2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
38 /* #define DEBUG_TLB */
40 static __init int __attribute__((unused)) r45k_bvahwbug(void)
42 /* XXX: We should probe for the presence of this bug, but we don't. */
46 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
48 /* XXX: We should probe for the presence of this bug, but we don't. */
52 static __init int __attribute__((unused)) bcm1250_m3_war(void)
54 return BCM1250_M3_WAR;
57 static __init int __attribute__((unused)) r10000_llsc_war(void)
59 return R10000_LLSC_WAR;
63 * A little micro-assembler, intended for TLB refill handler
64 * synthesizing. It is intentionally kept simple, does only support
65 * a subset of instructions, and does not try to hide pipeline effects
66 * like branch delay slots.
93 #define IMM_MASK 0xffff
95 #define JIMM_MASK 0x3ffffff
97 #define FUNC_MASK 0x2f
104 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
105 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
106 insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
107 insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
108 insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
109 insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
110 insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
111 insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
112 insn_tlbwr, insn_xor, insn_xori
121 /* This macro sets the non-variable bits of an instruction. */
122 #define M(a, b, c, d, e, f) \
130 static __initdata struct insn insn_table[] = {
131 { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
132 { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
133 { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
134 { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
135 { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
136 { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
137 { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
138 { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
139 { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
140 { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
141 { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
142 { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
143 { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
144 { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
145 { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
146 { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
147 { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
148 { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
149 { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
150 { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
151 { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
152 { insn_j, M(j_op,0,0,0,0,0), JIMM },
153 { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
154 { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
155 { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
156 { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
157 { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
158 { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
159 { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
160 { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
161 { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
162 { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
163 { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
164 { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
165 { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
166 { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
167 { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
168 { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
169 { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
170 { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
171 { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
172 { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
173 { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
174 { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
175 { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
176 { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
177 { insn_invalid, 0, 0 }
182 static __init u32 build_rs(u32 arg)
185 printk(KERN_WARNING "TLB synthesizer field overflow\n");
187 return (arg & RS_MASK) << RS_SH;
190 static __init u32 build_rt(u32 arg)
193 printk(KERN_WARNING "TLB synthesizer field overflow\n");
195 return (arg & RT_MASK) << RT_SH;
198 static __init u32 build_rd(u32 arg)
201 printk(KERN_WARNING "TLB synthesizer field overflow\n");
203 return (arg & RD_MASK) << RD_SH;
206 static __init u32 build_re(u32 arg)
209 printk(KERN_WARNING "TLB synthesizer field overflow\n");
211 return (arg & RE_MASK) << RE_SH;
214 static __init u32 build_simm(s32 arg)
216 if (arg > 0x7fff || arg < -0x8000)
217 printk(KERN_WARNING "TLB synthesizer field overflow\n");
222 static __init u32 build_uimm(u32 arg)
225 printk(KERN_WARNING "TLB synthesizer field overflow\n");
227 return arg & IMM_MASK;
230 static __init u32 build_bimm(s32 arg)
232 if (arg > 0x1ffff || arg < -0x20000)
233 printk(KERN_WARNING "TLB synthesizer field overflow\n");
236 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
238 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
241 static __init u32 build_jimm(u32 arg)
243 if (arg & ~((JIMM_MASK) << 2))
244 printk(KERN_WARNING "TLB synthesizer field overflow\n");
246 return (arg >> 2) & JIMM_MASK;
249 static __init u32 build_func(u32 arg)
251 if (arg & ~FUNC_MASK)
252 printk(KERN_WARNING "TLB synthesizer field overflow\n");
254 return arg & FUNC_MASK;
257 static __init u32 build_set(u32 arg)
260 printk(KERN_WARNING "TLB synthesizer field overflow\n");
262 return arg & SET_MASK;
266 * The order of opcode arguments is implicitly left to right,
267 * starting with RS and ending with FUNC or IMM.
269 static void __init build_insn(u32 **buf, enum opcode opc, ...)
