p54: refactoring
[linux-2.6] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41         { .bitrate = 60, .hw_value = 4, },
42         { .bitrate = 90, .hw_value = 5, },
43         { .bitrate = 120, .hw_value = 6, },
44         { .bitrate = 180, .hw_value = 7, },
45         { .bitrate = 240, .hw_value = 8, },
46         { .bitrate = 360, .hw_value = 9, },
47         { .bitrate = 480, .hw_value = 10, },
48         { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52         { .center_freq = 2412, .hw_value = 1, },
53         { .center_freq = 2417, .hw_value = 2, },
54         { .center_freq = 2422, .hw_value = 3, },
55         { .center_freq = 2427, .hw_value = 4, },
56         { .center_freq = 2432, .hw_value = 5, },
57         { .center_freq = 2437, .hw_value = 6, },
58         { .center_freq = 2442, .hw_value = 7, },
59         { .center_freq = 2447, .hw_value = 8, },
60         { .center_freq = 2452, .hw_value = 9, },
61         { .center_freq = 2457, .hw_value = 10, },
62         { .center_freq = 2462, .hw_value = 11, },
63         { .center_freq = 2467, .hw_value = 12, },
64         { .center_freq = 2472, .hw_value = 13, },
65         { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69         .channels = p54_bgchannels,
70         .n_channels = ARRAY_SIZE(p54_bgchannels),
71         .bitrates = p54_bgrates,
72         .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76         { .bitrate = 60, .hw_value = 4, },
77         { .bitrate = 90, .hw_value = 5, },
78         { .bitrate = 120, .hw_value = 6, },
79         { .bitrate = 180, .hw_value = 7, },
80         { .bitrate = 240, .hw_value = 8, },
81         { .bitrate = 360, .hw_value = 9, },
82         { .bitrate = 480, .hw_value = 10, },
83         { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87         { .center_freq = 4920 },
88         { .center_freq = 4940 },
89         { .center_freq = 4960 },
90         { .center_freq = 4980 },
91         { .center_freq = 5040 },
92         { .center_freq = 5060 },
93         { .center_freq = 5080 },
94         { .center_freq = 5170 },
95         { .center_freq = 5180 },
96         { .center_freq = 5190 },
97         { .center_freq = 5200 },
98         { .center_freq = 5210 },
99         { .center_freq = 5220 },
100         { .center_freq = 5230 },
101         { .center_freq = 5240 },
102         { .center_freq = 5260 },
103         { .center_freq = 5280 },
104         { .center_freq = 5300 },
105         { .center_freq = 5320 },
106         { .center_freq = 5500 },
107         { .center_freq = 5520 },
108         { .center_freq = 5540 },
109         { .center_freq = 5560 },
110         { .center_freq = 5580 },
111         { .center_freq = 5600 },
112         { .center_freq = 5620 },
113         { .center_freq = 5640 },
114         { .center_freq = 5660 },
115         { .center_freq = 5680 },
116         { .center_freq = 5700 },
117         { .center_freq = 5745 },
118         { .center_freq = 5765 },
119         { .center_freq = 5785 },
120         { .center_freq = 5805 },
121         { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125         .channels = p54_achannels,
126         .n_channels = ARRAY_SIZE(p54_achannels),
127         .bitrates = p54_arates,
128         .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133         struct p54_common *priv = dev->priv;
134         struct bootrec_exp_if *exp_if;
135         struct bootrec *bootrec;
136         u32 *data = (u32 *)fw->data;
137         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138         u8 *fw_version = NULL;
139         size_t len;
140         int i;
141
142         if (priv->rx_start)
143                 return 0;
144
145         while (data < end_data && *data)
146                 data++;
147
148         while (data < end_data && !*data)
149                 data++;
150
151         bootrec = (struct bootrec *) data;
152
153         while (bootrec->data <= end_data &&
154                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
155                 u32 code = le32_to_cpu(bootrec->code);
156                 switch (code) {
157                 case BR_CODE_COMPONENT_ID:
158                         priv->fw_interface = be32_to_cpup((__be32 *)
159                                              bootrec->data);
160                         switch (priv->fw_interface) {
161                         case FW_FMAC:
162                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
163                                 break;
164                         case FW_LM20:
165                                 printk(KERN_INFO "p54: LM20 firmware\n");
166                                 break;
167                         case FW_LM86:
168                                 printk(KERN_INFO "p54: LM86 firmware\n");
169                                 break;
170                         case FW_LM87:
171                                 printk(KERN_INFO "p54: LM87 firmware\n");
172                                 break;
173                         default:
174                                 printk(KERN_INFO "p54: unknown firmware\n");
175                                 break;
176                         }
177                         break;
178                 case BR_CODE_COMPONENT_VERSION:
179                         /* 24 bytes should be enough for all firmwares */
180                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
181                                 fw_version = (unsigned char*)bootrec->data;
182                         break;
183                 case BR_CODE_DESCR: {
184                         struct bootrec_desc *desc =
185                                 (struct bootrec_desc *)bootrec->data;
186                         priv->rx_start = le32_to_cpu(desc->rx_start);
187                         /* FIXME add sanity checking */
188                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
189                         priv->headroom = desc->headroom;
190                         priv->tailroom = desc->tailroom;
191                         priv->privacy_caps = desc->privacy_caps;
192                         priv->rx_keycache_size = desc->rx_keycache_size;
193                         if (le32_to_cpu(bootrec->len) == 11)
194                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
195                         else
196                                 priv->rx_mtu = (size_t)
197                                         0x620 - priv->tx_hdr_len;
198                         break;
199                         }
200                 case BR_CODE_EXPOSED_IF:
201                         exp_if = (struct bootrec_exp_if *) bootrec->data;
202                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
203                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
204                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
205                         break;
206                 case BR_CODE_DEPENDENT_IF:
207                         break;
208                 case BR_CODE_END_OF_BRA:
209                 case LEGACY_BR_CODE_END_OF_BRA:
210                         end_data = NULL;
211                         break;
212                 default:
213                         break;
214                 }
215                 bootrec = (struct bootrec *)&bootrec->data[len];
216         }
217
218         if (fw_version)
219                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
220                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
221
222         if (priv->fw_var < 0x500)
223                 printk(KERN_INFO "p54: you are using an obsolete firmware. "
224                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
225                        "and grab one for \"kernel >= 2.6.28\"!\n");
226
227         if (priv->fw_var >= 0x300) {
228                 /* Firmware supports QoS, use it! */
229                 priv->tx_stats[4].limit = 3;            /* AC_VO */
230                 priv->tx_stats[5].limit = 4;            /* AC_VI */
231                 priv->tx_stats[6].limit = 3;            /* AC_BE */
232                 priv->tx_stats[7].limit = 2;            /* AC_BK */
233                 dev->queues = 4;
234         }
235
236         if (!modparam_nohwcrypt)
237                 printk(KERN_INFO "%s: cryptographic accelerator "
238                                  "WEP:%s, TKIP:%s, CCMP:%s\n",
239                         wiphy_name(dev->wiphy),
240                         (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
241                         "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
242                          BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
243                         (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
244                         "YES" : "no");
245
246         return 0;
247 }
248 EXPORT_SYMBOL_GPL(p54_parse_firmware);
249
250 static int p54_convert_rev0(struct ieee80211_hw *dev,
251                             struct pda_pa_curve_data *curve_data)
252 {
253         struct p54_common *priv = dev->priv;
254         struct p54_pa_curve_data_sample *dst;
255         struct pda_pa_curve_data_sample_rev0 *src;
256         size_t cd_len = sizeof(*curve_data) +
257                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
258                  curve_data->channels;
259         unsigned int i, j;
260         void *source, *target;
261
262         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
263         if (!priv->curve_data)
264                 return -ENOMEM;
265
266         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
267         source = curve_data->data;
268         target = priv->curve_data->data;
269         for (i = 0; i < curve_data->channels; i++) {
270                 __le16 *freq = source;
271                 source += sizeof(__le16);
272                 *((__le16 *)target) = *freq;
273                 target += sizeof(__le16);
274                 for (j = 0; j < curve_data->points_per_channel; j++) {
275                         dst = target;
276                         src = source;
277
278                         dst->rf_power = src->rf_power;
279                         dst->pa_detector = src->pa_detector;
280                         dst->data_64qam = src->pcv;
281                         /* "invent" the points for the other modulations */
282 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
283                         dst->data_16qam = SUB(src->pcv, 12);
284                         dst->data_qpsk = SUB(dst->data_16qam, 12);
285                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
286                         dst->data_barker = SUB(dst->data_bpsk, 14);
287 #undef SUB
288                         target += sizeof(*dst);
289                         source += sizeof(*src);
290                 }
291         }
292
293         return 0;
294 }
295
296 static int p54_convert_rev1(struct ieee80211_hw *dev,
297                             struct pda_pa_curve_data *curve_data)
298 {
299         struct p54_common *priv = dev->priv;
300         struct p54_pa_curve_data_sample *dst;
301         struct pda_pa_curve_data_sample_rev1 *src;
302         size_t cd_len = sizeof(*curve_data) +
303                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
304                  curve_data->channels;
