Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION     IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98         'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116          QOS_TX3_CW_MIN_OFDM},
117         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118          QOS_TX3_CW_MAX_OFDM},
119         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127          QOS_TX3_CW_MIN_CCK},
128         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129          QOS_TX3_CW_MAX_CCK},
130         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133          QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138          DEF_TX3_CW_MIN_OFDM},
139         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140          DEF_TX3_CW_MAX_OFDM},
141         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149          DEF_TX3_CW_MIN_CCK},
150         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151          DEF_TX3_CW_MAX_CCK},
152         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155          DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168                                        *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170                                      *qos_param);
171 #endif                          /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177                                 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181                              int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194                                 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199                         const u8 * data, u32 len, u32 ofs)
200 {
201         int out, i, j, l;
202         char c;
203
204         out = snprintf(buf, count, "%08X", ofs);
205
206         for (l = 0, i = 0; i < 2; i++) {
207                 out += snprintf(buf + out, count - out, " ");
208                 for (j = 0; j < 8 && l < len; j++, l++)
209                         out += snprintf(buf + out, count - out, "%02X ",
210                                         data[(i * 8 + j)]);
211                 for (; j < 8; j++)
212                         out += snprintf(buf + out, count - out, "   ");
213         }
214
215         out += snprintf(buf + out, count - out, " ");
216         for (l = 0, i = 0; i < 2; i++) {
217                 out += snprintf(buf + out, count - out, " ");
218                 for (j = 0; j < 8 && l < len; j++, l++) {
219                         c = data[(i * 8 + j)];
220                         if (!isascii(c) || !isprint(c))
221                                 c = '.';
222
223                         out += snprintf(buf + out, count - out, "%c", c);
224                 }
225
226                 for (; j < 8; j++)
227                         out += snprintf(buf + out, count - out, " ");
228         }
229
230         return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235         char line[81];
236         u32 ofs = 0;
237         if (!(ipw_debug_level & level))
238                 return;
239
240         while (len) {
241                 snprint_line(line, sizeof(line), &data[ofs],
242                              min(len, 16U), ofs);
243                 printk(KERN_DEBUG "%s\n", line);
244                 ofs += 16;
245                 len -= min(len, 16U);
246         }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251         size_t out = size;
252         u32 ofs = 0;
253         int total = 0;
254
255         while (size && len) {
256                 out = snprint_line(output, size, &data[ofs],
257                                    min_t(size_t, len, 16U), ofs);
258
259                 ofs += 16;
260                 output += out;
261                 size -= out;
262                 len -= min_t(size_t, len, 16U);
263                 total += out;
264         }
265         return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281                      __LINE__, (u32) (b), (u32) (c));
282         _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290                      __LINE__, (u32) (b), (u32) (c));
291         _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299                      __LINE__, (u32) (b), (u32) (c));
300         _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
305                 u8 val)
306 {
307         writeb(val, ipw->hw_base + ofs);
308 }
309
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313                         __LINE__, (u32)(ofs), (u32)(val)); \
314         _ipw_write8(ipw, ofs, val); \
315 } while (0)
316
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
319                 u16 val)
320 {
321         writew(val, ipw->hw_base + ofs);
322 }
323
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327                         __LINE__, (u32)(ofs), (u32)(val)); \
328         _ipw_write16(ipw, ofs, val); \
329 } while (0)
330
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
333                 u32 val)
334 {
335         writel(val, ipw->hw_base + ofs);
336 }
337
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341                         __LINE__, (u32)(ofs), (u32)(val)); \
342         _ipw_write32(ipw, ofs, val); \
343 } while (0)
344
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
347 {
348         return readb(ipw->hw_base + ofs);
349 }
350
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
