2  *      Adaptec AAC series RAID controller driver
 
   3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
 
   5  * based on the old aacraid driver that is..
 
   6  * Adaptec aacraid device driver for Linux.
 
   8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
 
  10  * This program is free software; you can redistribute it and/or modify
 
  11  * it under the terms of the GNU General Public License as published by
 
  12  * the Free Software Foundation; either version 2, or (at your option)
 
  15  * This program is distributed in the hope that it will be useful,
 
  16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  18  * GNU General Public License for more details.
 
  20  * You should have received a copy of the GNU General Public License
 
  21  * along with this program; see the file COPYING.  If not, write to
 
  22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 
  27  * Abstract: Contain all routines that are required for FSA host/adapter
 
  32 #include <linux/kernel.h>
 
  33 #include <linux/init.h>
 
  34 #include <linux/types.h>
 
  35 #include <linux/sched.h>
 
  36 #include <linux/pci.h>
 
  37 #include <linux/spinlock.h>
 
  38 #include <linux/slab.h>
 
  39 #include <linux/completion.h>
 
  40 #include <linux/blkdev.h>
 
  41 #include <linux/delay.h>
 
  42 #include <linux/kthread.h>
 
  43 #include <linux/interrupt.h>
 
  44 #include <scsi/scsi.h>
 
  45 #include <scsi/scsi_host.h>
 
  46 #include <scsi/scsi_device.h>
 
  47 #include <scsi/scsi_cmnd.h>
 
  48 #include <asm/semaphore.h>
 
  53  *      fib_map_alloc           -       allocate the fib objects
 
  54  *      @dev: Adapter to allocate for
 
  56  *      Allocate and map the shared PCI space for the FIB blocks used to
 
  57  *      talk to the Adaptec firmware.
 
  60 static int fib_map_alloc(struct aac_dev *dev)
 
  63           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
 
  64           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
 
  65           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
 
  66         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
 
  67           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
 
  68           &dev->hw_fib_pa))==NULL)
 
  74  *      aac_fib_map_free                -       free the fib objects
 
  75  *      @dev: Adapter to free
 
  77  *      Free the PCI mappings and the memory allocated for FIB blocks
 
  81 void aac_fib_map_free(struct aac_dev *dev)
 
  83         pci_free_consistent(dev->pdev,
 
  84           dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
 
  85           dev->hw_fib_va, dev->hw_fib_pa);
 
  86         dev->hw_fib_va = NULL;
 
  91  *      aac_fib_setup   -       setup the fibs
 
  92  *      @dev: Adapter to set up
 
  94  *      Allocate the PCI space for the fibs, map it and then intialise the
 
  95  *      fib area, the unmapped fib data and also the free list
 
  98 int aac_fib_setup(struct aac_dev * dev)
 
 101         struct hw_fib *hw_fib;
 
 102         dma_addr_t hw_fib_pa;
 
 105         while (((i = fib_map_alloc(dev)) == -ENOMEM)
 
 106          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
 
 107                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
 
 108                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
 
 113         hw_fib = dev->hw_fib_va;
 
 114         hw_fib_pa = dev->hw_fib_pa;
 
 115         memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
 
 117          *      Initialise the fibs
 
 119         for (i = 0, fibptr = &dev->fibs[i];
 
 120                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 
 124                 fibptr->hw_fib_va = hw_fib;
 
 125                 fibptr->data = (void *) fibptr->hw_fib_va->data;
 
 126                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
 
 127                 init_MUTEX_LOCKED(&fibptr->event_wait);
 
 128                 spin_lock_init(&fibptr->event_lock);
 
 129                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
 
 130                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
 
 131                 fibptr->hw_fib_pa = hw_fib_pa;
 
 132                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
 
 133                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
 
 136          *      Add the fib chain to the free list
 
 138         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
 
 140          *      Enable this to debug out of queue space
 
 142         dev->free_fib = &dev->fibs[0];
 
 147  *      aac_fib_alloc   -       allocate a fib
 
 148  *      @dev: Adapter to allocate the fib for
 
 150  *      Allocate a fib from the adapter fib pool. If the pool is empty we
 
 154 struct fib *aac_fib_alloc(struct aac_dev *dev)
 
 158         spin_lock_irqsave(&dev->fib_lock, flags);
 
 159         fibptr = dev->free_fib;
 
 161                 spin_unlock_irqrestore(&dev->fib_lock, flags);
 
 164         dev->free_fib = fibptr->next;
 
 165         spin_unlock_irqrestore(&dev->fib_lock, flags);
 
 167          *      Set the proper node type code and node byte size
 
 169         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 
 170         fibptr->size = sizeof(struct fib);
 
 172          *      Null out fields that depend on being zero at the start of
 
 175         fibptr->hw_fib_va->header.XferState = 0;
 
 177         fibptr->callback = NULL;
 
 178         fibptr->callback_data = NULL;
 
 184  *      aac_fib_free    -       free a fib
 
 185  *      @fibptr: fib to free up
 
 187  *      Frees up a fib and places it on the appropriate queue
 
 190 void aac_fib_free(struct fib *fibptr)
 
 194         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
 
 195         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 
 196                 aac_config.fib_timeouts++;
 
 197         if (fibptr->hw_fib_va->header.XferState != 0) {
 
 198                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
 
 200                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
 
 202         fibptr->next = fibptr->dev->free_fib;
 
 203         fibptr->dev->free_fib = fibptr;
 
 204         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
 
 208  *      aac_fib_init    -       initialise a fib
 
 209  *      @fibptr: The fib to initialize
 
 211  *      Set up the generic fib fields ready for use
 
 214 void aac_fib_init(struct fib *fibptr)
 
 216         struct hw_fib *hw_fib = fibptr->hw_fib_va;
 
 218         hw_fib->header.StructType = FIB_MAGIC;
 
 219         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
 
 220         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
 
 221         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
 
 222         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
 
 223         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
 
 227  *      fib_deallocate          -       deallocate a fib
 
 228  *      @fibptr: fib to deallocate
 
 230  *      Will deallocate and return to the free pool the FIB pointed to by the
 
 234 static void fib_dealloc(struct fib * fibptr)
 
 236         struct hw_fib *hw_fib = fibptr->hw_fib_va;
 
 237         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
 
 238         hw_fib->header.XferState = 0;
 
 242  *      Commuication primitives define and support the queuing method we use to
 
 243  *      support host to adapter commuication. All queue accesses happen through
 
 244  *      these routines and are the only routines which have a knowledge of the
 
 245  *       how these queues are implemented.
 
