signal/timer/event: timerfd core
[linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37  * The per-CPU workqueue (if single thread, we always use the first
38  * possible cpu).
39  */
40 struct cpu_workqueue_struct {
41
42         spinlock_t lock;
43
44         struct list_head worklist;
45         wait_queue_head_t more_work;
46         struct work_struct *current_work;
47
48         struct workqueue_struct *wq;
49         struct task_struct *thread;
50         int should_stop;
51
52         int run_depth;          /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60         struct cpu_workqueue_struct *cpu_wq;
61         struct list_head list;
62         const char *name;
63         int singlethread;
64         int freezeable;         /* Freeze threads during suspend */
65 };
66
67 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
68    threads to each one as cpus come/go. */
69 static DEFINE_MUTEX(workqueue_mutex);
70 static LIST_HEAD(workqueues);
71
72 static int singlethread_cpu __read_mostly;
73 static cpumask_t cpu_singlethread_map __read_mostly;
74 /* optimization, we could use cpu_possible_map */
75 static cpumask_t cpu_populated_map __read_mostly;
76
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
79 {
80         return wq->singlethread;
81 }
82
83 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
84 {
85         return is_single_threaded(wq)
86                 ? &cpu_singlethread_map : &cpu_populated_map;
87 }
88
89 static
90 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
91 {
92         if (unlikely(is_single_threaded(wq)))
93                 cpu = singlethread_cpu;
94         return per_cpu_ptr(wq->cpu_wq, cpu);
95 }
96
97 /*
98  * Set the workqueue on which a work item is to be run
99  * - Must *only* be called if the pending flag is set
100  */
101 static inline void set_wq_data(struct work_struct *work,
102                                 struct cpu_workqueue_struct *cwq)
103 {
104         unsigned long new;
105
106         BUG_ON(!work_pending(work));
107
108         new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
109         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
110         atomic_long_set(&work->data, new);
111 }
112
113 static inline
114 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
115 {
116         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
117 }
118
119 static void insert_work(struct cpu_workqueue_struct *cwq,
120                                 struct work_struct *work, int tail)
121 {
122         set_wq_data(work, cwq);
123         /*
124          * Ensure that we get the right work->data if we see the
125          * result of list_add() below, see try_to_grab_pending().
126          */
127         smp_wmb();
128         if (tail)
129                 list_add_tail(&work->entry, &cwq->worklist);
130         else
131                 list_add(&work->entry, &cwq->worklist);
132         wake_up(&cwq->more_work);
133 }
134
135 /* Preempt must be disabled. */
136 static void __queue_work(struct cpu_workqueue_struct *cwq,
137                          struct work_struct *work)
138 {
139         unsigned long flags;
140
141         spin_lock_irqsave(&cwq->lock, flags);
142         insert_work(cwq, work, 1);
143         spin_unlock_irqrestore(&cwq->lock, flags);
144 }
145
146 /**
147  * queue_work - queue work on a workqueue
148  * @wq: workqueue to use
149  * @work: work to queue
150  *
151  * Returns 0 if @work was already on a queue, non-zero otherwise.
152  *
153  * We queue the work to the CPU it was submitted, but there is no
154  * guarantee that it will be processed by that CPU.
155  */
156 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
157 {
158         int ret = 0;
159
160         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
161                 BUG_ON(!list_empty(&work->entry));
162                 __queue_work(wq_per_cpu(wq, get_cpu()), work);
163                 put_cpu();
164                 ret = 1;
165         }
166         return ret;
167 }
168 EXPORT_SYMBOL_GPL(queue_work);
169
170 void delayed_work_timer_fn(unsigned long __data)
171 {
172         struct delayed_work *dwork = (struct delayed_work *)__data;
173         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
174         struct workqueue_struct *wq = cwq->wq;
175
176         __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
177 }
178
179 /**
180  * queue_delayed_work - queue work on a workqueue after delay
181  * @wq: workqueue to use
182  * @dwork: delayable work to queue
183  * @delay: number of jiffies to wait before queueing
184  *
185  * Returns 0 if @work was already on a queue, non-zero otherwise.