354                         (u32)(ofs)); \
355         _ipw_read8(ipw, ofs); \
356 })
357
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
360 {
361         return readw(ipw->hw_base + ofs);
362 }
363
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
367                         (u32)(ofs)); \
368         _ipw_read16(ipw, ofs); \
369 })
370
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
373 {
374         return readl(ipw->hw_base + ofs);
375 }
376
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
380                         (u32)(ofs)); \
381         _ipw_read32(ipw, ofs); \
382 })
383
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388                         __LINE__, (u32)(b), (u32)(d)); \
389         _ipw_read_indirect(a, b, c, d); \
390 })
391
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
394                                 int num);
395 #define ipw_write_indirect(a, b, c, d) do { \
396         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397                         __LINE__, (u32)(b), (u32)(d)); \
398         _ipw_write_indirect(a, b, c, d); \
399 } while (0)
400
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
403 {
404         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
407 }
408
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
411 {
412         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
413         u32 dif_len = reg - aligned_addr;
414
415         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
418 }
419
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
422 {
423         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
424         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
425
426         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
429 }
430
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
433 {
434         u32 word;
435         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         return (word >> ((reg & 0x3) * 8)) & 0xff;
439 }
440
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
443 {
444         u32 value;
445
446         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
447
448         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
451         return value;
452 }
453
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /*    for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
457                                int num)
458 {
459         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
460         u32 dif_len = addr - aligned_addr;
461         u32 i;
462
463         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
464
465         if (num <= 0) {
466                 return;
467         }
468
469         /* Read the first dword (or portion) byte by byte */
470         if (unlikely(dif_len)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 /* Start reading at aligned_addr + dif_len */
473                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
475                 aligned_addr += 4;
476         }
477
478         /* Read all of the middle dwords as dwords, with auto-increment */
479         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
482
483         /* Read the last dword (or portion) byte by byte */
484         if (unlikely(num)) {
485                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486                 for (i = 0; num > 0; i++, num--)
487                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
488         }
489 }
490
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /*    for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
494                                 int num)
495 {
496         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
497         u32 dif_len = addr - aligned_addr;
498         u32 i;
499
500         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501
502         if (num <= 0) {
503                 return;
504         }
505
506         /* Write the first dword (or portion) byte by byte */
507         if (unlikely(dif_len)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 /* Start writing at aligned_addr + dif_len */
510                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512                 aligned_addr += 4;
513         }
514
515         /* Write all of the middle dwords as dwords, with auto-increment */
516         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
519
520         /* Write the last dword (or portion) byte by byte */
521         if (unlikely(num)) {
522                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523                 for (i = 0; num > 0; i++, num--, buf++)
524                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
525         }
526 }
527
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /*    for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
531                              int num)
532 {
533         memcpy_toio((priv->hw_base + addr), buf, num);
534 }
535
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
538 {
539         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
540 }
541
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
544 {
545         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
546 }
547
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
549 {
550         if (priv->status & STATUS_INT_ENABLED)
551                 return;
552         priv->status |= STATUS_INT_ENABLED;