 249  *      aac_get_entry           -       get a queue entry
 
 252  *      @entry: Entry return
 
 253  *      @index: Index return
 
 254  *      @nonotify: notification control
 
 256  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
 
 257  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
 
 261 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
 
 263         struct aac_queue * q;
 
 267          *      All of the queues wrap when they reach the end, so we check
 
 268          *      to see if they have reached the end and if they have we just
 
 269          *      set the index back to zero. This is a wrap. You could or off
 
 270          *      the high bits in all updates but this is a bit faster I think.
 
 273         q = &dev->queues->queue[qid];
 
 275         idx = *index = le32_to_cpu(*(q->headers.producer));
 
 276         /* Interrupt Moderation, only interrupt for first two entries */
 
 277         if (idx != le32_to_cpu(*(q->headers.consumer))) {
 
 279                         if (qid == AdapNormCmdQueue)
 
 280                                 idx = ADAP_NORM_CMD_ENTRIES;
 
 282                                 idx = ADAP_NORM_RESP_ENTRIES;
 
 284                 if (idx != le32_to_cpu(*(q->headers.consumer)))
 
 288         if (qid == AdapNormCmdQueue) {
 
 289                 if (*index >= ADAP_NORM_CMD_ENTRIES)
 
 290                         *index = 0; /* Wrap to front of the Producer Queue. */
 
 292                 if (*index >= ADAP_NORM_RESP_ENTRIES)
 
 293                         *index = 0; /* Wrap to front of the Producer Queue. */
 
 297         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
 
 298                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
 
 302                 *entry = q->base + *index;
 
 308  *      aac_queue_get           -       get the next free QE
 
 310  *      @index: Returned index
 
 311  *      @priority: Priority of fib
 
 312  *      @fib: Fib to associate with the queue entry
 
 313  *      @wait: Wait if queue full
 
 314  *      @fibptr: Driver fib object to go with fib
 
 315  *      @nonotify: Don't notify the adapter
 
 317  *      Gets the next free QE off the requested priorty adapter command
 
 318  *      queue and associates the Fib with the QE. The QE represented by
 
 319  *      index is ready to insert on the queue when this routine returns
 
 323 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
 
 325         struct aac_entry * entry = NULL;
 
 328         if (qid == AdapNormCmdQueue) {
 
 329                 /*  if no entries wait for some if caller wants to */
 
 330                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 
 331                         printk(KERN_ERR "GetEntries failed\n");
 
 334                  *      Setup queue entry with a command, status and fib mapped
 
 336                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 
 339                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 
 340                         /* if no entries wait for some if caller wants to */
 
 343                  *      Setup queue entry with command, status and fib mapped
 
 345                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 
 346                 entry->addr = hw_fib->header.SenderFibAddress;
 
 347                         /* Restore adapters pointer to the FIB */
 
 348                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
 
 352          *      If MapFib is true than we need to map the Fib and put pointers
 
 353          *      in the queue entry.
 
 356                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
 
 361  *      Define the highest level of host to adapter communication routines.
 
 362  *      These routines will support host to adapter FS commuication. These
 
 363  *      routines have no knowledge of the commuication method used. This level
 
 364  *      sends and receives FIBs. This level has no knowledge of how these FIBs
 
 365  *      get passed back and forth.
 
 369  *      aac_fib_send    -       send a fib to the adapter
 
 370  *      @command: Command to send
 
 372  *      @size: Size of fib data area
 
 373  *      @priority: Priority of Fib
 
 374  *      @wait: Async/sync select
 
 375  *      @reply: True if a reply is wanted
 
 376  *      @callback: Called with reply
 
 377  *      @callback_data: Passed to callback
 
 379  *      Sends the requested FIB to the adapter and optionally will wait for a
 
 380  *      response FIB. If the caller does not wish to wait for a response than
 
 381  *      an event to wait on must be supplied. This event will be set when a
 
 382  *      response FIB is received from the adapter.
 
 385 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
 
 386                 int priority, int wait, int reply, fib_callback callback,
 
 389         struct aac_dev * dev = fibptr->dev;
 
 390         struct hw_fib * hw_fib = fibptr->hw_fib_va;
 
 391         unsigned long flags = 0;
 
 392         unsigned long qflags;
 
 394         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
 
 397          *      There are 5 cases with the wait and reponse requested flags.
 
 398          *      The only invalid cases are if the caller requests to wait and
 
 399          *      does not request a response and if the caller does not want a
 
 400          *      response and the Fib is not allocated from pool. If a response
 
 401          *      is not requesed the Fib will just be deallocaed by the DPC
 
 402          *      routine when the response comes back from the adapter. No
 
 403          *      further processing will be done besides deleting the Fib. We
 
 404          *      will have a debug mode where the adapter can notify the host
 
 405          *      it had a problem and the host can log that fact.
 
