_size) {
2309                 i_size_write(inode, pos);
2310                 mark_inode_dirty(inode);
2311         }
2312         return 0;
2313 }
2314
2315 /*
2316  * block_page_mkwrite() is not allowed to change the file size as it gets
2317  * called from a page fault handler when a page is first dirtied. Hence we must
2318  * be careful to check for EOF conditions here. We set the page up correctly
2319  * for a written page which means we get ENOSPC checking when writing into
2320  * holes and correct delalloc and unwritten extent mapping on filesystems that
2321  * support these features.
2322  *
2323  * We are not allowed to take the i_mutex here so we have to play games to
2324  * protect against truncate races as the page could now be beyond EOF.  Because
2325  * vmtruncate() writes the inode size before removing pages, once we have the
2326  * page lock we can determine safely if the page is beyond EOF. If it is not
2327  * beyond EOF, then the page is guaranteed safe against truncation until we
2328  * unlock the page.
2329  */
2330 int
2331 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2332                    get_block_t get_block)
2333 {
2334         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2335         unsigned long end;
2336         loff_t size;
2337         int ret = -EINVAL;
2338
2339         lock_page(page);
2340         size = i_size_read(inode);
2341         if ((page->mapping != inode->i_mapping) ||
2342             (page_offset(page) > size)) {
2343                 /* page got truncated out from underneath us */
2344                 goto out_unlock;
2345         }
2346
2347         /* page is wholly or partially inside EOF */
2348         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2349                 end = size & ~PAGE_CACHE_MASK;
2350         else
2351                 end = PAGE_CACHE_SIZE;
2352
2353         ret = block_prepare_write(page, 0, end, get_block);
2354         if (!ret)
2355                 ret = block_commit_write(page, 0, end);
2356
2357 out_unlock:
2358         unlock_page(page);
2359         return ret;
2360 }
2361
2362 /*
2363  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2364  * immediately, while under the page lock.  So it needs a special end_io
2365  * handler which does not touch the bh after unlocking it.
2366  */
2367 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2368 {
2369         __end_buffer_read_notouch(bh, uptodate);
2370 }
2371
2372 /*
2373  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2374  * the page (converting it to circular linked list and taking care of page
2375  * dirty races).
2376  */
2377 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2378 {
2379         struct buffer_head *bh;
2380
2381         BUG_ON(!PageLocked(page));
2382
2383         spin_lock(&page->mapping->private_lock);
2384         bh = head;
2385         do {
2386                 if (PageDirty(page))
2387                         set_buffer_dirty(bh);
2388                 if (!bh->b_this_page)
2389                         bh->b_this_page = head;
2390                 bh = bh->b_this_page;
2391         } while (bh != head);
2392         attach_page_buffers(page, head);
2393         spin_unlock(&page->mapping->private_lock);
2394 }
2395
2396 /*
2397  * On entry, the page is fully not uptodate.
2398  * On exit the page is fully uptodate in the areas outside (from,to)
2399  */
2400 int nobh_write_begin(struct file *file, struct address_space *mapping,
2401                         loff_t pos, unsigned len, unsigned flags,
2402                         struct page **pagep, void **fsdata,
2403                         get_block_t *get_block)
2404 {
2405         struct inode *inode = mapping->host;
2406         const unsigned blkbits = inode->i_blkbits;
2407         const unsigned blocksize = 1 << blkbits;
2408         struct buffer_head *head, *bh;
2409         struct page *page;
2410         pgoff_t index;
2411         unsigned from, to;
2412         unsigned block_in_page;
2413         unsigned block_start, block_end;
2414         sector_t block_in_file;
2415         int nr_reads = 0;
2416         int ret = 0;
2417         int is_mapped_to_disk = 1;
2418
2419         index = pos >> PAGE_CACHE_SHIFT;
2420         from = pos & (PAGE_CACHE_SIZE - 1);
2421         to = from + len;
2422
2423         page = __grab_cache_page(mapping, index);
2424         if (!page)
2425                 return -ENOMEM;
2426         *pagep = page;
2427         *fsdata = NULL;
2428
2429         if (page_has_buffers(page)) {
2430                 unlock_page(page);
2431                 page_cache_release(page);
2432                 *pagep = NULL;
2433                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2434                                         fsdata, get_block);
2435         }
2436
2437         if (PageMappedToDisk(page))
2438                 return 0;
2439
2440         /*
2441          * Allocate buffers so that we can keep track of state, and potentially
2442          * attach them to the page if an error occurs. In the common case of
2443          * no error, they will just be freed again without ever being attached
2444          * to the page (which is all OK, because we're under the page lock).