553         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
554 }
555
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
557 {
558         if (!(priv->status & STATUS_INT_ENABLED))
559                 return;
560         priv->status &= ~STATUS_INT_ENABLED;
561         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
562 }
563
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
565 {
566         unsigned long flags;
567
568         spin_lock_irqsave(&priv->irq_lock, flags);
569         __ipw_enable_interrupts(priv);
570         spin_unlock_irqrestore(&priv->irq_lock, flags);
571 }
572
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
574 {
575         unsigned long flags;
576
577         spin_lock_irqsave(&priv->irq_lock, flags);
578         __ipw_disable_interrupts(priv);
579         spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
582 static char *ipw_error_desc(u32 val)
583 {
584         switch (val) {
585         case IPW_FW_ERROR_OK:
586                 return "ERROR_OK";
587         case IPW_FW_ERROR_FAIL:
588                 return "ERROR_FAIL";
589         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590                 return "MEMORY_UNDERFLOW";
591         case IPW_FW_ERROR_MEMORY_OVERFLOW:
592                 return "MEMORY_OVERFLOW";
593         case IPW_FW_ERROR_BAD_PARAM:
594                 return "BAD_PARAM";
595         case IPW_FW_ERROR_BAD_CHECKSUM:
596                 return "BAD_CHECKSUM";
597         case IPW_FW_ERROR_NMI_INTERRUPT:
598                 return "NMI_INTERRUPT";
599         case IPW_FW_ERROR_BAD_DATABASE:
600                 return "BAD_DATABASE";
601         case IPW_FW_ERROR_ALLOC_FAIL:
602                 return "ALLOC_FAIL";
603         case IPW_FW_ERROR_DMA_UNDERRUN:
604                 return "DMA_UNDERRUN";
605         case IPW_FW_ERROR_DMA_STATUS:
606                 return "DMA_STATUS";
607         case IPW_FW_ERROR_DINO_ERROR:
608                 return "DINO_ERROR";
609         case IPW_FW_ERROR_EEPROM_ERROR:
610                 return "EEPROM_ERROR";
611         case IPW_FW_ERROR_SYSASSERT:
612                 return "SYSASSERT";
613         case IPW_FW_ERROR_FATAL_ERROR:
614                 return "FATAL_ERROR";
615         default:
616                 return "UNKNOWN_ERROR";
617         }
618 }
619
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621                                struct ipw_fw_error *error)
622 {
623         u32 i;
624
625         if (!error) {
626                 IPW_ERROR("Error allocating and capturing error log.  "
627                           "Nothing to dump.\n");
628                 return;
629         }
630
631         IPW_ERROR("Start IPW Error Log Dump:\n");
632         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633                   error->status, error->config);
634
635         for (i = 0; i < error->elem_len; i++)
636                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
637                           ipw_error_desc(error->elem[i].desc),
638                           error->elem[i].time,
639                           error->elem[i].blink1,
640                           error->elem[i].blink2,
641                           error->elem[i].link1,
642                           error->elem[i].link2, error->elem[i].data);
643         for (i = 0; i < error->log_len; i++)
644                 IPW_ERROR("%i\t0x%08x\t%i\n",
645                           error->log[i].time,
646                           error->log[i].data, error->log[i].event);
647 }
648
649 static inline int ipw_is_init(struct ipw_priv *priv)
650 {
651         return (priv->status & STATUS_INIT) ? 1 : 0;
652 }
653
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
655 {
656         u32 addr, field_info, field_len, field_count, total_len;
657
658         IPW_DEBUG_ORD("ordinal = %i\n", ord);
659
660         if (!priv || !val || !len) {
661                 IPW_DEBUG_ORD("Invalid argument\n");
662                 return -EINVAL;
663         }
664
665         /* verify device ordinal tables have been initialized */
666         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
668                 return -EINVAL;
669         }
670
671         switch (IPW_ORD_TABLE_ID_MASK & ord) {
672         case IPW_ORD_TABLE_0_MASK:
673                 /*
674                  * TABLE 0: Direct access to a table of 32 bit values
675                  *
676                  * This is a very simple table with the data directly
677                  * read from the table
678                  */
679
680                 /* remove the table id from the ordinal */
681                 ord &= IPW_ORD_TABLE_VALUE_MASK;
682
683                 /* boundary check */
684                 if (ord > priv->table0_len) {
685                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
686                                       "max (%i)\n", ord, priv->table0_len);
687                         return -EINVAL;
688                 }
689
690                 /* verify we have enough room to store the value */
691                 if (*len < sizeof(u32)) {
692                         IPW_DEBUG_ORD("ordinal buffer length too small, "
693                                       "need %zd\n", sizeof(u32));
694                         return -EINVAL;
695                 }
696
697                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698                               ord, priv->table0_addr + (ord << 2));