 408         if (wait && !reply) {
 
 410         } else if (!wait && reply) {
 
 411                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
 
 412                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
 
 413         } else if (!wait && !reply) {
 
 414                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
 
 415                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
 
 416         } else if (wait && reply) {
 
 417                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
 
 418                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
 
 421          *      Map the fib into 32bits by using the fib number
 
 424         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
 
 425         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
 
 427          *      Set FIB state to indicate where it came from and if we want a
 
 428          *      response from the adapter. Also load the command from the
 
 431          *      Map the hw fib pointer as a 32bit value
 
 433         hw_fib->header.Command = cpu_to_le16(command);
 
 434         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
 
 435         fibptr->hw_fib_va->header.Flags = 0;    /* 0 the flags field - internal only*/
 
 437          *      Set the size of the Fib we want to send to the adapter
 
 439         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
 
 440         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
 
 444          *      Get a queue entry connect the FIB to it and send an notify
 
 445          *      the adapter a command is ready.
 
 447         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
 
 450          *      Fill in the Callback and CallbackContext if we are not
 
 454                 fibptr->callback = callback;
 
 455                 fibptr->callback_data = callback_data;
 
 456                 fibptr->flags = FIB_CONTEXT_FLAG;
 
 461         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
 
 463         dprintk((KERN_DEBUG "Fib contents:.\n"));
 
 464         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
 
 465         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
 
 466         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
 
 467         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
 
 468         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
 
 469         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
 
 475                 spin_lock_irqsave(&fibptr->event_lock, flags);
 
 476         aac_adapter_deliver(fibptr);
 
 479          *      If the caller wanted us to wait for response wait now.
 
 483                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
 
 484                 /* Only set for first known interruptable command */
 
 487                          * *VERY* Dangerous to time out a command, the
 
 488                          * assumption is made that we have no hope of
 
 489                          * functioning because an interrupt routing or other
 
 490                          * hardware failure has occurred.
 
 492                         unsigned long count = 36000000L; /* 3 minutes */
 
 493                         while (down_trylock(&fibptr->event_wait)) {
 
 496                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
 
 497                                         spin_lock_irqsave(q->lock, qflags);
 
 499                                         spin_unlock_irqrestore(q->lock, qflags);
 
 501                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
 
 502                                                   "Usually a result of a PCI interrupt routing problem;\n"
 
 503                                                   "update mother board BIOS or consider utilizing one of\n"
 
 504                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
 
 508                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
 
 510                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
 
 511                                                   "Usually a result of a serious unrecoverable hardware problem\n",
 
 519                         (void)down_interruptible(&fibptr->event_wait);
 
 520                 spin_lock_irqsave(&fibptr->event_lock, flags);
 
 521                 if (fibptr->done == 0) {
 
 522                         fibptr->done = 2; /* Tell interrupt we aborted */
 
 523                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
 
 526                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
 
 527                 BUG_ON(fibptr->done == 0);
 
 529                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 
 534          *      If the user does not want a response than return success otherwise
 
 544  *      aac_consumer_get        -       get the top of the queue
 
 547  *      @entry: Return entry
 
 549  *      Will return a pointer to the entry on the top of the queue requested that
 
 550  *      we are a consumer of, and return the address of the queue entry. It does
 
 551  *      not change the state of the queue.
 
 554 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
 
 558         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
 
 562                  *      The consumer index must be wrapped if we have reached
 
 563                  *      the end of the queue, else we just use the entry
 
 564                  *      pointed to by the header index
 
 566                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 
 569                         index = le32_to_cpu(*q->headers.consumer);
 
 570                 *entry = q->base + index;
 
 577  *      aac_consumer_free       -       free consumer entry
 
 582  *      Frees up the current top of the queue we are a consumer of. If the
 
 583  *      queue was full notify the producer that the queue is no longer full.
 
 586 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
 
 591         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
 
 594         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 
 595                 *q->headers.consumer = cpu_to_le32(1);
 
 597                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
 
 602                 case HostNormCmdQueue:
 
 603                         notify = HostNormCmdNotFull;
 
 605                 case HostNormRespQueue:
 
 606                         notify = HostNormRespNotFull;
 
 612                 aac_adapter_notify(dev, notify);
 
 617  *      aac_fib_adapter_complete        -       complete adapter issued fib
 
 618  *      @fibptr: fib to complete
 
 621  *      Will do all necessary work to complete a FIB that was sent from
 
 625 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
 
 627         struct hw_fib * hw_fib = fibptr->hw_fib_va;
 
 628         struct aac_dev * dev = fibptr->dev;
 
 629         struct aac_queue * q;
 
 630         unsigned long nointr = 0;
 
 631         unsigned long qflags;
 
 633         if (hw_fib->header.XferState == 0) {
 
 634                 if (dev->comm_interface == AAC_COMM_MESSAGE)
 
 639          *      If we plan to do anything check the structure type first.
 
 641         if (hw_fib->header.StructType != FIB_MAGIC) {
 
 642                 if (dev->comm_interface == AAC_COMM_MESSAGE)
 
 647          *      This block handles the case where the adapter had sent us a
 
 648          *      command and we have finished processing the command. We
 
 649          *      call completeFib when we are done processing the command
 
 650          *      and want to send a response back to the adapter. This will
 
 651          *      send the completed cdb to the adapter.
 
 653         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
 
 654                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
 
 658                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
 
 660                                 size += sizeof(struct aac_fibhdr);
 
 661                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
 
 663                                 hw_fib->header.Size = cpu_to_le16(size);
 
 665                         q = &dev->queues->queue[AdapNormRespQueue];
 
 666                         spin_lock_irqsave(q->lock, qflags);
 
 667                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
 
 668                         *(q->headers.producer) = cpu_to_le32(index + 1);
 
 669                         spin_unlock_irqrestore(q->lock, qflags);
 
 670                         if (!(nointr & (int)aac_config.irq_mod))
 
 671                                 aac_adapter_notify(dev, AdapNormRespQueue);
 
 674                 printk(KERN_WARNING "aac_fib_adapter_complete: "
 
 675                         "Unknown xferstate detected.\n");
 
 682  *      aac_fib_complete        -       fib completion handler
 
 683  *      @fib: FIB to complete
 
 685  *      Will do all necessary work to complete a FIB.
 