2445          *
2446          * Be careful: the buffer linked list is a NULL terminated one, rather
2447          * than the circular one we're used to.
2448          */
2449         head = alloc_page_buffers(page, blocksize, 0);
2450         if (!head) {
2451                 ret = -ENOMEM;
2452                 goto out_release;
2453         }
2454
2455         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2456
2457         /*
2458          * We loop across all blocks in the page, whether or not they are
2459          * part of the affected region.  This is so we can discover if the
2460          * page is fully mapped-to-disk.
2461          */
2462         for (block_start = 0, block_in_page = 0, bh = head;
2463                   block_start < PAGE_CACHE_SIZE;
2464                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2465                 int create;
2466
2467                 block_end = block_start + blocksize;
2468                 bh->b_state = 0;
2469                 create = 1;
2470                 if (block_start >= to)
2471                         create = 0;
2472                 ret = get_block(inode, block_in_file + block_in_page,
2473                                         bh, create);
2474                 if (ret)
2475                         goto failed;
2476                 if (!buffer_mapped(bh))
2477                         is_mapped_to_disk = 0;
2478                 if (buffer_new(bh))
2479                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2480                 if (PageUptodate(page)) {
2481                         set_buffer_uptodate(bh);
2482                         continue;
2483                 }
2484                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2485                         zero_user_segments(page, block_start, from,
2486                                                         to, block_end);
2487                         continue;
2488                 }
2489                 if (buffer_uptodate(bh))
2490                         continue;       /* reiserfs does this */
2491                 if (block_start < from || block_end > to) {
2492                         lock_buffer(bh);
2493                         bh->b_end_io = end_buffer_read_nobh;
2494                         submit_bh(READ, bh);
2495                         nr_reads++;
2496                 }
2497         }
2498
2499         if (nr_reads) {
2500                 /*
2501                  * The page is locked, so these buffers are protected from
2502                  * any VM or truncate activity.  Hence we don't need to care
2503                  * for the buffer_head refcounts.
2504                  */
2505                 for (bh = head; bh; bh = bh->b_this_page) {
2506                         wait_on_buffer(bh);
2507                         if (!buffer_uptodate(bh))
2508                                 ret = -EIO;
2509                 }
2510                 if (ret)
2511                         goto failed;
2512         }
2513
2514         if (is_mapped_to_disk)
2515                 SetPageMappedToDisk(page);
2516
2517         *fsdata = head; /* to be released by nobh_write_end */
2518
2519         return 0;
2520
2521 failed:
2522         BUG_ON(!ret);
2523         /*
2524          * Error recovery is a bit difficult. We need to zero out blocks that
2525          * were newly allocated, and dirty them to ensure they get written out.
2526          * Buffers need to be attached to the page at this point, otherwise
2527          * the handling of potential IO errors during writeout would be hard
2528          * (could try doing synchronous writeout, but what if that fails too?)
2529          */
2530         attach_nobh_buffers(page, head);
2531         page_zero_new_buffers(page, from, to);
2532
2533 out_release:
2534         unlock_page(page);
2535         page_cache_release(page);
2536         *pagep = NULL;
2537
2538         if (pos + len > inode->i_size)
2539                 vmtruncate(inode, inode->i_size);
2540
2541         return ret;
2542 }
2543 EXPORT_SYMBOL(nobh_write_begin);
2544
2545 int nobh_write_end(struct file *file, struct address_space *mapping,
2546                         loff_t pos, unsigned len, unsigned copied,
2547                         struct page *page, void *fsdata)
2548 {
2549         struct inode *inode = page->mapping->host;
2550         struct buffer_head *head = fsdata;
2551         struct buffer_head *bh;
2552
2553         if (!PageMappedToDisk(page)) {
2554                 if (unlikely(copied < len) && !page_has_buffers(page))
2555                         attach_nobh_buffers(page, head);
2556                 if (page_has_buffers(page))
2557                         return generic_write_end(file, mapping, pos, len,
2558                                                 copied, page, fsdata);
2559         }
2560
2561         SetPageUptodate(page);
2562         set_page_dirty(page);
2563         if (pos+copied > inode->i_size) {
2564                 i_size_write(inode, pos+copied);
2565                 mark_inode_dirty(inode);
2566         }
2567
2568         unlock_page(page);
2569         page_cache_release(page);
2570
2571         while (head) {
2572                 bh = head;
2573                 head = head->b_this_page;
2574                 free_buffer_head(bh);
2575         }
2576
2577         return copied;
2578 }
2579 EXPORT_SYMBOL(nobh_write_end);
2580
2581 /*
2582  * nobh_writepage() - based on block_full_write_page() except
2583  * that it tries to operate without attaching bufferheads to
2584  * the page.