699
700                 *len = sizeof(u32);
701                 ord <<= 2;
702                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
703                 break;
704
705         case IPW_ORD_TABLE_1_MASK:
706                 /*
707                  * TABLE 1: Indirect access to a table of 32 bit values
708                  *
709                  * This is a fairly large table of u32 values each
710                  * representing starting addr for the data (which is
711                  * also a u32)
712                  */
713
714                 /* remove the table id from the ordinal */
715                 ord &= IPW_ORD_TABLE_VALUE_MASK;
716
717                 /* boundary check */
718                 if (ord > priv->table1_len) {
719                         IPW_DEBUG_ORD("ordinal value too long\n");
720                         return -EINVAL;
721                 }
722
723                 /* verify we have enough room to store the value */
724                 if (*len < sizeof(u32)) {
725                         IPW_DEBUG_ORD("ordinal buffer length too small, "
726                                       "need %zd\n", sizeof(u32));
727                         return -EINVAL;
728                 }
729
730                 *((u32 *) val) =
731                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
732                 *len = sizeof(u32);
733                 break;
734
735         case IPW_ORD_TABLE_2_MASK:
736                 /*
737                  * TABLE 2: Indirect access to a table of variable sized values
738                  *
739                  * This table consist of six values, each containing
740                  *     - dword containing the starting offset of the data
741                  *     - dword containing the lengh in the first 16bits
742                  *       and the count in the second 16bits
743                  */
744
745                 /* remove the table id from the ordinal */
746                 ord &= IPW_ORD_TABLE_VALUE_MASK;
747
748                 /* boundary check */
749                 if (ord > priv->table2_len) {
750                         IPW_DEBUG_ORD("ordinal value too long\n");
751                         return -EINVAL;
752                 }
753
754                 /* get the address of statistic */
755                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
756
757                 /* get the second DW of statistics ;
758                  * two 16-bit words - first is length, second is count */
759                 field_info =
760                     ipw_read_reg32(priv,
761                                    priv->table2_addr + (ord << 3) +
762                                    sizeof(u32));
763
764                 /* get each entry length */
765                 field_len = *((u16 *) & field_info);
766
767                 /* get number of entries */
768                 field_count = *(((u16 *) & field_info) + 1);
769
770                 /* abort if not enought memory */
771                 total_len = field_len * field_count;
772                 if (total_len > *len) {
773                         *len = total_len;
774                         return -EINVAL;
775                 }
776
777                 *len = total_len;
778                 if (!total_len)
779                         return 0;
780
781                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782                               "field_info = 0x%08x\n",
783                               addr, total_len, field_info);
784                 ipw_read_indirect(priv, addr, val, total_len);
785                 break;
786
787         default:
788                 IPW_DEBUG_ORD("Invalid ordinal!\n");
789                 return -EINVAL;
790
791         }
792
793         return 0;
794 }
795
796 static void ipw_init_ordinals(struct ipw_priv *priv)
797 {
798         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799         priv->table0_len = ipw_read32(priv, priv->table0_addr);
800
801         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802                       priv->table0_addr, priv->table0_len);
803
804         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
806
807         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808                       priv->table1_addr, priv->table1_len);
809
810         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812         priv->table2_len &= 0x0000ffff; /* use first two bytes */
813
814         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815                       priv->table2_addr, priv->table2_len);
816
817 }
818
819 static u32 ipw_register_toggle(u32 reg)
820 {
821         reg &= ~IPW_START_STANDBY;
822         if (reg & IPW_GATE_ODMA)
823                 reg &= ~IPW_GATE_ODMA;
824         if (reg & IPW_GATE_IDMA)
825                 reg &= ~IPW_GATE_IDMA;
826         if (reg & IPW_GATE_ADMA)
827                 reg &= ~IPW_GATE_ADMA;
828         return reg;
829 }
830
831 /*
832  * LED behavior:
833  * - On radio ON, turn on any LEDs that require to be on during start
834  * - On initialization, start unassociated blink
835  * - On association, disable unassociated blink
836  * - On disassociation, start unassociated blink
837  * - On radio OFF, turn off any LEDs started during radio on
838  *
839  */
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