271 struct insn *ip = NULL;
276 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
277 if (insn_table[i].opcode == opc) {
283 panic("Unsupported TLB synthesizer instruction %d", opc);
287 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
288 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
289 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
290 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
291 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
292 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
293 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
294 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
295 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
296 if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
303 #define I_u1u2u3(op) \
304 static inline void __init i##op(u32 **buf, unsigned int a, \
305 unsigned int b, unsigned int c) \
307 build_insn(buf, insn##op, a, b, c); \
310 #define I_u2u1u3(op) \
311 static inline void __init i##op(u32 **buf, unsigned int a, \
312 unsigned int b, unsigned int c) \
314 build_insn(buf, insn##op, b, a, c); \
317 #define I_u3u1u2(op) \
318 static inline void __init i##op(u32 **buf, unsigned int a, \
319 unsigned int b, unsigned int c) \
321 build_insn(buf, insn##op, b, c, a); \
324 #define I_u1u2s3(op) \
325 static inline void __init i##op(u32 **buf, unsigned int a, \
326 unsigned int b, signed int c) \
328 build_insn(buf, insn##op, a, b, c); \
331 #define I_u2s3u1(op) \
332 static inline void __init i##op(u32 **buf, unsigned int a, \
333 signed int b, unsigned int c) \
335 build_insn(buf, insn##op, c, a, b); \
338 #define I_u2u1s3(op) \
339 static inline void __init i##op(u32 **buf, unsigned int a, \
340 unsigned int b, signed int c) \
342 build_insn(buf, insn##op, b, a, c); \
346 static inline void __init i##op(u32 **buf, unsigned int a, \
349 build_insn(buf, insn##op, a, b); \
353 static inline void __init i##op(u32 **buf, unsigned int a, \
356 build_insn(buf, insn##op, a, b); \
360 static inline void __init i##op(u32 **buf, unsigned int a) \
362 build_insn(buf, insn##op, a); \
366 static inline void __init i##op(u32 **buf) \
368 build_insn(buf, insn##op); \
433 label_smp_pgtable_change,
434 label_r3000_write_probe_fail,
442 static __init void build_label(struct label **lab, u32 *addr,
451 static inline void l##lb(struct label **lab, u32 *addr) \
453 build_label(lab, addr, label##lb); \
465 L_LA(_smp_pgtable_change)
466 L_LA(_r3000_write_probe_fail)
468 /* convenience macros for instructions */
470 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
471 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
472 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
473 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
474 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
475 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
476 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
477 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
478 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
479 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
480 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
481 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
483 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
484 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
485 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
486 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
487 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
488 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
489 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
490 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
491 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
492 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
493 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
494 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
497 #define i_b(buf, off) i_beq(buf, 0, 0, off)
498 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
499 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
500 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
501 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
502 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
503 #define i_nop(buf) i_sll(buf, 0, 0, 0)
504 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
505 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
508 static __init int __attribute__((unused)) in_compat_space_p(long addr)
510 /* Is this address in 32bit compat space? */
511 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
514 static __init int __attribute__((unused)) rel_highest(long val)
516 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
519 static __init int __attribute__((unused)) rel_higher(long val)
521 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
525 static __init int rel_hi(long val)
527 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
530 static __init int rel_lo(long val)
532 return ((val & 0xffff) ^ 0x8000) - 0x8000;
535 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
538 if (!in_compat_space_p(addr)) {
539 i_lui(buf, rs, rel_highest(addr));
540 if (rel_higher(addr))
541 i_daddiu(buf, rs, rs, rel_higher(addr));
543 i_dsll(buf, rs, rs, 16);
544 i_daddiu(buf, rs, rs, rel_hi(addr));
545 i_dsll(buf, rs, rs, 16);
547 i_dsll32(buf, rs, rs, 0);
550 i_lui(buf, rs, rel_hi(addr));
553 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
556 i_LA_mostly(buf, rs, addr);
558 i_ADDIU(buf, rs, rs, rel_lo(addr));
