2 * layout.h - All NTFS associated on-disk structures. Part of the Linux-NTFS
5 * Copyright (c) 2001-2005 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifndef _LINUX_NTFS_LAYOUT_H
25 #define _LINUX_NTFS_LAYOUT_H
27 #include <linux/types.h>
28 #include <linux/bitops.h>
29 #include <linux/list.h>
30 #include <asm/byteorder.h>
35 * Constant endianness conversion defines.
37 #define const_le16_to_cpu(x) __constant_le16_to_cpu(x)
38 #define const_le32_to_cpu(x) __constant_le32_to_cpu(x)
39 #define const_le64_to_cpu(x) __constant_le64_to_cpu(x)
41 #define const_cpu_to_le16(x) __constant_cpu_to_le16(x)
42 #define const_cpu_to_le32(x) __constant_cpu_to_le32(x)
43 #define const_cpu_to_le64(x) __constant_cpu_to_le64(x)
45 /* The NTFS oem_id "NTFS " */
46 #define magicNTFS const_cpu_to_le64(0x202020205346544eULL)
49 * Location of bootsector on partition:
50 * The standard NTFS_BOOT_SECTOR is on sector 0 of the partition.
51 * On NT4 and above there is one backup copy of the boot sector to
52 * be found on the last sector of the partition (not normally accessible
53 * from within Windows as the bootsector contained number of sectors
54 * value is one less than the actual value!).
55 * On versions of NT 3.51 and earlier, the backup copy was located at
56 * number of sectors/2 (integer divide), i.e. in the middle of the volume.
60 * BIOS parameter block (bpb) structure.
63 le16 bytes_per_sector; /* Size of a sector in bytes. */
64 u8 sectors_per_cluster; /* Size of a cluster in sectors. */
65 le16 reserved_sectors; /* zero */
67 le16 root_entries; /* zero */
68 le16 sectors; /* zero */
69 u8 media_type; /* 0xf8 = hard disk */
70 le16 sectors_per_fat; /* zero */
71 le16 sectors_per_track; /* irrelevant */
72 le16 heads; /* irrelevant */
73 le32 hidden_sectors; /* zero */
74 le32 large_sectors; /* zero */
75 } __attribute__ ((__packed__)) BIOS_PARAMETER_BLOCK;
78 * NTFS boot sector structure.
81 u8 jump[3]; /* Irrelevant (jump to boot up code).*/
82 le64 oem_id; /* Magic "NTFS ". */
83 BIOS_PARAMETER_BLOCK bpb; /* See BIOS_PARAMETER_BLOCK. */
84 u8 unused[4]; /* zero, NTFS diskedit.exe states that
86 __u8 physical_drive; // 0x80
87 __u8 current_head; // zero
88 __u8 extended_boot_signature;
92 /*0x28*/sle64 number_of_sectors; /* Number of sectors in volume. Gives
93 maximum volume size of 2^63 sectors.
94 Assuming standard sector size of 512
95 bytes, the maximum byte size is
96 approx. 4.7x10^21 bytes. (-; */
97 sle64 mft_lcn; /* Cluster location of mft data. */
98 sle64 mftmirr_lcn; /* Cluster location of copy of mft. */
99 s8 clusters_per_mft_record; /* Mft record size in clusters. */
100 u8 reserved0[3]; /* zero */
101 s8 clusters_per_index_record; /* Index block size in clusters. */
102 u8 reserved1[3]; /* zero */
103 le64 volume_serial_number; /* Irrelevant (serial number). */
104 le32 checksum; /* Boot sector checksum. */
105 /*0x54*/u8 bootstrap[426]; /* Irrelevant (boot up code). */
106 le16 end_of_sector_marker; /* End of bootsector magic. Always is
107 0xaa55 in little endian. */
108 /* sizeof() = 512 (0x200) bytes */
109 } __attribute__ ((__packed__)) NTFS_BOOT_SECTOR;
112 * Magic identifiers present at the beginning of all ntfs record containing
113 * records (like mft records for example).
116 /* Found in $MFT/$DATA. */
117 magic_FILE = const_cpu_to_le32(0x454c4946), /* Mft entry. */
118 magic_INDX = const_cpu_to_le32(0x58444e49), /* Index buffer. */
119 magic_HOLE = const_cpu_to_le32(0x454c4f48), /* ? (NTFS 3.0+?) */
121 /* Found in $LogFile/$DATA. */
122 magic_RSTR = const_cpu_to_le32(0x52545352), /* Restart page. */
123 magic_RCRD = const_cpu_to_le32(0x44524352), /* Log record page. */
125 /* Found in $LogFile/$DATA. (May be found in $MFT/$DATA, also?) */
126 magic_CHKD = const_cpu_to_le32(0x424b4843), /* Modified by chkdsk. */
128 /* Found in all ntfs record containing records. */
129 magic_BAAD = const_cpu_to_le32(0x44414142), /* Failed multi sector
130 transfer was detected. */
132 * Found in $LogFile/$DATA when a page is full of 0xff bytes and is
133 * thus not initialized. Page must be initialized before using it.
135 magic_empty = const_cpu_to_le32(0xffffffff) /* Record is empty. */
138 typedef le32 NTFS_RECORD_TYPE;
141 * Generic magic comparison macros. Finally found a use for the ## preprocessor
145 static inline BOOL __ntfs_is_magic(le32 x, NTFS_RECORD_TYPE r)
149 #define ntfs_is_magic(x, m) __ntfs_is_magic(x, magic_##m)
151 static inline BOOL __ntfs_is_magicp(le32 *p, NTFS_RECORD_TYPE r)
155 #define ntfs_is_magicp(p, m) __ntfs_is_magicp(p, magic_##m)
158 * Specialised magic comparison macros for the NTFS_RECORD_TYPEs defined above.
160 #define ntfs_is_file_record(x) ( ntfs_is_magic (x, FILE) )
161 #define ntfs_is_file_recordp(p) ( ntfs_is_magicp(p, FILE) )
162 #define ntfs_is_mft_record(x) ( ntfs_is_file_record (x) )
163 #define ntfs_is_mft_recordp(p) ( ntfs_is_file_recordp(p) )
164 #define ntfs_is_indx_record(x) ( ntfs_is_magic (x, INDX) )
165 #define ntfs_is_indx_recordp(p) ( ntfs_is_magicp(p, INDX) )
166 #define ntfs_is_hole_record(x) ( ntfs_is_magic (x, HOLE) )
167 #define ntfs_is_hole_recordp(p) ( ntfs_is_magicp(p, HOLE) )
169 #define ntfs_is_rstr_record(x) ( ntfs_is_magic (x, RSTR) )
170 #define ntfs_is_rstr_recordp(p) ( ntfs_is_magicp(p, RSTR) )
171 #define ntfs_is_rcrd_record(x) ( ntfs_is_magic (x, RCRD) )
172 #define ntfs_is_rcrd_recordp(p) ( ntfs_is_magicp(p, RCRD) )
174 #define ntfs_is_chkd_record(x) ( ntfs_is_magic (x, CHKD) )
175 #define ntfs_is_chkd_recordp(p) ( ntfs_is_magicp(p, CHKD) )
177 #define ntfs_is_baad_record(x) ( ntfs_is_magic (x, BAAD) )
178 #define ntfs_is_baad_recordp(p) ( ntfs_is_magicp(p, BAAD) )
180 #define ntfs_is_empty_record(x) ( ntfs_is_magic (x, empty) )
181 #define ntfs_is_empty_recordp(p) ( ntfs_is_magicp(p, empty) )
184 * The Update Sequence Array (usa) is an array of the le16 values which belong
185 * to the end of each sector protected by the update sequence record in which
186 * this array is contained. Note that the first entry is the Update Sequence
187 * Number (usn), a cyclic counter of how many times the protected record has
188 * been written to disk. The values 0 and -1 (ie. 0xffff) are not used. All
189 * last le16's of each sector have to be equal to the usn (during reading) or
190 * are set to it (during writing). If they are not, an incomplete multi sector
191 * transfer has occurred when the data was written.
192 * The maximum size for the update sequence array is fixed to:
193 * maximum size = usa_ofs + (usa_count * 2) = 510 bytes
194 * The 510 bytes comes from the fact that the last le16 in the array has to
195 * (obviously) finish before the last le16 of the first 512-byte sector.
196 * This formula can be used as a consistency check in that usa_ofs +
197 * (usa_count * 2) has to be less than or equal to 510.
200 NTFS_RECORD_TYPE magic; /* A four-byte magic identifying the record
201 type and/or status. */
202 le16 usa_ofs; /* Offset to the Update Sequence Array (usa)
203 from the start of the ntfs record. */
204 le16 usa_count; /* Number of le16 sized entries in the usa
205 including the Update Sequence Number (usn),
206 thus the number of fixups is the usa_count
208 } __attribute__ ((__packed__)) NTFS_RECORD;
211 * System files mft record numbers. All these files are always marked as used
212 * in the bitmap attribute of the mft; presumably in order to avoid accidental
213 * allocation for random other mft records. Also, the sequence number for each
214 * of the system files is always equal to their mft record number and it is
218 FILE_MFT = 0, /* Master file table (mft). Data attribute
219 contains the entries and bitmap attribute
220 records which ones are in use (bit==1). */
221 FILE_MFTMirr = 1, /* Mft mirror: copy of first four mft records
222 in data attribute. If cluster size > 4kiB,
223 copy of first N mft records, with
224 N = cluster_size / mft_record_size. */
225 FILE_LogFile = 2, /* Journalling log in data attribute. */
226 FILE_Volume = 3, /* Volume name attribute and volume information
227 attribute (flags and ntfs version). Windows
228 refers to this file as volume DASD (Direct
229 Access Storage Device). */
230 FILE_AttrDef = 4, /* Array of attribute definitions in data
232 FILE_root = 5, /* Root directory. */
233 FILE_Bitmap = 6, /* Allocation bitmap of all clusters (lcns) in
235 FILE_Boot = 7, /* Boot sector (always at cluster 0) in data
237 FILE_BadClus = 8, /* Contains all bad clusters in the non-resident
239 FILE_Secure = 9, /* Shared security descriptors in data attribute
240 and two indexes into the descriptors.
241 Appeared in Windows 2000. Before that, this
242 file was named $Quota but was unused. */
243 FILE_UpCase = 10, /* Uppercase equivalents of all 65536 Unicode
244 characters in data attribute. */
245 FILE_Extend = 11, /* Directory containing other system files (eg.
246 $ObjId, $Quota, $Reparse and $UsnJrnl). This
247 is new to NTFS3.0. */
248 FILE_reserved12 = 12, /* Reserved for future use (records 12-15). */
249 FILE_reserved13 = 13,
250 FILE_reserved14 = 14,
251 FILE_reserved15 = 15,
252 FILE_first_user = 16, /* First user file, used as test limit for
253 whether to allow opening a file or not. */
257 * These are the so far known MFT_RECORD_* flags (16-bit) which contain
258 * information about the mft record in which they are present.
261 MFT_RECORD_IN_USE = const_cpu_to_le16(0x0001),
262 MFT_RECORD_IS_DIRECTORY = const_cpu_to_le16(0x0002),
263 } __attribute__ ((__packed__));
265 typedef le16 MFT_RECORD_FLAGS;
268 * mft references (aka file references or file record segment references) are
269 * used whenever a structure needs to refer to a record in the mft.
271 * A reference consists of a 48-bit index into the mft and a 16-bit sequence
272 * number used to detect stale references.
274 * For error reporting purposes we treat the 48-bit index as a signed quantity.
276 * The sequence number is a circular counter (skipping 0) describing how many
277 * times the referenced mft record has been (re)used. This has to match the
278 * sequence number of the mft record being referenced, otherwise the reference
279 * is considered stale and removed (FIXME: only ntfsck or the driver itself?).
281 * If the sequence number is zero it is assumed that no sequence number
282 * consistency checking should be performed.
284 * FIXME: Since inodes are 32-bit as of now, the driver needs to always check
285 * for high_part being 0 and if not either BUG(), cause a panic() or handle
286 * the situation in some other way. This shouldn't be a problem as a volume has
287 * to become HUGE in order to need more than 32-bits worth of mft records.
288 * Assuming the standard mft record size of 1kb only the records (never mind
289 * the non-resident attributes, etc.) would require 4Tb of space on their own
290 * for the first 32 bits worth of records. This is only if some strange person
291 * doesn't decide to foul play and make the mft sparse which would be a really
292 * horrible thing to do as it would trash our current driver implementation. )-:
293 * Do I hear screams "we want 64-bit inodes!" ?!? (-;
295 * FIXME: The mft zone is defined as the first 12% of the volume. This space is
296 * reserved so that the mft can grow contiguously and hence doesn't become
297 * fragmented. Volume free space includes the empty part of the mft zone and
298 * when the volume's free 88% are used up, the mft zone is shrunk by a factor
299 * of 2, thus making more space available for more files/data. This process is
300 * repeated everytime there is no more free space except for the mft zone until
301 * there really is no more free space.
305 * Typedef the MFT_REF as a 64-bit value for easier handling.
306 * Also define two unpacking macros to get to the reference (MREF) and
307 * sequence number (MSEQNO) respectively.
308 * The _LE versions are to be applied on little endian MFT_REFs.
309 * Note: The _LE versions will return a CPU endian formatted value!