843
844 static void ipw_led_link_on(struct ipw_priv *priv)
845 {
846         unsigned long flags;
847         u32 led;
848
849         /* If configured to not use LEDs, or nic_type is 1,
850          * then we don't toggle a LINK led */
851         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
852                 return;
853
854         spin_lock_irqsave(&priv->lock, flags);
855
856         if (!(priv->status & STATUS_RF_KILL_MASK) &&
857             !(priv->status & STATUS_LED_LINK_ON)) {
858                 IPW_DEBUG_LED("Link LED On\n");
859                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860                 led |= priv->led_association_on;
861
862                 led = ipw_register_toggle(led);
863
864                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
866
867                 priv->status |= STATUS_LED_LINK_ON;
868
869                 /* If we aren't associated, schedule turning the LED off */
870                 if (!(priv->status & STATUS_ASSOCIATED))
871                         queue_delayed_work(priv->workqueue,
872                                            &priv->led_link_off,
873                                            LD_TIME_LINK_ON);
874         }
875
876         spin_unlock_irqrestore(&priv->lock, flags);
877 }
878
879 static void ipw_bg_led_link_on(struct work_struct *work)
880 {
881         struct ipw_priv *priv =
882                 container_of(work, struct ipw_priv, led_link_on.work);
883         mutex_lock(&priv->mutex);
884         ipw_led_link_on(priv);
885         mutex_unlock(&priv->mutex);
886 }
887
888 static void ipw_led_link_off(struct ipw_priv *priv)
889 {
890         unsigned long flags;
891         u32 led;
892
893         /* If configured not to use LEDs, or nic type is 1,
894          * then we don't goggle the LINK led. */
895         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
896                 return;
897
898         spin_lock_irqsave(&priv->lock, flags);
899
900         if (priv->status & STATUS_LED_LINK_ON) {
901                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902                 led &= priv->led_association_off;
903                 led = ipw_register_toggle(led);
904
905                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
907
908                 IPW_DEBUG_LED("Link LED Off\n");
909
910                 priv->status &= ~STATUS_LED_LINK_ON;
911
912                 /* If we aren't associated and the radio is on, schedule
913                  * turning the LED on (blink while unassociated) */
914                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915                     !(priv->status & STATUS_ASSOCIATED))
916                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
917                                            LD_TIME_LINK_OFF);
918
919         }
920
921         spin_unlock_irqrestore(&priv->lock, flags);
922 }
923
924 static void ipw_bg_led_link_off(struct work_struct *work)
925 {
926         struct ipw_priv *priv =
927                 container_of(work, struct ipw_priv, led_link_off.work);
928         mutex_lock(&priv->mutex);
929         ipw_led_link_off(priv);
930         mutex_unlock(&priv->mutex);
931 }
932
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
934 {
935         u32 led;
936
937         if (priv->config & CFG_NO_LED)
938                 return;
939
940         if (priv->status & STATUS_RF_KILL_MASK)
941                 return;
942
943         if (!(priv->status & STATUS_LED_ACT_ON)) {
944                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945                 led |= priv->led_activity_on;
946
947                 led = ipw_register_toggle(led);
948
949                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
951
952                 IPW_DEBUG_LED("Activity LED On\n");
953
954                 priv->status |= STATUS_LED_ACT_ON;
955
956                 cancel_delayed_work(&priv->led_act_off);
957                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
958                                    LD_TIME_ACT_ON);
959         } else {
960                 /* Reschedule LED off for full time period */
961                 cancel_delayed_work(&priv->led_act_off);
962                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
963                                    LD_TIME_ACT_ON);
964         }
965 }
966
967 #if 0
968 void ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&priv->lock, flags);
972         __ipw_led_activity_on(priv);
973         spin_unlock_irqrestore(&priv->lock, flags);
974 }
975 #endif  /*  0  */
976
977 static void ipw_led_activity_off(struct ipw_priv *priv)
978 {
979         unsigned long flags;
980         u32 led;
981
982         if (priv->config & CFG_NO_LED)
983                 return;
984
985         spin_lock_irqsave(&priv->lock, flags);
986
987         if (priv->status & STATUS_LED_ACT_ON) {
988                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989                 led &= priv->led_activity_off;
990
991                 led = ipw_register_toggle(led);
992
993                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
995
996                 IPW_DEBUG_LED("Activity LED Off\n");
997
998                 priv->status &= ~STATUS_LED_ACT_ON;
999         }
1000
1001         spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1005 {