 688 int aac_fib_complete(struct fib *fibptr)
 
 690         struct hw_fib * hw_fib = fibptr->hw_fib_va;
 
 693          *      Check for a fib which has already been completed
 
 696         if (hw_fib->header.XferState == 0)
 
 699          *      If we plan to do anything check the structure type first.
 
 702         if (hw_fib->header.StructType != FIB_MAGIC)
 
 705          *      This block completes a cdb which orginated on the host and we
 
 706          *      just need to deallocate the cdb or reinit it. At this point the
 
 707          *      command is complete that we had sent to the adapter and this
 
 708          *      cdb could be reused.
 
 710         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
 
 711                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
 
 715         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
 
 718                  *      This handles the case when the host has aborted the I/O
 
 719                  *      to the adapter because the adapter is not responding
 
 722         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
 
 731  *      aac_printf      -       handle printf from firmware
 
 735  *      Print a message passed to us by the controller firmware on the
 
 739 void aac_printf(struct aac_dev *dev, u32 val)
 
 741         char *cp = dev->printfbuf;
 
 742         if (dev->printf_enabled)
 
 744                 int length = val & 0xffff;
 
 745                 int level = (val >> 16) & 0xffff;
 
 748                  *      The size of the printfbuf is set in port.c
 
 749                  *      There is no variable or define for it
 
 755                 if (level == LOG_AAC_HIGH_ERROR)
 
 756                         printk(KERN_WARNING "%s:%s", dev->name, cp);
 
 758                         printk(KERN_INFO "%s:%s", dev->name, cp);
 
 765  *      aac_handle_aif          -       Handle a message from the firmware
 
 766  *      @dev: Which adapter this fib is from
 
 767  *      @fibptr: Pointer to fibptr from adapter
 
 769  *      This routine handles a driver notify fib from the adapter and
 
 770  *      dispatches it to the appropriate routine for handling.
 
 773 #define AIF_SNIFF_TIMEOUT       (30*HZ)
 
 774 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
 
 776         struct hw_fib * hw_fib = fibptr->hw_fib_va;
 
 777         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
 
 778         u32 channel, id, lun, container;
 
 779         struct scsi_device *device;
 
 785         } device_config_needed = NOTHING;
 
 787         /* Sniff for container changes */
 
 789         if (!dev || !dev->fsa_dev)
 
 791         container = channel = id = lun = (u32)-1;
 
 794          *      We have set this up to try and minimize the number of
 
 795          * re-configures that take place. As a result of this when
 
 796          * certain AIF's come in we will set a flag waiting for another
 
 797          * type of AIF before setting the re-config flag.
 
 799         switch (le32_to_cpu(aifcmd->command)) {
 
 800         case AifCmdDriverNotify:
 
 801                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
 
 803                  *      Morph or Expand complete
 
 805                 case AifDenMorphComplete:
 
 806                 case AifDenVolumeExtendComplete:
 
 807                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 
 808                         if (container >= dev->maximum_num_containers)
 
 812                          *      Find the scsi_device associated with the SCSI
 
 813                          * address. Make sure we have the right array, and if
 
 814                          * so set the flag to initiate a new re-config once we
 
 815                          * see an AifEnConfigChange AIF come through.
 
 818                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
 
 819                                 device = scsi_device_lookup(dev->scsi_host_ptr,
 
 820                                         CONTAINER_TO_CHANNEL(container),
 
 821                                         CONTAINER_TO_ID(container),
 
 822                                         CONTAINER_TO_LUN(container));
 
 824                                         dev->fsa_dev[container].config_needed = CHANGE;
 
 825                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
 
 826                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
 
 827                                         scsi_device_put(device);
 
 833                  *      If we are waiting on something and this happens to be
 
 834                  * that thing then set the re-configure flag.
 
 836                 if (container != (u32)-1) {
 
 837                         if (container >= dev->maximum_num_containers)
 
 839                         if ((dev->fsa_dev[container].config_waiting_on ==
 
 840                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
 
 841                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 842                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 843                 } else for (container = 0;
 
 844                     container < dev->maximum_num_containers; ++container) {
 
 845                         if ((dev->fsa_dev[container].config_waiting_on ==
 
 846                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
 
 847                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 848                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 852         case AifCmdEventNotify:
 
 853                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
 
 854                 case AifEnBatteryEvent:
 
 855                         dev->cache_protected =
 
 856                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
 
 861                 case AifEnAddContainer:
 
 862                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 
 863                         if (container >= dev->maximum_num_containers)
 
 865                         dev->fsa_dev[container].config_needed = ADD;
 
 866                         dev->fsa_dev[container].config_waiting_on =
 
 868                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
 
 874                 case AifEnDeleteContainer:
 
 875                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 
 876                         if (container >= dev->maximum_num_containers)
 
 878                         dev->fsa_dev[container].config_needed = DELETE;
 
 879                         dev->fsa_dev[container].config_waiting_on =
 
 881                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
 
 885                  *      Container change detected. If we currently are not
 
 886                  * waiting on something else, setup to wait on a Config Change.
 
 888                 case AifEnContainerChange:
 
 889                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 
 890                         if (container >= dev->maximum_num_containers)
 
 892                         if (dev->fsa_dev[container].config_waiting_on &&
 
 893                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 895                         dev->fsa_dev[container].config_needed = CHANGE;
 
 896                         dev->fsa_dev[container].config_waiting_on =
 
 898                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
 
 901                 case AifEnConfigChange:
 
 905                 case AifEnDeleteJBOD:
 
 906                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
 
 907                         if ((container >> 28))
 
 909                         channel = (container >> 24) & 0xF;
 
 910                         if (channel >= dev->maximum_num_channels)
 
 912                         id = container & 0xFFFF;
 
 913                         if (id >= dev->maximum_num_physicals)
 
 915                         lun = (container >> 16) & 0xFF;
 
 916                         channel = aac_phys_to_logical(channel);
 
 917                         device_config_needed =
 
 918                           (((__le32 *)aifcmd->data)[0] ==
 
 919                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
 
 922                 case AifEnEnclosureManagement:
 
 924                          * If in JBOD mode, automatic exposure of new
 
 925                          * physical target to be suppressed until configured.
 