186  */
187 int fastcall queue_delayed_work(struct workqueue_struct *wq,
188                         struct delayed_work *dwork, unsigned long delay)
189 {
190         timer_stats_timer_set_start_info(&dwork->timer);
191         if (delay == 0)
192                 return queue_work(wq, &dwork->work);
193
194         return queue_delayed_work_on(-1, wq, dwork, delay);
195 }
196 EXPORT_SYMBOL_GPL(queue_delayed_work);
197
198 /**
199  * queue_delayed_work_on - queue work on specific CPU after delay
200  * @cpu: CPU number to execute work on
201  * @wq: workqueue to use
202  * @dwork: work to queue
203  * @delay: number of jiffies to wait before queueing
204  *
205  * Returns 0 if @work was already on a queue, non-zero otherwise.
206  */
207 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
208                         struct delayed_work *dwork, unsigned long delay)
209 {
210         int ret = 0;
211         struct timer_list *timer = &dwork->timer;
212         struct work_struct *work = &dwork->work;
213
214         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
215                 BUG_ON(timer_pending(timer));
216                 BUG_ON(!list_empty(&work->entry));
217
218                 /* This stores cwq for the moment, for the timer_fn */
219                 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
220                 timer->expires = jiffies + delay;
221                 timer->data = (unsigned long)dwork;
222                 timer->function = delayed_work_timer_fn;
223
224                 if (unlikely(cpu >= 0))
225                         add_timer_on(timer, cpu);
226                 else
227                         add_timer(timer);
228                 ret = 1;
229         }
230         return ret;
231 }
232 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
233
234 static void run_workqueue(struct cpu_workqueue_struct *cwq)
235 {
236         spin_lock_irq(&cwq->lock);
237         cwq->run_depth++;
238         if (cwq->run_depth > 3) {
239                 /* morton gets to eat his hat */
240                 printk("%s: recursion depth exceeded: %d\n",
241                         __FUNCTION__, cwq->run_depth);
242                 dump_stack();
243         }
244         while (!list_empty(&cwq->worklist)) {
245                 struct work_struct *work = list_entry(cwq->worklist.next,
246                                                 struct work_struct, entry);
247                 work_func_t f = work->func;
248
249                 cwq->current_work = work;
250                 list_del_init(cwq->worklist.next);
251                 spin_unlock_irq(&cwq->lock);
252
253                 BUG_ON(get_wq_data(work) != cwq);
254                 work_clear_pending(work);
255                 f(work);
256
257                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
258                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
259                                         "%s/0x%08x/%d\n",
260                                         current->comm, preempt_count(),
261                                         current->pid);
262                         printk(KERN_ERR "    last function: ");
263                         print_symbol("%s\n", (unsigned long)f);
264                         debug_show_held_locks(current);
265                         dump_stack();
266                 }
267
268                 spin_lock_irq(&cwq->lock);
269                 cwq->current_work = NULL;
270         }
271         cwq->run_depth--;
272         spin_unlock_irq(&cwq->lock);
273 }
274
275 /*
276  * NOTE: the caller must not touch *cwq if this func returns true
277  */
278 static int cwq_should_stop(struct cpu_workqueue_struct *cwq)
279 {
280         int should_stop = cwq->should_stop;
281
282         if (unlikely(should_stop)) {
283                 spin_lock_irq(&cwq->lock);
284                 should_stop = cwq->should_stop && list_empty(&cwq->worklist);
285                 if (should_stop)
286                         cwq->thread = NULL;
287                 spin_unlock_irq(&cwq->lock);
288         }
289
290         return should_stop;
291 }
292
293 static int worker_thread(void *__cwq)
294 {
295         struct cpu_workqueue_struct *cwq = __cwq;
296         DEFINE_WAIT(wait);
297
298         if (!cwq->wq->freezeable)
299                 current->flags |= PF_NOFREEZE;
300
301         set_user_nice(current, -5);
302
303         for (;;) {
304                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
305                 if (!freezing(current) && !cwq->should_stop
306                     && list_empty(&cwq->worklist))
307                         schedule();
308                 finish_wait(&cwq->more_work, &wait);
309
310                 try_to_freeze();
311
312                 if (cwq_should_stop(cwq))
313                         break;
314
315                 run_workqueue(cwq);
316         }
317
318         return 0;
319 }
320
321 struct wq_barrier {
322         struct work_struct      work;
323         struct completion       done;
324 };
325
326 static void wq_barrier_func(struct work_struct *work)
327 {
328         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
329         complete(&barr->done);
330 }
331
332 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
333                                         struct wq_barrier *barr, int tail)
334 {
335         INIT_WORK(&barr->work, wq_barrier_func);
336         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
337
338         init_completion(&barr->done);
339
340         insert_work(cwq, &barr->work, tail);
341 }
342
343 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
344 {
345         if (cwq->thread == current) {
346                 /*
347                  * Probably keventd trying to flush its own queue. So simply run
348                  * it by hand rather than deadlocking.