2585  */
2586 int nobh_writepage(struct page *page, get_block_t *get_block,
2587                         struct writeback_control *wbc)
2588 {
2589         struct inode * const inode = page->mapping->host;
2590         loff_t i_size = i_size_read(inode);
2591         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2592         unsigned offset;
2593         int ret;
2594
2595         /* Is the page fully inside i_size? */
2596         if (page->index < end_index)
2597                 goto out;
2598
2599         /* Is the page fully outside i_size? (truncate in progress) */
2600         offset = i_size & (PAGE_CACHE_SIZE-1);
2601         if (page->index >= end_index+1 || !offset) {
2602                 /*
2603                  * The page may have dirty, unmapped buffers.  For example,
2604                  * they may have been added in ext3_writepage().  Make them
2605                  * freeable here, so the page does not leak.
2606                  */
2607 #if 0
2608                 /* Not really sure about this  - do we need this ? */
2609                 if (page->mapping->a_ops->invalidatepage)
2610                         page->mapping->a_ops->invalidatepage(page, offset);
2611 #endif
2612                 unlock_page(page);
2613                 return 0; /* don't care */
2614         }
2615
2616         /*
2617          * The page straddles i_size.  It must be zeroed out on each and every
2618          * writepage invocation because it may be mmapped.  "A file is mapped
2619          * in multiples of the page size.  For a file that is not a multiple of
2620          * the  page size, the remaining memory is zeroed when mapped, and
2621          * writes to that region are not written out to the file."
2622          */
2623         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2624 out:
2625         ret = mpage_writepage(page, get_block, wbc);
2626         if (ret == -EAGAIN)
2627                 ret = __block_write_full_page(inode, page, get_block, wbc);
2628         return ret;
2629 }
2630 EXPORT_SYMBOL(nobh_writepage);
2631
2632 int nobh_truncate_page(struct address_space *mapping,
2633                         loff_t from, get_block_t *get_block)
2634 {
2635         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2636         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2637         unsigned blocksize;
2638         sector_t iblock;
2639         unsigned length, pos;
2640         struct inode *inode = mapping->host;
2641         struct page *page;
2642         struct buffer_head map_bh;
2643         int err;
2644
2645         blocksize = 1 << inode->i_blkbits;
2646         length = offset & (blocksize - 1);
2647
2648         /* Block boundary? Nothing to do */
2649         if (!length)
2650                 return 0;
2651
2652         length = blocksize - length;
2653         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2654
2655         page = grab_cache_page(mapping, index);
2656         err = -ENOMEM;
2657         if (!page)
2658                 goto out;
2659
2660         if (page_has_buffers(page)) {
2661 has_buffers:
2662                 unlock_page(page);
2663                 page_cache_release(page);
2664                 return block_truncate_page(mapping, from, get_block);
2665         }
2666
2667         /* Find the buffer that contains "offset" */
2668         pos = blocksize;
2669         while (offset >= pos) {
2670                 iblock++;
2671                 pos += blocksize;
2672         }
2673
2674         err = get_block(inode, iblock, &map_bh, 0);
2675         if (err)
2676                 goto unlock;
2677         /* unmapped? It's a hole - nothing to do */
2678         if (!buffer_mapped(&map_bh))
2679                 goto unlock;
2680
2681         /* Ok, it's mapped. Make sure it's up-to-date */
2682         if (!PageUptodate(page)) {
2683                 err = mapping->a_ops->readpage(NULL, page);
2684                 if (err) {
2685                         page_cache_release(page);
2686                         goto out;
2687                 }
2688                 lock_page(page);
2689                 if (!PageUptodate(page)) {