 929                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
 
 930                         case EM_DRIVE_INSERTION:
 
 931                         case EM_DRIVE_REMOVAL:
 
 932                                 container = le32_to_cpu(
 
 933                                         ((__le32 *)aifcmd->data)[2]);
 
 934                                 if ((container >> 28))
 
 936                                 channel = (container >> 24) & 0xF;
 
 937                                 if (channel >= dev->maximum_num_channels)
 
 939                                 id = container & 0xFFFF;
 
 940                                 lun = (container >> 16) & 0xFF;
 
 941                                 if (id >= dev->maximum_num_physicals) {
 
 943                                         if ((0x2000 <= id) || lun || channel ||
 
 944                                           ((channel = (id >> 7) & 0x3F) >=
 
 945                                           dev->maximum_num_channels))
 
 950                                 channel = aac_phys_to_logical(channel);
 
 951                                 device_config_needed =
 
 952                                   (((__le32 *)aifcmd->data)[3]
 
 953                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ?
 
 961                  *      If we are waiting on something and this happens to be
 
 962                  * that thing then set the re-configure flag.
 
 964                 if (container != (u32)-1) {
 
 965                         if (container >= dev->maximum_num_containers)
 
 967                         if ((dev->fsa_dev[container].config_waiting_on ==
 
 968                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
 
 969                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 970                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 971                 } else for (container = 0;
 
 972                     container < dev->maximum_num_containers; ++container) {
 
 973                         if ((dev->fsa_dev[container].config_waiting_on ==
 
 974                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
 
 975                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 976                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 980         case AifCmdJobProgress:
 
 982                  *      These are job progress AIF's. When a Clear is being
 
 983                  * done on a container it is initially created then hidden from
 
 984                  * the OS. When the clear completes we don't get a config
 
 985                  * change so we monitor the job status complete on a clear then
 
 986                  * wait for a container change.
 
 989                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
 
 990                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
 
 991                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
 
 993                             container < dev->maximum_num_containers;
 
 996                                  * Stomp on all config sequencing for all
 
 999                                 dev->fsa_dev[container].config_waiting_on =
 
1000                                         AifEnContainerChange;
 
1001                                 dev->fsa_dev[container].config_needed = ADD;
 
1002                                 dev->fsa_dev[container].config_waiting_stamp =
 
1006                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
 
1007                     ((__le32 *)aifcmd->data)[6] == 0 &&
 
1008                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
 
1010                             container < dev->maximum_num_containers;
 
1013                                  * Stomp on all config sequencing for all
 
1016                                 dev->fsa_dev[container].config_waiting_on =
 
1017                                         AifEnContainerChange;
 
1018                                 dev->fsa_dev[container].config_needed = DELETE;
 
1019                                 dev->fsa_dev[container].config_waiting_stamp =
 
1026         if (device_config_needed == NOTHING)
 
1027         for (container = 0; container < dev->maximum_num_containers;
 
1029                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
 
1030                         (dev->fsa_dev[container].config_needed != NOTHING) &&
 
1031                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
 
1032                         device_config_needed =
 
1033                                 dev->fsa_dev[container].config_needed;
 
1034                         dev->fsa_dev[container].config_needed = NOTHING;
 
1035                         channel = CONTAINER_TO_CHANNEL(container);
 
1036                         id = CONTAINER_TO_ID(container);
 
1037                         lun = CONTAINER_TO_LUN(container);
 
1041         if (device_config_needed == NOTHING)
 
1045          *      If we decided that a re-configuration needs to be done,
 
1046          * schedule it here on the way out the door, please close the door
 
1051          *      Find the scsi_device associated with the SCSI address,
 
1052          * and mark it as changed, invalidating the cache. This deals
 
1053          * with changes to existing device IDs.
 
1056         if (!dev || !dev->scsi_host_ptr)
 
1059          * force reload of disk info via aac_probe_container
 
1061         if ((channel == CONTAINER_CHANNEL) &&
 
1062           (device_config_needed != NOTHING)) {
 
1063                 if (dev->fsa_dev[container].valid == 1)
 
1064                         dev->fsa_dev[container].valid = 2;
 
1065                 aac_probe_container(dev, container);
 
1067         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
 
1069                 switch (device_config_needed) {
 
1071                         if (scsi_device_online(device)) {
 
1072                                 scsi_device_set_state(device, SDEV_OFFLINE);
 
1073                                 sdev_printk(KERN_INFO, device,
 
1074                                         "Device offlined - %s\n",
 
1075                                         (channel == CONTAINER_CHANNEL) ?
 
1077                                                 "enclosure services event");
 
1081                         if (!scsi_device_online(device)) {
 
1082                                 sdev_printk(KERN_INFO, device,
 
1083                                         "Device online - %s\n",
 
1084                                         (channel == CONTAINER_CHANNEL) ?
 
1086                                                 "enclosure services event");
 
1087                                 scsi_device_set_state(device, SDEV_RUNNING);
 
1091                         if ((channel == CONTAINER_CHANNEL)
 
1092                          && (!dev->fsa_dev[container].valid)) {
 
1093                                 if (!scsi_device_online(device))
 
1095                                 scsi_device_set_state(device, SDEV_OFFLINE);
 
1096                                 sdev_printk(KERN_INFO, device,
 
1097                                         "Device offlined - %s\n",
 
1101                         scsi_rescan_device(&device->sdev_gendev);
 
1106                 scsi_device_put(device);
 
1107                 device_config_needed = NOTHING;
 
1109         if (device_config_needed == ADD)
 
1110                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
 
1113 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
 
1117         struct Scsi_Host *host;
 
1118         struct scsi_device *dev;
 
1119         struct scsi_cmnd *command;
 
1120         struct scsi_cmnd *command_list;
 
1125          *      - host is locked, unless called by the aacraid thread.
 