312 MFT_REF_MASK_CPU = 0x0000ffffffffffffULL,
313 MFT_REF_MASK_LE = const_cpu_to_le64(0x0000ffffffffffffULL),
317 typedef le64 leMFT_REF;
319 #define MK_MREF(m, s) ((MFT_REF)(((MFT_REF)(s) << 48) | \
320 ((MFT_REF)(m) & MFT_REF_MASK_CPU)))
321 #define MK_LE_MREF(m, s) cpu_to_le64(MK_MREF(m, s))
323 #define MREF(x) ((unsigned long)((x) & MFT_REF_MASK_CPU))
324 #define MSEQNO(x) ((u16)(((x) >> 48) & 0xffff))
325 #define MREF_LE(x) ((unsigned long)(le64_to_cpu(x) & MFT_REF_MASK_CPU))
326 #define MSEQNO_LE(x) ((u16)((le64_to_cpu(x) >> 48) & 0xffff))
328 #define IS_ERR_MREF(x) (((x) & 0x0000800000000000ULL) ? 1 : 0)
329 #define ERR_MREF(x) ((u64)((s64)(x)))
330 #define MREF_ERR(x) ((int)((s64)(x)))
333 * The mft record header present at the beginning of every record in the mft.
334 * This is followed by a sequence of variable length attribute records which
335 * is terminated by an attribute of type AT_END which is a truncated attribute
336 * in that it only consists of the attribute type code AT_END and none of the
337 * other members of the attribute structure are present.
341 /* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
342 NTFS_RECORD_TYPE magic; /* Usually the magic is "FILE". */
343 le16 usa_ofs; /* See NTFS_RECORD definition above. */
344 le16 usa_count; /* See NTFS_RECORD definition above. */
346 /* 8*/ le64 lsn; /* $LogFile sequence number for this record.
347 Changed every time the record is modified. */
348 /* 16*/ le16 sequence_number; /* Number of times this mft record has been
349 reused. (See description for MFT_REF
350 above.) NOTE: The increment (skipping zero)
351 is done when the file is deleted. NOTE: If
352 this is zero it is left zero. */
353 /* 18*/ le16 link_count; /* Number of hard links, i.e. the number of
354 directory entries referencing this record.
355 NOTE: Only used in mft base records.
356 NOTE: When deleting a directory entry we
357 check the link_count and if it is 1 we
358 delete the file. Otherwise we delete the
359 FILE_NAME_ATTR being referenced by the
360 directory entry from the mft record and
361 decrement the link_count.
362 FIXME: Careful with Win32 + DOS names! */
363 /* 20*/ le16 attrs_offset; /* Byte offset to the first attribute in this
364 mft record from the start of the mft record.
365 NOTE: Must be aligned to 8-byte boundary. */
366 /* 22*/ MFT_RECORD_FLAGS flags; /* Bit array of MFT_RECORD_FLAGS. When a file
367 is deleted, the MFT_RECORD_IN_USE flag is
369 /* 24*/ le32 bytes_in_use; /* Number of bytes used in this mft record.
370 NOTE: Must be aligned to 8-byte boundary. */
371 /* 28*/ le32 bytes_allocated; /* Number of bytes allocated for this mft
372 record. This should be equal to the mft
374 /* 32*/ leMFT_REF base_mft_record;/* This is zero for base mft records.
375 When it is not zero it is a mft reference
376 pointing to the base mft record to which
377 this record belongs (this is then used to
378 locate the attribute list attribute present
379 in the base record which describes this
380 extension record and hence might need
381 modification when the extension record
382 itself is modified, also locating the
383 attribute list also means finding the other
384 potential extents, belonging to the non-base
386 /* 40*/ le16 next_attr_instance;/* The instance number that will be assigned to
387 the next attribute added to this mft record.
388 NOTE: Incremented each time after it is used.
389 NOTE: Every time the mft record is reused
390 this number is set to zero. NOTE: The first
391 instance number is always 0. */
392 /* The below fields are specific to NTFS 3.1+ (Windows XP and above): */
393 /* 42*/ le16 reserved; /* Reserved/alignment. */
394 /* 44*/ le32 mft_record_number; /* Number of this mft record. */
395 /* sizeof() = 48 bytes */
397 * When (re)using the mft record, we place the update sequence array at this
398 * offset, i.e. before we start with the attributes. This also makes sense,
399 * otherwise we could run into problems with the update sequence array
400 * containing in itself the last two bytes of a sector which would mean that
401 * multi sector transfer protection wouldn't work. As you can't protect data
402 * by overwriting it since you then can't get it back...
403 * When reading we obviously use the data from the ntfs record header.
405 } __attribute__ ((__packed__)) MFT_RECORD;
407 /* This is the version without the NTFS 3.1+ specific fields. */
410 /* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
411 NTFS_RECORD_TYPE magic; /* Usually the magic is "FILE". */
412 le16 usa_ofs; /* See NTFS_RECORD definition above. */
413 le16 usa_count; /* See NTFS_RECORD definition above. */
415 /* 8*/ le64 lsn; /* $LogFile sequence number for this record.
416 Changed every time the record is modified. */
417 /* 16*/ le16 sequence_number; /* Number of times this mft record has been
418 reused. (See description for MFT_REF
419 above.) NOTE: The increment (skipping zero)
420 is done when the file is deleted. NOTE: If
421 this is zero it is left zero. */
422 /* 18*/ le16 link_count; /* Number of hard links, i.e. the number of
423 directory entries referencing this record.
424 NOTE: Only used in mft base records.
425 NOTE: When deleting a directory entry we
426 check the link_count and if it is 1 we
427 delete the file. Otherwise we delete the
428 FILE_NAME_ATTR being referenced by the
429 directory entry from the mft record and
430 decrement the link_count.
431 FIXME: Careful with Win32 + DOS names! */
432 /* 20*/ le16 attrs_offset; /* Byte offset to the first attribute in this
433 mft record from the start of the mft record.
434 NOTE: Must be aligned to 8-byte boundary. */
435 /* 22*/ MFT_RECORD_FLAGS flags; /* Bit array of MFT_RECORD_FLAGS. When a file
436 is deleted, the MFT_RECORD_IN_USE flag is
438 /* 24*/ le32 bytes_in_use; /* Number of bytes used in this mft record.
439 NOTE: Must be aligned to 8-byte boundary. */
440 /* 28*/ le32 bytes_allocated; /* Number of bytes allocated for this mft
441 record. This should be equal to the mft
443 /* 32*/ leMFT_REF base_mft_record;/* This is zero for base mft records.
444 When it is not zero it is a mft reference
445 pointing to the base mft record to which
446 this record belongs (this is then used to
447 locate the attribute list attribute present
448 in the base record which describes this
449 extension record and hence might need
450 modification when the extension record
451 itself is modified, also locating the
452 attribute list also means finding the other
453 potential extents, belonging to the non-base
455 /* 40*/ le16 next_attr_instance;/* The instance number that will be assigned to
456 the next attribute added to this mft record.
457 NOTE: Incremented each time after it is used.
458 NOTE: Every time the mft record is reused
459 this number is set to zero. NOTE: The first
460 instance number is always 0. */
461 /* sizeof() = 42 bytes */
463 * When (re)using the mft record, we place the update sequence array at this
464 * offset, i.e. before we start with the attributes. This also makes sense,
465 * otherwise we could run into problems with the update sequence array
466 * containing in itself the last two bytes of a sector which would mean that
467 * multi sector transfer protection wouldn't work. As you can't protect data
468 * by overwriting it since you then can't get it back...
469 * When reading we obviously use the data from the ntfs record header.
471 } __attribute__ ((__packed__)) MFT_RECORD_OLD;
474 * System defined attributes (32-bit). Each attribute type has a corresponding
475 * attribute name (Unicode string of maximum 64 character length) as described
476 * by the attribute definitions present in the data attribute of the $AttrDef
477 * system file. On NTFS 3.0 volumes the names are just as the types are named
478 * in the below defines exchanging AT_ for the dollar sign ($). If that is not
479 * a revealing choice of symbol I do not know what is... (-;
482 AT_UNUSED = const_cpu_to_le32( 0),
483 AT_STANDARD_INFORMATION = const_cpu_to_le32( 0x10),
484 AT_ATTRIBUTE_LIST = const_cpu_to_le32( 0x20),
485 AT_FILE_NAME = const_cpu_to_le32( 0x30),
486 AT_OBJECT_ID = const_cpu_to_le32( 0x40),
487 AT_SECURITY_DESCRIPTOR = const_cpu_to_le32( 0x50),
488 AT_VOLUME_NAME = const_cpu_to_le32( 0x60),
489 AT_VOLUME_INFORMATION = const_cpu_to_le32( 0x70),
490 AT_DATA = const_cpu_to_le32( 0x80),
491 AT_INDEX_ROOT = const_cpu_to_le32( 0x90),
492 AT_INDEX_ALLOCATION = const_cpu_to_le32( 0xa0),
493 AT_BITMAP = const_cpu_to_le32( 0xb0),
494 AT_REPARSE_POINT = const_cpu_to_le32( 0xc0),
495 AT_EA_INFORMATION = const_cpu_to_le32( 0xd0),
496 AT_EA = const_cpu_to_le32( 0xe0),
497 AT_PROPERTY_SET = const_cpu_to_le32( 0xf0),
498 AT_LOGGED_UTILITY_STREAM = const_cpu_to_le32( 0x100),
499 AT_FIRST_USER_DEFINED_ATTRIBUTE = const_cpu_to_le32( 0x1000),
500 AT_END = const_cpu_to_le32(0xffffffff)
503 typedef le32 ATTR_TYPE;
506 * The collation rules for sorting views/indexes/etc (32-bit).
508 * COLLATION_BINARY - Collate by binary compare where the first byte is most
510 * COLLATION_UNICODE_STRING - Collate Unicode strings by comparing their binary
511 * Unicode values, except that when a character can be uppercased, the
512 * upper case value collates before the lower case one.
513 * COLLATION_FILE_NAME - Collate file names as Unicode strings. The collation
514 * is done very much like COLLATION_UNICODE_STRING. In fact I have no idea
515 * what the difference is. Perhaps the difference is that file names
516 * would treat some special characters in an odd way (see
517 * unistr.c::ntfs_collate_names() and unistr.c::legal_ansi_char_array[]
518 * for what I mean but COLLATION_UNICODE_STRING would not give any special
519 * treatment to any characters at all, but this is speculation.
520 * COLLATION_NTOFS_ULONG - Sorting is done according to ascending le32 key
521 * values. E.g. used for $SII index in FILE_Secure, which sorts by
522 * security_id (le32).
523 * COLLATION_NTOFS_SID - Sorting is done according to ascending SID values.
524 * E.g. used for $O index in FILE_Extend/$Quota.
525 * COLLATION_NTOFS_SECURITY_HASH - Sorting is done first by ascending hash
526 * values and second by ascending security_id values. E.g. used for $SDH
527 * index in FILE_Secure.
528 * COLLATION_NTOFS_ULONGS - Sorting is done according to a sequence of ascending
529 * le32 key values. E.g. used for $O index in FILE_Extend/$ObjId, which
530 * sorts by object_id (16-byte), by splitting up the object_id in four
531 * le32 values and using them as individual keys. E.g. take the following
532 * two security_ids, stored as follows on disk:
533 * 1st: a1 61 65 b7 65 7b d4 11 9e 3d 00 e0 81 10 42 59
534 * 2nd: 38 14 37 d2 d2 f3 d4 11 a5 21 c8 6b 79 b1 97 45
535 * To compare them, they are split into four le32 values each, like so:
536 * 1st: 0xb76561a1 0x11d47b65 0xe0003d9e 0x59421081
537 * 2nd: 0xd2371438 0x11d4f3d2 0x6bc821a5 0x4597b179
538 * Now, it is apparent why the 2nd object_id collates after the 1st: the
539 * first le32 value of the 1st object_id is less than the first le32 of
540 * the 2nd object_id. If the first le32 values of both object_ids were
541 * equal then the second le32 values would be compared, etc.
544 COLLATION_BINARY = const_cpu_to_le32(0x00),
545 COLLATION_FILE_NAME = const_cpu_to_le32(0x01),
546 COLLATION_UNICODE_STRING = const_cpu_to_le32(0x02),
547 COLLATION_NTOFS_ULONG = const_cpu_to_le32(0x10),
548 COLLATION_NTOFS_SID = const_cpu_to_le32(0x11),
549 COLLATION_NTOFS_SECURITY_HASH = const_cpu_to_le32(0x12),
550 COLLATION_NTOFS_ULONGS = const_cpu_to_le32(0x13),
553 typedef le32 COLLATION_RULE;
556 * The flags (32-bit) describing attribute properties in the attribute
557 * definition structure. FIXME: This information is based on Regis's
558 * information and, according to him, it is not certain and probably
559 * incomplete. The INDEXABLE flag is fairly certainly correct as only the file
560 * name attribute has this flag set and this is the only attribute indexed in
564 ATTR_DEF_INDEXABLE = const_cpu_to_le32(0x02), /* Attribute can be
566 ATTR_DEF_MULTIPLE = const_cpu_to_le32(0x04), /* Attribute type
567 can be present multiple times in the
568 mft records of an inode. */
569 ATTR_DEF_NOT_ZERO = const_cpu_to_le32(0x08), /* Attribute value
570 must contain at least one non-zero
572 ATTR_DEF_INDEXED_UNIQUE = const_cpu_to_le32(0x10), /* Attribute must be
573 indexed and the attribute value must be
574 unique for the attribute type in all of
575 the mft records of an inode. */
576 ATTR_DEF_NAMED_UNIQUE = const_cpu_to_le32(0x20), /* Attribute must be
577 named and the name must be unique for
578 the attribute type in all of the mft
579 records of an inode. */
580 ATTR_DEF_RESIDENT = const_cpu_to_le32(0x40), /* Attribute must be
582 ATTR_DEF_ALWAYS_LOG = const_cpu_to_le32(0x80), /* Always log
583 modifications to this attribute,
584 regardless of whether it is resident or
585 non-resident. Without this, only log
586 modifications if the attribute is
590 typedef le32 ATTR_DEF_FLAGS;
593 * The data attribute of FILE_AttrDef contains a sequence of attribute
594 * definitions for the NTFS volume. With this, it is supposed to be safe for an
595 * older NTFS driver to mount a volume containing a newer NTFS version without
596 * damaging it (that's the theory. In practice it's: not damaging it too much).