349                  */
350                 run_workqueue(cwq);
351         } else {
352                 struct wq_barrier barr;
353                 int active = 0;
354
355                 spin_lock_irq(&cwq->lock);
356                 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
357                         insert_wq_barrier(cwq, &barr, 1);
358                         active = 1;
359                 }
360                 spin_unlock_irq(&cwq->lock);
361
362                 if (active)
363                         wait_for_completion(&barr.done);
364         }
365 }
366
367 /**
368  * flush_workqueue - ensure that any scheduled work has run to completion.
369  * @wq: workqueue to flush
370  *
371  * Forces execution of the workqueue and blocks until its completion.
372  * This is typically used in driver shutdown handlers.
373  *
374  * We sleep until all works which were queued on entry have been handled,
375  * but we are not livelocked by new incoming ones.
376  *
377  * This function used to run the workqueues itself.  Now we just wait for the
378  * helper threads to do it.
379  */
380 void fastcall flush_workqueue(struct workqueue_struct *wq)
381 {
382         const cpumask_t *cpu_map = wq_cpu_map(wq);
383         int cpu;
384
385         might_sleep();
386         for_each_cpu_mask(cpu, *cpu_map)
387                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
388 }
389 EXPORT_SYMBOL_GPL(flush_workqueue);
390
391 /*
392  * Upon a successful return, the caller "owns" WORK_STRUCT_PENDING bit,
393  * so this work can't be re-armed in any way.
394  */
395 static int try_to_grab_pending(struct work_struct *work)
396 {
397         struct cpu_workqueue_struct *cwq;
398         int ret = 0;
399
400         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
401                 return 1;
402
403         /*
404          * The queueing is in progress, or it is already queued. Try to
405          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
406          */
407
408         cwq = get_wq_data(work);
409         if (!cwq)
410                 return ret;
411
412         spin_lock_irq(&cwq->lock);
413         if (!list_empty(&work->entry)) {
414                 /*
415                  * This work is queued, but perhaps we locked the wrong cwq.
416                  * In that case we must see the new value after rmb(), see
417                  * insert_work()->wmb().
418                  */
419                 smp_rmb();
420                 if (cwq == get_wq_data(work)) {
421                         list_del_init(&work->entry);
422                         ret = 1;
423                 }
424         }
425         spin_unlock_irq(&cwq->lock);
426
427         return ret;
428 }
429
430 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
431                                 struct work_struct *work)
432 {
433         struct wq_barrier barr;
434         int running = 0;
435
436         spin_lock_irq(&cwq->lock);
437         if (unlikely(cwq->current_work == work)) {
438                 insert_wq_barrier(cwq, &barr, 0);
439                 running = 1;
440         }
441         spin_unlock_irq(&cwq->lock);
442
443         if (unlikely(running))
444                 wait_for_completion(&barr.done);
445 }
446
447 static void wait_on_work(struct work_struct *work)
448 {
449         struct cpu_workqueue_struct *cwq;
450         struct workqueue_struct *wq;
451         const cpumask_t *cpu_map;
452         int cpu;
453
454         might_sleep();
455
456         cwq = get_wq_data(work);
457         if (!cwq)
458                 return;
459
460         wq = cwq->wq;
461         cpu_map = wq_cpu_map(wq);
462
463         for_each_cpu_mask(cpu, *cpu_map)
464                 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
465 }
466
467 /**
468  * cancel_work_sync - block until a work_struct's callback has terminated
469  * @work: the work which is to be flushed
470  *
471  * cancel_work_sync() will cancel the work if it is queued. If the work's
472  * callback appears to be running, cancel_work_sync() will block until it
473  * has completed.