1006         struct ipw_priv *priv =
1007                 container_of(work, struct ipw_priv, led_act_off.work);
1008         mutex_lock(&priv->mutex);
1009         ipw_led_activity_off(priv);
1010         mutex_unlock(&priv->mutex);
1011 }
1012
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1014 {
1015         unsigned long flags;
1016         u32 led;
1017
1018         /* Only nic type 1 supports mode LEDs */
1019         if (priv->config & CFG_NO_LED ||
1020             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1021                 return;
1022
1023         spin_lock_irqsave(&priv->lock, flags);
1024
1025         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026         if (priv->assoc_network->mode == IEEE_A) {
1027                 led |= priv->led_ofdm_on;
1028                 led &= priv->led_association_off;
1029                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030         } else if (priv->assoc_network->mode == IEEE_G) {
1031                 led |= priv->led_ofdm_on;
1032                 led |= priv->led_association_on;
1033                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1034         } else {
1035                 led &= priv->led_ofdm_off;
1036                 led |= priv->led_association_on;
1037                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1038         }
1039
1040         led = ipw_register_toggle(led);
1041
1042         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1044
1045         spin_unlock_irqrestore(&priv->lock, flags);
1046 }
1047
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1049 {
1050         unsigned long flags;
1051         u32 led;
1052
1053         /* Only nic type 1 supports mode LEDs */
1054         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1055                 return;
1056
1057         spin_lock_irqsave(&priv->lock, flags);
1058
1059         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060         led &= priv->led_ofdm_off;
1061         led &= priv->led_association_off;
1062
1063         led = ipw_register_toggle(led);
1064
1065         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1067
1068         spin_unlock_irqrestore(&priv->lock, flags);
1069 }
1070
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1072 {
1073         ipw_led_link_on(priv);
1074 }
1075
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1077 {
1078         ipw_led_activity_off(priv);
1079         ipw_led_link_off(priv);
1080 }
1081
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1083 {
1084         /* Set the Link Led on for all nic types */
1085         ipw_led_link_on(priv);
1086 }
1087
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1089 {
1090         ipw_led_activity_off(priv);
1091         ipw_led_link_off(priv);
1092
1093         if (priv->status & STATUS_RF_KILL_MASK)
1094                 ipw_led_radio_off(priv);
1095 }
1096
1097 static void ipw_led_init(struct ipw_priv *priv)
1098 {
1099         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1100
1101         /* Set the default PINs for the link and activity leds */
1102         priv->led_activity_on = IPW_ACTIVITY_LED;
1103         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1104
1105         priv->led_association_on = IPW_ASSOCIATED_LED;
1106         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1107
1108         /* Set the default PINs for the OFDM leds */
1109         priv->led_ofdm_on = IPW_OFDM_LED;
1110         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1111
1112         switch (priv->nic_type) {
1113         case EEPROM_NIC_TYPE_1:
1114                 /* In this NIC type, the LEDs are reversed.... */
1115                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117                 priv->led_association_on = IPW_ACTIVITY_LED;
1118                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1119
1120                 if (!(priv->config & CFG_NO_LED))
1121                         ipw_led_band_on(priv);
1122
1123                 /* And we don't blink link LEDs for this nic, so
1124                  * just return here */
1125                 return;
1126
1127         case EEPROM_NIC_TYPE_3:
1128         case EEPROM_NIC_TYPE_2:
1129         case EEPROM_NIC_TYPE_4:
1130         case EEPROM_NIC_TYPE_0:
1131                 break;
1132
1133         default:
1134                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1135                                priv->nic_type);
1136                 priv->nic_type = EEPROM_NIC_TYPE_0;
1137                 break;
1138         }
1139
1140         if (!(priv->config & CFG_NO_LED)) {
1141                 if (priv->status & STATUS_ASSOCIATED)
1142                         ipw_led_link_on(priv);
1143                 else
1144                         ipw_led_link_off(priv);
1145         }
1146 }
1147
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1149 {
1150         ipw_led_activity_off(priv);
1151         ipw_led_link_off(priv);
1152         ipw_led_band_off(priv);
1153         cancel_delayed_work(&priv->led_link_on);
1154         cancel_delayed_work(&priv->led_link_off);
1155         cancel_delayed_work(&priv->led_act_off);
1156 }
1157
1158 /*
1159  * The following adds a new attribute to the sysfs representation
1160  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161  * used for controling the debug level.