305         unsigned int i, j;
306         void *source, *target;
307
308         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
309         if (!priv->curve_data)
310                 return -ENOMEM;
311
312         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
313         source = curve_data->data;
314         target = priv->curve_data->data;
315         for (i = 0; i < curve_data->channels; i++) {
316                 __le16 *freq = source;
317                 source += sizeof(__le16);
318                 *((__le16 *)target) = *freq;
319                 target += sizeof(__le16);
320                 for (j = 0; j < curve_data->points_per_channel; j++) {
321                         memcpy(target, source, sizeof(*src));
322
323                         target += sizeof(*dst);
324                         source += sizeof(*src);
325                 }
326                 source++;
327         }
328
329         return 0;
330 }
331
332 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
333                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
334 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
335
336 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
337 {
338         struct p54_common *priv = dev->priv;
339         struct eeprom_pda_wrap *wrap = NULL;
340         struct pda_entry *entry;
341         unsigned int data_len, entry_len;
342         void *tmp;
343         int err;
344         u8 *end = (u8 *)eeprom + len;
345         u16 synth = 0;
346
347         wrap = (struct eeprom_pda_wrap *) eeprom;
348         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
349
350         /* verify that at least the entry length/code fits */
351         while ((u8 *)entry <= end - sizeof(*entry)) {
352                 entry_len = le16_to_cpu(entry->len);
353                 data_len = ((entry_len - 1) << 1);
354
355                 /* abort if entry exceeds whole structure */
356                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
357                         break;
358
359                 switch (le16_to_cpu(entry->code)) {
360                 case PDR_MAC_ADDRESS:
361                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
362                         break;
363                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
364                         if (data_len < 2) {
365                                 err = -EINVAL;
366                                 goto err;
367                         }
368
369                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
370                                 err = -EINVAL;
371                                 goto err;
372                         }
373
374                         priv->output_limit = kmalloc(entry->data[1] *
375                                 sizeof(*priv->output_limit), GFP_KERNEL);
376
377                         if (!priv->output_limit) {
378                                 err = -ENOMEM;
379                                 goto err;
380                         }
381
382                         memcpy(priv->output_limit, &entry->data[2],
383                                entry->data[1]*sizeof(*priv->output_limit));
384                         priv->output_limit_len = entry->data[1];
385                         break;
386                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
387                         struct pda_pa_curve_data *curve_data =
388                                 (struct pda_pa_curve_data *)entry->data;
389                         if (data_len < sizeof(*curve_data)) {
390                                 err = -EINVAL;
391                                 goto err;
392                         }
393
394                         switch (curve_data->cal_method_rev) {
395                         case 0:
396                                 err = p54_convert_rev0(dev, curve_data);
397                                 break;
398                         case 1:
399                                 err = p54_convert_rev1(dev, curve_data);
400                                 break;
401                         default:
402                                 printk(KERN_ERR "p54: unknown curve data "
403                                                 "revision %d\n",
404                                                 curve_data->cal_method_rev);
405                                 err = -ENODEV;
406                                 break;
407                         }
408                         if (err)
409                                 goto err;
410
411                 }
412                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
413                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
414                         if (!priv->iq_autocal) {
415                                 err = -ENOMEM;
416                                 goto err;
417                         }
418
419                         memcpy(priv->iq_autocal, entry->data, data_len);
420                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
421                         break;
422                 case PDR_INTERFACE_LIST:
423                         tmp = entry->data;
424                         while ((u8 *)tmp < entry->data + data_len) {
425                                 struct bootrec_exp_if *exp_if = tmp;
426                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
427                                         synth = le16_to_cpu(exp_if->variant);
428                                 tmp += sizeof(struct bootrec_exp_if);
429                         }
430                         break;
431                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
432                         priv->version = *(u8 *)(entry->data + 1);
433                         break;
434                 case PDR_END:
435                         /* make it overrun */
436                         entry_len = len;
437                         break;
438                 case PDR_MANUFACTURING_PART_NUMBER:
439                 case PDR_PDA_VERSION:
440                 case PDR_NIC_SERIAL_NUMBER:
441                 case PDR_REGULATORY_DOMAIN_LIST:
442                 case PDR_TEMPERATURE_TYPE:
443                 case PDR_PRISM_PCI_IDENTIFIER:
444                 case PDR_COUNTRY_INFORMATION:
445                 case PDR_OEM_NAME:
446                 case PDR_PRODUCT_NAME:
447                 case PDR_UTF8_OEM_NAME:
448                 case PDR_UTF8_PRODUCT_NAME:
449                 case PDR_COUNTRY_LIST:
450                 case PDR_DEFAULT_COUNTRY:
451                 case PDR_ANTENNA_GAIN:
452                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
453                 case PDR_RSSI_LINEAR_APPROXIMATION:
454                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
455                 case PDR_REGULATORY_POWER_LIMITS:
456                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
457                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
458                 case PDR_PRISM_TX_IQ_CALIBRATION:
459                 case PDR_BASEBAND_REGISTERS:
460                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
461                         break;
462                 default:
463                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
464                                 le16_to_cpu(entry->code));
465                         break;
466                 }
467
468                 entry = (void *)entry + (entry_len + 1)*2;
469         }
470
471         if (!synth || !priv->iq_autocal || !priv->output_limit ||
472             !priv->curve_data) {
473                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
474                 err = -EINVAL;
475                 goto err;
476         }
477
478         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
479         if (priv->rxhw == 4)
480                 p54_init_xbow_synth(dev);
481         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
482                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
483         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
484                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
485
486         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
487                 u8 perm_addr[ETH_ALEN];
488
489                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
490                         wiphy_name(dev->wiphy));
491                 random_ether_addr(perm_addr);
492                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
493         }
494
495         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
496                 wiphy_name(dev->wiphy),
497                 dev->wiphy->perm_addr,
498                 priv->version, p54_rf_chips[priv->rxhw]);
499
500         return 0;
501
502   err:
503         if (priv->iq_autocal) {
504                 kfree(priv->iq_autocal);
505                 priv->iq_autocal = NULL;
506         }
507
508         if (priv->output_limit) {
509                 kfree(priv->output_limit);
510                 priv->output_limit = NULL;
511         }
512
513         if (priv->curve_data) {
514                 kfree(priv->curve_data);
515                 priv->curve_data = NULL;
516         }
517
518         printk(KERN_ERR "p54: eeprom parse failed!\n");
519         return err;
520 }
521
522 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
523 {
524         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
525         return ((rssi * 0x83) / 64 - 400) / 4;
526 }
527
528 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
529 {
530         struct p54_common *priv = dev->priv;
531         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
532         struct ieee80211_rx_status rx_status = {0};
533         u16 freq = le16_to_cpu(hdr->freq);
534         size_t header_len = sizeof(*hdr);
535         u32 tsf32;
536
537         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
538                 if (priv->filter_flags & FIF_FCSFAIL)
539                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
540                 else
541                         return 0;
542         }
543
544         if (hdr->decrypt_status == P54_DECRYPT_OK)
545                 rx_status.flag |= RX_FLAG_DECRYPTED;
546         if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
547             (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
548                 rx_status.flag |= RX_FLAG_MMIC_ERROR;
549
550         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
551         rx_status.noise = priv->noise;
552         /* XX correct? */
553         rx_status.qual = (100 * hdr->rssi) / 127;
554         if (hdr->rate & 0x10)
555                 rx_status.flag |= RX_FLAG_SHORTPRE;
556         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
557                         hdr->rate : (hdr->rate - 4)) & 0xf;
558         rx_status.freq = freq;
559         rx_status.band =  dev->conf.channel->band;
560         rx_status.antenna = hdr->antenna;
561
562         tsf32 = le32_to_cpu(hdr->tsf32);
563         if (tsf32 < priv->tsf_low32)
564                 priv->tsf_high32++;
565         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
566         priv->tsf_low32 = tsf32;
567
568         rx_status.flag |= RX_FLAG_TSFT;
569