1126          *        (a matter of convenience, due to legacy issues surrounding
 
1127          *        eh_host_adapter_reset).
 
1128          *      - in_reset is asserted, so no new i/o is getting to the
 
1130          *      - The card is dead, or will be very shortly ;-/ so no new
 
1131          *        commands are completing in the interrupt service.
 
1133         host = aac->scsi_host_ptr;
 
1134         scsi_block_requests(host);
 
1135         aac_adapter_disable_int(aac);
 
1136         if (aac->thread->pid != current->pid) {
 
1137                 spin_unlock_irq(host->host_lock);
 
1138                 kthread_stop(aac->thread);
 
1143          *      If a positive health, means in a known DEAD PANIC
 
1144          * state and the adapter could be reset to `try again'.
 
1146         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
 
1152          *      Loop through the fibs, close the synchronous FIBS
 
1154         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
 
1155                 struct fib *fib = &aac->fibs[index];
 
1156                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
 
1157                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
 
1158                         unsigned long flagv;
 
1159                         spin_lock_irqsave(&fib->event_lock, flagv);
 
1160                         up(&fib->event_wait);
 
1161                         spin_unlock_irqrestore(&fib->event_lock, flagv);
 
1166         /* Give some extra time for ioctls to complete. */
 
1169         index = aac->cardtype;
 
1172          * Re-initialize the adapter, first free resources, then carefully
 
1173          * apply the initialization sequence to come back again. Only risk
 
1174          * is a change in Firmware dropping cache, it is assumed the caller
 
1175          * will ensure that i/o is queisced and the card is flushed in that
 
1178         aac_fib_map_free(aac);
 
1179         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
 
1180         aac->comm_addr = NULL;
 
1184         free_irq(aac->pdev->irq, aac);
 
1185         kfree(aac->fsa_dev);
 
1186         aac->fsa_dev = NULL;
 
1187         quirks = aac_get_driver_ident(index)->quirks;
 
1188         if (quirks & AAC_QUIRK_31BIT) {
 
1189                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
 
1190                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
 
1193                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
 
1194                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
 
1197         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
 
1199         if (quirks & AAC_QUIRK_31BIT)
 
1200                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
 
1203                 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
 
1204                 if (IS_ERR(aac->thread)) {
 
1205                         retval = PTR_ERR(aac->thread);
 
1209         (void)aac_get_adapter_info(aac);
 
1210         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
 
1211                 host->sg_tablesize = 34;
 
1212                 host->max_sectors = (host->sg_tablesize * 8) + 112;
 
1214         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
 
1215                 host->sg_tablesize = 17;
 
1216                 host->max_sectors = (host->sg_tablesize * 8) + 112;
 
1218         aac_get_config_status(aac, 1);
 
1219         aac_get_containers(aac);
 
1221          * This is where the assumption that the Adapter is quiesced
 
1224         command_list = NULL;
 
1225         __shost_for_each_device(dev, host) {
 
1226                 unsigned long flags;
 
1227                 spin_lock_irqsave(&dev->list_lock, flags);
 
1228                 list_for_each_entry(command, &dev->cmd_list, list)
 
1229                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
 
1230                                 command->SCp.buffer = (struct scatterlist *)command_list;
 
1231                                 command_list = command;
 
1233                 spin_unlock_irqrestore(&dev->list_lock, flags);
 
1235         while ((command = command_list)) {
 
1236                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
 
1237                 command->SCp.buffer = NULL;
 
1238                 command->result = DID_OK << 16
 
1239                   | COMMAND_COMPLETE << 8
 
1240                   | SAM_STAT_TASK_SET_FULL;
 
1241                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
 
1242                 command->scsi_done(command);
 
1248         scsi_unblock_requests(host);
 
1250                 spin_lock_irq(host->host_lock);
 
1255 int aac_reset_adapter(struct aac_dev * aac, int forced)
 
1257         unsigned long flagv = 0;
 
1259         struct Scsi_Host * host;
 
1261         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
 
1264         if (aac->in_reset) {
 
1265                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
 
1269         spin_unlock_irqrestore(&aac->fib_lock, flagv);
 
1272          * Wait for all commands to complete to this specific
 
1273          * target (block maximum 60 seconds). Although not necessary,
 
1274          * it does make us a good storage citizen.
 
1276         host = aac->scsi_host_ptr;
 
1277         scsi_block_requests(host);
 
1278         if (forced < 2) for (retval = 60; retval; --retval) {
 
1279                 struct scsi_device * dev;
 
1280                 struct scsi_cmnd * command;
 
1283                 __shost_for_each_device(dev, host) {
 
1284                         spin_lock_irqsave(&dev->list_lock, flagv);
 
1285                         list_for_each_entry(command, &dev->cmd_list, list) {
 
1286                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
 
1291                         spin_unlock_irqrestore(&dev->list_lock, flagv);
 
1297                  * We can exit If all the commands are complete
 
1304         /* Quiesce build, flush cache, write through mode */
 
1306                 aac_send_shutdown(aac);
 
1307         spin_lock_irqsave(host->host_lock, flagv);
 
1308         retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
 
1309         spin_unlock_irqrestore(host->host_lock, flagv);
 
1311         if ((forced < 2) && (retval == -ENODEV)) {
 
1312                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
 
1313                 struct fib * fibctx = aac_fib_alloc(aac);
 
1315                         struct aac_pause *cmd;
 
1318                         aac_fib_init(fibctx);
 
1320                         cmd = (struct aac_pause *) fib_data(fibctx);
 
1322                         cmd->command = cpu_to_le32(VM_ContainerConfig);
 
1323                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
 
1324                         cmd->timeout = cpu_to_le32(1);
 
1325                         cmd->min = cpu_to_le32(1);
 