2690                         err = -EIO;
2691                         goto unlock;
2692                 }
2693                 if (page_has_buffers(page))
2694                         goto has_buffers;
2695         }
2696         zero_user(page, offset, length);
2697         set_page_dirty(page);
2698         err = 0;
2699
2700 unlock:
2701         unlock_page(page);
2702         page_cache_release(page);
2703 out:
2704         return err;
2705 }
2706 EXPORT_SYMBOL(nobh_truncate_page);
2707
2708 int block_truncate_page(struct address_space *mapping,
2709                         loff_t from, get_block_t *get_block)
2710 {
2711         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2712         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2713         unsigned blocksize;
2714         sector_t iblock;
2715         unsigned length, pos;
2716         struct inode *inode = mapping->host;
2717         struct page *page;
2718         struct buffer_head *bh;
2719         int err;
2720
2721         blocksize = 1 << inode->i_blkbits;
2722         length = offset & (blocksize - 1);
2723
2724         /* Block boundary? Nothing to do */
2725         if (!length)
2726                 return 0;
2727
2728         length = blocksize - length;
2729         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2730         
2731         page = grab_cache_page(mapping, index);
2732         err = -ENOMEM;
2733         if (!page)
2734                 goto out;
2735
2736         if (!page_has_buffers(page))
2737                 create_empty_buffers(page, blocksize, 0);
2738
2739         /* Find the buffer that contains "offset" */
2740         bh = page_buffers(page);
2741         pos = blocksize;
2742         while (offset >= pos) {
2743                 bh = bh->b_this_page;
2744                 iblock++;
2745                 pos += blocksize;
2746         }
2747
2748         err = 0;
2749         if (!buffer_mapped(bh)) {
2750                 WARN_ON(bh->b_size != blocksize);
2751                 err = get_block(inode, iblock, bh, 0);
2752                 if (err)
2753                         goto unlock;
2754                 /* unmapped? It's a hole - nothing to do */
2755                 if (!buffer_mapped(bh))
2756                         goto unlock;
2757         }
2758
2759         /* Ok, it's mapped. Make sure it's up-to-date */
2760         if (PageUptodate(page))
2761                 set_buffer_uptodate(bh);
2762
2763         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2764                 err = -EIO;
2765                 ll_rw_block(READ, 1, &bh);
2766                 wait_on_buffer(bh);
2767                 /* Uhhuh. Read error. Complain and punt. */
2768                 if (!buffer_uptodate(bh))
2769                         goto unlock;
2770         }
2771
2772         zero_user(page, offset, length);
2773         mark_buffer_dirty(bh);
2774         err = 0;
2775
2776 unlock:
2777         unlock_page(page);
2778         page_cache_release(page);
2779 out:
2780         return err;
2781 }
2782
2783 /*
2784  * The generic ->writepage function for buffer-backed address_spaces
2785  */
2786 int block_write_full_page(struct page *page, get_block_t *get_block,
2787                         struct writeback_control *wbc)
2788 {
2789         struct inode * const inode = page->mapping->host;
2790         loff_t i_size = i_size_read(inode);
2791         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2792         unsigned offset;
2793
2794         /* Is the page fully inside i_size? */
2795         if (page->index < end_index)
2796                 return __block_write_full_page(inode, page, get_block, wbc);
2797
2798         /* Is the page fully outside i_size? (truncate in progress) */
2799         offset = i_size & (PAGE_CACHE_SIZE-1);
2800         if (page->index >= end_index+1 || !offset) {
2801                 /*
2802                  * The page may have dirty, unmapped buffers.  For example,
2803                  * they may have been added in ext3_writepage().  Make them
2804                  * freeable here, so the page does not leak.