597 * Entries are sorted by attribute type. The flags describe whether the
598 * attribute can be resident/non-resident and possibly other things, but the
599 * actual bits are unknown.
603 /* 0*/ ntfschar name[0x40]; /* Unicode name of the attribute. Zero
605 /* 80*/ ATTR_TYPE type; /* Type of the attribute. */
606 /* 84*/ le32 display_rule; /* Default display rule.
607 FIXME: What does it mean? (AIA) */
608 /* 88*/ COLLATION_RULE collation_rule; /* Default collation rule. */
609 /* 8c*/ ATTR_DEF_FLAGS flags; /* Flags describing the attribute. */
610 /* 90*/ sle64 min_size; /* Optional minimum attribute size. */
611 /* 98*/ sle64 max_size; /* Maximum size of attribute. */
612 /* sizeof() = 0xa0 or 160 bytes */
613 } __attribute__ ((__packed__)) ATTR_DEF;
616 * Attribute flags (16-bit).
619 ATTR_IS_COMPRESSED = const_cpu_to_le16(0x0001),
620 ATTR_COMPRESSION_MASK = const_cpu_to_le16(0x00ff), /* Compression method
623 ATTR_IS_ENCRYPTED = const_cpu_to_le16(0x4000),
624 ATTR_IS_SPARSE = const_cpu_to_le16(0x8000),
625 } __attribute__ ((__packed__));
627 typedef le16 ATTR_FLAGS;
630 * Attribute compression.
632 * Only the data attribute is ever compressed in the current ntfs driver in
633 * Windows. Further, compression is only applied when the data attribute is
634 * non-resident. Finally, to use compression, the maximum allowed cluster size
635 * on a volume is 4kib.
637 * The compression method is based on independently compressing blocks of X
638 * clusters, where X is determined from the compression_unit value found in the
639 * non-resident attribute record header (more precisely: X = 2^compression_unit
640 * clusters). On Windows NT/2k, X always is 16 clusters (compression_unit = 4).
642 * There are three different cases of how a compression block of X clusters
645 * 1) The data in the block is all zero (a sparse block):
646 * This is stored as a sparse block in the runlist, i.e. the runlist
647 * entry has length = X and lcn = -1. The mapping pairs array actually
648 * uses a delta_lcn value length of 0, i.e. delta_lcn is not present at
649 * all, which is then interpreted by the driver as lcn = -1.
650 * NOTE: Even uncompressed files can be sparse on NTFS 3.0 volumes, then
651 * the same principles apply as above, except that the length is not
652 * restricted to being any particular value.
654 * 2) The data in the block is not compressed:
655 * This happens when compression doesn't reduce the size of the block
656 * in clusters. I.e. if compression has a small effect so that the
657 * compressed data still occupies X clusters, then the uncompressed data
658 * is stored in the block.
659 * This case is recognised by the fact that the runlist entry has
660 * length = X and lcn >= 0. The mapping pairs array stores this as
661 * normal with a run length of X and some specific delta_lcn, i.e.
662 * delta_lcn has to be present.
664 * 3) The data in the block is compressed:
665 * The common case. This case is recognised by the fact that the run
666 * list entry has length L < X and lcn >= 0. The mapping pairs array
667 * stores this as normal with a run length of X and some specific
668 * delta_lcn, i.e. delta_lcn has to be present. This runlist entry is
669 * immediately followed by a sparse entry with length = X - L and
670 * lcn = -1. The latter entry is to make up the vcn counting to the
671 * full compression block size X.
673 * In fact, life is more complicated because adjacent entries of the same type
674 * can be coalesced. This means that one has to keep track of the number of
675 * clusters handled and work on a basis of X clusters at a time being one
676 * block. An example: if length L > X this means that this particular runlist
677 * entry contains a block of length X and part of one or more blocks of length
678 * L - X. Another example: if length L < X, this does not necessarily mean that
679 * the block is compressed as it might be that the lcn changes inside the block
680 * and hence the following runlist entry describes the continuation of the
681 * potentially compressed block. The block would be compressed if the
682 * following runlist entry describes at least X - L sparse clusters, thus
683 * making up the compression block length as described in point 3 above. (Of
684 * course, there can be several runlist entries with small lengths so that the
685 * sparse entry does not follow the first data containing entry with
688 * NOTE: At the end of the compressed attribute value, there most likely is not
689 * just the right amount of data to make up a compression block, thus this data
690 * is not even attempted to be compressed. It is just stored as is, unless
691 * the number of clusters it occupies is reduced when compressed in which case
692 * it is stored as a compressed compression block, complete with sparse
693 * clusters at the end.
697 * Flags of resident attributes (8-bit).
700 RESIDENT_ATTR_IS_INDEXED = 0x01, /* Attribute is referenced in an index
701 (has implications for deleting and
702 modifying the attribute). */
703 } __attribute__ ((__packed__));
705 typedef u8 RESIDENT_ATTR_FLAGS;
708 * Attribute record header. Always aligned to 8-byte boundary.
712 /* 0*/ ATTR_TYPE type; /* The (32-bit) type of the attribute. */
713 /* 4*/ le32 length; /* Byte size of the resident part of the
714 attribute (aligned to 8-byte boundary).
715 Used to get to the next attribute. */
716 /* 8*/ u8 non_resident; /* If 0, attribute is resident.
717 If 1, attribute is non-resident. */
718 /* 9*/ u8 name_length; /* Unicode character size of name of attribute.
720 /* 10*/ le16 name_offset; /* If name_length != 0, the byte offset to the
721 beginning of the name from the attribute
722 record. Note that the name is stored as a
723 Unicode string. When creating, place offset
724 just at the end of the record header. Then,
725 follow with attribute value or mapping pairs
726 array, resident and non-resident attributes
727 respectively, aligning to an 8-byte
729 /* 12*/ ATTR_FLAGS flags; /* Flags describing the attribute. */
730 /* 14*/ le16 instance; /* The instance of this attribute record. This
731 number is unique within this mft record (see
732 MFT_RECORD/next_attribute_instance notes in
733 in mft.h for more details). */
735 /* Resident attributes. */
737 /* 16 */ le32 value_length;/* Byte size of attribute value. */
738 /* 20 */ le16 value_offset;/* Byte offset of the attribute
739 value from the start of the
740 attribute record. When creating,
741 align to 8-byte boundary if we
742 have a name present as this might
743 not have a length of a multiple
745 /* 22 */ RESIDENT_ATTR_FLAGS flags; /* See above. */
746 /* 23 */ s8 reserved; /* Reserved/alignment to 8-byte
748 } __attribute__ ((__packed__)) resident;
749 /* Non-resident attributes. */
751 /* 16*/ leVCN lowest_vcn;/* Lowest valid virtual cluster number
752 for this portion of the attribute value or
753 0 if this is the only extent (usually the
754 case). - Only when an attribute list is used
755 does lowest_vcn != 0 ever occur. */
756 /* 24*/ leVCN highest_vcn;/* Highest valid vcn of this extent of
757 the attribute value. - Usually there is only one
758 portion, so this usually equals the attribute
759 value size in clusters minus 1. Can be -1 for
760 zero length files. Can be 0 for "single extent"
762 /* 32*/ le16 mapping_pairs_offset; /* Byte offset from the
763 beginning of the structure to the mapping pairs
764 array which contains the mappings between the
765 vcns and the logical cluster numbers (lcns).
766 When creating, place this at the end of this
767 record header aligned to 8-byte boundary. */
768 /* 34*/ u8 compression_unit; /* The compression unit expressed
769 as the log to the base 2 of the number of
770 clusters in a compression unit. 0 means not
771 compressed. (This effectively limits the
772 compression unit size to be a power of two
773 clusters.) WinNT4 only uses a value of 4.
774 Sparse files also have this set to 4. */
775 /* 35*/ u8 reserved[5]; /* Align to 8-byte boundary. */
776 /* The sizes below are only used when lowest_vcn is zero, as otherwise it would
777 be difficult to keep them up-to-date.*/
778 /* 40*/ sle64 allocated_size; /* Byte size of disk space
779 allocated to hold the attribute value. Always
780 is a multiple of the cluster size. When a file
781 is compressed, this field is a multiple of the
782 compression block size (2^compression_unit) and
783 it represents the logically allocated space
784 rather than the actual on disk usage. For this
785 use the compressed_size (see below). */
786 /* 48*/ sle64 data_size; /* Byte size of the attribute
787 value. Can be larger than allocated_size if
788 attribute value is compressed or sparse. */
789 /* 56*/ sle64 initialized_size; /* Byte size of initialized
790 portion of the attribute value. Usually equals
792 /* sizeof(uncompressed attr) = 64*/
793 /* 64*/ sle64 compressed_size; /* Byte size of the attribute
794 value after compression. Only present when
795 compressed or sparse. Always is a multiple of
796 the cluster size. Represents the actual amount
797 of disk space being used on the disk. */
798 /* sizeof(compressed attr) = 72*/
799 } __attribute__ ((__packed__)) non_resident;
800 } __attribute__ ((__packed__)) data;
801 } __attribute__ ((__packed__)) ATTR_RECORD;
803 typedef ATTR_RECORD ATTR_REC;
806 * File attribute flags (32-bit).
810 * The following flags are only present in the STANDARD_INFORMATION
811 * attribute (in the field file_attributes).
813 FILE_ATTR_READONLY = const_cpu_to_le32(0x00000001),
814 FILE_ATTR_HIDDEN = const_cpu_to_le32(0x00000002),
815 FILE_ATTR_SYSTEM = const_cpu_to_le32(0x00000004),
816 /* Old DOS volid. Unused in NT. = const_cpu_to_le32(0x00000008), */
818 FILE_ATTR_DIRECTORY = const_cpu_to_le32(0x00000010),
819 /* Note, FILE_ATTR_DIRECTORY is not considered valid in NT. It is
820 reserved for the DOS SUBDIRECTORY flag. */
821 FILE_ATTR_ARCHIVE = const_cpu_to_le32(0x00000020),
822 FILE_ATTR_DEVICE = const_cpu_to_le32(0x00000040),
823 FILE_ATTR_NORMAL = const_cpu_to_le32(0x00000080),
825 FILE_ATTR_TEMPORARY = const_cpu_to_le32(0x00000100),
826 FILE_ATTR_SPARSE_FILE = const_cpu_to_le32(0x00000200),
827 FILE_ATTR_REPARSE_POINT = const_cpu_to_le32(0x00000400),
828 FILE_ATTR_COMPRESSED = const_cpu_to_le32(0x00000800),
830 FILE_ATTR_OFFLINE = const_cpu_to_le32(0x00001000),
831 FILE_ATTR_NOT_CONTENT_INDEXED = const_cpu_to_le32(0x00002000),
832 FILE_ATTR_ENCRYPTED = const_cpu_to_le32(0x00004000),
834 FILE_ATTR_VALID_FLAGS = const_cpu_to_le32(0x00007fb7),
835 /* Note, FILE_ATTR_VALID_FLAGS masks out the old DOS VolId and the
836 FILE_ATTR_DEVICE and preserves everything else. This mask is used
837 to obtain all flags that are valid for reading. */
838 FILE_ATTR_VALID_SET_FLAGS = const_cpu_to_le32(0x000031a7),
839 /* Note, FILE_ATTR_VALID_SET_FLAGS masks out the old DOS VolId, the
840 F_A_DEVICE, F_A_DIRECTORY, F_A_SPARSE_FILE, F_A_REPARSE_POINT,
841 F_A_COMPRESSED, and F_A_ENCRYPTED and preserves the rest. This mask
842 is used to to obtain all flags that are valid for setting. */
845 * The following flags are only present in the FILE_NAME attribute (in
846 * the field file_attributes).
848 FILE_ATTR_DUP_FILE_NAME_INDEX_PRESENT = const_cpu_to_le32(0x10000000),
849 /* Note, this is a copy of the corresponding bit from the mft record,
850 telling us whether this is a directory or not, i.e. whether it has
851 an index root attribute or not. */
852 FILE_ATTR_DUP_VIEW_INDEX_PRESENT = const_cpu_to_le32(0x20000000),
853 /* Note, this is a copy of the corresponding bit from the mft record,
854 telling us whether this file has a view index present (eg. object id
855 index, quota index, one of the security indexes or the encrypting
856 filesystem related indexes). */
859 typedef le32 FILE_ATTR_FLAGS;
862 * NOTE on times in NTFS: All times are in MS standard time format, i.e. they
863 * are the number of 100-nanosecond intervals since 1st January 1601, 00:00:00
864 * universal coordinated time (UTC). (In Linux time starts 1st January 1970,
865 * 00:00:00 UTC and is stored as the number of 1-second intervals since then.)
869 * Attribute: Standard information (0x10).
871 * NOTE: Always resident.
872 * NOTE: Present in all base file records on a volume.
