Merge branch 'linux-2.6'
[linux-2.6] / arch / powerpc / sysdev / commproc.c
1 /*
2  * General Purpose functions for the global management of the
3  * Communication Processor Module.
4  * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
5  *
6  * In addition to the individual control of the communication
7  * channels, there are a few functions that globally affect the
8  * communication processor.
9  *
10  * Buffer descriptors must be allocated from the dual ported memory
11  * space.  The allocator for that is here.  When the communication
12  * process is reset, we reclaim the memory available.  There is
13  * currently no deallocator for this memory.
14  * The amount of space available is platform dependent.  On the
15  * MBX, the EPPC software loads additional microcode into the
16  * communication processor, and uses some of the DP ram for this
17  * purpose.  Current, the first 512 bytes and the last 256 bytes of
18  * memory are used.  Right now I am conservative and only use the
19  * memory that can never be used for microcode.  If there are
20  * applications that require more DP ram, we can expand the boundaries
21  * but then we have to be careful of any downloaded microcode.
22  */
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <asm/mpc8xx.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/8xx_immap.h>
37 #include <asm/commproc.h>
38 #include <asm/io.h>
39 #include <asm/tlbflush.h>
40 #include <asm/rheap.h>
41 #include <asm/prom.h>
42 #include <asm/cpm.h>
43
44 #include <asm/fs_pd.h>
45
46 #define CPM_MAP_SIZE    (0x4000)
47
48 #ifndef CONFIG_PPC_CPM_NEW_BINDING
49 static void m8xx_cpm_dpinit(void);
50 #endif
51 static uint host_buffer; /* One page of host buffer */
52 static uint host_end;    /* end + 1 */
53 cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56
57 static struct irq_host *cpm_pic_host;
58
59 static void cpm_mask_irq(unsigned int irq)
60 {
61         unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
62
63         clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65
66 static void cpm_unmask_irq(unsigned int irq)
67 {
68         unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
69
70         setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72
73 static void cpm_end_irq(unsigned int irq)
74 {
75         unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
76
77         out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79
80 static struct irq_chip cpm_pic = {
81         .typename = " CPM PIC ",
82         .mask = cpm_mask_irq,
83         .unmask = cpm_unmask_irq,
84         .eoi = cpm_end_irq,
85 };
86
87 int cpm_get_irq(void)
88 {
89         int cpm_vec;
90
91         /* Get the vector by setting the ACK bit and then reading
92          * the register.
93          */
94         out_be16(&cpic_reg->cpic_civr, 1);
95         cpm_vec = in_be16(&cpic_reg->cpic_civr);
96         cpm_vec >>= 11;
97
98         return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100
101 static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
102                           irq_hw_number_t hw)
103 {
104         pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106         get_irq_desc(virq)->status |= IRQ_LEVEL;
107         set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108         return 0;
109 }
110
111 /* The CPM can generate the error interrupt when there is a race condition
112  * between generating and masking interrupts.  All we have to do is ACK it
113  * and return.  This is a no-op function so we don't need any special
114  * tests in the interrupt handler.
