2 * linux/drivers/char/mem.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8 * Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
12 #include <linux/miscdevice.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mman.h>
16 #include <linux/random.h>
17 #include <linux/init.h>
18 #include <linux/raw.h>
19 #include <linux/tty.h>
20 #include <linux/capability.h>
21 #include <linux/smp_lock.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/crash_dump.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bootmem.h>
28 #include <linux/pipe_fs_i.h>
30 #include <asm/uaccess.h>
34 # include <linux/efi.h>
38 * Architectures vary in how they handle caching for addresses
39 * outside of main memory.
42 static inline int uncached_access(struct file *file, unsigned long addr)
46 * On the PPro and successors, the MTRRs are used to set
47 * memory types for physical addresses outside main memory,
48 * so blindly setting PCD or PWT on those pages is wrong.
49 * For Pentiums and earlier, the surround logic should disable
50 * caching for the high addresses through the KEN pin, but
51 * we maintain the tradition of paranoia in this code.
53 if (file->f_flags & O_SYNC)
55 return !( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) ||
56 test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) ||
57 test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) ||
58 test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability) )
59 && addr >= __pa(high_memory);
60 #elif defined(__x86_64__)
62 * This is broken because it can generate memory type aliases,
63 * which can cause cache corruptions
64 * But it is only available for root and we have to be bug-to-bug
65 * compatible with i386.
67 if (file->f_flags & O_SYNC)
69 /* same behaviour as i386. PAT always set to cached and MTRRs control the
71 Hopefully a full PAT implementation will fix that soon. */
73 #elif defined(CONFIG_IA64)
75 * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases.
77 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
80 * Accessing memory above the top the kernel knows about or through a file pointer
81 * that was marked O_SYNC will be done non-cached.
83 if (file->f_flags & O_SYNC)
85 return addr >= __pa(high_memory);
89 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
90 static inline int valid_phys_addr_range(unsigned long addr, size_t count)
92 if (addr + count > __pa(high_memory))
98 static inline int valid_mmap_phys_addr_range(unsigned long addr, size_t size)
105 * This funcion reads the *physical* memory. The f_pos points directly to the
108 static ssize_t read_mem(struct file * file, char __user * buf,
109 size_t count, loff_t *ppos)
111 unsigned long p = *ppos;
115 if (!valid_phys_addr_range(p, count))
118 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
119 /* we don't have page 0 mapped on sparc and m68k.. */
125 if (clear_user(buf, sz))
137 * Handle first page in case it's not aligned
139 if (-p & (PAGE_SIZE - 1))
140 sz = -p & (PAGE_SIZE - 1);
144 sz = min_t(unsigned long, sz, count);
147 * On ia64 if a page has been mapped somewhere as
148 * uncached, then it must also be accessed uncached
149 * by the kernel or data corruption may occur
151 ptr = xlate_dev_mem_ptr(p);
153 if (copy_to_user(buf, ptr, sz))
165 static ssize_t write_mem(struct file * file, const char __user * buf,
166 size_t count, loff_t *ppos)
168 unsigned long p = *ppos;
170 unsigned long copied;
173 if (!valid_phys_addr_range(p, count))
178 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
179 /* we don't have page 0 mapped on sparc and m68k.. */
181 unsigned long sz = PAGE_SIZE - p;
184 /* Hmm. Do something? */
194 * Handle first page in case it's not aligned
196 if (-p & (PAGE_SIZE - 1))
197 sz = -p & (PAGE_SIZE - 1);
201 sz = min_t(unsigned long, sz, count);
204 * On ia64 if a page has been mapped somewhere as
205 * uncached, then it must also be accessed uncached
206 * by the kernel or data corruption may occur
208 ptr = xlate_dev_mem_ptr(p);
210 copied = copy_from_user(ptr, buf, sz);
212 written += sz - copied;
227 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
228 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
229 unsigned long size, pgprot_t vma_prot)
231 #ifdef pgprot_noncached
232 unsigned long offset = pfn << PAGE_SHIFT;
234 if (uncached_access(file, offset))
235 return pgprot_noncached(vma_prot);
241 static int mmap_mem(struct file * file, struct vm_area_struct * vma)
243 size_t size = vma->vm_end - vma->vm_start;
245 if (!valid_mmap_phys_addr_range(vma->vm_pgoff << PAGE_SHIFT, size))
248 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
252 /* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
253 if (remap_pfn_range(vma,
262 static int mmap_kmem(struct file * file, struct vm_area_struct * vma)
266 /* Turn a kernel-virtual address into a physical page frame */
267 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
270 * RED-PEN: on some architectures there is more mapped memory
271 * than available in mem_map which pfn_valid checks
272 * for. Perhaps should add a new macro here.