571 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
575 (*rel)->type = R_MIPS_PC16;
580 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
582 long laddr = (long)lab->addr;
583 long raddr = (long)rel->addr;
587 *rel->addr |= build_bimm(laddr - (raddr + 4));
591 panic("Unsupported TLB synthesizer relocation %d",
596 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
600 for (; rel->lab != label_invalid; rel++)
601 for (l = lab; l->lab != label_invalid; l++)
602 if (rel->lab == l->lab)
603 __resolve_relocs(rel, l);
606 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
609 for (; rel->lab != label_invalid; rel++)
610 if (rel->addr >= first && rel->addr < end)
614 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
617 for (; lab->lab != label_invalid; lab++)
618 if (lab->addr >= first && lab->addr < end)
622 static __init void copy_handler(struct reloc *rel, struct label *lab,
623 u32 *first, u32 *end, u32 *target)
625 long off = (long)(target - first);
627 memcpy(target, first, (end - first) * sizeof(u32));
629 move_relocs(rel, first, end, off);
630 move_labels(lab, first, end, off);
633 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
636 for (; rel->lab != label_invalid; rel++) {
637 if (rel->addr == addr
638 && (rel->type == R_MIPS_PC16
639 || rel->type == R_MIPS_26))
646 /* convenience functions for labeled branches */
647 static void __init __attribute__((unused))
648 il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
650 r_mips_pc16(r, *p, l);
654 static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
657 r_mips_pc16(r, *p, l);
661 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
664 r_mips_pc16(r, *p, l);
668 static void __init __attribute__((unused))
669 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
671 r_mips_pc16(r, *p, l);
675 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
678 r_mips_pc16(r, *p, l);
682 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
685 r_mips_pc16(r, *p, l);
689 /* The only general purpose registers allowed in TLB handlers. */
693 /* Some CP0 registers */
694 #define C0_INDEX 0, 0
695 #define C0_ENTRYLO0 2, 0
696 #define C0_TCBIND 2, 2
697 #define C0_ENTRYLO1 3, 0
698 #define C0_CONTEXT 4, 0
699 #define C0_BADVADDR 8, 0
700 #define C0_ENTRYHI 10, 0
702 #define C0_XCONTEXT 20, 0
705 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
707 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
710 /* The worst case length of the handler is around 18 instructions for
711 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
712 * Maximum space available is 32 instructions for R3000 and 64
713 * instructions for R4000.
715 * We deliberately chose a buffer size of 128, so we won't scribble
716 * over anything important on overflow before we panic.
718 static __initdata u32 tlb_handler[128];
720 /* simply assume worst case size for labels and relocs */
721 static __initdata struct label labels[128];
722 static __initdata struct reloc relocs[128];
725 * The R3000 TLB handler is simple.
727 static void __init build_r3000_tlb_refill_handler(void)
729 long pgdc = (long)pgd_current;
732 memset(tlb_handler, 0, sizeof(tlb_handler));
735 i_mfc0(&p, K0, C0_BADVADDR);
736 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
737 i_lw(&p, K1, rel_lo(pgdc), K1);
738 i_srl(&p, K0, K0, 22); /* load delay */
739 i_sll(&p, K0, K0, 2);
740 i_addu(&p, K1, K1, K0);
741 i_mfc0(&p, K0, C0_CONTEXT);
742 i_lw(&p, K1, 0, K1); /* cp0 delay */
743 i_andi(&p, K0, K0, 0xffc); /* load delay */
744 i_addu(&p, K1, K1, K0);
746 i_nop(&p); /* load delay */
747 i_mtc0(&p, K0, C0_ENTRYLO0);
748 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
749 i_tlbwr(&p); /* cp0 delay */
751 i_rfe(&p); /* branch delay */
753 if (p > tlb_handler + 32)
754 panic("TLB refill handler space exceeded");
756 printk("Synthesized TLB refill handler (%u instructions).\n",
757 (unsigned int)(p - tlb_handler));
762 for (i = 0; i < (p - tlb_handler); i++)
763 printk("%08x\n", tlb_handler[i]);
767 memcpy((void *)ebase, tlb_handler, 0x80);
771 * The R4000 TLB handler is much more complicated. We have two
772 * consecutive handler areas with 32 instructions space each.
773 * Since they aren't used at the same time, we can overflow in the
774 * other one.To keep things simple, we first assume linear space,
775 * then we relocate it to the final handler layout as needed.
777 static __initdata u32 final_handler[64];
782 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
783 * 2. A timing hazard exists for the TLBP instruction.
785 * stalling_instruction
788 * The JTLB is being read for the TLBP throughout the stall generated by the
789 * previous instruction. This is not really correct as the stalling instruction
790 * can modify the address used to access the JTLB. The failure symptom is that
791 * the TLBP instruction will use an address created for the stalling instruction
792 * and not the address held in C0_ENHI and thus report the wrong results.
794 * The software work-around is to not allow the instruction preceding the TLBP
795 * to stall - make it an NOP or some other instruction guaranteed not to stall.
797 * Errata 2 will not be fixed. This errata is also on the R5000.
799 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
801 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
803 switch (current_cpu_data.cputype) {
804 /* Found by experiment: R4600 v2.0 needs this, too. */
820 * Write random or indexed TLB entry, and care about the hazards from
821 * the preceeding mtc0 and for the following eret.