1162  *
1163  * See the level definitions in ipw for details.
1164  */
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1166 {
1167         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1168 }
1169
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1171                                  size_t count)
1172 {
1173         char *p = (char *)buf;
1174         u32 val;
1175
1176         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1177                 p++;
1178                 if (p[0] == 'x' || p[0] == 'X')
1179                         p++;
1180                 val = simple_strtoul(p, &p, 16);
1181         } else
1182                 val = simple_strtoul(p, &p, 10);
1183         if (p == buf)
1184                 printk(KERN_INFO DRV_NAME
1185                        ": %s is not in hex or decimal form.\n", buf);
1186         else
1187                 ipw_debug_level = val;
1188
1189         return strnlen(buf, count);
1190 }
1191
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193                    show_debug_level, store_debug_level);
1194
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1196 {
1197         /* length = 1st dword in log */
1198         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1199 }
1200
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202                                   u32 log_len, struct ipw_event *log)
1203 {
1204         u32 base;
1205
1206         if (log_len) {
1207                 base = ipw_read32(priv, IPW_EVENT_LOG);
1208                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209                                   (u8 *) log, sizeof(*log) * log_len);
1210         }
1211 }
1212
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1214 {
1215         struct ipw_fw_error *error;
1216         u32 log_len = ipw_get_event_log_len(priv);
1217         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218         u32 elem_len = ipw_read_reg32(priv, base);
1219
1220         error = kmalloc(sizeof(*error) +
1221                         sizeof(*error->elem) * elem_len +
1222                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1223         if (!error) {
1224                 IPW_ERROR("Memory allocation for firmware error log "
1225                           "failed.\n");
1226                 return NULL;
1227         }
1228         error->jiffies = jiffies;
1229         error->status = priv->status;
1230         error->config = priv->config;
1231         error->elem_len = elem_len;
1232         error->log_len = log_len;
1233         error->elem = (struct ipw_error_elem *)error->payload;
1234         error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236         ipw_capture_event_log(priv, log_len, error->log);
1237
1238         if (elem_len)
1239                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240                                   sizeof(*error->elem) * elem_len);
1241
1242         return error;
1243 }
1244
1245 static ssize_t show_event_log(struct device *d,
1246                               struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 log_size;
1251         struct ipw_event *log;
1252         u32 len = 0, i;
1253
1254         /* not using min() because of its strict type checking */
1255         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256                         sizeof(*log) * log_len : PAGE_SIZE;
1257         log = kzalloc(log_size, GFP_KERNEL);
1258         if (!log) {
1259                 IPW_ERROR("Unable to allocate memory for log\n");
1260                 return 0;
1261         }
1262         log_len = log_size / sizeof(*log);
1263         ipw_capture_event_log(priv, log_len, log);
1264
1265         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266         for (i = 0; i < log_len; i++)
1267                 len += snprintf(buf + len, PAGE_SIZE - len,
1268                                 "\n%08X%08X%08X",
1269                                 log[i].time, log[i].event, log[i].data);
1270         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1271         kfree(log);
1272         return len;
1273 }
1274
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1276
1277 static ssize_t show_error(struct device *d,
1278                           struct device_attribute *attr, char *buf)
1279 {
1280         struct ipw_priv *priv = dev_get_drvdata(d);
1281         u32 len = 0, i;
1282         if (!priv->error)
1283                 return 0;
1284         len += snprintf(buf + len, PAGE_SIZE - len,
1285                         "%08lX%08X%08X%08X",
1286                         priv->error->jiffies,