274 * RED-PEN: vmalloc is not supported right now.
280 return mmap_mem(file, vma);
283 #ifdef CONFIG_CRASH_DUMP
285 * Read memory corresponding to the old kernel.
287 static ssize_t read_oldmem(struct file *file, char __user *buf,
288 size_t count, loff_t *ppos)
290 unsigned long pfn, offset;
291 size_t read = 0, csize;
295 pfn = *ppos / PAGE_SIZE;
296 if (pfn > saved_max_pfn)
299 offset = (unsigned long)(*ppos % PAGE_SIZE);
300 if (count > PAGE_SIZE - offset)
301 csize = PAGE_SIZE - offset;
305 rc = copy_oldmem_page(pfn, buf, csize, offset, 1);
317 extern long vread(char *buf, char *addr, unsigned long count);
318 extern long vwrite(char *buf, char *addr, unsigned long count);
321 * This function reads the *virtual* memory as seen by the kernel.
323 static ssize_t read_kmem(struct file *file, char __user *buf,
324 size_t count, loff_t *ppos)
326 unsigned long p = *ppos;
327 ssize_t low_count, read, sz;
328 char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
331 if (p < (unsigned long) high_memory) {
333 if (count > (unsigned long) high_memory - p)
334 low_count = (unsigned long) high_memory - p;
336 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
337 /* we don't have page 0 mapped on sparc and m68k.. */
338 if (p < PAGE_SIZE && low_count > 0) {
339 size_t tmp = PAGE_SIZE - p;
340 if (tmp > low_count) tmp = low_count;
341 if (clear_user(buf, tmp))
350 while (low_count > 0) {
352 * Handle first page in case it's not aligned
354 if (-p & (PAGE_SIZE - 1))
355 sz = -p & (PAGE_SIZE - 1);
359 sz = min_t(unsigned long, sz, low_count);
362 * On ia64 if a page has been mapped somewhere as
363 * uncached, then it must also be accessed uncached
364 * by the kernel or data corruption may occur
366 kbuf = xlate_dev_kmem_ptr((char *)p);
368 if (copy_to_user(buf, kbuf, sz))
379 kbuf = (char *)__get_free_page(GFP_KERNEL);
387 len = vread(kbuf, (char *)p, len);
390 if (copy_to_user(buf, kbuf, len)) {
391 free_page((unsigned long)kbuf);
399 free_page((unsigned long)kbuf);
406 static inline ssize_t
407 do_write_kmem(void *p, unsigned long realp, const char __user * buf,
408 size_t count, loff_t *ppos)
411 unsigned long copied;
414 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
415 /* we don't have page 0 mapped on sparc and m68k.. */
416 if (realp < PAGE_SIZE) {
417 unsigned long sz = PAGE_SIZE - realp;
420 /* Hmm. Do something? */
432 * Handle first page in case it's not aligned
434 if (-realp & (PAGE_SIZE - 1))
435 sz = -realp & (PAGE_SIZE - 1);
439 sz = min_t(unsigned long, sz, count);
442 * On ia64 if a page has been mapped somewhere as
443 * uncached, then it must also be accessed uncached
444 * by the kernel or data corruption may occur
446 ptr = xlate_dev_kmem_ptr(p);
448 copied = copy_from_user(ptr, buf, sz);
450 written += sz - copied;
468 * This function writes to the *virtual* memory as seen by the kernel.