570         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
571                 header_len += hdr->align[0];
572
573         skb_pull(skb, header_len);
574         skb_trim(skb, le16_to_cpu(hdr->len));
575
576         ieee80211_rx_irqsafe(dev, skb, &rx_status);
577
578         return -1;
579 }
580
581 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
582 {
583         struct p54_common *priv = dev->priv;
584         int i;
585
586         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
587                 return ;
588
589         for (i = 0; i < dev->queues; i++)
590                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
591                         ieee80211_wake_queue(dev, i);
592 }
593
594 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
595 {
596         struct p54_common *priv = dev->priv;
597         struct ieee80211_tx_info *info;
598         struct memrecord *range;
599         unsigned long flags;
600         u32 freed = 0, last_addr = priv->rx_start;
601
602         if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
603                 return;
604
605         spin_lock_irqsave(&priv->tx_queue.lock, flags);
606         info = IEEE80211_SKB_CB(skb);
607         range = (void *)info->rate_driver_data;
608         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
609                 struct ieee80211_tx_info *ni;
610                 struct memrecord *mr;
611
612                 ni = IEEE80211_SKB_CB(skb->prev);
613                 mr = (struct memrecord *)ni->rate_driver_data;
614                 last_addr = mr->end_addr;
615         }
616         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
617                 struct ieee80211_tx_info *ni;
618                 struct memrecord *mr;
619
620                 ni = IEEE80211_SKB_CB(skb->next);
621                 mr = (struct memrecord *)ni->rate_driver_data;
622                 freed = mr->start_addr - last_addr;
623         } else
624                 freed = priv->rx_end - last_addr;
625         __skb_unlink(skb, &priv->tx_queue);
626         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
627         kfree_skb(skb);
628
629         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
630                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
631                 p54_wake_free_queues(dev);
632 }
633 EXPORT_SYMBOL_GPL(p54_free_skb);
634
635 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
636 {
637         struct p54_common *priv = dev->priv;
638         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
639         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
640         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
641         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
642         struct memrecord *range = NULL;
643         u32 freed = 0;
644         u32 last_addr = priv->rx_start;
645         unsigned long flags;
646         int count, idx;
647
648         spin_lock_irqsave(&priv->tx_queue.lock, flags);
649         while (entry != (struct sk_buff *)&priv->tx_queue) {
650                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
651                 struct p54_hdr *entry_hdr;
652                 struct p54_tx_data *entry_data;
653                 int pad = 0;
654
655                 range = (void *)info->rate_driver_data;
656                 if (range->start_addr != addr) {
657                         last_addr = range->end_addr;
658                         entry = entry->next;
659                         continue;
660                 }
661
662                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
663                         struct ieee80211_tx_info *ni;
664                         struct memrecord *mr;
665
666                         ni = IEEE80211_SKB_CB(entry->next);
667                         mr = (struct memrecord *)ni->rate_driver_data;
668                         freed = mr->start_addr - last_addr;
669                 } else
670                         freed = priv->rx_end - last_addr;
671
672                 last_addr = range->end_addr;
673                 __skb_unlink(entry, &priv->tx_queue);
674                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
675
676                 entry_hdr = (struct p54_hdr *) entry->data;
677                 entry_data = (struct p54_tx_data *) entry_hdr->data;
678                 priv->tx_stats[entry_data->hw_queue].len--;
679
680                 if (unlikely(entry == priv->cached_beacon)) {
681                         kfree_skb(entry);
682                         priv->cached_beacon = NULL;
683                         goto out;
684                 }
685
686                 /*
687                  * Clear manually, ieee80211_tx_info_clear_status would
688                  * clear the counts too and we need them.
689                  */
690                 memset(&info->status.ampdu_ack_len, 0,
691                        sizeof(struct ieee80211_tx_info) -
692                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
693                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
694                                       status.ampdu_ack_len) != 23);
695
696                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
697                         pad = entry_data->align[0];
698
699                 /* walk through the rates array and adjust the counts */
700                 count = payload->tries;
701                 for (idx = 0; idx < 4; idx++) {
702                         if (count >= info->status.rates[idx].count) {
703                                 count -= info->status.rates[idx].count;
704                         } else if (count > 0) {
705                                 info->status.rates[idx].count = count;
706                                 count = 0;
707                         } else {
708                                 info->status.rates[idx].idx = -1;
709                                 info->status.rates[idx].count = 0;
710                         }
711                 }
712
713                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
714                      (!payload->status))
715                         info->flags |= IEEE80211_TX_STAT_ACK;
716                 if (payload->status & P54_TX_PSM_CANCELLED)
717                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
718                 info->status.ack_signal = p54_rssi_to_dbm(dev,
719                                 (int)payload->ack_rssi);
720                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
721                 ieee80211_tx_status_irqsafe(dev, entry);
722                 goto out;
723         }
724         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
725
726 out:
727         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
728                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
729                 p54_wake_free_queues(dev);
730 }
731
732 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
733                                    struct sk_buff *skb)
734 {
735         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
736         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
737         struct p54_common *priv = dev->priv;
738
739         if (!priv->eeprom)
740                 return ;
741
742         if (priv->fw_var >= 0x509) {
743                 memcpy(priv->eeprom, eeprom->v2.data,
744                        le16_to_cpu(eeprom->v2.len));
745         } else {
746                 memcpy(priv->eeprom, eeprom->v1.data,
747                        le16_to_cpu(eeprom->v1.len));
748         }
749
750         complete(&priv->eeprom_comp);
751 }
752
753 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
754 {
755         struct p54_common *priv = dev->priv;
756         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
757         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
758         u32 tsf32 = le32_to_cpu(stats->tsf32);
759
760         if (tsf32 < priv->tsf_low32)
761                 priv->tsf_high32++;
762         priv->tsf_low32 = tsf32;
763
764         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
765         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
766         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
767
768         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
769         complete(&priv->stats_comp);
770
771         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
772 }
773
774 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
775 {
776         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
777         struct p54_trap *trap = (struct p54_trap *) hdr->data;
778         u16 event = le16_to_cpu(trap->event);
779         u16 freq = le16_to_cpu(trap->frequency);
780
781         switch (event) {
782         case P54_TRAP_BEACON_TX:
783                 break;
784         case P54_TRAP_RADAR:
785                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
786                         wiphy_name(dev->wiphy), freq);
787                 break;
788         case P54_TRAP_NO_BEACON:
789                 break;
790         case P54_TRAP_SCAN:
791                 break;
792         case P54_TRAP_TBTT:
793                 break;
794         case P54_TRAP_TIMER:
795                 break;
796         default:
797                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
798                        wiphy_name(dev->wiphy), event, freq);
799                 break;
800         }
801 }
802
803 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
804 {
805         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
806
807         switch (le16_to_cpu(hdr->type)) {
808         case P54_CONTROL_TYPE_TXDONE:
809                 p54_rx_frame_sent(dev, skb);
810                 break;
811         case P54_CONTROL_TYPE_TRAP:
812                 p54_rx_trap(dev, skb);
813                 break;
814         case P54_CONTROL_TYPE_BBP:
815                 break;
816         case P54_CONTROL_TYPE_STAT_READBACK:
817                 p54_rx_stats(dev, skb);
818                 break;
819         case P54_CONTROL_TYPE_EEPROM_READBACK:
820                 p54_rx_eeprom_readback(dev, skb);
821                 break;
822         default:
823                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
824                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
825                 break;
826         }
827
828         return 0;
829 }
830
831 /* returns zero if skb can be reused */
832 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
833 {
834         u16 type = le16_to_cpu(*((__le16 *)skb->data));
835
836         if (type & P54_HDR_FLAG_CONTROL)
837                 return p54_rx_control(dev, skb);
838         else
839                 return p54_rx_data(dev, skb);
840 }
841 EXPORT_SYMBOL_GPL(p54_rx);
842
843 /*
844  * So, the firmware is somewhat stupid and doesn't know what places in its
845  * memory incoming data should go to. By poking around in the firmware, we
846  * can find some unused memory to upload our packets to. However, data that we
847  * want the card to TX needs to stay intact until the card has told us that
848  * it is done with it. This function finds empty places we can upload to and
849  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
850  * allocated areas.