1326                         cmd->noRescan = cpu_to_le32(1);
 
1327                         cmd->count = cpu_to_le32(0);
 
1329                         status = aac_fib_send(ContainerCommand,
 
1331                           sizeof(struct aac_pause),
 
1333                           -2 /* Timeout silently */, 1,
 
1337                                 aac_fib_complete(fibctx);
 
1338                         aac_fib_free(fibctx);
 
1345 int aac_check_health(struct aac_dev * aac)
 
1348         unsigned long time_now, flagv = 0;
 
1349         struct list_head * entry;
 
1350         struct Scsi_Host * host;
 
1352         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
 
1353         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
 
1356         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
 
1357                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
 
1364          *      aac_aifcmd.command = AifCmdEventNotify = 1
 
1365          *      aac_aifcmd.seqnum = 0xFFFFFFFF
 
1366          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
 
1367          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
 
1368          *      aac.aifcmd.data[2] = AifHighPriority = 3
 
1369          *      aac.aifcmd.data[3] = BlinkLED
 
1372         time_now = jiffies/HZ;
 
1373         entry = aac->fib_list.next;
 
1376          * For each Context that is on the
 
1377          * fibctxList, make a copy of the
 
1378          * fib, and then set the event to wake up the
 
1379          * thread that is waiting for it.
 
1381         while (entry != &aac->fib_list) {
 
1383                  * Extract the fibctx
 
1385                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
 
1386                 struct hw_fib * hw_fib;
 
1389                  * Check if the queue is getting
 
1392                 if (fibctx->count > 20) {
 
1394                          * It's *not* jiffies folks,
 
1395                          * but jiffies / HZ, so do not
 
1398                         u32 time_last = fibctx->jiffies;
 
1400                          * Has it been > 2 minutes
 
1401                          * since the last read off
 
1404                         if ((time_now - time_last) > aif_timeout) {
 
1405                                 entry = entry->next;
 
1406                                 aac_close_fib_context(aac, fibctx);
 
1411                  * Warning: no sleep allowed while
 
1414                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
 
1415                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
 
1416                 if (fib && hw_fib) {
 
1417                         struct aac_aifcmd * aif;
 
1419                         fib->hw_fib_va = hw_fib;
 
1422                         fib->type = FSAFS_NTC_FIB_CONTEXT;
 
1423                         fib->size = sizeof (struct fib);
 
1424                         fib->data = hw_fib->data;
 
1425                         aif = (struct aac_aifcmd *)hw_fib->data;
 
1426                         aif->command = cpu_to_le32(AifCmdEventNotify);
 
1427                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
 
1428                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
 
1429                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
 
1430                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
 
1431                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
 
1434                          * Put the FIB onto the
 
1437                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
 
1440                          * Set the event to wake up the
 
1441                          * thread that will waiting.
 
1443                         up(&fibctx->wait_sem);
 
1445                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
 
1449                 entry = entry->next;
 
1452         spin_unlock_irqrestore(&aac->fib_lock, flagv);
 
1455                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
 
1459         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
 
1461         if (!aac_check_reset || ((aac_check_reset != 1) &&
 
1462                 (aac->supplement_adapter_info.SupportedOptions2 &
 
1463                         AAC_OPTION_IGNORE_RESET)))
 
1465         host = aac->scsi_host_ptr;
 
1466         if (aac->thread->pid != current->pid)
 
1467                 spin_lock_irqsave(host->host_lock, flagv);
 
1468         BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
 
1469         if (aac->thread->pid != current->pid)
 
1470                 spin_unlock_irqrestore(host->host_lock, flagv);
 
1480  *      aac_command_thread      -       command processing thread
 
1481  *      @dev: Adapter to monitor
 
1483  *      Waits on the commandready event in it's queue. When the event gets set
 
1484  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
 
1485  *      until the queue is empty. When the queue is empty it will wait for
 
1489 int aac_command_thread(void *data)
 
1491         struct aac_dev *dev = data;
 
1492         struct hw_fib *hw_fib, *hw_newfib;
 
1493         struct fib *fib, *newfib;
 
1494         struct aac_fib_context *fibctx;
 
1495         unsigned long flags;
 
1496         DECLARE_WAITQUEUE(wait, current);
 
1497         unsigned long next_jiffies = jiffies + HZ;
 
1498         unsigned long next_check_jiffies = next_jiffies;
 
1499         long difference = HZ;
 
1502          *      We can only have one thread per adapter for AIF's.
 
1504         if (dev->aif_thread)
 
1508          *      Let the DPC know it has a place to send the AIF's to.
 
1510         dev->aif_thread = 1;
 
1511         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
 
1512         set_current_state(TASK_INTERRUPTIBLE);
 
1513         dprintk ((KERN_INFO "aac_command_thread start\n"));
 
1515                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1516                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
 
1517                         struct list_head *entry;
 
1518                         struct aac_aifcmd * aifcmd;
 
1520                         set_current_state(TASK_RUNNING);
 
1522                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
 
1525                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1526                         fib = list_entry(entry, struct fib, fiblink);
 
1528                          *      We will process the FIB here or pass it to a
 
1529                          *      worker thread that is TBD. We Really can't
 
1530                          *      do anything at this point since we don't have
 
1531                          *      anything defined for this thread to do.
 
1533                         hw_fib = fib->hw_fib_va;
 
1534                         memset(fib, 0, sizeof(struct fib));
 
1535                         fib->type = FSAFS_NTC_FIB_CONTEXT;
 
1536                         fib->size = sizeof(struct fib);
 
1537                         fib->hw_fib_va = hw_fib;
 
1538                         fib->data = hw_fib->data;
 
1541                          *      We only handle AifRequest fibs from the adapter.
 