823 enum tlb_write_entry { tlb_random, tlb_indexed };
825 static __init void build_tlb_write_entry(u32 **p, struct label **l,
827 enum tlb_write_entry wmode)
829 void(*tlbw)(u32 **) = NULL;
832 case tlb_random: tlbw = i_tlbwr; break;
833 case tlb_indexed: tlbw = i_tlbwi; break;
836 switch (current_cpu_data.cputype) {
844 * This branch uses up a mtc0 hazard nop slot and saves
845 * two nops after the tlbw instruction.
847 il_bgezl(p, r, 0, label_tlbw_hazard);
849 l_tlbw_hazard(l, *p);
888 i_nop(p); /* QED specifies 2 nops hazard */
890 * This branch uses up a mtc0 hazard nop slot and saves
891 * a nop after the tlbw instruction.
893 il_bgezl(p, r, 0, label_tlbw_hazard);
895 l_tlbw_hazard(l, *p);
916 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
917 * use of the JTLB for instructions should not occur for 4
918 * cpu cycles and use for data translations should not occur
953 panic("No TLB refill handler yet (CPU type: %d)",
954 current_cpu_data.cputype);
961 * TMP and PTR are scratch.
962 * TMP will be clobbered, PTR will hold the pmd entry.
965 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
966 unsigned int tmp, unsigned int ptr)
968 long pgdc = (long)pgd_current;
971 * The vmalloc handling is not in the hotpath.
973 i_dmfc0(p, tmp, C0_BADVADDR);
974 il_bltz(p, r, tmp, label_vmalloc);
975 /* No i_nop needed here, since the next insn doesn't touch TMP. */
978 # ifdef CONFIG_MIPS_MT_SMTC
980 * SMTC uses TCBind value as "CPU" index
982 i_mfc0(p, ptr, C0_TCBIND);
983 i_dsrl(p, ptr, ptr, 19);
986 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
989 i_dmfc0(p, ptr, C0_CONTEXT);
990 i_dsrl(p, ptr, ptr, 23);
992 i_LA_mostly(p, tmp, pgdc);
993 i_daddu(p, ptr, ptr, tmp);
994 i_dmfc0(p, tmp, C0_BADVADDR);
995 i_ld(p, ptr, rel_lo(pgdc), ptr);
997 i_LA_mostly(p, ptr, pgdc);
998 i_ld(p, ptr, rel_lo(pgdc), ptr);
1001 l_vmalloc_done(l, *p);
1002 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
1003 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1004 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1005 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1006 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1007 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1008 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1009 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1013 * BVADDR is the faulting address, PTR is scratch.
1014 * PTR will hold the pgd for vmalloc.
1017 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1018 unsigned int bvaddr, unsigned int ptr)
1020 long swpd = (long)swapper_pg_dir;
1023 i_LA(p, ptr, VMALLOC_START);
1024 i_dsubu(p, bvaddr, bvaddr, ptr);
1026 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1027 il_b(p, r, label_vmalloc_done);
1028 i_lui(p, ptr, rel_hi(swpd));
1030 i_LA_mostly(p, ptr, swpd);
1031 il_b(p, r, label_vmalloc_done);
1032 i_daddiu(p, ptr, ptr, rel_lo(swpd));
1036 #else /* !CONFIG_64BIT */
1039 * TMP and PTR are scratch.
1040 * TMP will be clobbered, PTR will hold the pgd entry.
1042 static __init void __attribute__((unused))
1043 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1045 long pgdc = (long)pgd_current;
1047 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1049 #ifdef CONFIG_MIPS_MT_SMTC
1051 * SMTC uses TCBind value as "CPU" index
1053 i_mfc0(p, ptr, C0_TCBIND);
1054 i_LA_mostly(p, tmp, pgdc);
1055 i_srl(p, ptr, ptr, 19);
1058 * smp_processor_id() << 3 is stored in CONTEXT.
1060 i_mfc0(p, ptr, C0_CONTEXT);
1061 i_LA_mostly(p, tmp, pgdc);
1062 i_srl(p, ptr, ptr, 23);
1064 i_addu(p, ptr, tmp, ptr);
1066 i_LA_mostly(p, ptr, pgdc);
1068 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1069 i_lw(p, ptr, rel_lo(pgdc), ptr);
1070 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1071 i_sll(p, tmp, tmp, PGD_T_LOG2);
1072 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1075 #endif /* !CONFIG_64BIT */
1077 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1079 unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1080 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1082 switch (current_cpu_data.cputype) {
1099 i_SRL(p, ctx, ctx, shift);
1100 i_andi(p, ctx, ctx, mask);
1103 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1106 * Bug workaround for the Nevada. It seems as if under certain
1107 * circumstances the move from cp0_context might produce a
1108 * bogus result when the mfc0 instruction and its consumer are
1109 * in a different cacheline or a load instruction, probably any
1110 * memory reference, is between them.