115  */
116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117 {
118         return IRQ_HANDLED;
119 }
120
121 static struct irqaction cpm_error_irqaction = {
122         .handler = cpm_error_interrupt,
123         .mask = CPU_MASK_NONE,
124         .name = "error",
125 };
126
127 static struct irq_host_ops cpm_pic_host_ops = {
128         .map = cpm_pic_host_map,
129 };
130
131 unsigned int cpm_pic_init(void)
132 {
133         struct device_node *np = NULL;
134         struct resource res;
135         unsigned int sirq = NO_IRQ, hwirq, eirq;
136         int ret;
137
138         pr_debug("cpm_pic_init\n");
139
140         np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
141         if (np == NULL)
142                 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
143         if (np == NULL) {
144                 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
145                 return sirq;
146         }
147
148         ret = of_address_to_resource(np, 0, &res);
149         if (ret)
150                 goto end;
151
152         cpic_reg = ioremap(res.start, res.end - res.start + 1);
153         if (cpic_reg == NULL)
154                 goto end;
155
156         sirq = irq_of_parse_and_map(np, 0);
157         if (sirq == NO_IRQ)
158                 goto end;
159
160         /* Initialize the CPM interrupt controller. */
161         hwirq = (unsigned int)irq_map[sirq].hwirq;
162         out_be32(&cpic_reg->cpic_cicr,
163             (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
164                 ((hwirq/2) << 13) | CICR_HP_MASK);
165
166         out_be32(&cpic_reg->cpic_cimr, 0);
167
168         cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR,
169                                       64, &cpm_pic_host_ops, 64);
170         if (cpm_pic_host == NULL) {
171                 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
172                 sirq = NO_IRQ;
173                 goto end;
174         }
175
176         /* Install our own error handler. */
177         np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
178         if (np == NULL)
179                 np = of_find_node_by_type(NULL, "cpm");
180         if (np == NULL) {
181                 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
182                 goto end;
183         }
184
185         eirq = irq_of_parse_and_map(np, 0);
186         if (eirq == NO_IRQ)
187                 goto end;
188
189         if (setup_irq(eirq, &cpm_error_irqaction))
190                 printk(KERN_ERR "Could not allocate CPM error IRQ!");
191
192         setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
193
194 end:
195         of_node_put(np);
196         return sirq;
197 }
198
199 void __init cpm_reset(void)
200 {
201         sysconf8xx_t __iomem *siu_conf;
202
203         mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
204         if (!mpc8xx_immr) {
205                 printk(KERN_CRIT "Could not map IMMR\n");
206                 return;
207         }
208
209         cpmp = &mpc8xx_immr->im_cpm;
210
211 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
212         /* Perform a reset.
213         */
214         out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
215
216         /* Wait for it.
217         */
218         while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
219 #endif
220
221 #ifdef CONFIG_UCODE_PATCH
222         cpm_load_patch(cpmp);
223 #endif
224
225         /* Set SDMA Bus Request priority 5.
226          * On 860T, this also enables FEC priority 6.  I am not sure
227          * this is what we realy want for some applications, but the
228          * manual recommends it.
229          * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
230          */
231         siu_conf = immr_map(im_siu_conf);
232         out_be32(&siu_conf->sc_sdcr, 1);
233         immr_unmap(siu_conf);
234
235 #ifdef CONFIG_PPC_CPM_NEW_BINDING
236         cpm_muram_init();
237 #else
238         /* Reclaim the DP memory for our use. */
239         m8xx_cpm_dpinit();
240 #endif
241 }
242
243 /* We used to do this earlier, but have to postpone as long as possible
244  * to ensure the kernel VM is now running.
245  */
246 static void
247 alloc_host_memory(void)
248 {
249         dma_addr_t      physaddr;
250
251         /* Set the host page for allocation.
252         */
253         host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr,
254                         GFP_KERNEL);
255         host_end = host_buffer + PAGE_SIZE;
256 }
257
258 /* We also own one page of host buffer space for the allocation of
259  * UART "fifos" and the like.
260  */
261 uint
262 m8xx_cpm_hostalloc(uint size)
263 {
264         uint    retloc;
265
266         if (host_buffer == 0)
267                 alloc_host_memory();
268
269         if ((host_buffer + size) >= host_end)
270                 return(0);
271
272         retloc = host_buffer;
273         host_buffer += size;
274
275         return(retloc);
276 }
277
278 /* Set a baud rate generator.  This needs lots of work.  There are
279  * four BRGs, any of which can be wired to any channel.
280  * The internal baud rate clock is the system clock divided by 16.
281  * This assumes the baudrate is 16x oversampled by the uart.
282  */
283 #define BRG_INT_CLK             (get_brgfreq())
284 #define BRG_UART_CLK            (BRG_INT_CLK/16)
285 #define BRG_UART_CLK_DIV16      (BRG_UART_CLK/16)
286
287 void
288 cpm_setbrg(uint brg, uint rate)
289 {
290         u32 __iomem *bp;
291
292         /* This is good enough to get SMCs running.....