2805                  */
2806                 do_invalidatepage(page, 0);
2807                 unlock_page(page);
2808                 return 0; /* don't care */
2809         }
2810
2811         /*
2812          * The page straddles i_size.  It must be zeroed out on each and every
2813          * writepage invokation because it may be mmapped.  "A file is mapped
2814          * in multiples of the page size.  For a file that is not a multiple of
2815          * the  page size, the remaining memory is zeroed when mapped, and
2816          * writes to that region are not written out to the file."
2817          */
2818         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2819         return __block_write_full_page(inode, page, get_block, wbc);
2820 }
2821
2822 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2823                             get_block_t *get_block)
2824 {
2825         struct buffer_head tmp;
2826         struct inode *inode = mapping->host;
2827         tmp.b_state = 0;
2828         tmp.b_blocknr = 0;
2829         tmp.b_size = 1 << inode->i_blkbits;
2830         get_block(inode, block, &tmp, 0);
2831         return tmp.b_blocknr;
2832 }
2833
2834 static void end_bio_bh_io_sync(struct bio *bio, int err)
2835 {
2836         struct buffer_head *bh = bio->bi_private;
2837
2838         if (err == -EOPNOTSUPP) {
2839                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2840                 set_bit(BH_Eopnotsupp, &bh->b_state);
2841         }
2842
2843         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2844         bio_put(bio);
2845 }
2846
2847 int submit_bh(int rw, struct buffer_head * bh)
2848 {
2849         struct bio *bio;
2850         int ret = 0;
2851
2852         BUG_ON(!buffer_locked(bh));
2853         BUG_ON(!buffer_mapped(bh));
2854         BUG_ON(!bh->b_end_io);
2855
2856         if (buffer_ordered(bh) && (rw == WRITE))
2857                 rw = WRITE_BARRIER;
2858
2859         /*
2860          * Only clear out a write error when rewriting, should this
2861          * include WRITE_SYNC as well?
2862          */
2863         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2864                 clear_buffer_write_io_error(bh);
2865
2866         /*
2867          * from here on down, it's all bio -- do the initial mapping,
2868          * submit_bio -> generic_make_request may further map this bio around
2869          */
2870         bio = bio_alloc(GFP_NOIO, 1);
2871
2872         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2873         bio->bi_bdev = bh->b_bdev;
2874         bio->bi_io_vec[0].bv_page = bh->b_page;
2875         bio->bi_io_vec[0].bv_len = bh->b_size;
2876         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2877
2878         bio->bi_vcnt = 1;
2879         bio->bi_idx = 0;
2880         bio->bi_size = bh->b_size;
2881
2882         bio->bi_end_io = end_bio_bh_io_sync;
2883         bio->bi_private = bh;
2884
2885         bio_get(bio);
2886         submit_bio(rw, bio);
2887
2888         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2889                 ret = -EOPNOTSUPP;
2890
2891         bio_put(bio);
2892         return ret;
2893 }
2894
2895 /**
2896  * ll_rw_block: low-level access to block devices (DEPRECATED)
2897  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2898  * @nr: number of &struct buffer_heads in the array
2899  * @bhs: array of pointers to &struct buffer_head
2900  *
2901  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2902  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2903  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2904  * are sent to disk. The fourth %READA option is described in the documentation
2905  * for generic_make_request() which ll_rw_block() calls.
2906  *
2907  * This function drops any buffer that it cannot get a lock on (with the
2908  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2909  * clean when doing a write request, and any buffer that appears to be
2910  * up-to-date when doing read request.  Further it marks as clean buffers that
2911  * are processed for writing (the buffer cache won't assume that they are
2912  * actually clean until the buffer gets unlocked).
2913  *
2914  * ll_rw_block sets b_end_io to simple completion handler that marks
2915  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2916  * any waiters. 
2917  *
2918  * All of the buffers must be for the same device, and must also be a
2919  * multiple of the current approved size for the device.