474  *
475  * It is possible to use this function if the work re-queues itself. It can
476  * cancel the work even if it migrates to another workqueue, however in that
477  * case it only guarantees that work->func() has completed on the last queued
478  * workqueue.
479  *
480  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
481  * pending, otherwise it goes into a busy-wait loop until the timer expires.
482  *
483  * The caller must ensure that workqueue_struct on which this work was last
484  * queued can't be destroyed before this function returns.
485  */
486 void cancel_work_sync(struct work_struct *work)
487 {
488         while (!try_to_grab_pending(work))
489                 cpu_relax();
490         wait_on_work(work);
491         work_clear_pending(work);
492 }
493 EXPORT_SYMBOL_GPL(cancel_work_sync);
494
495 /**
496  * cancel_rearming_delayed_work - reliably kill off a delayed work.
497  * @dwork: the delayed work struct
498  *
499  * It is possible to use this function if @dwork rearms itself via queue_work()
500  * or queue_delayed_work(). See also the comment for cancel_work_sync().
501  */
502 void cancel_rearming_delayed_work(struct delayed_work *dwork)
503 {
504         while (!del_timer(&dwork->timer) &&
505                !try_to_grab_pending(&dwork->work))
506                 cpu_relax();
507         wait_on_work(&dwork->work);
508         work_clear_pending(&dwork->work);
509 }
510 EXPORT_SYMBOL(cancel_rearming_delayed_work);
511
512 static struct workqueue_struct *keventd_wq __read_mostly;
513
514 /**
515  * schedule_work - put work task in global workqueue
516  * @work: job to be done
517  *
518  * This puts a job in the kernel-global workqueue.
519  */
520 int fastcall schedule_work(struct work_struct *work)
521 {
522         return queue_work(keventd_wq, work);
523 }
524 EXPORT_SYMBOL(schedule_work);
525
526 /**
527  * schedule_delayed_work - put work task in global workqueue after delay
528  * @dwork: job to be done
529  * @delay: number of jiffies to wait or 0 for immediate execution
530  *
531  * After waiting for a given time this puts a job in the kernel-global
532  * workqueue.
533  */
534 int fastcall schedule_delayed_work(struct delayed_work *dwork,
535                                         unsigned long delay)
536 {
537         timer_stats_timer_set_start_info(&dwork->timer);
538         return queue_delayed_work(keventd_wq, dwork, delay);
539 }
540 EXPORT_SYMBOL(schedule_delayed_work);
541
542 /**
543  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
544  * @cpu: cpu to use
545  * @dwork: job to be done
546  * @delay: number of jiffies to wait
547  *
548  * After waiting for a given time this puts a job in the kernel-global
549  * workqueue on the specified CPU.
550  */
551 int schedule_delayed_work_on(int cpu,
552                         struct delayed_work *dwork, unsigned long delay)
553 {
554         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
555 }
556 EXPORT_SYMBOL(schedule_delayed_work_on);
557
558 /**
559  * schedule_on_each_cpu - call a function on each online CPU from keventd
560  * @func: the function to call
561  *
562  * Returns zero on success.
563  * Returns -ve errno on failure.
564  *
565  * Appears to be racy against CPU hotplug.
566  *
567  * schedule_on_each_cpu() is very slow.