873 * NOTE: There is conflicting information about the meaning of each of the time
874 * fields but the meaning as defined below has been verified to be
875 * correct by practical experimentation on Windows NT4 SP6a and is hence
876 * assumed to be the one and only correct interpretation.
880 /* 0*/ sle64 creation_time; /* Time file was created. Updated when
881 a filename is changed(?). */
882 /* 8*/ sle64 last_data_change_time; /* Time the data attribute was last
884 /* 16*/ sle64 last_mft_change_time; /* Time this mft record was last
886 /* 24*/ sle64 last_access_time; /* Approximate time when the file was
887 last accessed (obviously this is not
888 updated on read-only volumes). In
889 Windows this is only updated when
890 accessed if some time delta has
891 passed since the last update. Also,
892 last access times updates can be
893 disabled altogether for speed. */
894 /* 32*/ FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */
898 /* 36*/ u8 reserved12[12]; /* Reserved/alignment to 8-byte
900 } __attribute__ ((__packed__)) v1;
901 /* sizeof() = 48 bytes */
905 * If a volume has been upgraded from a previous NTFS version, then these
906 * fields are present only if the file has been accessed since the upgrade.
907 * Recognize the difference by comparing the length of the resident attribute
908 * value. If it is 48, then the following fields are missing. If it is 72 then
909 * the fields are present. Maybe just check like this:
910 * if (resident.ValueLength < sizeof(STANDARD_INFORMATION)) {
911 * Assume NTFS 1.2- format.
912 * If (volume version is 3.x)
913 * Upgrade attribute to NTFS 3.x format.
915 * Use NTFS 1.2- format for access.
917 * Use NTFS 3.x format for access.
918 * Only problem is that it might be legal to set the length of the value to
919 * arbitrarily large values thus spoiling this check. - But chkdsk probably
920 * views that as a corruption, assuming that it behaves like this for all
923 /* 36*/ le32 maximum_versions; /* Maximum allowed versions for
924 file. Zero if version numbering is disabled. */
925 /* 40*/ le32 version_number; /* This file's version (if any).
926 Set to zero if maximum_versions is zero. */
927 /* 44*/ le32 class_id; /* Class id from bidirectional
928 class id index (?). */
929 /* 48*/ le32 owner_id; /* Owner_id of the user owning
930 the file. Translate via $Q index in FILE_Extend
931 /$Quota to the quota control entry for the user
932 owning the file. Zero if quotas are disabled. */
933 /* 52*/ le32 security_id; /* Security_id for the file.
934 Translate via $SII index and $SDS data stream
935 in FILE_Secure to the security descriptor. */
936 /* 56*/ le64 quota_charged; /* Byte size of the charge to
937 the quota for all streams of the file. Note: Is
938 zero if quotas are disabled. */
939 /* 64*/ leUSN usn; /* Last update sequence number
940 of the file. This is a direct index into the
941 transaction log file ($UsnJrnl). It is zero if
942 the usn journal is disabled or this file has
943 not been subject to logging yet. See usnjrnl.h
945 } __attribute__ ((__packed__)) v3;
946 /* sizeof() = 72 bytes (NTFS 3.x) */
947 } __attribute__ ((__packed__)) ver;
948 } __attribute__ ((__packed__)) STANDARD_INFORMATION;
951 * Attribute: Attribute list (0x20).
953 * - Can be either resident or non-resident.
954 * - Value consists of a sequence of variable length, 8-byte aligned,
955 * ATTR_LIST_ENTRY records.
956 * - The list is not terminated by anything at all! The only way to know when
957 * the end is reached is to keep track of the current offset and compare it to
958 * the attribute value size.
959 * - The attribute list attribute contains one entry for each attribute of
960 * the file in which the list is located, except for the list attribute
961 * itself. The list is sorted: first by attribute type, second by attribute
962 * name (if present), third by instance number. The extents of one
963 * non-resident attribute (if present) immediately follow after the initial
964 * extent. They are ordered by lowest_vcn and have their instace set to zero.
965 * It is not allowed to have two attributes with all sorting keys equal.
966 * - Further restrictions:
967 * - If not resident, the vcn to lcn mapping array has to fit inside the
969 * - The attribute list attribute value has a maximum size of 256kb. This
970 * is imposed by the Windows cache manager.
971 * - Attribute lists are only used when the attributes of mft record do not
972 * fit inside the mft record despite all attributes (that can be made
973 * non-resident) having been made non-resident. This can happen e.g. when:
974 * - File has a large number of hard links (lots of file name
975 * attributes present).
976 * - The mapping pairs array of some non-resident attribute becomes so
977 * large due to fragmentation that it overflows the mft record.
978 * - The security descriptor is very complex (not applicable to
980 * - There are many named streams.
984 /* 0*/ ATTR_TYPE type; /* Type of referenced attribute. */
985 /* 4*/ le16 length; /* Byte size of this entry (8-byte aligned). */
986 /* 6*/ u8 name_length; /* Size in Unicode chars of the name of the
987 attribute or 0 if unnamed. */
988 /* 7*/ u8 name_offset; /* Byte offset to beginning of attribute name
989 (always set this to where the name would
990 start even if unnamed). */
991 /* 8*/ leVCN lowest_vcn; /* Lowest virtual cluster number of this portion
992 of the attribute value. This is usually 0. It
993 is non-zero for the case where one attribute
994 does not fit into one mft record and thus
995 several mft records are allocated to hold
996 this attribute. In the latter case, each mft
997 record holds one extent of the attribute and
998 there is one attribute list entry for each
999 extent. NOTE: This is DEFINITELY a signed
1000 value! The windows driver uses cmp, followed
1001 by jg when comparing this, thus it treats it
1003 /* 16*/ leMFT_REF mft_reference;/* The reference of the mft record holding
1004 the ATTR_RECORD for this portion of the
1006 /* 24*/ le16 instance; /* If lowest_vcn = 0, the instance of the
1007 attribute being referenced; otherwise 0. */
1008 /* 26*/ ntfschar name[0]; /* Use when creating only. When reading use
1009 name_offset to determine the location of the
1011 /* sizeof() = 26 + (attribute_name_length * 2) bytes */
1012 } __attribute__ ((__packed__)) ATTR_LIST_ENTRY;
1015 * The maximum allowed length for a file name.
1017 #define MAXIMUM_FILE_NAME_LENGTH 255
1020 * Possible namespaces for filenames in ntfs (8-bit).
1023 FILE_NAME_POSIX = 0x00,
1024 /* This is the largest namespace. It is case sensitive and allows all
1025 Unicode characters except for: '\0' and '/'. Beware that in
1026 WinNT/2k files which eg have the same name except for their case
1027 will not be distinguished by the standard utilities and thus a "del
1028 filename" will delete both "filename" and "fileName" without
1030 FILE_NAME_WIN32 = 0x01,
1031 /* The standard WinNT/2k NTFS long filenames. Case insensitive. All
1032 Unicode chars except: '\0', '"', '*', '/', ':', '<', '>', '?', '\',
1033 and '|'. Further, names cannot end with a '.' or a space. */
1034 FILE_NAME_DOS = 0x02,
1035 /* The standard DOS filenames (8.3 format). Uppercase only. All 8-bit
1036 characters greater space, except: '"', '*', '+', ',', '/', ':', ';',
1037 '<', '=', '>', '?', and '\'. */
1038 FILE_NAME_WIN32_AND_DOS = 0x03,
1039 /* 3 means that both the Win32 and the DOS filenames are identical and
1040 hence have been saved in this single filename record. */
1041 } __attribute__ ((__packed__));
1043 typedef u8 FILE_NAME_TYPE_FLAGS;
1046 * Attribute: Filename (0x30).
1048 * NOTE: Always resident.
1049 * NOTE: All fields, except the parent_directory, are only updated when the
1050 * filename is changed. Until then, they just become out of sync with
1051 * reality and the more up to date values are present in the standard
1052 * information attribute.
1053 * NOTE: There is conflicting information about the meaning of each of the time
1054 * fields but the meaning as defined below has been verified to be
1055 * correct by practical experimentation on Windows NT4 SP6a and is hence
1056 * assumed to be the one and only correct interpretation.
1060 /* 0*/ leMFT_REF parent_directory; /* Directory this filename is
1062 /* 8*/ sle64 creation_time; /* Time file was created. */
1063 /* 10*/ sle64 last_data_change_time; /* Time the data attribute was last
1065 /* 18*/ sle64 last_mft_change_time; /* Time this mft record was last
1067 /* 20*/ sle64 last_access_time; /* Time this mft record was last
1069 /* 28*/ sle64 allocated_size; /* Byte size of allocated space for the
1070 data attribute. NOTE: Is a multiple
1071 of the cluster size. */
1072 /* 30*/ sle64 data_size; /* Byte size of actual data in data
1074 /* 38*/ FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */
1077 /* 3c*/ le16 packed_ea_size; /* Size of the buffer needed to
1078 pack the extended attributes
1079 (EAs), if such are present.*/
1080 /* 3e*/ le16 reserved; /* Reserved for alignment. */
1081 } __attribute__ ((__packed__)) ea;
1083 /* 3c*/ le32 reparse_point_tag; /* Type of reparse point,
1084 present only in reparse
1085 points and only if there are
1087 } __attribute__ ((__packed__)) rp;
1088 } __attribute__ ((__packed__)) type;
1089 /* 40*/ u8 file_name_length; /* Length of file name in
1090 (Unicode) characters. */
1091 /* 41*/ FILE_NAME_TYPE_FLAGS file_name_type; /* Namespace of the file name.*/
1092 /* 42*/ ntfschar file_name[0]; /* File name in Unicode. */
1093 } __attribute__ ((__packed__)) FILE_NAME_ATTR;
1096 * GUID structures store globally unique identifiers (GUID). A GUID is a
1097 * 128-bit value consisting of one group of eight hexadecimal digits, followed
1098 * by three groups of four hexadecimal digits each, followed by one group of
1099 * twelve hexadecimal digits. GUIDs are Microsoft's implementation of the
1100 * distributed computing environment (DCE) universally unique identifier (UUID).
1101 * Example of a GUID:
1102 * 1F010768-5A73-BC91-0010A52216A7
1105 le32 data1; /* The first eight hexadecimal digits of the GUID. */
1106 le16 data2; /* The first group of four hexadecimal digits. */
1107 le16 data3; /* The second group of four hexadecimal digits. */
1108 u8 data4[8]; /* The first two bytes are the third group of four
1109 hexadecimal digits. The remaining six bytes are the
1110 final 12 hexadecimal digits. */
1111 } __attribute__ ((__packed__)) GUID;
1114 * FILE_Extend/$ObjId contains an index named $O. This index contains all
1115 * object_ids present on the volume as the index keys and the corresponding
1116 * mft_record numbers as the index entry data parts. The data part (defined
1117 * below) also contains three other object_ids:
1118 * birth_volume_id - object_id of FILE_Volume on which the file was first
1119 * created. Optional (i.e. can be zero).
1120 * birth_object_id - object_id of file when it was first created. Usually
1121 * equals the object_id. Optional (i.e. can be zero).
1122 * domain_id - Reserved (always zero).
1125 leMFT_REF mft_reference;/* Mft record containing the object_id in
1126 the index entry key. */
1129 GUID birth_volume_id;
1130 GUID birth_object_id;
1132 } __attribute__ ((__packed__)) origin;
1133 u8 extended_info[48];
1134 } __attribute__ ((__packed__)) opt;
1135 } __attribute__ ((__packed__)) OBJ_ID_INDEX_DATA;
1138 * Attribute: Object id (NTFS 3.0+) (0x40).
1140 * NOTE: Always resident.
1143 GUID object_id; /* Unique id assigned to the
1145 /* The following fields are optional. The attribute value size is 16
1146 bytes, i.e. sizeof(GUID), if these are not present at all. Note,
1147 the entries can be present but one or more (or all) can be zero
1148 meaning that that particular value(s) is(are) not defined. */
1151 GUID birth_volume_id; /* Unique id of volume on which
1152 the file was first created.*/
1153 GUID birth_object_id; /* Unique id of file when it was
1155 GUID domain_id; /* Reserved, zero. */
1156 } __attribute__ ((__packed__)) origin;
1157 u8 extended_info[48];
1158 } __attribute__ ((__packed__)) opt;
1159 } __attribute__ ((__packed__)) OBJECT_ID_ATTR;
1162 * The pre-defined IDENTIFIER_AUTHORITIES used as SID_IDENTIFIER_AUTHORITY in
1163 * the SID structure (see below).
1165 //typedef enum { /* SID string prefix. */
1166 // SECURITY_NULL_SID_AUTHORITY = {0, 0, 0, 0, 0, 0}, /* S-1-0 */
1167 // SECURITY_WORLD_SID_AUTHORITY = {0, 0, 0, 0, 0, 1}, /* S-1-1 */
1168 // SECURITY_LOCAL_SID_AUTHORITY = {0, 0, 0, 0, 0, 2}, /* S-1-2 */
1169 // SECURITY_CREATOR_SID_AUTHORITY = {0, 0, 0, 0, 0, 3}, /* S-1-3 */
1170 // SECURITY_NON_UNIQUE_AUTHORITY = {0, 0, 0, 0, 0, 4}, /* S-1-4 */
1171 // SECURITY_NT_SID_AUTHORITY = {0, 0, 0, 0, 0, 5}, /* S-1-5 */
1172 //} IDENTIFIER_AUTHORITIES;
1175 * These relative identifiers (RIDs) are used with the above identifier
1176 * authorities to make up universal well-known SIDs.