2920  */
2921 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2922 {
2923         int i;
2924
2925         for (i = 0; i < nr; i++) {
2926                 struct buffer_head *bh = bhs[i];
2927
2928                 if (rw == SWRITE)
2929                         lock_buffer(bh);
2930                 else if (test_set_buffer_locked(bh))
2931                         continue;
2932
2933                 if (rw == WRITE || rw == SWRITE) {
2934                         if (test_clear_buffer_dirty(bh)) {
2935                                 bh->b_end_io = end_buffer_write_sync;
2936                                 get_bh(bh);
2937                                 submit_bh(WRITE, bh);
2938                                 continue;
2939                         }
2940                 } else {
2941                         if (!buffer_uptodate(bh)) {
2942                                 bh->b_end_io = end_buffer_read_sync;
2943                                 get_bh(bh);
2944                                 submit_bh(rw, bh);
2945                                 continue;
2946                         }
2947                 }
2948                 unlock_buffer(bh);
2949         }
2950 }
2951
2952 /*
2953  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2954  * and then start new I/O and then wait upon it.  The caller must have a ref on
2955  * the buffer_head.
2956  */
2957 int sync_dirty_buffer(struct buffer_head *bh)
2958 {
2959         int ret = 0;
2960
2961         WARN_ON(atomic_read(&bh->b_count) < 1);
2962         lock_buffer(bh);
2963         if (test_clear_buffer_dirty(bh)) {
2964                 get_bh(bh);
2965                 bh->b_end_io = end_buffer_write_sync;
2966                 ret = submit_bh(WRITE, bh);
2967                 wait_on_buffer(bh);
2968                 if (buffer_eopnotsupp(bh)) {
2969                         clear_buffer_eopnotsupp(bh);
2970                         ret = -EOPNOTSUPP;
2971                 }
2972                 if (!ret && !buffer_uptodate(bh))
2973                         ret = -EIO;
2974         } else {
2975                 unlock_buffer(bh);
2976         }
2977         return ret;
2978 }
2979
2980 /*
2981  * try_to_free_buffers() checks if all the buffers on this particular page
2982  * are unused, and releases them if so.
2983  *
2984  * Exclusion against try_to_free_buffers may be obtained by either
2985  * locking the page or by holding its mapping's private_lock.
2986  *
2987  * If the page is dirty but all the buffers are clean then we need to
2988  * be sure to mark the page clean as well.  This is because the page
2989  * may be against a block device, and a later reattachment of buffers
2990  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2991  * filesystem data on the same device.
2992  *
2993  * The same applies to regular filesystem pages: if all the buffers are
2994  * clean then we set the page clean and proceed.  To do that, we require
2995  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2996  * private_lock.
2997  *
2998  * try_to_free_buffers() is non-blocking.
2999  */
3000 static inline int buffer_busy(struct buffer_head *bh)
3001 {
3002         return atomic_read(&bh->b_count) |
3003                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3004 }
3005
3006 static int
3007 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3008 {
3009         struct buffer_head *head = page_buffers(page);
3010         struct buffer_head *bh;
3011
3012         bh = head;
3013         do {
3014                 if (buffer_write_io_error(bh) && page->mapping)
3015                         set_bit(AS_EIO, &page->mapping->flags);
3016                 if (buffer_busy(bh))
3017                         goto failed;
3018                 bh = bh->b_this_page;
3019         } while (bh != head);
3020
3021         do {
3022                 struct buffer_head *next = bh->b_this_page;
3023
3024                 if (!list_empty(&bh->b_assoc_buffers))
3025                         __remove_assoc_queue(bh);
3026                 bh = next;
3027         } while (bh != head);
3028         *buffers_to_free = head;
3029         __clear_page_buffers(page);
3030         return 1;
3031 failed:
3032         return 0;
3033 }
3034
3035 int try_to_free_buffers(struct page *page)
3036 {
3037         struct address_space * const mapping = page->mapping;
3038         struct buffer_head *buffers_to_free = NULL;
3039         int ret = 0;
3040
3041         BUG_ON(!PageLocked(page));
3042         if (PageWriteback(page))
3043                 return 0;
3044
3045         if (mapping == NULL) {          /* can this still happen? */
3046                 ret = drop_buffers(page, &buffers_to_free);
3047                 goto out;
3048         }
3049
3050         spin_lock(&mapping->private_lock);
3051         ret = drop_buffers(page, &buffers_to_free);
3052
3053         /*
3054          * If the filesystem writes its buffers by hand (eg ext3)
3055          * then we can have clean buffers against a dirty page.  We
3056          * clean the page here; otherwise the VM will never notice
3057          * that the filesystem did any IO at all.