568  */
569 int schedule_on_each_cpu(work_func_t func)
570 {
571         int cpu;
572         struct work_struct *works;
573
574         works = alloc_percpu(struct work_struct);
575         if (!works)
576                 return -ENOMEM;
577
578         preempt_disable();              /* CPU hotplug */
579         for_each_online_cpu(cpu) {
580                 struct work_struct *work = per_cpu_ptr(works, cpu);
581
582                 INIT_WORK(work, func);
583                 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
584                 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
585         }
586         preempt_enable();
587         flush_workqueue(keventd_wq);
588         free_percpu(works);
589         return 0;
590 }
591
592 void flush_scheduled_work(void)
593 {
594         flush_workqueue(keventd_wq);
595 }
596 EXPORT_SYMBOL(flush_scheduled_work);
597
598 /**
599  * execute_in_process_context - reliably execute the routine with user context
600  * @fn:         the function to execute
601  * @ew:         guaranteed storage for the execute work structure (must
602  *              be available when the work executes)
603  *
604  * Executes the function immediately if process context is available,
605  * otherwise schedules the function for delayed execution.
606  *
607  * Returns:     0 - function was executed
608  *              1 - function was scheduled for execution
609  */
610 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
611 {
612         if (!in_interrupt()) {
613                 fn(&ew->work);
614                 return 0;
615         }
616
617         INIT_WORK(&ew->work, fn);
618         schedule_work(&ew->work);
619
620         return 1;
621 }
622 EXPORT_SYMBOL_GPL(execute_in_process_context);
623
624 int keventd_up(void)
625 {
626         return keventd_wq != NULL;
627 }
628
629 int current_is_keventd(void)
630 {
631         struct cpu_workqueue_struct *cwq;
632         int cpu = smp_processor_id();   /* preempt-safe: keventd is per-cpu */
633         int ret = 0;
634
635         BUG_ON(!keventd_wq);
636
637         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
638         if (current == cwq->thread)
639                 ret = 1;
640
641         return ret;
642
643 }
644
645 static struct cpu_workqueue_struct *
646 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
647 {
648         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
649
650         cwq->wq = wq;
651         spin_lock_init(&cwq->lock);
652         INIT_LIST_HEAD(&cwq->worklist);
653         init_waitqueue_head(&cwq->more_work);
654
655         return cwq;
656 }
657
658 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
659 {
660         struct workqueue_struct *wq = cwq->wq;
661         const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
662         struct task_struct *p;
663
664         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
665         /*
666          * Nobody can add the work_struct to this cwq,
667          *      if (caller is __create_workqueue)
668          *              nobody should see this wq
669          *      else // caller is CPU_UP_PREPARE
670          *              cpu is not on cpu_online_map
671          * so we can abort safely.
672          */
673         if (IS_ERR(p))
674                 return PTR_ERR(p);
675
676         cwq->thread = p;
677         cwq->should_stop = 0;
678
679         return 0;
680 }
681
682 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
683 {
684         struct task_struct *p = cwq->thread;
685
686         if (p != NULL) {
687                 if (cpu >= 0)
688                         kthread_bind(p, cpu);
689                 wake_up_process(p);
690         }
691 }
692
693 struct workqueue_struct *__create_workqueue(const char *name,
694                                             int singlethread, int freezeable)
695 {
696         struct workqueue_struct *wq;
697         struct cpu_workqueue_struct *cwq;
698         int err = 0, cpu;
699
700         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
701         if (!wq)
702                 return NULL;
703
704         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
705         if (!wq->cpu_wq) {
706                 kfree(wq);
707                 return NULL;
708         }
709
710         wq->name = name;
711         wq->singlethread = singlethread;
712         wq->freezeable = freezeable;
713         INIT_LIST_HEAD(&wq->list);
714
715         if (singlethread) {
716                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
717                 err = create_workqueue_thread(cwq, singlethread_cpu);
718                 start_workqueue_thread(cwq, -1);
719         } else {
720                 mutex_lock(&workqueue_mutex);
721                 list_add(&wq->list, &workqueues);
722
723                 for_each_possible_cpu(cpu) {
724                         cwq = init_cpu_workqueue(wq, cpu);
725                         if (err || !cpu_online(cpu))
726                                 continue;
727                         err = create_workqueue_thread(cwq, cpu);
728                         start_workqueue_thread(cwq, cpu);
729                 }
730                 mutex_unlock(&workqueue_mutex);
731         }
732
733         if (err) {
734                 destroy_workqueue(wq);
735                 wq = NULL;
736         }
737         return wq;
738 }
739 EXPORT_SYMBOL_GPL(__create_workqueue);
740
741 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
742 {
743         struct wq_barrier barr;
744         int alive = 0;
745
746         spin_lock_irq(&cwq->lock);
747         if (cwq->thread != NULL) {
748                 insert_wq_barrier(cwq, &barr, 1);
749                 cwq->should_stop = 1;
750                 alive = 1;
751         }
752         spin_unlock_irq(&cwq->lock);
753
754         if (alive) {
755                 wait_for_completion(&barr.done);
756
757                 while (unlikely(cwq->thread != NULL))
758                         cpu_relax();
759                 /*
760                  * Wait until cwq->thread unlocks cwq->lock,
761                  * it won't touch *cwq after that.