1112 switch (current_cpu_data.cputype) {
1114 i_LW(p, ptr, 0, ptr);
1115 GET_CONTEXT(p, tmp); /* get context reg */
1119 GET_CONTEXT(p, tmp); /* get context reg */
1120 i_LW(p, ptr, 0, ptr);
1124 build_adjust_context(p, tmp);
1125 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1128 static __init void build_update_entries(u32 **p, unsigned int tmp,
1132 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1133 * Kernel is a special case. Only a few CPUs use it.
1135 #ifdef CONFIG_64BIT_PHYS_ADDR
1136 if (cpu_has_64bits) {
1137 i_ld(p, tmp, 0, ptep); /* get even pte */
1138 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1139 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1140 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1141 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1142 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1144 int pte_off_even = sizeof(pte_t) / 2;
1145 int pte_off_odd = pte_off_even + sizeof(pte_t);
1147 /* The pte entries are pre-shifted */
1148 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1149 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1150 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1151 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1154 i_LW(p, tmp, 0, ptep); /* get even pte */
1155 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1156 if (r45k_bvahwbug())
1157 build_tlb_probe_entry(p);
1158 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1159 if (r4k_250MHZhwbug())
1160 i_mtc0(p, 0, C0_ENTRYLO0);
1161 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1162 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1163 if (r45k_bvahwbug())
1164 i_mfc0(p, tmp, C0_INDEX);
1165 if (r4k_250MHZhwbug())
1166 i_mtc0(p, 0, C0_ENTRYLO1);
1167 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1171 static void __init build_r4000_tlb_refill_handler(void)
1173 u32 *p = tlb_handler;
1174 struct label *l = labels;
1175 struct reloc *r = relocs;
1177 unsigned int final_len;
1179 memset(tlb_handler, 0, sizeof(tlb_handler));
1180 memset(labels, 0, sizeof(labels));
1181 memset(relocs, 0, sizeof(relocs));
1182 memset(final_handler, 0, sizeof(final_handler));
1185 * create the plain linear handler
1187 if (bcm1250_m3_war()) {
1188 i_MFC0(&p, K0, C0_BADVADDR);
1189 i_MFC0(&p, K1, C0_ENTRYHI);
1190 i_xor(&p, K0, K0, K1);
1191 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1192 il_bnez(&p, &r, K0, label_leave);
1193 /* No need for i_nop */
1197 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1199 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1202 build_get_ptep(&p, K0, K1);
1203 build_update_entries(&p, K0, K1);
1204 build_tlb_write_entry(&p, &l, &r, tlb_random);
1206 i_eret(&p); /* return from trap */
1209 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1213 * Overflow check: For the 64bit handler, we need at least one
1214 * free instruction slot for the wrap-around branch. In worst
1215 * case, if the intended insertion point is a delay slot, we
1216 * need three, with the the second nop'ed and the third being
1220 if ((p - tlb_handler) > 64)
1221 panic("TLB refill handler space exceeded");
1223 if (((p - tlb_handler) > 63)
1224 || (((p - tlb_handler) > 61)
1225 && insn_has_bdelay(relocs, tlb_handler + 29)))
1226 panic("TLB refill handler space exceeded");
1230 * Now fold the handler in the TLB refill handler space.
1234 /* Simplest case, just copy the handler. */
1235 copy_handler(relocs, labels, tlb_handler, p, f);
1236 final_len = p - tlb_handler;
1237 #else /* CONFIG_64BIT */
1238 f = final_handler + 32;
1239 if ((p - tlb_handler) <= 32) {
1240 /* Just copy the handler. */
1241 copy_handler(relocs, labels, tlb_handler, p, f);
1242 final_len = p - tlb_handler;
1244 u32 *split = tlb_handler + 30;
1247 * Find the split point.