3058          *
3059          * Also, during truncate, discard_buffer will have marked all
3060          * the page's buffers clean.  We discover that here and clean
3061          * the page also.
3062          *
3063          * private_lock must be held over this entire operation in order
3064          * to synchronise against __set_page_dirty_buffers and prevent the
3065          * dirty bit from being lost.
3066          */
3067         if (ret)
3068                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3069         spin_unlock(&mapping->private_lock);
3070 out:
3071         if (buffers_to_free) {
3072                 struct buffer_head *bh = buffers_to_free;
3073
3074                 do {
3075                         struct buffer_head *next = bh->b_this_page;
3076                         free_buffer_head(bh);
3077                         bh = next;
3078                 } while (bh != buffers_to_free);
3079         }
3080         return ret;
3081 }
3082 EXPORT_SYMBOL(try_to_free_buffers);
3083
3084 void block_sync_page(struct page *page)
3085 {
3086         struct address_space *mapping;
3087
3088         smp_mb();
3089         mapping = page_mapping(page);
3090         if (mapping)
3091                 blk_run_backing_dev(mapping->backing_dev_info, page);
3092 }
3093
3094 /*
3095  * There are no bdflush tunables left.  But distributions are
3096  * still running obsolete flush daemons, so we terminate them here.
3097  *
3098  * Use of bdflush() is deprecated and will be removed in a future kernel.
3099  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3100  */
3101 asmlinkage long sys_bdflush(int func, long data)
3102 {
3103         static int msg_count;
3104
3105         if (!capable(CAP_SYS_ADMIN))
3106                 return -EPERM;
3107
3108         if (msg_count < 5) {
3109                 msg_count++;
3110                 printk(KERN_INFO
3111                         "warning: process `%s' used the obsolete bdflush"
3112                         " system call\n", current->comm);
3113                 printk(KERN_INFO "Fix your initscripts?\n");
3114         }
3115
3116         if (func == 1)
3117                 do_exit(0);
3118         return 0;
3119 }
3120
3121 /*
3122  * Buffer-head allocation
3123  */
3124 static struct kmem_cache *bh_cachep;
3125
3126 /*
3127  * Once the number of bh's in the machine exceeds this level, we start
3128  * stripping them in writeback.
3129  */
3130 static int max_buffer_heads;
3131
3132 int buffer_heads_over_limit;
3133
3134 struct bh_accounting {
3135         int nr;                 /* Number of live bh's */
3136         int ratelimit;          /* Limit cacheline bouncing */
3137 };
3138
3139 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3140
3141 static void recalc_bh_state(void)
3142 {
3143         int i;
3144         int tot = 0;
3145
3146         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3147                 return;
3148         __get_cpu_var(bh_accounting).ratelimit = 0;
3149         for_each_online_cpu(i)
3150                 tot += per_cpu(bh_accounting, i).nr;
3151         buffer_heads_over_limit = (tot > max_buffer_heads);
3152 }
3153         
3154 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3155 {
3156         struct buffer_head *ret = kmem_cache_alloc(bh_cachep,
3157                                 set_migrateflags(gfp_flags, __GFP_RECLAIMABLE));
3158         if (ret) {
3159                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3160                 get_cpu_var(bh_accounting).nr++;
3161                 recalc_bh_state();
3162                 put_cpu_var(bh_accounting);
3163         }
3164         return ret;
3165 }
3166 EXPORT_SYMBOL(alloc_buffer_head);
3167
3168 void free_buffer_head(struct buffer_head *bh)
3169 {
3170         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3171         kmem_cache_free(bh_cachep, bh);
3172         get_cpu_var(bh_accounting).nr--;
3173         recalc_bh_state();
3174         put_cpu_var(bh_accounting);
3175 }
3176 EXPORT_SYMBOL(free_buffer_head);
3177
3178 static void buffer_exit_cpu(int cpu)
3179 {
3180         int i;
3181         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3182
3183         for (i = 0; i < BH_LRU_SIZE; i++) {
3184                 brelse(b->bhs[i]);
3185                 b->bhs[i] = NULL;
3186         }
3187         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3188         per_cpu(bh_accounting, cpu).nr = 0;
3189         put_cpu_var(bh_accounting);
3190 }
3191
3192 static int buffer_cpu_notify(struct notifier_block *self,
3193                               unsigned long action, void *hcpu)
3194 {
3195         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3196                 buffer_exit_cpu((unsigned long)hcpu);
3197         return NOTIFY_OK;
3198 }
3199
3200 /**
3201  * bh_uptodate_or_lock: Test whether the buffer is uptodate
3202  * @bh: struct buffer_head
3203  *
3204  * Return true if the buffer is up-to-date and false,
3205  * with the buffer locked, if not.