851  */
852 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
853                                struct p54_hdr *data, u32 len)
854 {
855         struct p54_common *priv = dev->priv;
856         struct sk_buff *entry = priv->tx_queue.next;
857         struct sk_buff *target_skb = NULL;
858         struct ieee80211_tx_info *info;
859         struct memrecord *range;
860         u32 last_addr = priv->rx_start;
861         u32 largest_hole = 0;
862         u32 target_addr = priv->rx_start;
863         unsigned long flags;
864         unsigned int left;
865         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
866
867         if (!skb)
868                 return -EINVAL;
869
870         spin_lock_irqsave(&priv->tx_queue.lock, flags);
871         left = skb_queue_len(&priv->tx_queue);
872         while (left--) {
873                 u32 hole_size;
874                 info = IEEE80211_SKB_CB(entry);
875                 range = (void *)info->rate_driver_data;
876                 hole_size = range->start_addr - last_addr;
877                 if (!target_skb && hole_size >= len) {
878                         target_skb = entry->prev;
879                         hole_size -= len;
880                         target_addr = last_addr;
881                 }
882                 largest_hole = max(largest_hole, hole_size);
883                 last_addr = range->end_addr;
884                 entry = entry->next;
885         }
886         if (!target_skb && priv->rx_end - last_addr >= len) {
887                 target_skb = priv->tx_queue.prev;
888                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
889                 if (!skb_queue_empty(&priv->tx_queue)) {
890                         info = IEEE80211_SKB_CB(target_skb);
891                         range = (void *)info->rate_driver_data;
892                         target_addr = range->end_addr;
893                 }
894         } else
895                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
896
897         if (!target_skb) {
898                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
899                 ieee80211_stop_queues(dev);
900                 return -ENOMEM;
901         }
902
903         info = IEEE80211_SKB_CB(skb);
904         range = (void *)info->rate_driver_data;
905         range->start_addr = target_addr;
906         range->end_addr = target_addr + len;
907         __skb_queue_after(&priv->tx_queue, target_skb, skb);
908         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
909
910         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
911                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
912                 ieee80211_stop_queues(dev);
913
914         data->req_id = cpu_to_le32(target_addr + priv->headroom);
915         return 0;
916 }
917
918 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
919                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
920 {
921         struct p54_common *priv = dev->priv;
922         struct p54_hdr *hdr;
923         struct sk_buff *skb;
924
925         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
926         if (!skb)
927                 return NULL;
928         skb_reserve(skb, priv->tx_hdr_len);
929
930         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
931         hdr->flags = cpu_to_le16(hdr_flags);
932         hdr->len = cpu_to_le16(len - sizeof(*hdr));
933         hdr->type = cpu_to_le16(type);
934         hdr->tries = hdr->rts_tries = 0;
935
936         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
937                 kfree_skb(skb);
938                 return NULL;
939         }
940         return skb;
941 }
942
943 int p54_read_eeprom(struct ieee80211_hw *dev)
944 {
945         struct p54_common *priv = dev->priv;
946         struct p54_hdr *hdr = NULL;
947         struct p54_eeprom_lm86 *eeprom_hdr;
948         struct sk_buff *skb;
949         size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
950         int ret = -ENOMEM;
951         void *eeprom = NULL;
952
953         maxblocksize = EEPROM_READBACK_LEN;
954         if (priv->fw_var >= 0x509)
955                 maxblocksize -= 0xc;
956         else
957                 maxblocksize -= 0x4;
958
959         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*hdr) +
960                             sizeof(*eeprom_hdr) + maxblocksize,
961                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
962         if (!skb)
963                 goto free;
964         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
965         if (!priv->eeprom)
966                 goto free;
967         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
968         if (!eeprom)
969                 goto free;
970
971         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
972                      sizeof(*eeprom_hdr) + maxblocksize);
973
974         while (eeprom_size) {
975                 blocksize = min(eeprom_size, maxblocksize);
976                 if (priv->fw_var < 0x509) {
977                         eeprom_hdr->v1.offset = cpu_to_le16(offset);
978                         eeprom_hdr->v1.len = cpu_to_le16(blocksize);
979                 } else {
980                         eeprom_hdr->v2.offset = cpu_to_le32(offset);
981                         eeprom_hdr->v2.len = cpu_to_le16(blocksize);
982                         eeprom_hdr->v2.magic2 = 0xf;
983                         memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
984                 }
985                 priv->tx(dev, skb, 0);
986
987                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
988                         printk(KERN_ERR "%s: device does not respond!\n",
989                                 wiphy_name(dev->wiphy));
990                         ret = -EBUSY;
991                         goto free;
992                 }
993
994                 memcpy(eeprom + offset, priv->eeprom, blocksize);
995                 offset += blocksize;
996                 eeprom_size -= blocksize;
997         }
998
999         ret = p54_parse_eeprom(dev, eeprom, offset);
1000 free:
1001         kfree(priv->eeprom);
1002         priv->eeprom = NULL;
1003         p54_free_skb(dev, skb);
1004         kfree(eeprom);
1005
1006         return ret;
1007 }
1008 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1009
1010 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1011                 bool set)
1012 {
1013         struct p54_common *priv = dev->priv;
1014         struct sk_buff *skb;
1015         struct p54_tim *tim;
1016
1017         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1018                       sizeof(struct p54_hdr) + sizeof(*tim),
1019                       P54_CONTROL_TYPE_TIM, GFP_KERNEL);
1020         if (!skb)
1021                 return -ENOMEM;
1022
1023         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1024         tim->count = 1;
1025         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1026         priv->tx(dev, skb, 1);
1027         return 0;
1028 }
1029
1030 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1031 {
1032         struct p54_common *priv = dev->priv;
1033         struct sk_buff *skb;
1034         struct p54_sta_unlock *sta;
1035
1036         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1037                 sizeof(struct p54_hdr) + sizeof(*sta),
1038                 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1039         if (!skb)
1040                 return -ENOMEM;
1041
1042         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1043         memcpy(sta->addr, addr, ETH_ALEN);
1044         priv->tx(dev, skb, 1);
1045         return 0;
1046 }
1047
1048 static void p54_sta_notify_ps(struct ieee80211_hw *dev,
1049                               enum sta_notify_ps_cmd notify_cmd,
1050                               struct ieee80211_sta *sta)
1051 {
1052         switch (notify_cmd) {
1053         case STA_NOTIFY_AWAKE:
1054                 p54_sta_unlock(dev, sta->addr);
1055                 break;
1056         default:
1057                 break;
1058         }
1059 }
1060
1061 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1062                               enum sta_notify_cmd notify_cmd,
1063                               struct ieee80211_sta *sta)
1064 {
1065         switch (notify_cmd) {
1066         case STA_NOTIFY_ADD:
1067         case STA_NOTIFY_REMOVE:
1068                 /*
1069                  * Notify the firmware that we don't want or we don't
1070                  * need to buffer frames for this station anymore.