470 static ssize_t write_kmem(struct file * file, const char __user * buf,
471 size_t count, loff_t *ppos)
473 unsigned long p = *ppos;
477 char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
479 if (p < (unsigned long) high_memory) {
482 if (count > (unsigned long) high_memory - p)
483 wrote = (unsigned long) high_memory - p;
485 written = do_write_kmem((void*)p, p, buf, wrote, ppos);
486 if (written != wrote)
495 kbuf = (char *)__get_free_page(GFP_KERNEL);
497 return wrote ? wrote : -ENOMEM;
504 written = copy_from_user(kbuf, buf, len);
508 free_page((unsigned long)kbuf);
512 len = vwrite(kbuf, (char *)p, len);
518 free_page((unsigned long)kbuf);
522 return virtr + wrote;
525 #if defined(CONFIG_ISA) || !defined(__mc68000__)
526 static ssize_t read_port(struct file * file, char __user * buf,
527 size_t count, loff_t *ppos)
529 unsigned long i = *ppos;
530 char __user *tmp = buf;
532 if (!access_ok(VERIFY_WRITE, buf, count))
534 while (count-- > 0 && i < 65536) {
535 if (__put_user(inb(i),tmp) < 0)
544 static ssize_t write_port(struct file * file, const char __user * buf,
545 size_t count, loff_t *ppos)
547 unsigned long i = *ppos;
548 const char __user * tmp = buf;
550 if (!access_ok(VERIFY_READ,buf,count))
552 while (count-- > 0 && i < 65536) {
554 if (__get_user(c, tmp)) {
568 static ssize_t read_null(struct file * file, char __user * buf,
569 size_t count, loff_t *ppos)
574 static ssize_t write_null(struct file * file, const char __user * buf,
575 size_t count, loff_t *ppos)
580 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
581 struct splice_desc *sd)
586 static ssize_t splice_write_null(struct pipe_inode_info *pipe,struct file *out,
587 loff_t *ppos, size_t len, unsigned int flags)
589 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
594 * For fun, we are using the MMU for this.
596 static inline size_t read_zero_pagealigned(char __user * buf, size_t size)
598 struct mm_struct *mm;
599 struct vm_area_struct * vma;
600 unsigned long addr=(unsigned long)buf;
603 /* Oops, this was forgotten before. -ben */
604 down_read(&mm->mmap_sem);
606 /* For private mappings, just map in zero pages. */
607 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
610 if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0)
612 if (vma->vm_flags & (VM_SHARED | VM_HUGETLB))
614 count = vma->vm_end - addr;
618 zap_page_range(vma, addr, count, NULL);
619 zeromap_page_range(vma, addr, count, PAGE_COPY);
628 up_read(&mm->mmap_sem);
630 /* The shared case is hard. Let's do the conventional zeroing. */
632 unsigned long unwritten = clear_user(buf, PAGE_SIZE);
634 return size + unwritten - PAGE_SIZE;
642 up_read(&mm->mmap_sem);
646 static ssize_t read_zero(struct file * file, char __user * buf,
647 size_t count, loff_t *ppos)
649 unsigned long left, unwritten, written = 0;
654 if (!access_ok(VERIFY_WRITE, buf, count))
659 /* do we want to be clever? Arbitrary cut-off */
660 if (count >= PAGE_SIZE*4) {
661 unsigned long partial;
663 /* How much left of the page? */
664 partial = (PAGE_SIZE-1) & -(unsigned long) buf;
665 unwritten = clear_user(buf, partial);
666 written = partial - unwritten;
671 unwritten = read_zero_pagealigned(buf, left & PAGE_MASK);
672 written += (left & PAGE_MASK) - unwritten;
675 buf += left & PAGE_MASK;
678 unwritten = clear_user(buf, left);
679 written += left - unwritten;
681 return written ? written : -EFAULT;
684 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
686 if (vma->vm_flags & VM_SHARED)
687 return shmem_zero_setup(vma);
688 if (zeromap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot))
692 #else /* CONFIG_MMU */
693 static ssize_t read_zero(struct file * file, char * buf,
694 size_t count, loff_t *ppos)
702 chunk = 4096; /* Just for latency reasons */
703 if (clear_user(buf, chunk))
712 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
716 #endif /* CONFIG_MMU */
718 static ssize_t write_full(struct file * file, const char __user * buf,
719 size_t count, loff_t *ppos)
725 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
726 * can fopen() both devices with "a" now. This was previously impossible.
730 static loff_t null_lseek(struct file * file, loff_t offset, int orig)
732 return file->f_pos = 0;
736 * The memory devices use the full 32/64 bits of the offset, and so we cannot
737 * check against negative addresses: they are ok. The return value is weird,
738 * though, in that case (0).
740 * also note that seeking relative to the "end of file" isn't supported:
741 * it has no meaning, so it returns -EINVAL.