1249 if (insn_has_bdelay(relocs, split - 1))
1252 /* Copy first part of the handler. */
1253 copy_handler(relocs, labels, tlb_handler, split, f);
1254 f += split - tlb_handler;
1256 /* Insert branch. */
1257 l_split(&l, final_handler);
1258 il_b(&f, &r, label_split);
1259 if (insn_has_bdelay(relocs, split))
1262 copy_handler(relocs, labels, split, split + 1, f);
1263 move_labels(labels, f, f + 1, -1);
1268 /* Copy the rest of the handler. */
1269 copy_handler(relocs, labels, split, p, final_handler);
1270 final_len = (f - (final_handler + 32)) + (p - split);
1272 #endif /* CONFIG_64BIT */
1274 resolve_relocs(relocs, labels);
1275 printk("Synthesized TLB refill handler (%u instructions).\n",
1287 f = final_handler + 32;
1288 #endif /* CONFIG_64BIT */
1289 for (i = 0; i < final_len; i++)
1290 printk("%08x\n", f[i]);
1294 memcpy((void *)ebase, final_handler, 0x100);
1298 * TLB load/store/modify handlers.
1300 * Only the fastpath gets synthesized at runtime, the slowpath for
1301 * do_page_fault remains normal asm.
1303 extern void tlb_do_page_fault_0(void);
1304 extern void tlb_do_page_fault_1(void);
1306 #define __tlb_handler_align \
1307 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1310 * 128 instructions for the fastpath handler is generous and should
1311 * never be exceeded.
1313 #define FASTPATH_SIZE 128
1315 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1316 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1317 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1320 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1323 # ifdef CONFIG_64BIT_PHYS_ADDR
1325 i_lld(p, pte, 0, ptr);
1328 i_LL(p, pte, 0, ptr);
1330 # ifdef CONFIG_64BIT_PHYS_ADDR
1332 i_ld(p, pte, 0, ptr);
1335 i_LW(p, pte, 0, ptr);
1340 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1343 #ifdef CONFIG_64BIT_PHYS_ADDR
1344 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1347 i_ori(p, pte, pte, mode);
1349 # ifdef CONFIG_64BIT_PHYS_ADDR
1351 i_scd(p, pte, 0, ptr);
1354 i_SC(p, pte, 0, ptr);
1356 if (r10000_llsc_war())
1357 il_beqzl(p, r, pte, label_smp_pgtable_change);
1359 il_beqz(p, r, pte, label_smp_pgtable_change);
1361 # ifdef CONFIG_64BIT_PHYS_ADDR
1362 if (!cpu_has_64bits) {
1363 /* no i_nop needed */
1364 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1365 i_ori(p, pte, pte, hwmode);
1366 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1367 il_beqz(p, r, pte, label_smp_pgtable_change);
1368 /* no i_nop needed */
1369 i_lw(p, pte, 0, ptr);
1376 # ifdef CONFIG_64BIT_PHYS_ADDR
1378 i_sd(p, pte, 0, ptr);
1381 i_SW(p, pte, 0, ptr);
1383 # ifdef CONFIG_64BIT_PHYS_ADDR
1384 if (!cpu_has_64bits) {
1385 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1386 i_ori(p, pte, pte, hwmode);
1387 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1388 i_lw(p, pte, 0, ptr);
1395 * Check if PTE is present, if not then jump to LABEL. PTR points to
1396 * the page table where this PTE is located, PTE will be re-loaded
1397 * with it's original value.
1400 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1401 unsigned int pte, unsigned int ptr, enum label_id lid)
1403 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1404 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1405 il_bnez(p, r, pte, lid);
1406 iPTE_LW(p, l, pte, ptr);
1409 /* Make PTE valid, store result in PTR. */
1411 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1414 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1416 iPTE_SW(p, r, pte, ptr, mode);
1420 * Check if PTE can be written to, if not branch to LABEL. Regardless
1421 * restore PTE with value from PTR when done.
1424 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1425 unsigned int pte, unsigned int ptr, enum label_id lid)
1427 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1428 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1429 il_bnez(p, r, pte, lid);
1430 iPTE_LW(p, l, pte, ptr);
1433 /* Make PTE writable, update software status bits as well, then store
1437 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1440 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1443 iPTE_SW(p, r, pte, ptr, mode);
1447 * Check if PTE can be modified, if not branch to LABEL. Regardless
1448 * restore PTE with value from PTR when done.
1451 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1452 unsigned int pte, unsigned int ptr, enum label_id lid)
1454 i_andi(p, pte, pte, _PAGE_WRITE);
1455 il_beqz(p, r, pte, lid);
1456 iPTE_LW(p, l, pte, ptr);
1460 * R3000 style TLB load/store/modify handlers.
1464 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1468 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1470 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1471 i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1474 i_rfe(p); /* branch delay */
1478 * This places the pte into ENTRYLO0 and writes it with tlbwi
1479 * or tlbwr as appropriate. This is because the index register
1480 * may have the probe fail bit set as a result of a trap on a
1481 * kseg2 access, i.e. without refill. Then it returns.