293         */
294         bp = &cpmp->cp_brgc1;
295         bp += brg;
296         /* The BRG has a 12-bit counter.  For really slow baud rates (or
297          * really fast processors), we may have to further divide by 16.
298          */
299         if (((BRG_UART_CLK / rate) - 1) < 4096)
300                 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
301         else
302                 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
303                              CPM_BRG_EN | CPM_BRG_DIV16);
304 }
305
306 #ifndef CONFIG_PPC_CPM_NEW_BINDING
307 /*
308  * dpalloc / dpfree bits.
309  */
310 static spinlock_t cpm_dpmem_lock;
311 /*
312  * 16 blocks should be enough to satisfy all requests
313  * until the memory subsystem goes up...
314  */
315 static rh_block_t cpm_boot_dpmem_rh_block[16];
316 static rh_info_t cpm_dpmem_info;
317
318 #define CPM_DPMEM_ALIGNMENT     8
319 static u8 __iomem *dpram_vbase;
320 static phys_addr_t dpram_pbase;
321
322 static void m8xx_cpm_dpinit(void)
323 {
324         spin_lock_init(&cpm_dpmem_lock);
325
326         dpram_vbase = cpmp->cp_dpmem;
327         dpram_pbase = get_immrbase() + offsetof(immap_t, im_cpm.cp_dpmem);
328
329         /* Initialize the info header */
330         rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
331                         sizeof(cpm_boot_dpmem_rh_block) /
332                         sizeof(cpm_boot_dpmem_rh_block[0]),
333                         cpm_boot_dpmem_rh_block);
334
335         /*
336          * Attach the usable dpmem area.
337          * XXX: This is actually crap.  CPM_DATAONLY_BASE and
338          * CPM_DATAONLY_SIZE are a subset of the available dparm.  It varies
339          * with the processor and the microcode patches applied / activated.
340          * But the following should be at least safe.
341          */
342         rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
343 }
344
345 /*
346  * Allocate the requested size worth of DP memory.
347  * This function returns an offset into the DPRAM area.
348  * Use cpm_dpram_addr() to get the virtual address of the area.
349  */
350 unsigned long cpm_dpalloc(uint size, uint align)
351 {
352         unsigned long start;
353         unsigned long flags;
354
355         spin_lock_irqsave(&cpm_dpmem_lock, flags);
356         cpm_dpmem_info.alignment = align;
357         start = rh_alloc(&cpm_dpmem_info, size, "commproc");
358         spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
359
360         return (uint)start;
361 }
362 EXPORT_SYMBOL(cpm_dpalloc);
363
364 int cpm_dpfree(unsigned long offset)
365 {
366         int ret;
367         unsigned long flags;
368
369         spin_lock_irqsave(&cpm_dpmem_lock, flags);
370         ret = rh_free(&cpm_dpmem_info, offset);
371         spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
372
373         return ret;
374 }
375 EXPORT_SYMBOL(cpm_dpfree);
376
377 unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
378 {
379         unsigned long start;
380         unsigned long flags;
381
382         spin_lock_irqsave(&cpm_dpmem_lock, flags);
383         cpm_dpmem_info.alignment = align;
384         start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
385         spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
386
387         return start;
388 }
389 EXPORT_SYMBOL(cpm_dpalloc_fixed);
390
391 void cpm_dpdump(void)
392 {
393         rh_dump(&cpm_dpmem_info);
394 }
395 EXPORT_SYMBOL(cpm_dpdump);
396
397 void *cpm_dpram_addr(unsigned long offset)
398 {
399         return (void *)(dpram_vbase + offset);