1178 * Note: The relative identifier (RID) refers to the portion of a SID, which
1179 * identifies a user or group in relation to the authority that issued the SID.
1180 * For example, the universal well-known SID Creator Owner ID (S-1-3-0) is
1181 * made up of the identifier authority SECURITY_CREATOR_SID_AUTHORITY (3) and
1182 * the relative identifier SECURITY_CREATOR_OWNER_RID (0).
1184 typedef enum { /* Identifier authority. */
1185 SECURITY_NULL_RID = 0, /* S-1-0 */
1186 SECURITY_WORLD_RID = 0, /* S-1-1 */
1187 SECURITY_LOCAL_RID = 0, /* S-1-2 */
1189 SECURITY_CREATOR_OWNER_RID = 0, /* S-1-3 */
1190 SECURITY_CREATOR_GROUP_RID = 1, /* S-1-3 */
1192 SECURITY_CREATOR_OWNER_SERVER_RID = 2, /* S-1-3 */
1193 SECURITY_CREATOR_GROUP_SERVER_RID = 3, /* S-1-3 */
1195 SECURITY_DIALUP_RID = 1,
1196 SECURITY_NETWORK_RID = 2,
1197 SECURITY_BATCH_RID = 3,
1198 SECURITY_INTERACTIVE_RID = 4,
1199 SECURITY_SERVICE_RID = 6,
1200 SECURITY_ANONYMOUS_LOGON_RID = 7,
1201 SECURITY_PROXY_RID = 8,
1202 SECURITY_ENTERPRISE_CONTROLLERS_RID=9,
1203 SECURITY_SERVER_LOGON_RID = 9,
1204 SECURITY_PRINCIPAL_SELF_RID = 0xa,
1205 SECURITY_AUTHENTICATED_USER_RID = 0xb,
1206 SECURITY_RESTRICTED_CODE_RID = 0xc,
1207 SECURITY_TERMINAL_SERVER_RID = 0xd,
1209 SECURITY_LOGON_IDS_RID = 5,
1210 SECURITY_LOGON_IDS_RID_COUNT = 3,
1212 SECURITY_LOCAL_SYSTEM_RID = 0x12,
1214 SECURITY_NT_NON_UNIQUE = 0x15,
1216 SECURITY_BUILTIN_DOMAIN_RID = 0x20,
1219 * Well-known domain relative sub-authority values (RIDs).
1223 DOMAIN_USER_RID_ADMIN = 0x1f4,
1224 DOMAIN_USER_RID_GUEST = 0x1f5,
1225 DOMAIN_USER_RID_KRBTGT = 0x1f6,
1228 DOMAIN_GROUP_RID_ADMINS = 0x200,
1229 DOMAIN_GROUP_RID_USERS = 0x201,
1230 DOMAIN_GROUP_RID_GUESTS = 0x202,
1231 DOMAIN_GROUP_RID_COMPUTERS = 0x203,
1232 DOMAIN_GROUP_RID_CONTROLLERS = 0x204,
1233 DOMAIN_GROUP_RID_CERT_ADMINS = 0x205,
1234 DOMAIN_GROUP_RID_SCHEMA_ADMINS = 0x206,
1235 DOMAIN_GROUP_RID_ENTERPRISE_ADMINS= 0x207,
1236 DOMAIN_GROUP_RID_POLICY_ADMINS = 0x208,
1239 DOMAIN_ALIAS_RID_ADMINS = 0x220,
1240 DOMAIN_ALIAS_RID_USERS = 0x221,
1241 DOMAIN_ALIAS_RID_GUESTS = 0x222,
1242 DOMAIN_ALIAS_RID_POWER_USERS = 0x223,
1244 DOMAIN_ALIAS_RID_ACCOUNT_OPS = 0x224,
1245 DOMAIN_ALIAS_RID_SYSTEM_OPS = 0x225,
1246 DOMAIN_ALIAS_RID_PRINT_OPS = 0x226,
1247 DOMAIN_ALIAS_RID_BACKUP_OPS = 0x227,
1249 DOMAIN_ALIAS_RID_REPLICATOR = 0x228,
1250 DOMAIN_ALIAS_RID_RAS_SERVERS = 0x229,
1251 DOMAIN_ALIAS_RID_PREW2KCOMPACCESS = 0x22a,
1252 } RELATIVE_IDENTIFIERS;
1255 * The universal well-known SIDs:
1260 * CREATOR_OWNER_SID S-1-3-0
1261 * CREATOR_GROUP_SID S-1-3-1
1262 * CREATOR_OWNER_SERVER_SID S-1-3-2
1263 * CREATOR_GROUP_SERVER_SID S-1-3-3
1265 * (Non-unique IDs) S-1-4
1267 * NT well-known SIDs:
1269 * NT_AUTHORITY_SID S-1-5
1270 * DIALUP_SID S-1-5-1
1272 * NETWORD_SID S-1-5-2
1274 * INTERACTIVE_SID S-1-5-4
1275 * SERVICE_SID S-1-5-6
1276 * ANONYMOUS_LOGON_SID S-1-5-7 (aka null logon session)
1278 * SERVER_LOGON_SID S-1-5-9 (aka domain controller account)
1279 * SELF_SID S-1-5-10 (self RID)
1280 * AUTHENTICATED_USER_SID S-1-5-11
1281 * RESTRICTED_CODE_SID S-1-5-12 (running restricted code)
1282 * TERMINAL_SERVER_SID S-1-5-13 (running on terminal server)
1284 * (Logon IDs) S-1-5-5-X-Y
1286 * (NT non-unique IDs) S-1-5-0x15-...
1288 * (Built-in domain) S-1-5-0x20
1292 * The SID_IDENTIFIER_AUTHORITY is a 48-bit value used in the SID structure.
1294 * NOTE: This is stored as a big endian number, hence the high_part comes
1295 * before the low_part.
1299 u16 high_part; /* High 16-bits. */
1300 u32 low_part; /* Low 32-bits. */
1301 } __attribute__ ((__packed__)) parts;
1302 u8 value[6]; /* Value as individual bytes. */
1303 } __attribute__ ((__packed__)) SID_IDENTIFIER_AUTHORITY;
1306 * The SID structure is a variable-length structure used to uniquely identify
1307 * users or groups. SID stands for security identifier.
1309 * The standard textual representation of the SID is of the form:
1312 * - The first "S" is the literal character 'S' identifying the following
1314 * - R is the revision level of the SID expressed as a sequence of digits
1315 * either in decimal or hexadecimal (if the later, prefixed by "0x").
1316 * - I is the 48-bit identifier_authority, expressed as digits as R above.
1317 * - S... is one or more sub_authority values, expressed as digits as above.
1319 * Example SID; the domain-relative SID of the local Administrators group on
1322 * This translates to a SID with:
1324 * sub_authority_count = 2,
1325 * identifier_authority = {0,0,0,0,0,5}, // SECURITY_NT_AUTHORITY
1326 * sub_authority[0] = 32, // SECURITY_BUILTIN_DOMAIN_RID
1327 * sub_authority[1] = 544 // DOMAIN_ALIAS_RID_ADMINS
1331 u8 sub_authority_count;
1332 SID_IDENTIFIER_AUTHORITY identifier_authority;
1333 le32 sub_authority[1]; /* At least one sub_authority. */
1334 } __attribute__ ((__packed__)) SID;
1337 * Current constants for SIDs.
1340 SID_REVISION = 1, /* Current revision level. */
1341 SID_MAX_SUB_AUTHORITIES = 15, /* Maximum number of those. */
1342 SID_RECOMMENDED_SUB_AUTHORITIES = 1, /* Will change to around 6 in
1343 a future revision. */
1347 * The predefined ACE types (8-bit, see below).
1350 ACCESS_MIN_MS_ACE_TYPE = 0,
1351 ACCESS_ALLOWED_ACE_TYPE = 0,
1352 ACCESS_DENIED_ACE_TYPE = 1,
1353 SYSTEM_AUDIT_ACE_TYPE = 2,
1354 SYSTEM_ALARM_ACE_TYPE = 3, /* Not implemented as of Win2k. */
1355 ACCESS_MAX_MS_V2_ACE_TYPE = 3,
1357 ACCESS_ALLOWED_COMPOUND_ACE_TYPE= 4,
1358 ACCESS_MAX_MS_V3_ACE_TYPE = 4,
1360 /* The following are Win2k only. */
1361 ACCESS_MIN_MS_OBJECT_ACE_TYPE = 5,
1362 ACCESS_ALLOWED_OBJECT_ACE_TYPE = 5,
1363 ACCESS_DENIED_OBJECT_ACE_TYPE = 6,
1364 SYSTEM_AUDIT_OBJECT_ACE_TYPE = 7,
1365 SYSTEM_ALARM_OBJECT_ACE_TYPE = 8,
1366 ACCESS_MAX_MS_OBJECT_ACE_TYPE = 8,
1368 ACCESS_MAX_MS_V4_ACE_TYPE = 8,
1370 /* This one is for WinNT/2k. */
1371 ACCESS_MAX_MS_ACE_TYPE = 8,
1372 } __attribute__ ((__packed__));
1374 typedef u8 ACE_TYPES;
1377 * The ACE flags (8-bit) for audit and inheritance (see below).
1379 * SUCCESSFUL_ACCESS_ACE_FLAG is only used with system audit and alarm ACE
1380 * types to indicate that a message is generated (in Windows!) for successful
1383 * FAILED_ACCESS_ACE_FLAG is only used with system audit and alarm ACE types
1384 * to indicate that a message is generated (in Windows!) for failed accesses.
1387 /* The inheritance flags. */
1388 OBJECT_INHERIT_ACE = 0x01,
1389 CONTAINER_INHERIT_ACE = 0x02,
1390 NO_PROPAGATE_INHERIT_ACE = 0x04,
1391 INHERIT_ONLY_ACE = 0x08,
1392 INHERITED_ACE = 0x10, /* Win2k only. */
1393 VALID_INHERIT_FLAGS = 0x1f,
1395 /* The audit flags. */
1396 SUCCESSFUL_ACCESS_ACE_FLAG = 0x40,
1397 FAILED_ACCESS_ACE_FLAG = 0x80,
1398 } __attribute__ ((__packed__));
1400 typedef u8 ACE_FLAGS;
1403 * An ACE is an access-control entry in an access-control list (ACL).
1404 * An ACE defines access to an object for a specific user or group or defines
1405 * the types of access that generate system-administration messages or alarms
1406 * for a specific user or group. The user or group is identified by a security
1409 * Each ACE starts with an ACE_HEADER structure (aligned on 4-byte boundary),
1410 * which specifies the type and size of the ACE. The format of the subsequent
1411 * data depends on the ACE type.
1415 /* 0*/ ACE_TYPES type; /* Type of the ACE. */
1416 /* 1*/ ACE_FLAGS flags; /* Flags describing the ACE. */
1417 /* 2*/ le16 size; /* Size in bytes of the ACE. */
1418 } __attribute__ ((__packed__)) ACE_HEADER;
1421 * The access mask (32-bit). Defines the access rights.
1423 * The specific rights (bits 0 to 15). These depend on the type of the object
1424 * being secured by the ACE.
1427 /* Specific rights for files and directories are as follows: */
1429 /* Right to read data from the file. (FILE) */
1430 FILE_READ_DATA = const_cpu_to_le32(0x00000001),
1431 /* Right to list contents of a directory. (DIRECTORY) */
1432 FILE_LIST_DIRECTORY = const_cpu_to_le32(0x00000001),
1434 /* Right to write data to the file. (FILE) */
1435 FILE_WRITE_DATA = const_cpu_to_le32(0x00000002),
1436 /* Right to create a file in the directory. (DIRECTORY) */
1437 FILE_ADD_FILE = const_cpu_to_le32(0x00000002),
1439 /* Right to append data to the file. (FILE) */
1440 FILE_APPEND_DATA = const_cpu_to_le32(0x00000004),
1441 /* Right to create a subdirectory. (DIRECTORY) */
1442 FILE_ADD_SUBDIRECTORY = const_cpu_to_le32(0x00000004),
1444 /* Right to read extended attributes. (FILE/DIRECTORY) */
1445 FILE_READ_EA = const_cpu_to_le32(0x00000008),
1447 /* Right to write extended attributes. (FILE/DIRECTORY) */
1448 FILE_WRITE_EA = const_cpu_to_le32(0x00000010),
1450 /* Right to execute a file. (FILE) */
1451 FILE_EXECUTE = const_cpu_to_le32(0x00000020),
1452 /* Right to traverse the directory. (DIRECTORY) */
1453 FILE_TRAVERSE = const_cpu_to_le32(0x00000020),
1456 * Right to delete a directory and all the files it contains (its
1457 * children), even if the files are read-only. (DIRECTORY)
1459 FILE_DELETE_CHILD = const_cpu_to_le32(0x00000040),
1461 /* Right to read file attributes. (FILE/DIRECTORY) */
1462 FILE_READ_ATTRIBUTES = const_cpu_to_le32(0x00000080),
1464 /* Right to change file attributes. (FILE/DIRECTORY) */
1465 FILE_WRITE_ATTRIBUTES = const_cpu_to_le32(0x00000100),
1468 * The standard rights (bits 16 to 23). These are independent of the
1469 * type of object being secured.
1472 /* Right to delete the object. */
1473 DELETE = const_cpu_to_le32(0x00010000),
1476 * Right to read the information in the object's security descriptor,
1477 * not including the information in the SACL, i.e. right to read the
1478 * security descriptor and owner.