1071                  */
1072
1073                 p54_sta_unlock(dev, sta->addr);
1074                 break;
1075         default:
1076                 break;
1077         }
1078 }
1079
1080 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1081 {
1082         struct p54_common *priv = dev->priv;
1083         struct sk_buff *skb;
1084         struct p54_hdr *hdr;
1085         struct p54_txcancel *cancel;
1086
1087         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1088                 sizeof(struct p54_hdr) + sizeof(*cancel),
1089                 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1090         if (!skb)
1091                 return -ENOMEM;
1092
1093         hdr = (void *)entry->data;
1094         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1095         cancel->req_id = hdr->req_id;
1096         priv->tx(dev, skb, 1);
1097         return 0;
1098 }
1099
1100 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1101                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1102                 u16 *flags, u16 *aid)
1103 {
1104         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1105         struct p54_common *priv = dev->priv;
1106         int ret = 0;
1107
1108         if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1109                 if (ieee80211_is_beacon(hdr->frame_control)) {
1110                         *aid = 0;
1111                         *queue = 0;
1112                         *extra_len = IEEE80211_MAX_TIM_LEN;
1113                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1114                         return 0;
1115                 } else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1116                         *aid = 0;
1117                         *queue = 2;
1118                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1119                                  P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1120                         return 0;
1121                 } else {
1122                         *queue = 2;
1123                         ret = 0;
1124                 }
1125         } else {
1126                 *queue += 4;
1127                 ret = 1;
1128         }
1129
1130         switch (priv->mode) {
1131         case NL80211_IFTYPE_STATION:
1132                 *aid = 1;
1133                 break;
1134         case NL80211_IFTYPE_AP:
1135         case NL80211_IFTYPE_ADHOC:
1136         case NL80211_IFTYPE_MESH_POINT:
1137                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1138                         *aid = 0;
1139                         *queue = 3;
1140                         return 0;
1141                 }
1142                 if (info->control.sta)
1143                         *aid = info->control.sta->aid;
1144                 else
1145                         *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1146         }
1147         return ret;
1148 }
1149
1150 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1151 {
1152         switch (alg) {
1153         case ALG_WEP:
1154                 return P54_CRYPTO_WEP;
1155         case ALG_TKIP:
1156                 return P54_CRYPTO_TKIPMICHAEL;
1157         case ALG_CCMP:
1158                 return P54_CRYPTO_AESCCMP;
1159         default:
1160                 return 0;
1161         }
1162 }
1163
1164 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1165 {
1166         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1167         struct ieee80211_tx_queue_stats *current_queue = NULL;
1168         struct p54_common *priv = dev->priv;
1169         struct p54_hdr *hdr;
1170         struct p54_tx_data *txhdr;
1171         size_t padding, len, tim_len = 0;
1172         int i, j, ridx, ret;
1173         u16 hdr_flags = 0, aid = 0;
1174         u8 rate, queue, crypt_offset = 0;
1175         u8 cts_rate = 0x20;
1176         u8 rc_flags;
1177         u8 calculated_tries[4];
1178         u8 nrates = 0, nremaining = 8;
1179
1180         queue = skb_get_queue_mapping(skb);
1181
1182         ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1183         current_queue = &priv->tx_stats[queue];
1184         if (unlikely((current_queue->len > current_queue->limit) && ret))
1185                 return NETDEV_TX_BUSY;
1186         current_queue->len++;
1187         current_queue->count++;
1188         if ((current_queue->len == current_queue->limit) && ret)
1189                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1190
1191         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1192         len = skb->len;
1193
1194         if (info->control.hw_key) {
1195                 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1196                 if (info->control.hw_key->alg == ALG_TKIP) {
1197                         u8 *iv = (u8 *)(skb->data + crypt_offset);
1198                         /*
1199                          * The firmware excepts that the IV has to have
1200                          * this special format
1201                          */
1202                         iv[1] = iv[0];
1203                         iv[0] = iv[2];
1204                         iv[2] = 0;
1205                 }
1206         }
1207
1208         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1209         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1210
1211         if (padding)
1212                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1213         hdr->type = cpu_to_le16(aid);
1214         hdr->rts_tries = info->control.rates[0].count;
1215
1216         /*
1217          * we register the rates in perfect order, and
1218          * RTS/CTS won't happen on 5 GHz
1219          */
1220         cts_rate = info->control.rts_cts_rate_idx;
1221
1222         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1223
1224         /* see how many rates got used */
1225         for (i = 0; i < 4; i++) {
1226                 if (info->control.rates[i].idx < 0)
1227                         break;
1228                 nrates++;
1229         }
1230
1231         /* limit tries to 8/nrates per rate */
1232         for (i = 0; i < nrates; i++) {
1233                 /*
1234                  * The magic expression here is equivalent to 8/nrates for
1235                  * all values that matter, but avoids division and jumps.
1236                  * Note that nrates can only take the values 1 through 4.
1237                  */
1238                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1239                                                  info->control.rates[i].count);
1240                 nremaining -= calculated_tries[i];
1241         }
1242
1243         /* if there are tries left, distribute from back to front */
1244         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1245                 int tmp = info->control.rates[i].count - calculated_tries[i];
1246
1247                 if (tmp <= 0)
1248                         continue;
1249                 /* RC requested more tries at this rate */
1250
1251                 tmp = min_t(int, tmp, nremaining);
1252                 calculated_tries[i] += tmp;
1253                 nremaining -= tmp;
1254         }
1255
1256         ridx = 0;
1257         for (i = 0; i < nrates && ridx < 8; i++) {
1258                 /* we register the rates in perfect order */
1259                 rate = info->control.rates[i].idx;
1260                 if (info->band == IEEE80211_BAND_5GHZ)
1261                         rate += 4;
1262
1263                 /* store the count we actually calculated for TX status */
1264                 info->control.rates[i].count = calculated_tries[i];
1265
1266                 rc_flags = info->control.rates[i].flags;
1267                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1268                         rate |= 0x10;
1269                         cts_rate |= 0x10;
1270                 }
1271                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1272                         rate |= 0x40;
1273                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1274                         rate |= 0x20;
1275                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1276                         txhdr->rateset[ridx] = rate;
1277                         ridx++;
1278                 }
1279         }
1280
1281         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1282                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1283
1284         /* TODO: enable bursting */
1285         hdr->flags = cpu_to_le16(hdr_flags);
1286         hdr->tries = ridx;
1287         txhdr->rts_rate_idx = 0;
1288         if (info->control.hw_key) {
1289                 crypt_offset += info->control.hw_key->iv_len;
1290                 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1291                 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1292                 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1293                 if (info->control.hw_key->alg == ALG_TKIP) {
1294                         if (unlikely(skb_tailroom(skb) < 12))
1295                                 goto err;
1296                         /* reserve space for the MIC key */
1297                         len += 8;
1298                         memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1299                                 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1300                 }
1301                 /* reserve some space for ICV */
1302                 len += info->control.hw_key->icv_len;
1303         } else {
1304                 txhdr->key_type = 0;
1305                 txhdr->key_len = 0;
1306         }
1307         txhdr->crypt_offset = crypt_offset;
1308         txhdr->hw_queue = queue;
1309         if (current_queue)
1310                 txhdr->backlog = current_queue->len;
1311         else
1312                 txhdr->backlog = 0;
1313         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1314         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1315                 2 : info->antenna_sel_tx - 1;
1316         txhdr->output_power = priv->output_power;
1317         txhdr->cts_rate = cts_rate;
1318         if (padding)
1319                 txhdr->align[0] = padding;
1320
1321         hdr->len = cpu_to_le16(len);
1322         /* modifies skb->cb and with it info, so must be last! */