3206  */
3207 int bh_uptodate_or_lock(struct buffer_head *bh)
3208 {
3209         if (!buffer_uptodate(bh)) {
3210                 lock_buffer(bh);
3211                 if (!buffer_uptodate(bh))
3212                         return 0;
3213                 unlock_buffer(bh);
3214         }
3215         return 1;
3216 }
3217 EXPORT_SYMBOL(bh_uptodate_or_lock);
3218
3219 /**
3220  * bh_submit_read: Submit a locked buffer for reading
3221  * @bh: struct buffer_head
3222  *
3223  * Returns zero on success and -EIO on error.
3224  */
3225 int bh_submit_read(struct buffer_head *bh)
3226 {
3227         BUG_ON(!buffer_locked(bh));
3228
3229         if (buffer_uptodate(bh)) {
3230                 unlock_buffer(bh);
3231                 return 0;
3232         }
3233
3234         get_bh(bh);
3235         bh->b_end_io = end_buffer_read_sync;
3236         submit_bh(READ, bh);
3237         wait_on_buffer(bh);
3238         if (buffer_uptodate(bh))
3239                 return 0;
3240         return -EIO;
3241 }
3242 EXPORT_SYMBOL(bh_submit_read);
3243
3244 static void
3245 init_buffer_head(struct kmem_cache *cachep, void *data)
3246 {
3247         struct buffer_head *bh = data;
3248
3249         memset(bh, 0, sizeof(*bh));
3250         INIT_LIST_HEAD(&bh->b_assoc_buffers);
3251 }
3252
3253 void __init buffer_init(void)
3254 {
3255         int nrpages;
3256
3257         bh_cachep = kmem_cache_create("buffer_head",
3258                         sizeof(struct buffer_head), 0,
3259                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3260                                 SLAB_MEM_SPREAD),
3261                                 init_buffer_head);
3262
3263         /*
3264          * Limit the bh occupancy to 10% of ZONE_NORMAL
3265          */
3266         nrpages = (nr_free_buffer_pages() * 10) / 100;
3267         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3268         hotcpu_notifier(buffer_cpu_notify, 0);
3269 }
3270
3271 EXPORT_SYMBOL(__bforget);
3272 EXPORT_SYMBOL(__brelse);
3273 EXPORT_SYMBOL(__wait_on_buffer);
3274 EXPORT_SYMBOL(block_commit_write);
3275 EXPORT_SYMBOL(block_prepare_write);
3276 EXPORT_SYMBOL(block_page_mkwrite);
3277 EXPORT_SYMBOL(block_read_full_page);
3278 EXPORT_SYMBOL(block_sync_page);
3279 EXPORT_SYMBOL(block_truncate_page);
3280 EXPORT_SYMBOL(block_write_full_page);
3281 EXPORT_SYMBOL(cont_write_begin);
3282 EXPORT_SYMBOL(end_buffer_read_sync);
3283 EXPORT_SYMBOL(end_buffer_write_sync);
3284 EXPORT_SYMBOL(file_fsync);
3285 EXPORT_SYMBOL(fsync_bdev);
3286 EXPORT_SYMBOL(generic_block_bmap);
3287 EXPORT_SYMBOL(generic_commit_write);
3288 EXPORT_SYMBOL(generic_cont_expand_simple);
3289 EXPORT_SYMBOL(init_buffer);
3290 EXPORT_SYMBOL(invalidate_bdev);
3291 EXPORT_SYMBOL(ll_rw_block);
3292 EXPORT_SYMBOL(mark_buffer_dirty);
3293 EXPORT_SYMBOL(submit_bh);
3294 EXPORT_SYMBOL(sync_dirty_buffer);
3295 EXPORT_SYMBOL(unlock_buffer);