1480 READ_CONTROL = const_cpu_to_le32(0x00020000),
1482 /* Right to modify the DACL in the object's security descriptor. */
1483 WRITE_DAC = const_cpu_to_le32(0x00040000),
1485 /* Right to change the owner in the object's security descriptor. */
1486 WRITE_OWNER = const_cpu_to_le32(0x00080000),
1489 * Right to use the object for synchronization. Enables a process to
1490 * wait until the object is in the signalled state. Some object types
1491 * do not support this access right.
1493 SYNCHRONIZE = const_cpu_to_le32(0x00100000),
1496 * The following STANDARD_RIGHTS_* are combinations of the above for
1497 * convenience and are defined by the Win32 API.
1500 /* These are currently defined to READ_CONTROL. */
1501 STANDARD_RIGHTS_READ = const_cpu_to_le32(0x00020000),
1502 STANDARD_RIGHTS_WRITE = const_cpu_to_le32(0x00020000),
1503 STANDARD_RIGHTS_EXECUTE = const_cpu_to_le32(0x00020000),
1505 /* Combines DELETE, READ_CONTROL, WRITE_DAC, and WRITE_OWNER access. */
1506 STANDARD_RIGHTS_REQUIRED = const_cpu_to_le32(0x000f0000),
1509 * Combines DELETE, READ_CONTROL, WRITE_DAC, WRITE_OWNER, and
1510 * SYNCHRONIZE access.
1512 STANDARD_RIGHTS_ALL = const_cpu_to_le32(0x001f0000),
1515 * The access system ACL and maximum allowed access types (bits 24 to
1516 * 25, bits 26 to 27 are reserved).
1518 ACCESS_SYSTEM_SECURITY = const_cpu_to_le32(0x01000000),
1519 MAXIMUM_ALLOWED = const_cpu_to_le32(0x02000000),
1522 * The generic rights (bits 28 to 31). These map onto the standard and
1526 /* Read, write, and execute access. */
1527 GENERIC_ALL = const_cpu_to_le32(0x10000000),
1529 /* Execute access. */
1530 GENERIC_EXECUTE = const_cpu_to_le32(0x20000000),
1533 * Write access. For files, this maps onto:
1534 * FILE_APPEND_DATA | FILE_WRITE_ATTRIBUTES | FILE_WRITE_DATA |
1535 * FILE_WRITE_EA | STANDARD_RIGHTS_WRITE | SYNCHRONIZE
1536 * For directories, the mapping has the same numerical value. See
1537 * above for the descriptions of the rights granted.
1539 GENERIC_WRITE = const_cpu_to_le32(0x40000000),
1542 * Read access. For files, this maps onto:
1543 * FILE_READ_ATTRIBUTES | FILE_READ_DATA | FILE_READ_EA |
1544 * STANDARD_RIGHTS_READ | SYNCHRONIZE
1545 * For directories, the mapping has the same numberical value. See
1546 * above for the descriptions of the rights granted.
1548 GENERIC_READ = const_cpu_to_le32(0x80000000),
1551 typedef le32 ACCESS_MASK;
1554 * The generic mapping array. Used to denote the mapping of each generic
1555 * access right to a specific access mask.
1557 * FIXME: What exactly is this and what is it for? (AIA)
1560 ACCESS_MASK generic_read;
1561 ACCESS_MASK generic_write;
1562 ACCESS_MASK generic_execute;
1563 ACCESS_MASK generic_all;
1564 } __attribute__ ((__packed__)) GENERIC_MAPPING;
1567 * The predefined ACE type structures are as defined below.
1571 * ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE
1574 /* 0 ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */
1575 ACE_TYPES type; /* Type of the ACE. */
1576 ACE_FLAGS flags; /* Flags describing the ACE. */
1577 le16 size; /* Size in bytes of the ACE. */
1578 /* 4*/ ACCESS_MASK mask; /* Access mask associated with the ACE. */
1580 /* 8*/ SID sid; /* The SID associated with the ACE. */
1581 } __attribute__ ((__packed__)) ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE,
1582 SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE;
1585 * The object ACE flags (32-bit).
1588 ACE_OBJECT_TYPE_PRESENT = const_cpu_to_le32(1),
1589 ACE_INHERITED_OBJECT_TYPE_PRESENT = const_cpu_to_le32(2),
1592 typedef le32 OBJECT_ACE_FLAGS;
1595 /* 0 ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */
1596 ACE_TYPES type; /* Type of the ACE. */
1597 ACE_FLAGS flags; /* Flags describing the ACE. */
1598 le16 size; /* Size in bytes of the ACE. */
1599 /* 4*/ ACCESS_MASK mask; /* Access mask associated with the ACE. */
1601 /* 8*/ OBJECT_ACE_FLAGS object_flags; /* Flags describing the object ACE. */
1602 /* 12*/ GUID object_type;
1603 /* 28*/ GUID inherited_object_type;
1605 /* 44*/ SID sid; /* The SID associated with the ACE. */
1606 } __attribute__ ((__packed__)) ACCESS_ALLOWED_OBJECT_ACE,
1607 ACCESS_DENIED_OBJECT_ACE,
1608 SYSTEM_AUDIT_OBJECT_ACE,
1609 SYSTEM_ALARM_OBJECT_ACE;
1612 * An ACL is an access-control list (ACL).
1613 * An ACL starts with an ACL header structure, which specifies the size of
1614 * the ACL and the number of ACEs it contains. The ACL header is followed by
1615 * zero or more access control entries (ACEs). The ACL as well as each ACE
1616 * are aligned on 4-byte boundaries.
1619 u8 revision; /* Revision of this ACL. */
1621 le16 size; /* Allocated space in bytes for ACL. Includes this
1622 header, the ACEs and the remaining free space. */
1623 le16 ace_count; /* Number of ACEs in the ACL. */
1625 /* sizeof() = 8 bytes */
1626 } __attribute__ ((__packed__)) ACL;
1629 * Current constants for ACLs.
1632 /* Current revision. */
1634 ACL_REVISION_DS = 4,
1636 /* History of revisions. */
1638 MIN_ACL_REVISION = 2,
1642 MAX_ACL_REVISION = 4,
1646 * The security descriptor control flags (16-bit).
1648 * SE_OWNER_DEFAULTED - This boolean flag, when set, indicates that the SID
1649 * pointed to by the Owner field was provided by a defaulting mechanism
1650 * rather than explicitly provided by the original provider of the
1651 * security descriptor. This may affect the treatment of the SID with
1652 * respect to inheritence of an owner.
1654 * SE_GROUP_DEFAULTED - This boolean flag, when set, indicates that the SID in
1655 * the Group field was provided by a defaulting mechanism rather than
1656 * explicitly provided by the original provider of the security
1657 * descriptor. This may affect the treatment of the SID with respect to
1658 * inheritence of a primary group.
1660 * SE_DACL_PRESENT - This boolean flag, when set, indicates that the security
1661 * descriptor contains a discretionary ACL. If this flag is set and the
1662 * Dacl field of the SECURITY_DESCRIPTOR is null, then a null ACL is
1663 * explicitly being specified.
1665 * SE_DACL_DEFAULTED - This boolean flag, when set, indicates that the ACL
1666 * pointed to by the Dacl field was provided by a defaulting mechanism
1667 * rather than explicitly provided by the original provider of the
1668 * security descriptor. This may affect the treatment of the ACL with
1669 * respect to inheritence of an ACL. This flag is ignored if the
1670 * DaclPresent flag is not set.
1672 * SE_SACL_PRESENT - This boolean flag, when set, indicates that the security
1673 * descriptor contains a system ACL pointed to by the Sacl field. If this
1674 * flag is set and the Sacl field of the SECURITY_DESCRIPTOR is null, then
1675 * an empty (but present) ACL is being specified.
1677 * SE_SACL_DEFAULTED - This boolean flag, when set, indicates that the ACL
1678 * pointed to by the Sacl field was provided by a defaulting mechanism
1679 * rather than explicitly provided by the original provider of the
1680 * security descriptor. This may affect the treatment of the ACL with
1681 * respect to inheritence of an ACL. This flag is ignored if the
1682 * SaclPresent flag is not set.
1684 * SE_SELF_RELATIVE - This boolean flag, when set, indicates that the security
1685 * descriptor is in self-relative form. In this form, all fields of the
1686 * security descriptor are contiguous in memory and all pointer fields are
1687 * expressed as offsets from the beginning of the security descriptor.
1690 SE_OWNER_DEFAULTED = const_cpu_to_le16(0x0001),
1691 SE_GROUP_DEFAULTED = const_cpu_to_le16(0x0002),
1692 SE_DACL_PRESENT = const_cpu_to_le16(0x0004),
1693 SE_DACL_DEFAULTED = const_cpu_to_le16(0x0008),
1695 SE_SACL_PRESENT = const_cpu_to_le16(0x0010),
1696 SE_SACL_DEFAULTED = const_cpu_to_le16(0x0020),
1698 SE_DACL_AUTO_INHERIT_REQ = const_cpu_to_le16(0x0100),
1699 SE_SACL_AUTO_INHERIT_REQ = const_cpu_to_le16(0x0200),
1700 SE_DACL_AUTO_INHERITED = const_cpu_to_le16(0x0400),
1701 SE_SACL_AUTO_INHERITED = const_cpu_to_le16(0x0800),
1703 SE_DACL_PROTECTED = const_cpu_to_le16(0x1000),
1704 SE_SACL_PROTECTED = const_cpu_to_le16(0x2000),
1705 SE_RM_CONTROL_VALID = const_cpu_to_le16(0x4000),
1706 SE_SELF_RELATIVE = const_cpu_to_le16(0x8000)
1707 } __attribute__ ((__packed__));
1709 typedef le16 SECURITY_DESCRIPTOR_CONTROL;
1712 * Self-relative security descriptor. Contains the owner and group SIDs as well
1713 * as the sacl and dacl ACLs inside the security descriptor itself.
1716 u8 revision; /* Revision level of the security descriptor. */
1718 SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of
1719 the descriptor as well as the following fields. */
1720 le32 owner; /* Byte offset to a SID representing an object's
1721 owner. If this is NULL, no owner SID is present in
1723 le32 group; /* Byte offset to a SID representing an object's
1724 primary group. If this is NULL, no primary group
1725 SID is present in the descriptor. */
1726 le32 sacl; /* Byte offset to a system ACL. Only valid, if
1727 SE_SACL_PRESENT is set in the control field. If
1728 SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL
1730 le32 dacl; /* Byte offset to a discretionary ACL. Only valid, if
1731 SE_DACL_PRESENT is set in the control field. If
1732 SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL
1733 (unconditionally granting access) is specified. */
1734 /* sizeof() = 0x14 bytes */
1735 } __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_RELATIVE;
1738 * Absolute security descriptor. Does not contain the owner and group SIDs, nor
1739 * the sacl and dacl ACLs inside the security descriptor. Instead, it contains
1740 * pointers to these structures in memory. Obviously, absolute security
1741 * descriptors are only useful for in memory representations of security
1742 * descriptors. On disk, a self-relative security descriptor is used.
1745 u8 revision; /* Revision level of the security descriptor. */
1747 SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of
1748 the descriptor as well as the following fields. */
1749 SID *owner; /* Points to a SID representing an object's owner. If
1750 this is NULL, no owner SID is present in the
1752 SID *group; /* Points to a SID representing an object's primary
1753 group. If this is NULL, no primary group SID is
1754 present in the descriptor. */
1755 ACL *sacl; /* Points to a system ACL. Only valid, if
1756 SE_SACL_PRESENT is set in the control field. If
1757 SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL
1759 ACL *dacl; /* Points to a discretionary ACL. Only valid, if
1760 SE_DACL_PRESENT is set in the control field. If
1761 SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL
1762 (unconditionally granting access) is specified. */
1763 } __attribute__ ((__packed__)) SECURITY_DESCRIPTOR;
1766 * Current constants for security descriptors.
1769 /* Current revision. */
1770 SECURITY_DESCRIPTOR_REVISION = 1,
1771 SECURITY_DESCRIPTOR_REVISION1 = 1,
1773 /* The sizes of both the absolute and relative security descriptors is
1774 the same as pointers, at least on ia32 architecture are 32-bit. */
1775 SECURITY_DESCRIPTOR_MIN_LENGTH = sizeof(SECURITY_DESCRIPTOR),
1776 } SECURITY_DESCRIPTOR_CONSTANTS;
1779 * Attribute: Security descriptor (0x50). A standard self-relative security
1782 * NOTE: Can be resident or non-resident.
1783 * NOTE: Not used in NTFS 3.0+, as security descriptors are stored centrally
1784 * in FILE_Secure and the correct descriptor is found using the security_id
1785 * from the standard information attribute.
1787 typedef SECURITY_DESCRIPTOR_RELATIVE SECURITY_DESCRIPTOR_ATTR;
1790 * On NTFS 3.0+, all security descriptors are stored in FILE_Secure. Only one
1791 * referenced instance of each unique security descriptor is stored.
1793 * FILE_Secure contains no unnamed data attribute, i.e. it has zero length. It
1794 * does, however, contain two indexes ($SDH and $SII) as well as a named data
1797 * Every unique security descriptor is assigned a unique security identifier
1798 * (security_id, not to be confused with a SID). The security_id is unique for
1799 * the NTFS volume and is used as an index into the $SII index, which maps
1800 * security_ids to the security descriptor's storage location within the $SDS
1801 * data attribute. The $SII index is sorted by ascending security_id.