1323         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1324                 goto err;
1325         priv->tx(dev, skb, 0);
1326         return 0;
1327
1328  err:
1329         skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1330         if (current_queue) {
1331                 current_queue->len--;
1332                 current_queue->count--;
1333         }
1334         return NETDEV_TX_BUSY;
1335 }
1336
1337 static int p54_setup_mac(struct ieee80211_hw *dev)
1338 {
1339         struct p54_common *priv = dev->priv;
1340         struct sk_buff *skb;
1341         struct p54_setup_mac *setup;
1342         u16 mode;
1343
1344         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1345                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1346                             GFP_ATOMIC);
1347         if (!skb)
1348                 return -ENOMEM;
1349
1350         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1351         if (dev->conf.radio_enabled) {
1352                 switch (priv->mode) {
1353                 case NL80211_IFTYPE_STATION:
1354                         mode = P54_FILTER_TYPE_STATION;
1355                         break;
1356                 case NL80211_IFTYPE_AP:
1357                         mode = P54_FILTER_TYPE_AP;
1358                         break;
1359                 case NL80211_IFTYPE_ADHOC:
1360                 case NL80211_IFTYPE_MESH_POINT:
1361                         mode = P54_FILTER_TYPE_IBSS;
1362                         break;
1363                 default:
1364                         mode = P54_FILTER_TYPE_NONE;
1365                         break;
1366                 }
1367                 if (priv->filter_flags & FIF_PROMISC_IN_BSS)
1368                         mode |= P54_FILTER_TYPE_TRANSPARENT;
1369         } else
1370                 mode = P54_FILTER_TYPE_RX_DISABLED;
1371
1372         setup->mac_mode = cpu_to_le16(mode);
1373         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1374         memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1375         setup->rx_antenna = 2; /* automatic */
1376         setup->rx_align = 0;
1377         if (priv->fw_var < 0x500) {
1378                 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1379                 memset(setup->v1.rts_rates, 0, 8);
1380                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1381                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1382                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1383                 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1384                 setup->v1.unalloc0 = cpu_to_le16(0);
1385         } else {
1386                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1387                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1388                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1389                 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1390                 setup->v2.truncate = cpu_to_le16(48896);
1391                 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1392                 setup->v2.sbss_offset = 0;
1393                 setup->v2.mcast_window = 0;
1394                 setup->v2.rx_rssi_threshold = 0;
1395                 setup->v2.rx_ed_threshold = 0;
1396                 setup->v2.ref_clock = cpu_to_le32(644245094);
1397                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1398                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1399         }
1400         priv->tx(dev, skb, 1);
1401         return 0;
1402 }
1403
1404 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell,
1405                     u16 frequency)
1406 {
1407         struct p54_common *priv = dev->priv;
1408         struct sk_buff *skb;
1409         struct p54_scan *chan;
1410         unsigned int i;
1411         void *entry;
1412         __le16 freq = cpu_to_le16(frequency);
1413
1414         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1415                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1416                             GFP_ATOMIC);
1417         if (!skb)
1418                 return -ENOMEM;
1419
1420         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1421         memset(chan->padding1, 0, sizeof(chan->padding1));
1422         chan->mode = cpu_to_le16(mode);
1423         chan->dwell = cpu_to_le16(dwell);
1424
1425         for (i = 0; i < priv->iq_autocal_len; i++) {
1426                 if (priv->iq_autocal[i].freq != freq)
1427                         continue;
1428
1429                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1430                        sizeof(*priv->iq_autocal));
1431                 break;
1432         }
1433         if (i == priv->iq_autocal_len)
1434                 goto err;
1435
1436         for (i = 0; i < priv->output_limit_len; i++) {
1437                 if (priv->output_limit[i].freq != freq)
1438                         continue;
1439
1440                 chan->val_barker = 0x38;
1441                 chan->val_bpsk = chan->dup_bpsk =
1442                         priv->output_limit[i].val_bpsk;
1443                 chan->val_qpsk = chan->dup_qpsk =
1444                         priv->output_limit[i].val_qpsk;
1445                 chan->val_16qam = chan->dup_16qam =
1446                         priv->output_limit[i].val_16qam;
1447                 chan->val_64qam = chan->dup_64qam =
1448                         priv->output_limit[i].val_64qam;
1449                 break;
1450         }
1451         if (i == priv->output_limit_len)
1452                 goto err;
1453
1454         entry = priv->curve_data->data;
1455         for (i = 0; i < priv->curve_data->channels; i++) {
1456                 if (*((__le16 *)entry) != freq) {
1457                         entry += sizeof(__le16);
1458                         entry += sizeof(struct p54_pa_curve_data_sample) *
1459                                  priv->curve_data->points_per_channel;
1460                         continue;
1461                 }
1462
1463                 entry += sizeof(__le16);
1464                 chan->pa_points_per_curve = 8;
1465                 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1466                 memcpy(chan->curve_data, entry,
1467                        sizeof(struct p54_pa_curve_data_sample) *
1468                        min((u8)8, priv->curve_data->points_per_channel));
1469                 break;
1470         }
1471
1472         if (priv->fw_var < 0x500) {
1473                 chan->v1.rssical_mul = cpu_to_le16(130);
1474                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1475         } else {
1476                 chan->v2.rssical_mul = cpu_to_le16(130);
1477                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1478                 chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1479                 memset(chan->v2.rts_rates, 0, 8);
1480         }
1481         priv->tx(dev, skb, 1);
1482         return 0;
1483
1484  err:
1485         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1486         kfree_skb(skb);
1487         return -EINVAL;
1488 }
1489
1490 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1491 {
1492         struct p54_common *priv = dev->priv;
1493         struct sk_buff *skb;
1494         struct p54_led *led;
1495
1496         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1497                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1498                         GFP_ATOMIC);
1499         if (!skb)
1500                 return -ENOMEM;
1501
1502         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1503         led->mode = cpu_to_le16(mode);
1504         led->led_permanent = cpu_to_le16(link);
1505         led->led_temporary = cpu_to_le16(act);
1506         led->duration = cpu_to_le16(1000);
1507         priv->tx(dev, skb, 1);
1508         return 0;
1509 }
1510
1511 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1512 do {                                                            \
1513         queue.aifs = cpu_to_le16(ai_fs);                        \
1514         queue.cwmin = cpu_to_le16(cw_min);                      \
1515         queue.cwmax = cpu_to_le16(cw_max);                      \
1516         queue.txop = cpu_to_le16(_txop);                        \
1517 } while(0)
1518
1519 static int p54_set_edcf(struct ieee80211_hw *dev)
1520 {
1521         struct p54_common *priv = dev->priv;
1522         struct sk_buff *skb;
1523         struct p54_edcf *edcf;
1524
1525         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1526                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1527                         GFP_ATOMIC);
1528         if (!skb)
1529                 return -ENOMEM;
1530
1531         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1532         if (priv->use_short_slot) {
1533                 edcf->slottime = 9;
1534                 edcf->sifs = 0x10;
1535                 edcf->eofpad = 0x00;
1536         } else {
1537                 edcf->slottime = 20;
1538                 edcf->sifs = 0x0a;
1539                 edcf->eofpad = 0x06;
1540         }
1541         /* (see prism54/isl_oid.h for further details) */
1542         edcf->frameburst = cpu_to_le16(0);
1543         edcf->round_trip_delay = cpu_to_le16(0);
1544         edcf->flags = 0;
1545         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1546         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1547         priv->tx(dev, skb, 1);
1548         return 0;
1549 }
1550
1551 static int p54_init_stats(struct ieee80211_hw *dev)
1552 {
1553         struct p54_common *priv = dev->priv;
1554
1555         priv->cached_stats = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
1556                         sizeof(struct p54_hdr) + sizeof(struct p54_statistics),
1557                         P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1558         if (!priv->cached_stats)
1559                         return -ENOMEM;
1560
1561         mod_timer(&priv->stats_timer, jiffies + HZ);
1562         return 0;
1563 }
1564
1565 static int p54_beacon_tim(struct sk_buff *skb)
1566 {
1567         /*
1568          * the good excuse for this mess is ... the firmware.
1569          * The dummy TIM MUST be at the end of the beacon frame,
1570          * because it'll be overwritten!