400 }
401 EXPORT_SYMBOL(cpm_dpram_addr);
402
403 uint cpm_dpram_phys(u8 *addr)
404 {
405         return (dpram_pbase + (uint)(addr - dpram_vbase));
406 }
407 EXPORT_SYMBOL(cpm_dpram_phys);
408 #endif /* !CONFIG_PPC_CPM_NEW_BINDING */
409
410 struct cpm_ioport16 {
411         __be16 dir, par, sor, dat, intr;
412         __be16 res[3];
413 };
414
415 struct cpm_ioport32 {
416         __be32 dir, par, sor;
417 };
418
419 static void cpm1_set_pin32(int port, int pin, int flags)
420 {
421         struct cpm_ioport32 __iomem *iop;
422         pin = 1 << (31 - pin);
423
424         if (port == CPM_PORTB)
425                 iop = (struct cpm_ioport32 __iomem *)
426                       &mpc8xx_immr->im_cpm.cp_pbdir;
427         else
428                 iop = (struct cpm_ioport32 __iomem *)
429                       &mpc8xx_immr->im_cpm.cp_pedir;
430
431         if (flags & CPM_PIN_OUTPUT)
432                 setbits32(&iop->dir, pin);
433         else
434                 clrbits32(&iop->dir, pin);
435
436         if (!(flags & CPM_PIN_GPIO))
437                 setbits32(&iop->par, pin);
438         else
439                 clrbits32(&iop->par, pin);
440
441         if (port == CPM_PORTE) {
442                 if (flags & CPM_PIN_SECONDARY)
443                         setbits32(&iop->sor, pin);
444                 else
445                         clrbits32(&iop->sor, pin);
446
447                 if (flags & CPM_PIN_OPENDRAIN)
448                         setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
449                 else
450                         clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
451         }
452 }
453
454 static void cpm1_set_pin16(int port, int pin, int flags)
455 {
456         struct cpm_ioport16 __iomem *iop =
457                 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
458
459         pin = 1 << (15 - pin);
460
461         if (port != 0)
462                 iop += port - 1;
463
464         if (flags & CPM_PIN_OUTPUT)
465                 setbits16(&iop->dir, pin);
466         else
467                 clrbits16(&iop->dir, pin);
468
469         if (!(flags & CPM_PIN_GPIO))
470                 setbits16(&iop->par, pin);
471         else
472                 clrbits16(&iop->par, pin);
473
474         if (port == CPM_PORTC) {
475                 if (flags & CPM_PIN_SECONDARY)
476                         setbits16(&iop->sor, pin);
477                 else
478                         clrbits16(&iop->sor, pin);
479         }
480 }
481
482 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
483 {
484         if (port == CPM_PORTB || port == CPM_PORTE)
485                 cpm1_set_pin32(port, pin, flags);
486         else
487                 cpm1_set_pin16(port, pin, flags);
488 }
489
490 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
491 {
492         int shift;
493         int i, bits = 0;
494         u32 __iomem *reg;
495         u32 mask = 7;
496
497         u8 clk_map[][3] = {
498                 {CPM_CLK_SCC1, CPM_BRG1, 0},
499                 {CPM_CLK_SCC1, CPM_BRG2, 1},
500                 {CPM_CLK_SCC1, CPM_BRG3, 2},
501                 {CPM_CLK_SCC1, CPM_BRG4, 3},
502                 {CPM_CLK_SCC1, CPM_CLK1, 4},
503                 {CPM_CLK_SCC1, CPM_CLK2, 5},
504                 {CPM_CLK_SCC1, CPM_CLK3, 6},
505                 {CPM_CLK_SCC1, CPM_CLK4, 7},
506
507                 {CPM_CLK_SCC2, CPM_BRG1, 0},
508                 {CPM_CLK_SCC2, CPM_BRG2, 1},
509                 {CPM_CLK_SCC2, CPM_BRG3, 2},
510                 {CPM_CLK_SCC2, CPM_BRG4, 3},