1484 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1485 unsigned int pte, unsigned int tmp)
1487 i_mfc0(p, tmp, C0_INDEX);
1488 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1489 il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1490 i_mfc0(p, tmp, C0_EPC); /* branch delay */
1491 i_tlbwi(p); /* cp0 delay */
1493 i_rfe(p); /* branch delay */
1494 l_r3000_write_probe_fail(l, *p);
1495 i_tlbwr(p); /* cp0 delay */
1497 i_rfe(p); /* branch delay */
1501 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1504 long pgdc = (long)pgd_current;
1506 i_mfc0(p, pte, C0_BADVADDR);
1507 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1508 i_lw(p, ptr, rel_lo(pgdc), ptr);
1509 i_srl(p, pte, pte, 22); /* load delay */
1510 i_sll(p, pte, pte, 2);
1511 i_addu(p, ptr, ptr, pte);
1512 i_mfc0(p, pte, C0_CONTEXT);
1513 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1514 i_andi(p, pte, pte, 0xffc); /* load delay */
1515 i_addu(p, ptr, ptr, pte);
1516 i_lw(p, pte, 0, ptr);
1517 i_tlbp(p); /* load delay */
1520 static void __init build_r3000_tlb_load_handler(void)
1522 u32 *p = handle_tlbl;
1523 struct label *l = labels;
1524 struct reloc *r = relocs;
1526 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1527 memset(labels, 0, sizeof(labels));
1528 memset(relocs, 0, sizeof(relocs));
1530 build_r3000_tlbchange_handler_head(&p, K0, K1);
1531 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1532 i_nop(&p); /* load delay */
1533 build_make_valid(&p, &r, K0, K1);
1534 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1536 l_nopage_tlbl(&l, p);
1537 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1540 if ((p - handle_tlbl) > FASTPATH_SIZE)
1541 panic("TLB load handler fastpath space exceeded");
1543 resolve_relocs(relocs, labels);
1544 printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1545 (unsigned int)(p - handle_tlbl));
1551 for (i = 0; i < (p - handle_tlbl); i++)
1552 printk("%08x\n", handle_tlbl[i]);
1557 static void __init build_r3000_tlb_store_handler(void)
1559 u32 *p = handle_tlbs;
1560 struct label *l = labels;
1561 struct reloc *r = relocs;
1563 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1564 memset(labels, 0, sizeof(labels));
1565 memset(relocs, 0, sizeof(relocs));
1567 build_r3000_tlbchange_handler_head(&p, K0, K1);
1568 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1569 i_nop(&p); /* load delay */
1570 build_make_write(&p, &r, K0, K1);
1571 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1573 l_nopage_tlbs(&l, p);
1574 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1577 if ((p - handle_tlbs) > FASTPATH_SIZE)
1578 panic("TLB store handler fastpath space exceeded");
1580 resolve_relocs(relocs, labels);
1581 printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1582 (unsigned int)(p - handle_tlbs));
1588 for (i = 0; i < (p - handle_tlbs); i++)
1589 printk("%08x\n", handle_tlbs[i]);
1594 static void __init build_r3000_tlb_modify_handler(void)
1596 u32 *p = handle_tlbm;
1597 struct label *l = labels;
1598 struct reloc *r = relocs;
1600 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1601 memset(labels, 0, sizeof(labels));
1602 memset(relocs, 0, sizeof(relocs));
1604 build_r3000_tlbchange_handler_head(&p, K0, K1);
1605 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1606 i_nop(&p); /* load delay */
1607 build_make_write(&p, &r, K0, K1);
1608 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1610 l_nopage_tlbm(&l, p);
1611 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1614 if ((p - handle_tlbm) > FASTPATH_SIZE)
1615 panic("TLB modify handler fastpath space exceeded");
1617 resolve_relocs(relocs, labels);
1618 printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1619 (unsigned int)(p - handle_tlbm));
1625 for (i = 0; i < (p - handle_tlbm); i++)
1626 printk("%08x\n", handle_tlbm[i]);
1632 * R4000 style TLB load/store/modify handlers.