1571          */
1572
1573         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1574         u8 *pos, *end;
1575
1576         if (skb->len <= sizeof(mgmt)) {
1577                 printk(KERN_ERR "p54: beacon is too short!\n");
1578                 return -EINVAL;
1579         }
1580
1581         pos = (u8 *)mgmt->u.beacon.variable;
1582         end = skb->data + skb->len;
1583         while (pos < end) {
1584                 if (pos + 2 + pos[1] > end) {
1585                         printk(KERN_ERR "p54: parsing beacon failed\n");
1586                         return -EINVAL;
1587                 }
1588
1589                 if (pos[0] == WLAN_EID_TIM) {
1590                         u8 dtim_len = pos[1];
1591                         u8 dtim_period = pos[3];
1592                         u8 *next = pos + 2 + dtim_len;
1593
1594                         if (dtim_len < 3) {
1595                                 printk(KERN_ERR "p54: invalid dtim len!\n");
1596                                 return -EINVAL;
1597                         }
1598                         memmove(pos, next, end - next);
1599
1600                         if (dtim_len > 3)
1601                                 skb_trim(skb, skb->len - (dtim_len - 3));
1602
1603                         pos = end - (dtim_len + 2);
1604
1605                         /* add the dummy at the end */
1606                         pos[0] = WLAN_EID_TIM;
1607                         pos[1] = 3;
1608                         pos[2] = 0;
1609                         pos[3] = dtim_period;
1610                         pos[4] = 0;
1611                         return 0;
1612                 }
1613                 pos += 2 + pos[1];
1614         }
1615         return 0;
1616 }
1617
1618 static int p54_beacon_update(struct ieee80211_hw *dev,
1619                         struct ieee80211_vif *vif)
1620 {
1621         struct p54_common *priv = dev->priv;
1622         struct sk_buff *beacon;
1623         int ret;
1624
1625         if (priv->cached_beacon) {
1626                 p54_tx_cancel(dev, priv->cached_beacon);
1627                 /* wait for the last beacon the be freed */
1628                 msleep(10);
1629         }
1630
1631         beacon = ieee80211_beacon_get(dev, vif);
1632         if (!beacon)
1633                 return -ENOMEM;
1634         ret = p54_beacon_tim(beacon);
1635         if (ret)
1636                 return ret;
1637         ret = p54_tx(dev, beacon);
1638         if (ret)
1639                 return ret;
1640         priv->cached_beacon = beacon;
1641         priv->tsf_high32 = 0;
1642         priv->tsf_low32 = 0;
1643
1644         return 0;
1645 }
1646
1647 static int p54_start(struct ieee80211_hw *dev)
1648 {
1649         struct p54_common *priv = dev->priv;
1650         int err;
1651
1652         mutex_lock(&priv->conf_mutex);
1653         err = priv->open(dev);
1654         if (err)
1655                 goto out;
1656         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1657         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1658         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1659         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1660         err = p54_set_edcf(dev);
1661         if (err)
1662                 goto out;
1663         err = p54_init_stats(dev);
1664         if (err)
1665                 goto out;
1666
1667         memset(priv->bssid, ~0, ETH_ALEN);
1668         priv->mode = NL80211_IFTYPE_MONITOR;
1669         err = p54_setup_mac(dev);
1670         if (err) {
1671                 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1672                 goto out;
1673         }
1674
1675 out:
1676         mutex_unlock(&priv->conf_mutex);
1677         return err;
1678 }
1679
1680 static void p54_stop(struct ieee80211_hw *dev)
1681 {
1682         struct p54_common *priv = dev->priv;
1683         struct sk_buff *skb;
1684
1685         mutex_lock(&priv->conf_mutex);
1686         del_timer(&priv->stats_timer);
1687         p54_free_skb(dev, priv->cached_stats);
1688         priv->cached_stats = NULL;
1689         if (priv->cached_beacon)
1690                 p54_tx_cancel(dev, priv->cached_beacon);
1691
1692         while ((skb = skb_dequeue(&priv->tx_queue)))
1693                 kfree_skb(skb);
1694
1695         priv->cached_beacon = NULL;
1696         priv->stop(dev);
1697         priv->tsf_high32 = priv->tsf_low32 = 0;
1698         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1699         mutex_unlock(&priv->conf_mutex);
1700 }
1701
1702 static int p54_add_interface(struct ieee80211_hw *dev,
1703                              struct ieee80211_if_init_conf *conf)
1704 {
1705         struct p54_common *priv = dev->priv;
1706
1707         mutex_lock(&priv->conf_mutex);
1708         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1709                 mutex_unlock(&priv->conf_mutex);
1710                 return -EOPNOTSUPP;
1711         }
1712
1713         switch (conf->type) {
1714         case NL80211_IFTYPE_STATION:
1715         case NL80211_IFTYPE_ADHOC:
1716         case NL80211_IFTYPE_AP:
1717         case NL80211_IFTYPE_MESH_POINT:
1718                 priv->mode = conf->type;
1719                 break;
1720         default:
1721                 mutex_unlock(&priv->conf_mutex);
1722                 return -EOPNOTSUPP;
1723         }
1724
1725         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1726         p54_setup_mac(dev);
1727         p54_set_leds(dev, 1, 0, 0);
1728         mutex_unlock(&priv->conf_mutex);
1729         return 0;
1730 }
1731
1732 static void p54_remove_interface(struct ieee80211_hw *dev,
1733                                  struct ieee80211_if_init_conf *conf)
1734 {
1735         struct p54_common *priv = dev->priv;
1736
1737         mutex_lock(&priv->conf_mutex);
1738         if (priv->cached_beacon)
1739                 p54_tx_cancel(dev, priv->cached_beacon);
1740         priv->mode = NL80211_IFTYPE_MONITOR;
1741         memset(priv->mac_addr, 0, ETH_ALEN);
1742         memset(priv->bssid, 0, ETH_ALEN);
1743         p54_setup_mac(dev);
1744         mutex_unlock(&priv->conf_mutex);
1745 }
1746
1747 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1748 {
1749         int ret;
1750         struct p54_common *priv = dev->priv;
1751         struct ieee80211_conf *conf = &dev->conf;
1752
1753         mutex_lock(&priv->conf_mutex);
1754         if (changed & IEEE80211_CONF_CHANGE_POWER)
1755                 priv->output_power = conf->power_level << 2;
1756         if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1757                 ret = p54_setup_mac(dev);
1758                 if (ret)
1759                         goto out;
1760         }
1761         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1762                 ret = p54_scan(dev, P54_SCAN_EXIT, 0,
1763                                conf->channel->center_freq);
1764                 if (ret)
1765                         goto out;
1766         }
1767
1768 out:
1769         mutex_unlock(&priv->conf_mutex);
1770         return ret;
1771 }
1772
1773 static int p54_config_interface(struct ieee80211_hw *dev,
1774                                 struct ieee80211_vif *vif,
1775                                 struct ieee80211_if_conf *conf)
1776 {
1777         struct p54_common *priv = dev->priv;
1778         int ret = 0;
1779
1780         mutex_lock(&priv->conf_mutex);
1781         if (conf->changed & IEEE80211_IFCC_BSSID) {
1782                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1783                 ret = p54_setup_mac(dev);
1784                 if (ret)
1785                         goto out;
1786         }
1787
1788         if (conf->changed & IEEE80211_IFCC_BEACON) {
1789                 ret = p54_scan(dev, P54_SCAN_EXIT, 0,
1790                                dev->conf.channel->center_freq);
1791                 if (ret)
1792                         goto out;
1793                 ret = p54_setup_mac(dev);
1794                 if (ret)
1795                         goto out;
1796                 ret = p54_beacon_update(dev, vif);
1797                 if (ret)
1798                         goto out;
1799                 ret = p54_set_edcf(dev);
1800                 if (ret)
1801                         goto out;
1802         }
1803
1804         ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
1805
1806 out:
1807         mutex_unlock(&priv->conf_mutex);
1808         return ret;
1809 }
1810
1811 static void p54_configure_filter(struct ieee80211_hw *dev,
1812                                  unsigned int changed_flags,
1813                                  unsigned int *total_flags,
1814                                  int mc_count, struct dev_mc_list *mclist)
1815 {
1816         struct p54_common *priv = dev->priv;
1817
1818         *total_flags &= FIF_PROMISC_IN_BSS |
1819                         (*total_flags & FIF_PROMISC_IN_BSS) ?