1803 * A simple hash is computed from each security descriptor. This hash is used
1804 * as an index into the $SDH index, which maps security descriptor hashes to
1805 * the security descriptor's storage location within the $SDS data attribute.
1806 * The $SDH index is sorted by security descriptor hash and is stored in a B+
1807 * tree. When searching $SDH (with the intent of determining whether or not a
1808 * new security descriptor is already present in the $SDS data stream), if a
1809 * matching hash is found, but the security descriptors do not match, the
1810 * search in the $SDH index is continued, searching for a next matching hash.
1812 * When a precise match is found, the security_id coresponding to the security
1813 * descriptor in the $SDS attribute is read from the found $SDH index entry and
1814 * is stored in the $STANDARD_INFORMATION attribute of the file/directory to
1815 * which the security descriptor is being applied. The $STANDARD_INFORMATION
1816 * attribute is present in all base mft records (i.e. in all files and
1819 * If a match is not found, the security descriptor is assigned a new unique
1820 * security_id and is added to the $SDS data attribute. Then, entries
1821 * referencing the this security descriptor in the $SDS data attribute are
1822 * added to the $SDH and $SII indexes.
1824 * Note: Entries are never deleted from FILE_Secure, even if nothing
1825 * references an entry any more.
1829 * This header precedes each security descriptor in the $SDS data stream.
1830 * This is also the index entry data part of both the $SII and $SDH indexes.
1833 le32 hash; /* Hash of the security descriptor. */
1834 le32 security_id; /* The security_id assigned to the descriptor. */
1835 le64 offset; /* Byte offset of this entry in the $SDS stream. */
1836 le32 length; /* Size in bytes of this entry in $SDS stream. */
1837 } __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_HEADER;
1840 * The $SDS data stream contains the security descriptors, aligned on 16-byte
1841 * boundaries, sorted by security_id in a B+ tree. Security descriptors cannot
1842 * cross 256kib boundaries (this restriction is imposed by the Windows cache
1843 * manager). Each security descriptor is contained in a SDS_ENTRY structure.
1844 * Also, each security descriptor is stored twice in the $SDS stream with a
1845 * fixed offset of 0x40000 bytes (256kib, the Windows cache manager's max size)
1846 * between them; i.e. if a SDS_ENTRY specifies an offset of 0x51d0, then the
1847 * the first copy of the security descriptor will be at offset 0x51d0 in the
1848 * $SDS data stream and the second copy will be at offset 0x451d0.
1852 /* 0 SECURITY_DESCRIPTOR_HEADER; -- Unfolded here as gcc doesn't like
1854 le32 hash; /* Hash of the security descriptor. */
1855 le32 security_id; /* The security_id assigned to the descriptor. */
1856 le64 offset; /* Byte offset of this entry in the $SDS stream. */
1857 le32 length; /* Size in bytes of this entry in $SDS stream. */
1858 /* 20*/ SECURITY_DESCRIPTOR_RELATIVE sid; /* The self-relative security
1860 } __attribute__ ((__packed__)) SDS_ENTRY;
1863 * The index entry key used in the $SII index. The collation type is
1864 * COLLATION_NTOFS_ULONG.
1867 le32 security_id; /* The security_id assigned to the descriptor. */
1868 } __attribute__ ((__packed__)) SII_INDEX_KEY;
1871 * The index entry key used in the $SDH index. The keys are sorted first by
1872 * hash and then by security_id. The collation rule is
1873 * COLLATION_NTOFS_SECURITY_HASH.
1876 le32 hash; /* Hash of the security descriptor. */
1877 le32 security_id; /* The security_id assigned to the descriptor. */
1878 } __attribute__ ((__packed__)) SDH_INDEX_KEY;
1881 * Attribute: Volume name (0x60).
1883 * NOTE: Always resident.
1884 * NOTE: Present only in FILE_Volume.
1887 ntfschar name[0]; /* The name of the volume in Unicode. */
1888 } __attribute__ ((__packed__)) VOLUME_NAME;
1891 * Possible flags for the volume (16-bit).
1894 VOLUME_IS_DIRTY = const_cpu_to_le16(0x0001),
1895 VOLUME_RESIZE_LOG_FILE = const_cpu_to_le16(0x0002),
1896 VOLUME_UPGRADE_ON_MOUNT = const_cpu_to_le16(0x0004),
1897 VOLUME_MOUNTED_ON_NT4 = const_cpu_to_le16(0x0008),
1899 VOLUME_DELETE_USN_UNDERWAY = const_cpu_to_le16(0x0010),
1900 VOLUME_REPAIR_OBJECT_ID = const_cpu_to_le16(0x0020),
1902 VOLUME_MODIFIED_BY_CHKDSK = const_cpu_to_le16(0x8000),
1904 VOLUME_FLAGS_MASK = const_cpu_to_le16(0x803f),
1906 /* To make our life easier when checking if we must mount read-only. */
1907 VOLUME_MUST_MOUNT_RO_MASK = const_cpu_to_le16(0x8027),
1908 } __attribute__ ((__packed__));
1910 typedef le16 VOLUME_FLAGS;
1913 * Attribute: Volume information (0x70).
1915 * NOTE: Always resident.
1916 * NOTE: Present only in FILE_Volume.
1917 * NOTE: Windows 2000 uses NTFS 3.0 while Windows NT4 service pack 6a uses
1918 * NTFS 1.2. I haven't personally seen other values yet.
1921 le64 reserved; /* Not used (yet?). */
1922 u8 major_ver; /* Major version of the ntfs format. */
1923 u8 minor_ver; /* Minor version of the ntfs format. */
1924 VOLUME_FLAGS flags; /* Bit array of VOLUME_* flags. */
1925 } __attribute__ ((__packed__)) VOLUME_INFORMATION;
1928 * Attribute: Data attribute (0x80).
1930 * NOTE: Can be resident or non-resident.
1932 * Data contents of a file (i.e. the unnamed stream) or of a named stream.
1935 u8 data[0]; /* The file's data contents. */
1936 } __attribute__ ((__packed__)) DATA_ATTR;
1939 * Index header flags (8-bit).
1943 * When index header is in an index root attribute:
1945 SMALL_INDEX = 0, /* The index is small enough to fit inside the index
1946 root attribute and there is no index allocation
1947 attribute present. */
1948 LARGE_INDEX = 1, /* The index is too large to fit in the index root
1949 attribute and/or an index allocation attribute is
1952 * When index header is in an index block, i.e. is part of index
1953 * allocation attribute:
1955 LEAF_NODE = 0, /* This is a leaf node, i.e. there are no more nodes
1956 branching off it. */
1957 INDEX_NODE = 1, /* This node indexes other nodes, i.e. it is not a leaf
1959 NODE_MASK = 1, /* Mask for accessing the *_NODE bits. */
1960 } __attribute__ ((__packed__));
1962 typedef u8 INDEX_HEADER_FLAGS;
1965 * This is the header for indexes, describing the INDEX_ENTRY records, which
1966 * follow the INDEX_HEADER. Together the index header and the index entries
1967 * make up a complete index.
1969 * IMPORTANT NOTE: The offset, length and size structure members are counted
1970 * relative to the start of the index header structure and not relative to the
1971 * start of the index root or index allocation structures themselves.
1974 le32 entries_offset; /* Byte offset to first INDEX_ENTRY
1975 aligned to 8-byte boundary. */
1976 le32 index_length; /* Data size of the index in bytes,
1977 i.e. bytes used from allocated
1978 size, aligned to 8-byte boundary. */
1979 le32 allocated_size; /* Byte size of this index (block),
1980 multiple of 8 bytes. */
1981 /* NOTE: For the index root attribute, the above two numbers are always
1982 equal, as the attribute is resident and it is resized as needed. In
1983 the case of the index allocation attribute the attribute is not
1984 resident and hence the allocated_size is a fixed value and must
1985 equal the index_block_size specified by the INDEX_ROOT attribute
1986 corresponding to the INDEX_ALLOCATION attribute this INDEX_BLOCK
1988 INDEX_HEADER_FLAGS flags; /* Bit field of INDEX_HEADER_FLAGS. */
1989 u8 reserved[3]; /* Reserved/align to 8-byte boundary. */
1990 } __attribute__ ((__packed__)) INDEX_HEADER;
1993 * Attribute: Index root (0x90).
1995 * NOTE: Always resident.
1997 * This is followed by a sequence of index entries (INDEX_ENTRY structures)
1998 * as described by the index header.
2000 * When a directory is small enough to fit inside the index root then this
2001 * is the only attribute describing the directory. When the directory is too
2002 * large to fit in the index root, on the other hand, two aditional attributes
2003 * are present: an index allocation attribute, containing sub-nodes of the B+
2004 * directory tree (see below), and a bitmap attribute, describing which virtual
2005 * cluster numbers (vcns) in the index allocation attribute are in use by an
2008 * NOTE: The root directory (FILE_root) contains an entry for itself. Other
2009 * dircetories do not contain entries for themselves, though.
2012 ATTR_TYPE type; /* Type of the indexed attribute. Is
2013 $FILE_NAME for directories, zero
2014 for view indexes. No other values
2016 COLLATION_RULE collation_rule; /* Collation rule used to sort the
2017 index entries. If type is $FILE_NAME,
2018 this must be COLLATION_FILE_NAME. */
2019 le32 index_block_size; /* Size of each index block in bytes (in
2020 the index allocation attribute). */
2021 u8 clusters_per_index_block; /* Cluster size of each index block (in
2022 the index allocation attribute), when
2023 an index block is >= than a cluster,
2024 otherwise this will be the log of
2025 the size (like how the encoding of
2026 the mft record size and the index
2027 record size found in the boot sector
2028 work). Has to be a power of 2. */
2029 u8 reserved[3]; /* Reserved/align to 8-byte boundary. */
2030 INDEX_HEADER index; /* Index header describing the
2031 following index entries. */
2032 } __attribute__ ((__packed__)) INDEX_ROOT;
2035 * Attribute: Index allocation (0xa0).
2037 * NOTE: Always non-resident (doesn't make sense to be resident anyway!).
2039 * This is an array of index blocks. Each index block starts with an
2040 * INDEX_BLOCK structure containing an index header, followed by a sequence of
2041 * index entries (INDEX_ENTRY structures), as described by the INDEX_HEADER.
2044 /* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
2045 NTFS_RECORD_TYPE magic; /* Magic is "INDX". */
2046 le16 usa_ofs; /* See NTFS_RECORD definition. */
2047 le16 usa_count; /* See NTFS_RECORD definition. */
2049 /* 8*/ sle64 lsn; /* $LogFile sequence number of the last
2050 modification of this index block. */
2051 /* 16*/ leVCN index_block_vcn; /* Virtual cluster number of the index block.
2052 If the cluster_size on the volume is <= the
2053 index_block_size of the directory,
2054 index_block_vcn counts in units of clusters,
2055 and in units of sectors otherwise. */
2056 /* 24*/ INDEX_HEADER index; /* Describes the following index entries. */
2057 /* sizeof()= 40 (0x28) bytes */
2059 * When creating the index block, we place the update sequence array at this
2060 * offset, i.e. before we start with the index entries. This also makes sense,
2061 * otherwise we could run into problems with the update sequence array
2062 * containing in itself the last two bytes of a sector which would mean that
2063 * multi sector transfer protection wouldn't work. As you can't protect data
2064 * by overwriting it since you then can't get it back...
2065 * When reading use the data from the ntfs record header.
2067 } __attribute__ ((__packed__)) INDEX_BLOCK;
2069 typedef INDEX_BLOCK INDEX_ALLOCATION;
2072 * The system file FILE_Extend/$Reparse contains an index named $R listing
2073 * all reparse points on the volume. The index entry keys are as defined
2074 * below. Note, that there is no index data associated with the index entries.
2076 * The index entries are sorted by the index key file_id. The collation rule is
2077 * COLLATION_NTOFS_ULONGS. FIXME: Verify whether the reparse_tag is not the
2078 * primary key / is not a key at all. (AIA)
2081 le32 reparse_tag; /* Reparse point type (inc. flags). */
2082 leMFT_REF file_id; /* Mft record of the file containing the
2083 reparse point attribute. */
2084 } __attribute__ ((__packed__)) REPARSE_INDEX_KEY;
2087 * Quota flags (32-bit).
2089 * The user quota flags. Names explain meaning.
2092 QUOTA_FLAG_DEFAULT_LIMITS = const_cpu_to_le32(0x00000001),
2093 QUOTA_FLAG_LIMIT_REACHED = const_cpu_to_le32(0x00000002),
2094 QUOTA_FLAG_ID_DELETED = const_cpu_to_le32(0x00000004),
2096 QUOTA_FLAG_USER_MASK = const_cpu_to_le32(0x00000007),
2097 /* This is a bit mask for the user quota flags. */
2100 * These flags are only present in the quota defaults index entry, i.e.
2101 * in the entry where owner_id = QUOTA_DEFAULTS_ID.
2103 QUOTA_FLAG_TRACKING_ENABLED = const_cpu_to_le32(0x00000010),
2104 QUOTA_FLAG_ENFORCEMENT_ENABLED = const_cpu_to_le32(0x00000020),
2105 QUOTA_FLAG_TRACKING_REQUESTED = const_cpu_to_le32(0x00000040),
2106 QUOTA_FLAG_LOG_THRESHOLD = const_cpu_to_le32(0x00000080),
2108 QUOTA_FLAG_LOG_LIMIT = const_cpu_to_le32(0x00000100),
2109 QUOTA_FLAG_OUT_OF_DATE = const_cpu_to_le32(0x00000200),
2110 QUOTA_FLAG_CORRUPT = const_cpu_to_le32(0x00000400),
2111 QUOTA_FLAG_PENDING_DELETES = const_cpu_to_le32(0x00000800),
2114 typedef le32 QUOTA_FLAGS;
2117 * The system file FILE_Extend/$Quota contains two indexes $O and $Q. Quotas
2118 * are on a per volume and per user basis.