762                  */
763                 smp_rmb();
764                 spin_unlock_wait(&cwq->lock);
765         }
766 }
767
768 /**
769  * destroy_workqueue - safely terminate a workqueue
770  * @wq: target workqueue
771  *
772  * Safely destroy a workqueue. All work currently pending will be done first.
773  */
774 void destroy_workqueue(struct workqueue_struct *wq)
775 {
776         const cpumask_t *cpu_map = wq_cpu_map(wq);
777         struct cpu_workqueue_struct *cwq;
778         int cpu;
779
780         mutex_lock(&workqueue_mutex);
781         list_del(&wq->list);
782         mutex_unlock(&workqueue_mutex);
783
784         for_each_cpu_mask(cpu, *cpu_map) {
785                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
786                 cleanup_workqueue_thread(cwq, cpu);
787         }
788
789         free_percpu(wq->cpu_wq);
790         kfree(wq);
791 }
792 EXPORT_SYMBOL_GPL(destroy_workqueue);
793
794 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
795                                                 unsigned long action,
796                                                 void *hcpu)
797 {
798         unsigned int cpu = (unsigned long)hcpu;
799         struct cpu_workqueue_struct *cwq;
800         struct workqueue_struct *wq;
801
802         action &= ~CPU_TASKS_FROZEN;
803
804         switch (action) {
805         case CPU_LOCK_ACQUIRE:
806                 mutex_lock(&workqueue_mutex);
807                 return NOTIFY_OK;
808
809         case CPU_LOCK_RELEASE:
810                 mutex_unlock(&workqueue_mutex);
811                 return NOTIFY_OK;
812
813         case CPU_UP_PREPARE:
814                 cpu_set(cpu, cpu_populated_map);
815         }
816
817         list_for_each_entry(wq, &workqueues, list) {
818                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
819
820                 switch (action) {
821                 case CPU_UP_PREPARE:
822                         if (!create_workqueue_thread(cwq, cpu))
823                                 break;
824                         printk(KERN_ERR "workqueue for %i failed\n", cpu);
825                         return NOTIFY_BAD;
826
827                 case CPU_ONLINE:
828                         start_workqueue_thread(cwq, cpu);
829                         break;
830
831                 case CPU_UP_CANCELED:
832                         start_workqueue_thread(cwq, -1);
833                 case CPU_DEAD:
834                         cleanup_workqueue_thread(cwq, cpu);
835                         break;
836                 }
837         }
838
839         return NOTIFY_OK;
840 }
841
842 void __init init_workqueues(void)
843 {
844         cpu_populated_map = cpu_online_map;
845         singlethread_cpu = first_cpu(cpu_possible_map);
846         cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
847         hotcpu_notifier(workqueue_cpu_callback, 0);
848         keventd_wq = create_workqueue("events");
849         BUG_ON(!keventd_wq);
850 }