743 static loff_t memory_lseek(struct file * file, loff_t offset, int orig)
747 mutex_lock(&file->f_dentry->d_inode->i_mutex);
750 file->f_pos = offset;
752 force_successful_syscall_return();
755 file->f_pos += offset;
757 force_successful_syscall_return();
762 mutex_unlock(&file->f_dentry->d_inode->i_mutex);
766 static int open_port(struct inode * inode, struct file * filp)
768 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
771 #define zero_lseek null_lseek
772 #define full_lseek null_lseek
773 #define write_zero write_null
774 #define read_full read_zero
775 #define open_mem open_port
776 #define open_kmem open_mem
777 #define open_oldmem open_mem
779 static struct file_operations mem_fops = {
780 .llseek = memory_lseek,
787 static struct file_operations kmem_fops = {
788 .llseek = memory_lseek,
795 static struct file_operations null_fops = {
796 .llseek = null_lseek,
799 .splice_write = splice_write_null,
802 #if defined(CONFIG_ISA) || !defined(__mc68000__)
803 static struct file_operations port_fops = {
804 .llseek = memory_lseek,
811 static struct file_operations zero_fops = {
812 .llseek = zero_lseek,
818 static struct backing_dev_info zero_bdi = {
819 .capabilities = BDI_CAP_MAP_COPY,
822 static struct file_operations full_fops = {
823 .llseek = full_lseek,
828 #ifdef CONFIG_CRASH_DUMP
829 static struct file_operations oldmem_fops = {
835 static ssize_t kmsg_write(struct file * file, const char __user * buf,
836 size_t count, loff_t *ppos)
841 tmp = kmalloc(count + 1, GFP_KERNEL);
845 if (!copy_from_user(tmp, buf, count)) {
847 ret = printk("%s", tmp);
849 /* printk can add a prefix */
856 static struct file_operations kmsg_fops = {
860 static int memory_open(struct inode * inode, struct file * filp)
862 switch (iminor(inode)) {
864 filp->f_op = &mem_fops;
867 filp->f_op = &kmem_fops;
870 filp->f_op = &null_fops;
872 #if defined(CONFIG_ISA) || !defined(__mc68000__)
874 filp->f_op = &port_fops;
878 filp->f_mapping->backing_dev_info = &zero_bdi;
879 filp->f_op = &zero_fops;
882 filp->f_op = &full_fops;
885 filp->f_op = &random_fops;
888 filp->f_op = &urandom_fops;
891 filp->f_op = &kmsg_fops;
893 #ifdef CONFIG_CRASH_DUMP
895 filp->f_op = &oldmem_fops;
901 if (filp->f_op && filp->f_op->open)
902 return filp->f_op->open(inode,filp);
906 static struct file_operations memory_fops = {
907 .open = memory_open, /* just a selector for the real open */
910 static const struct {
914 const struct file_operations *fops;
915 } devlist[] = { /* list of minor devices */
916 {1, "mem", S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops},
917 {2, "kmem", S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops},
918 {3, "null", S_IRUGO | S_IWUGO, &null_fops},
919 #if defined(CONFIG_ISA) || !defined(__mc68000__)
920 {4, "port", S_IRUSR | S_IWUSR | S_IRGRP, &port_fops},
922 {5, "zero", S_IRUGO | S_IWUGO, &zero_fops},
923 {7, "full", S_IRUGO | S_IWUGO, &full_fops},
924 {8, "random", S_IRUGO | S_IWUSR, &random_fops},
925 {9, "urandom", S_IRUGO | S_IWUSR, &urandom_fops},
926 {11,"kmsg", S_IRUGO | S_IWUSR, &kmsg_fops},
927 #ifdef CONFIG_CRASH_DUMP
928 {12,"oldmem", S_IRUSR | S_IWUSR | S_IRGRP, &oldmem_fops},
932 static struct class *mem_class;
934 static int __init chr_dev_init(void)
938 if (register_chrdev(MEM_MAJOR,"mem",&memory_fops))
939 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
941 mem_class = class_create(THIS_MODULE, "mem");
942 for (i = 0; i < ARRAY_SIZE(devlist); i++)
943 class_device_create(mem_class, NULL,
944 MKDEV(MEM_MAJOR, devlist[i].minor),
945 NULL, devlist[i].name);
950 fs_initcall(chr_dev_init);