1635 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1636 struct reloc **r, unsigned int pte,
1640 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1642 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1645 i_MFC0(p, pte, C0_BADVADDR);
1646 i_LW(p, ptr, 0, ptr);
1647 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1648 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1649 i_ADDU(p, ptr, ptr, pte);
1652 l_smp_pgtable_change(l, *p);
1654 iPTE_LW(p, l, pte, ptr); /* get even pte */
1655 build_tlb_probe_entry(p);
1659 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1660 struct reloc **r, unsigned int tmp,
1663 i_ori(p, ptr, ptr, sizeof(pte_t));
1664 i_xori(p, ptr, ptr, sizeof(pte_t));
1665 build_update_entries(p, tmp, ptr);
1666 build_tlb_write_entry(p, l, r, tlb_indexed);
1668 i_eret(p); /* return from trap */
1671 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1675 static void __init build_r4000_tlb_load_handler(void)
1677 u32 *p = handle_tlbl;
1678 struct label *l = labels;
1679 struct reloc *r = relocs;
1681 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1682 memset(labels, 0, sizeof(labels));
1683 memset(relocs, 0, sizeof(relocs));
1685 if (bcm1250_m3_war()) {
1686 i_MFC0(&p, K0, C0_BADVADDR);
1687 i_MFC0(&p, K1, C0_ENTRYHI);
1688 i_xor(&p, K0, K0, K1);
1689 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1690 il_bnez(&p, &r, K0, label_leave);
1691 /* No need for i_nop */
1694 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1695 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1696 build_make_valid(&p, &r, K0, K1);
1697 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1699 l_nopage_tlbl(&l, p);
1700 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1703 if ((p - handle_tlbl) > FASTPATH_SIZE)
1704 panic("TLB load handler fastpath space exceeded");
1706 resolve_relocs(relocs, labels);
1707 printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1708 (unsigned int)(p - handle_tlbl));
1714 for (i = 0; i < (p - handle_tlbl); i++)
1715 printk("%08x\n", handle_tlbl[i]);
1720 static void __init build_r4000_tlb_store_handler(void)
1722 u32 *p = handle_tlbs;
1723 struct label *l = labels;
1724 struct reloc *r = relocs;
1726 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1727 memset(labels, 0, sizeof(labels));
1728 memset(relocs, 0, sizeof(relocs));
1730 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1731 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1732 build_make_write(&p, &r, K0, K1);
1733 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1735 l_nopage_tlbs(&l, p);
1736 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1739 if ((p - handle_tlbs) > FASTPATH_SIZE)
1740 panic("TLB store handler fastpath space exceeded");
1742 resolve_relocs(relocs, labels);
1743 printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1744 (unsigned int)(p - handle_tlbs));
1750 for (i = 0; i < (p - handle_tlbs); i++)
1751 printk("%08x\n", handle_tlbs[i]);
1756 static void __init build_r4000_tlb_modify_handler(void)
1758 u32 *p = handle_tlbm;
1759 struct label *l = labels;
1760 struct reloc *r = relocs;
1762 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1763 memset(labels, 0, sizeof(labels));
1764 memset(relocs, 0, sizeof(relocs));
1766 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1767 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1768 /* Present and writable bits set, set accessed and dirty bits. */
1769 build_make_write(&p, &r, K0, K1);
1770 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1772 l_nopage_tlbm(&l, p);
1773 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1776 if ((p - handle_tlbm) > FASTPATH_SIZE)
1777 panic("TLB modify handler fastpath space exceeded");
1779 resolve_relocs(relocs, labels);
1780 printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1781 (unsigned int)(p - handle_tlbm));
1787 for (i = 0; i < (p - handle_tlbm); i++)
1788 printk("%08x\n", handle_tlbm[i]);
1793 void __init build_tlb_refill_handler(void)
1796 * The refill handler is generated per-CPU, multi-node systems
1797 * may have local storage for it. The other handlers are only
1800 static int run_once = 0;
1802 switch (current_cpu_data.cputype) {
1810 build_r3000_tlb_refill_handler();
1812 build_r3000_tlb_load_handler();
1813 build_r3000_tlb_store_handler();
1814 build_r3000_tlb_modify_handler();
1821 panic("No R6000 TLB refill handler yet");
1825 panic("No R8000 TLB refill handler yet");
1829 build_r4000_tlb_refill_handler();
1831 build_r4000_tlb_load_handler();
1832 build_r4000_tlb_store_handler();
1833 build_r4000_tlb_modify_handler();
1839 void __init flush_tlb_handlers(void)
1841 flush_icache_range((unsigned long)handle_tlbl,
1842 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1843 flush_icache_range((unsigned long)handle_tlbs,
1844 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1845 flush_icache_range((unsigned long)handle_tlbm,
1846 (unsigned long)handle_tlbm + sizeof(handle_tlbm));