1820                                 FIF_FCSFAIL : 0;
1821
1822         priv->filter_flags = *total_flags;
1823
1824         if (changed_flags & FIF_PROMISC_IN_BSS)
1825                 p54_setup_mac(dev);
1826 }
1827
1828 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1829                        const struct ieee80211_tx_queue_params *params)
1830 {
1831         struct p54_common *priv = dev->priv;
1832         int ret;
1833
1834         mutex_lock(&priv->conf_mutex);
1835         if ((params) && !(queue > 4)) {
1836                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1837                         params->cw_min, params->cw_max, params->txop);
1838                 ret = p54_set_edcf(dev);
1839         } else
1840                 ret = -EINVAL;
1841         mutex_unlock(&priv->conf_mutex);
1842         return ret;
1843 }
1844
1845 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1846 {
1847         struct p54_common *priv = dev->priv;
1848         struct sk_buff *skb;
1849         struct p54_xbow_synth *xbow;
1850
1851         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1852                             sizeof(struct p54_hdr),
1853                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1854                             GFP_KERNEL);
1855         if (!skb)
1856                 return -ENOMEM;
1857
1858         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1859         xbow->magic1 = cpu_to_le16(0x1);
1860         xbow->magic2 = cpu_to_le16(0x2);
1861         xbow->freq = cpu_to_le16(5390);
1862         memset(xbow->padding, 0, sizeof(xbow->padding));
1863         priv->tx(dev, skb, 1);
1864         return 0;
1865 }
1866
1867 static void p54_statistics_timer(unsigned long data)
1868 {
1869         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1870         struct p54_common *priv = dev->priv;
1871
1872         BUG_ON(!priv->cached_stats);
1873
1874         priv->tx(dev, priv->cached_stats, 0);
1875 }
1876
1877 static int p54_get_stats(struct ieee80211_hw *dev,
1878                          struct ieee80211_low_level_stats *stats)
1879 {
1880         struct p54_common *priv = dev->priv;
1881
1882         del_timer(&priv->stats_timer);
1883         p54_statistics_timer((unsigned long)dev);
1884
1885         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1886                 printk(KERN_ERR "%s: device does not respond!\n",
1887                         wiphy_name(dev->wiphy));
1888                 return -EBUSY;
1889         }
1890
1891         memcpy(stats, &priv->stats, sizeof(*stats));
1892
1893         return 0;
1894 }
1895
1896 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1897                             struct ieee80211_tx_queue_stats *stats)
1898 {
1899         struct p54_common *priv = dev->priv;
1900
1901         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1902
1903         return 0;
1904 }
1905
1906 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1907                                  struct ieee80211_vif *vif,
1908                                  struct ieee80211_bss_conf *info,
1909                                  u32 changed)
1910 {
1911         struct p54_common *priv = dev->priv;
1912
1913         if (changed & BSS_CHANGED_ERP_SLOT) {
1914                 priv->use_short_slot = info->use_short_slot;
1915                 p54_set_edcf(dev);
1916         }
1917         if (changed & BSS_CHANGED_BASIC_RATES) {
1918                 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
1919                         priv->basic_rate_mask = (info->basic_rates << 4);
1920                 else
1921                         priv->basic_rate_mask = info->basic_rates;
1922                 p54_setup_mac(dev);
1923                 if (priv->fw_var >= 0x500)
1924                         p54_scan(dev, P54_SCAN_EXIT, 0,
1925                                  dev->conf.channel->center_freq);
1926         }
1927         if (changed & BSS_CHANGED_ASSOC) {
1928                 if (info->assoc) {
1929                         priv->aid = info->aid;
1930                         priv->wakeup_timer = info->beacon_int *
1931                                              info->dtim_period * 5;
1932                         p54_setup_mac(dev);
1933                 }
1934         }
1935
1936 }
1937
1938 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
1939                        const u8 *local_address, const u8 *address,
1940                        struct ieee80211_key_conf *key)
1941 {
1942         struct p54_common *priv = dev->priv;
1943         struct sk_buff *skb;
1944         struct p54_keycache *rxkey;
1945         u8 algo = 0;
1946
1947         if (modparam_nohwcrypt)
1948                 return -EOPNOTSUPP;
1949
1950         if (cmd == DISABLE_KEY)
1951                 algo = 0;
1952         else {
1953                 switch (key->alg) {
1954                 case ALG_TKIP:
1955                         if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
1956                               BR_DESC_PRIV_CAP_TKIP)))
1957                                 return -EOPNOTSUPP;
1958                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1959                         algo = P54_CRYPTO_TKIPMICHAEL;
1960                         break;
1961                 case ALG_WEP:
1962                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
1963                                 return -EOPNOTSUPP;
1964                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1965                         algo = P54_CRYPTO_WEP;
1966                         break;
1967                 case ALG_CCMP:
1968                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
1969                                 return -EOPNOTSUPP;
1970                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1971                         algo = P54_CRYPTO_AESCCMP;
1972                         break;
1973                 default:
1974                         return -EINVAL;
1975                 }
1976         }
1977
1978         if (key->keyidx > priv->rx_keycache_size) {
1979                 /*
1980                  * The device supports the choosen algorithm, but the firmware
1981                  * does not provide enough key slots to store all of them.
1982                  * So, incoming frames have to be decoded by the mac80211 stack,
1983                  * but we can still offload encryption for outgoing frames.
1984                  */
1985
1986                 return 0;
1987         }
1988
1989         mutex_lock(&priv->conf_mutex);
1990         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey) +
1991                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_RX_KEYCACHE,
1992                         GFP_ATOMIC);
1993         if (!skb) {
1994                 mutex_unlock(&priv->conf_mutex);
1995                 return -ENOMEM;
1996         }
1997
1998         /* TODO: some devices have 4 more free slots for rx keys */
1999         rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2000         rxkey->entry = key->keyidx;
2001         rxkey->key_id = key->keyidx;
2002         rxkey->key_type = algo;
2003         if (address)
2004                 memcpy(rxkey->mac, address, ETH_ALEN);
2005         else
2006                 memset(rxkey->mac, ~0, ETH_ALEN);
2007         if (key->alg != ALG_TKIP) {
2008                 rxkey->key_len = min((u8)16, key->keylen);
2009                 memcpy(rxkey->key, key->key, rxkey->key_len);
2010         } else {
2011                 rxkey->key_len = 24;
2012                 memcpy(rxkey->key, key->key, 16);
2013                 memcpy(&(rxkey->key[16]), &(key->key
2014                         [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2015         }
2016
2017         priv->tx(dev, skb, 1);
2018         mutex_unlock(&priv->conf_mutex);
2019         return 0;
2020 }
2021
2022 static const struct ieee80211_ops p54_ops = {
2023         .tx                     = p54_tx,
2024         .start                  = p54_start,
2025         .stop                   = p54_stop,
2026         .add_interface          = p54_add_interface,
2027         .remove_interface       = p54_remove_interface,
2028         .set_tim                = p54_set_tim,
2029         .sta_notify_ps          = p54_sta_notify_ps,
2030         .sta_notify             = p54_sta_notify,
2031         .set_key                = p54_set_key,
2032         .config                 = p54_config,
2033         .config_interface       = p54_config_interface,
2034         .bss_info_changed       = p54_bss_info_changed,
2035         .configure_filter       = p54_configure_filter,
2036         .conf_tx                = p54_conf_tx,
2037         .get_stats              = p54_get_stats,
2038         .get_tx_stats           = p54_get_tx_stats
2039 };
2040
2041 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2042 {
2043         struct ieee80211_hw *dev;
2044         struct p54_common *priv;
2045
2046         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2047         if (!dev)
2048                 return NULL;
2049
2050         priv = dev->priv;
2051         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2052         priv->basic_rate_mask = 0x15f;
2053         skb_queue_head_init(&priv->tx_queue);
2054         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2055                      IEEE80211_HW_SIGNAL_DBM |
2056                      IEEE80211_HW_NOISE_DBM;
2057
2058         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2059                                       BIT(NL80211_IFTYPE_ADHOC) |
2060                                       BIT(NL80211_IFTYPE_AP) |
2061                                       BIT(NL80211_IFTYPE_MESH_POINT);
2062
2063         dev->channel_change_time = 1000;        /* TODO: find actual value */
2064         priv->tx_stats[0].limit = 1;            /* Beacon queue */
2065         priv->tx_stats[1].limit = 1;            /* Probe queue for HW scan */
2066         priv->tx_stats[2].limit = 3;            /* queue for MLMEs */
2067         priv->tx_stats[3].limit = 3;            /* Broadcast / MC queue */
2068         priv->tx_stats[4].limit = 5;            /* Data */
2069         dev->queues = 1;
2070         priv->noise = -94;
2071         /*
2072          * We support at most 8 tries no matter which rate they're at,
2073          * we cannot support max_rates * max_rate_tries as we set it
2074          * here, but setting it correctly to 4/2 or so would limit us
2075          * artificially if the RC algorithm wants just two rates, so
2076          * let's say 4/7, we'll redistribute it at TX time, see the
2077          * comments there.
2078          */
2079         dev->max_rates = 4;
2080         dev->max_rate_tries = 7;
2081         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2082                                  sizeof(struct p54_tx_data);
2083
2084         mutex_init(&priv->conf_mutex);
2085         init_completion(&priv->eeprom_comp);
2086         init_completion(&priv->stats_comp);
2087         setup_timer(&priv->stats_timer, p54_statistics_timer,
2088                 (unsigned long)dev);
2089
2090         return dev;
2091 }
2092 EXPORT_SYMBOL_GPL(p54_init_common);
2093
2094 void p54_free_common(struct ieee80211_hw *dev)
2095 {
2096         struct p54_common *priv = dev->priv;
2097         del_timer(&priv->stats_timer);
2098         kfree_skb(priv->cached_stats);
2099         kfree(priv->iq_autocal);
2100         kfree(priv->output_limit);
2101         kfree(priv->curve_data);
2102 }
2103 EXPORT_SYMBOL_GPL(p54_free_common);
2104
2105 static int __init p54_init(void)
2106 {
2107         return 0;
2108 }
2109
2110 static void __exit p54_exit(void)
2111 {
2112 }
2113
2114 module_init(p54_init);
2115 module_exit(p54_exit);