2120 * The $Q index contains one entry for each existing user_id on the volume. The
2121 * index key is the user_id of the user/group owning this quota control entry,
2122 * i.e. the key is the owner_id. The user_id of the owner of a file, i.e. the
2123 * owner_id, is found in the standard information attribute. The collation rule
2124 * for $Q is COLLATION_NTOFS_ULONG.
2126 * The $O index contains one entry for each user/group who has been assigned
2127 * a quota on that volume. The index key holds the SID of the user_id the
2128 * entry belongs to, i.e. the owner_id. The collation rule for $O is
2129 * COLLATION_NTOFS_SID.
2131 * The $O index entry data is the user_id of the user corresponding to the SID.
2132 * This user_id is used as an index into $Q to find the quota control entry
2133 * associated with the SID.
2135 * The $Q index entry data is the quota control entry and is defined below.
2138 le32 version; /* Currently equals 2. */
2139 QUOTA_FLAGS flags; /* Flags describing this quota entry. */
2140 le64 bytes_used; /* How many bytes of the quota are in use. */
2141 sle64 change_time; /* Last time this quota entry was changed. */
2142 sle64 threshold; /* Soft quota (-1 if not limited). */
2143 sle64 limit; /* Hard quota (-1 if not limited). */
2144 sle64 exceeded_time; /* How long the soft quota has been exceeded. */
2145 SID sid; /* The SID of the user/object associated with
2146 this quota entry. Equals zero for the quota
2147 defaults entry (and in fact on a WinXP
2148 volume, it is not present at all). */
2149 } __attribute__ ((__packed__)) QUOTA_CONTROL_ENTRY;
2152 * Predefined owner_id values (32-bit).
2155 QUOTA_INVALID_ID = const_cpu_to_le32(0x00000000),
2156 QUOTA_DEFAULTS_ID = const_cpu_to_le32(0x00000001),
2157 QUOTA_FIRST_USER_ID = const_cpu_to_le32(0x00000100),
2161 * Current constants for quota control entries.
2164 /* Current version. */
2166 } QUOTA_CONTROL_ENTRY_CONSTANTS;
2169 * Index entry flags (16-bit).
2172 INDEX_ENTRY_NODE = const_cpu_to_le16(1), /* This entry contains a
2173 sub-node, i.e. a reference to an index block in form of
2174 a virtual cluster number (see below). */
2175 INDEX_ENTRY_END = const_cpu_to_le16(2), /* This signifies the last
2176 entry in an index block. The index entry does not
2177 represent a file but it can point to a sub-node. */
2179 INDEX_ENTRY_SPACE_FILLER = const_cpu_to_le16(0xffff), /* gcc: Force
2180 enum bit width to 16-bit. */
2181 } __attribute__ ((__packed__));
2183 typedef le16 INDEX_ENTRY_FLAGS;
2186 * This the index entry header (see below).
2190 struct { /* Only valid when INDEX_ENTRY_END is not set. */
2191 leMFT_REF indexed_file; /* The mft reference of the file
2192 described by this index
2193 entry. Used for directory
2195 } __attribute__ ((__packed__)) dir;
2196 struct { /* Used for views/indexes to find the entry's data. */
2197 le16 data_offset; /* Data byte offset from this
2198 INDEX_ENTRY. Follows the
2200 le16 data_length; /* Data length in bytes. */
2201 le32 reservedV; /* Reserved (zero). */
2202 } __attribute__ ((__packed__)) vi;
2203 } __attribute__ ((__packed__)) data;
2204 /* 8*/ le16 length; /* Byte size of this index entry, multiple of
2206 /* 10*/ le16 key_length; /* Byte size of the key value, which is in the
2207 index entry. It follows field reserved. Not
2208 multiple of 8-bytes. */
2209 /* 12*/ INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */
2210 /* 14*/ le16 reserved; /* Reserved/align to 8-byte boundary. */
2211 /* sizeof() = 16 bytes */
2212 } __attribute__ ((__packed__)) INDEX_ENTRY_HEADER;
2215 * This is an index entry. A sequence of such entries follows each INDEX_HEADER
2216 * structure. Together they make up a complete index. The index follows either
2217 * an index root attribute or an index allocation attribute.
2219 * NOTE: Before NTFS 3.0 only filename attributes were indexed.
2223 /* 0 INDEX_ENTRY_HEADER; -- Unfolded here as gcc dislikes unnamed structs. */
2225 struct { /* Only valid when INDEX_ENTRY_END is not set. */
2226 leMFT_REF indexed_file; /* The mft reference of the file
2227 described by this index
2228 entry. Used for directory
2230 } __attribute__ ((__packed__)) dir;
2231 struct { /* Used for views/indexes to find the entry's data. */
2232 le16 data_offset; /* Data byte offset from this
2233 INDEX_ENTRY. Follows the
2235 le16 data_length; /* Data length in bytes. */
2236 le32 reservedV; /* Reserved (zero). */
2237 } __attribute__ ((__packed__)) vi;
2238 } __attribute__ ((__packed__)) data;
2239 le16 length; /* Byte size of this index entry, multiple of
2241 le16 key_length; /* Byte size of the key value, which is in the
2242 index entry. It follows field reserved. Not
2243 multiple of 8-bytes. */
2244 INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */
2245 le16 reserved; /* Reserved/align to 8-byte boundary. */
2247 /* 16*/ union { /* The key of the indexed attribute. NOTE: Only present
2248 if INDEX_ENTRY_END bit in flags is not set. NOTE: On
2249 NTFS versions before 3.0 the only valid key is the
2250 FILE_NAME_ATTR. On NTFS 3.0+ the following
2251 additional index keys are defined: */
2252 FILE_NAME_ATTR file_name;/* $I30 index in directories. */
2253 SII_INDEX_KEY sii; /* $SII index in $Secure. */
2254 SDH_INDEX_KEY sdh; /* $SDH index in $Secure. */
2255 GUID object_id; /* $O index in FILE_Extend/$ObjId: The
2256 object_id of the mft record found in
2257 the data part of the index. */
2258 REPARSE_INDEX_KEY reparse; /* $R index in
2259 FILE_Extend/$Reparse. */
2260 SID sid; /* $O index in FILE_Extend/$Quota:
2261 SID of the owner of the user_id. */
2262 le32 owner_id; /* $Q index in FILE_Extend/$Quota:
2263 user_id of the owner of the quota
2264 control entry in the data part of
2266 } __attribute__ ((__packed__)) key;
2267 /* The (optional) index data is inserted here when creating. */
2268 // leVCN vcn; /* If INDEX_ENTRY_NODE bit in flags is set, the last
2269 // eight bytes of this index entry contain the virtual
2270 // cluster number of the index block that holds the
2271 // entries immediately preceding the current entry (the
2272 // vcn references the corresponding cluster in the data
2273 // of the non-resident index allocation attribute). If
2274 // the key_length is zero, then the vcn immediately
2275 // follows the INDEX_ENTRY_HEADER. Regardless of
2276 // key_length, the address of the 8-byte boundary
2277 // alligned vcn of INDEX_ENTRY{_HEADER} *ie is given by
2278 // (char*)ie + le16_to_cpu(ie*)->length) - sizeof(VCN),
2279 // where sizeof(VCN) can be hardcoded as 8 if wanted. */
2280 } __attribute__ ((__packed__)) INDEX_ENTRY;
2283 * Attribute: Bitmap (0xb0).
2285 * Contains an array of bits (aka a bitfield).
2287 * When used in conjunction with the index allocation attribute, each bit
2288 * corresponds to one index block within the index allocation attribute. Thus
2289 * the number of bits in the bitmap * index block size / cluster size is the
2290 * number of clusters in the index allocation attribute.
2293 u8 bitmap[0]; /* Array of bits. */
2294 } __attribute__ ((__packed__)) BITMAP_ATTR;
2297 * The reparse point tag defines the type of the reparse point. It also
2298 * includes several flags, which further describe the reparse point.
2300 * The reparse point tag is an unsigned 32-bit value divided in three parts:
2302 * 1. The least significant 16 bits (i.e. bits 0 to 15) specifiy the type of
2303 * the reparse point.
2304 * 2. The 13 bits after this (i.e. bits 16 to 28) are reserved for future use.
2305 * 3. The most significant three bits are flags describing the reparse point.
2306 * They are defined as follows:
2307 * bit 29: Name surrogate bit. If set, the filename is an alias for
2308 * another object in the system.
2309 * bit 30: High-latency bit. If set, accessing the first byte of data will
2310 * be slow. (E.g. the data is stored on a tape drive.)
2311 * bit 31: Microsoft bit. If set, the tag is owned by Microsoft. User
2312 * defined tags have to use zero here.
2314 * These are the predefined reparse point tags:
2317 IO_REPARSE_TAG_IS_ALIAS = const_cpu_to_le32(0x20000000),
2318 IO_REPARSE_TAG_IS_HIGH_LATENCY = const_cpu_to_le32(0x40000000),
2319 IO_REPARSE_TAG_IS_MICROSOFT = const_cpu_to_le32(0x80000000),
2321 IO_REPARSE_TAG_RESERVED_ZERO = const_cpu_to_le32(0x00000000),
2322 IO_REPARSE_TAG_RESERVED_ONE = const_cpu_to_le32(0x00000001),
2323 IO_REPARSE_TAG_RESERVED_RANGE = const_cpu_to_le32(0x00000001),
2325 IO_REPARSE_TAG_NSS = const_cpu_to_le32(0x68000005),
2326 IO_REPARSE_TAG_NSS_RECOVER = const_cpu_to_le32(0x68000006),
2327 IO_REPARSE_TAG_SIS = const_cpu_to_le32(0x68000007),
2328 IO_REPARSE_TAG_DFS = const_cpu_to_le32(0x68000008),
2330 IO_REPARSE_TAG_MOUNT_POINT = const_cpu_to_le32(0x88000003),
2332 IO_REPARSE_TAG_HSM = const_cpu_to_le32(0xa8000004),
2334 IO_REPARSE_TAG_SYMBOLIC_LINK = const_cpu_to_le32(0xe8000000),
2336 IO_REPARSE_TAG_VALID_VALUES = const_cpu_to_le32(0xe000ffff),
2340 * Attribute: Reparse point (0xc0).
2342 * NOTE: Can be resident or non-resident.
2345 le32 reparse_tag; /* Reparse point type (inc. flags). */
2346 le16 reparse_data_length; /* Byte size of reparse data. */
2347 le16 reserved; /* Align to 8-byte boundary. */
2348 u8 reparse_data[0]; /* Meaning depends on reparse_tag. */
2349 } __attribute__ ((__packed__)) REPARSE_POINT;
2352 * Attribute: Extended attribute (EA) information (0xd0).
2354 * NOTE: Always resident. (Is this true???)
2357 le16 ea_length; /* Byte size of the packed extended
2359 le16 need_ea_count; /* The number of extended attributes which have
2360 the NEED_EA bit set. */
2361 le32 ea_query_length; /* Byte size of the buffer required to query
2362 the extended attributes when calling
2363 ZwQueryEaFile() in Windows NT/2k. I.e. the
2364 byte size of the unpacked extended
2366 } __attribute__ ((__packed__)) EA_INFORMATION;
2369 * Extended attribute flags (8-bit).
2373 } __attribute__ ((__packed__));
2375 typedef u8 EA_FLAGS;
2378 * Attribute: Extended attribute (EA) (0xe0).
2380 * NOTE: Always non-resident. (Is this true?)
2382 * Like the attribute list and the index buffer list, the EA attribute value is
2383 * a sequence of EA_ATTR variable length records.
2385 * FIXME: It appears weird that the EA name is not unicode. Is it true?
2388 le32 next_entry_offset; /* Offset to the next EA_ATTR. */
2389 EA_FLAGS flags; /* Flags describing the EA. */
2390 u8 ea_name_length; /* Length of the name of the EA in bytes. */
2391 le16 ea_value_length; /* Byte size of the EA's value. */
2392 u8 ea_name[0]; /* Name of the EA. */
2393 u8 ea_value[0]; /* The value of the EA. Immediately follows
2395 } __attribute__ ((__packed__)) EA_ATTR;
2398 * Attribute: Property set (0xf0).
2400 * Intended to support Native Structure Storage (NSS) - a feature removed from
2401 * NTFS 3.0 during beta testing.
2404 /* Irrelevant as feature unused. */
2405 } __attribute__ ((__packed__)) PROPERTY_SET;
2408 * Attribute: Logged utility stream (0x100).
2410 * NOTE: Can be resident or non-resident.
2412 * Operations on this attribute are logged to the journal ($LogFile) like
2413 * normal metadata changes.
2415 * Used by the Encrypting File System (EFS). All encrypted files have this
2416 * attribute with the name $EFS.
2419 /* Can be anything the creator chooses. */
2420 /* EFS uses it as follows: */
2421 // FIXME: Type this info, verifying it along the way. (AIA)
2422 } __attribute__ ((__packed__)) LOGGED_UTILITY_STREAM, EFS_ATTR;
2424 #endif /* _LINUX_NTFS_LAYOUT_H */