511                 {CPM_CLK_SCC2, CPM_CLK1, 4},
512                 {CPM_CLK_SCC2, CPM_CLK2, 5},
513                 {CPM_CLK_SCC2, CPM_CLK3, 6},
514                 {CPM_CLK_SCC2, CPM_CLK4, 7},
515
516                 {CPM_CLK_SCC3, CPM_BRG1, 0},
517                 {CPM_CLK_SCC3, CPM_BRG2, 1},
518                 {CPM_CLK_SCC3, CPM_BRG3, 2},
519                 {CPM_CLK_SCC3, CPM_BRG4, 3},
520                 {CPM_CLK_SCC3, CPM_CLK5, 4},
521                 {CPM_CLK_SCC3, CPM_CLK6, 5},
522                 {CPM_CLK_SCC3, CPM_CLK7, 6},
523                 {CPM_CLK_SCC3, CPM_CLK8, 7},
524
525                 {CPM_CLK_SCC4, CPM_BRG1, 0},
526                 {CPM_CLK_SCC4, CPM_BRG2, 1},
527                 {CPM_CLK_SCC4, CPM_BRG3, 2},
528                 {CPM_CLK_SCC4, CPM_BRG4, 3},
529                 {CPM_CLK_SCC4, CPM_CLK5, 4},
530                 {CPM_CLK_SCC4, CPM_CLK6, 5},
531                 {CPM_CLK_SCC4, CPM_CLK7, 6},
532                 {CPM_CLK_SCC4, CPM_CLK8, 7},
533
534                 {CPM_CLK_SMC1, CPM_BRG1, 0},
535                 {CPM_CLK_SMC1, CPM_BRG2, 1},
536                 {CPM_CLK_SMC1, CPM_BRG3, 2},
537                 {CPM_CLK_SMC1, CPM_BRG4, 3},
538                 {CPM_CLK_SMC1, CPM_CLK1, 4},
539                 {CPM_CLK_SMC1, CPM_CLK2, 5},
540                 {CPM_CLK_SMC1, CPM_CLK3, 6},
541                 {CPM_CLK_SMC1, CPM_CLK4, 7},
542
543                 {CPM_CLK_SMC2, CPM_BRG1, 0},
544                 {CPM_CLK_SMC2, CPM_BRG2, 1},
545                 {CPM_CLK_SMC2, CPM_BRG3, 2},
546                 {CPM_CLK_SMC2, CPM_BRG4, 3},
547                 {CPM_CLK_SMC2, CPM_CLK5, 4},
548                 {CPM_CLK_SMC2, CPM_CLK6, 5},
549                 {CPM_CLK_SMC2, CPM_CLK7, 6},
550                 {CPM_CLK_SMC2, CPM_CLK8, 7},
551         };
552
553         switch (target) {
554         case CPM_CLK_SCC1:
555                 reg = &mpc8xx_immr->im_cpm.cp_sicr;
556                 shift = 0;
557                 break;
558
559         case CPM_CLK_SCC2:
560                 reg = &mpc8xx_immr->im_cpm.cp_sicr;
561                 shift = 8;
562                 break;
563
564         case CPM_CLK_SCC3:
565                 reg = &mpc8xx_immr->im_cpm.cp_sicr;
566                 shift = 16;
567                 break;
568
569         case CPM_CLK_SCC4:
570                 reg = &mpc8xx_immr->im_cpm.cp_sicr;
571                 shift = 24;
572                 break;
573
574         case CPM_CLK_SMC1:
575                 reg = &mpc8xx_immr->im_cpm.cp_simode;
576                 shift = 12;
577                 break;
578
579         case CPM_CLK_SMC2:
580                 reg = &mpc8xx_immr->im_cpm.cp_simode;
581                 shift = 28;
582                 break;
583
584         default:
585                 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
586                 return -EINVAL;
587         }
588
589         if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX)
590                 shift += 3;
591
592         for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
593                 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
594                         bits = clk_map[i][2];
595                         break;
596                 }
597         }
598
599         if (i == ARRAY_SIZE(clk_map)) {
600                 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
601                 return -EINVAL;
602         }
603
604         bits <<= shift;
605         mask <<= shift;
606         out_be32(reg, (in_be32(reg) & ~mask) | bits);
607
608         return 0;
609 }