1543                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
 
1544                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
 
1545                                 /* Handle Driver Notify Events */
 
1546                                 aac_handle_aif(dev, fib);
 
1547                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
 
1548                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
 
1550                                 /* The u32 here is important and intended. We are using
 
1551                                    32bit wrapping time to fit the adapter field */
 
1553                                 u32 time_now, time_last;
 
1554                                 unsigned long flagv;
 
1556                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
 
1557                                 struct fib ** fib_pool, ** fib_p;
 
1560                                 if ((aifcmd->command ==
 
1561                                      cpu_to_le32(AifCmdEventNotify)) ||
 
1563                                      cpu_to_le32(AifCmdJobProgress))) {
 
1564                                         aac_handle_aif(dev, fib);
 
1567                                 time_now = jiffies/HZ;
 
1570                                  * Warning: no sleep allowed while
 
1571                                  * holding spinlock. We take the estimate
 
1572                                  * and pre-allocate a set of fibs outside the
 
1575                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
 
1576                                     / sizeof(struct hw_fib); /* some extra */
 
1577                                 spin_lock_irqsave(&dev->fib_lock, flagv);
 
1578                                 entry = dev->fib_list.next;
 
1579                                 while (entry != &dev->fib_list) {
 
1580                                         entry = entry->next;
 
1583                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
 
1587                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
 
1588                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
 
1589                                         hw_fib_p = hw_fib_pool;
 
1591                                         while (hw_fib_p < &hw_fib_pool[num]) {
 
1592                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
 
1596                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
 
1597                                                         kfree(*(--hw_fib_p));
 
1601                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
 
1611                                 spin_lock_irqsave(&dev->fib_lock, flagv);
 
1612                                 entry = dev->fib_list.next;
 
1614                                  * For each Context that is on the
 
1615                                  * fibctxList, make a copy of the
 
1616                                  * fib, and then set the event to wake up the
 
1617                                  * thread that is waiting for it.
 
1619                                 hw_fib_p = hw_fib_pool;
 
1621                                 while (entry != &dev->fib_list) {
 
1623                                          * Extract the fibctx
 
1625                                         fibctx = list_entry(entry, struct aac_fib_context, next);
 
1627                                          * Check if the queue is getting
 
1630                                         if (fibctx->count > 20)
 
1633                                                  * It's *not* jiffies folks,
 
1634                                                  * but jiffies / HZ so do not
 
1637                                                 time_last = fibctx->jiffies;
 
1639                                                  * Has it been > 2 minutes
 
1640                                                  * since the last read off
 
1643                                                 if ((time_now - time_last) > aif_timeout) {
 
1644                                                         entry = entry->next;
 
1645                                                         aac_close_fib_context(dev, fibctx);
 
1650                                          * Warning: no sleep allowed while
 
1653                                         if (hw_fib_p < &hw_fib_pool[num]) {
 
1654                                                 hw_newfib = *hw_fib_p;
 
1655                                                 *(hw_fib_p++) = NULL;
 
1659                                                  * Make the copy of the FIB
 
1661                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
 
1662                                                 memcpy(newfib, fib, sizeof(struct fib));
 
1663                                                 newfib->hw_fib_va = hw_newfib;
 
1665                                                  * Put the FIB onto the
 
1668                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
 
1671                                                  * Set the event to wake up the
 
1672                                                  * thread that is waiting.
 
1674                                                 up(&fibctx->wait_sem);
 
1676                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
 
1678                                         entry = entry->next;
 
1681                                  *      Set the status of this FIB
 
1683                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
 
1684                                 aac_fib_adapter_complete(fib, sizeof(u32));
 
1685                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
 
1686                                 /* Free up the remaining resources */
 
1687                                 hw_fib_p = hw_fib_pool;
 
1689                                 while (hw_fib_p < &hw_fib_pool[num]) {
 
1699                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1702                  *      There are no more AIF's
 
1704                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1707                  *      Background activity
 
1709                 if ((time_before(next_check_jiffies,next_jiffies))
 
1710                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
 
1711                         next_check_jiffies = next_jiffies;
 
1712                         if (aac_check_health(dev) == 0) {
 
1713                                 difference = ((long)(unsigned)check_interval)
 
1715                                 next_check_jiffies = jiffies + difference;
 
1716                         } else if (!dev->queues)
 
1719                 if (!time_before(next_check_jiffies,next_jiffies)
 
1720                  && ((difference = next_jiffies - jiffies) <= 0)) {
 
1724                         /* Don't even try to talk to adapter if its sick */
 
1725                         ret = aac_check_health(dev);
 
1726                         if (!ret && !dev->queues)
 
1728                         next_check_jiffies = jiffies
 
1729                                            + ((long)(unsigned)check_interval)
 
1731                         do_gettimeofday(&now);
 
1733                         /* Synchronize our watches */
 
1734                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
 
1735                          && (now.tv_usec > (1000000 / HZ)))
 
1736                                 difference = (((1000000 - now.tv_usec) * HZ)
 
1737                                   + 500000) / 1000000;
 
1738                         else if (ret == 0) {
 
1741                                 if ((fibptr = aac_fib_alloc(dev))) {
 
1744                                         aac_fib_init(fibptr);
 
1746                                         info = (__le32 *) fib_data(fibptr);
 
1747                                         if (now.tv_usec > 500000)
 
1750                                         *info = cpu_to_le32(now.tv_sec);
 
1752                                         (void)aac_fib_send(SendHostTime,
 
1759                                         aac_fib_complete(fibptr);
 
1760                                         aac_fib_free(fibptr);
 
1762                                 difference = (long)(unsigned)update_interval*HZ;
 
1765                                 difference = 10 * HZ;
 
1767                         next_jiffies = jiffies + difference;
 
1768                         if (time_before(next_check_jiffies,next_jiffies))
 
1769                                 difference = next_check_jiffies - jiffies;
 
1771                 if (difference <= 0)
 
1773                 set_current_state(TASK_INTERRUPTIBLE);
 
1774                 schedule_timeout(difference);
 
1776                 if (kthread_should_stop())
 
1780                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
 
1781         dev->aif_thread = 0;