1287                         priv->error->status,
1288                         priv->error->config, priv->error->elem_len);
1289         for (i = 0; i < priv->error->elem_len; i++)
1290                 len += snprintf(buf + len, PAGE_SIZE - len,
1291                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1292                                 priv->error->elem[i].time,
1293                                 priv->error->elem[i].desc,
1294                                 priv->error->elem[i].blink1,
1295                                 priv->error->elem[i].blink2,
1296                                 priv->error->elem[i].link1,
1297                                 priv->error->elem[i].link2,
1298                                 priv->error->elem[i].data);
1299
1300         len += snprintf(buf + len, PAGE_SIZE - len,
1301                         "\n%08X", priv->error->log_len);
1302         for (i = 0; i < priv->error->log_len; i++)
1303                 len += snprintf(buf + len, PAGE_SIZE - len,
1304                                 "\n%08X%08X%08X",
1305                                 priv->error->log[i].time,
1306                                 priv->error->log[i].event,
1307                                 priv->error->log[i].data);
1308         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1309         return len;
1310 }
1311
1312 static ssize_t clear_error(struct device *d,
1313                            struct device_attribute *attr,
1314                            const char *buf, size_t count)
1315 {
1316         struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318         kfree(priv->error);
1319         priv->error = NULL;
1320         return count;
1321 }
1322
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1324
1325 static ssize_t show_cmd_log(struct device *d,
1326                             struct device_attribute *attr, char *buf)
1327 {
1328         struct ipw_priv *priv = dev_get_drvdata(d);
1329         u32 len = 0, i;
1330         if (!priv->cmdlog)
1331                 return 0;
1332         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334              i = (i + 1) % priv->cmdlog_len) {
1335                 len +=
1336                     snprintf(buf + len, PAGE_SIZE - len,
1337                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339                              priv->cmdlog[i].cmd.len);
1340                 len +=
1341                     snprintk_buf(buf + len, PAGE_SIZE - len,
1342                                  (u8 *) priv->cmdlog[i].cmd.param,
1343                                  priv->cmdlog[i].cmd.len);
1344                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1345         }
1346         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1347         return len;
1348 }
1349
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356                          struct device_attribute *attr,
1357                          const char *buf, size_t count)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         int rc = 0;
1361
1362         if (count < 1)
1363                 return -EINVAL;
1364
1365         switch (buf[0]) {
1366         case '0':
1367                 if (!rtap_iface)
1368                         return count;
1369
1370                 if (netif_running(priv->prom_net_dev)) {
1371                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1372                         return count;
1373                 }
1374
1375                 ipw_prom_free(priv);
1376                 rtap_iface = 0;
1377                 break;
1378
1379         case '1':
1380                 if (rtap_iface)
1381                         return count;
1382
1383                 rc = ipw_prom_alloc(priv);
1384                 if (!rc)
1385                         rtap_iface = 1;
1386                 break;
1387
1388         default:
1389                 return -EINVAL;
1390         }
1391
1392         if (rc) {
1393                 IPW_ERROR("Failed to register promiscuous network "
1394                           "device (error %d).\n", rc);
1395         }
1396
1397         return count;
1398 }
1399
1400 static ssize_t show_rtap_iface(struct device *d,
1401                         struct device_attribute *attr,
1402                         char *buf)
1403 {
1404         struct ipw_priv *priv = dev_get_drvdata(d);
1405         if (rtap_iface)
1406                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407         else {
1408                 buf[0] = '-';
1409                 buf[1] = '1';
1410                 buf[2] = '\0';
1411                 return 3;
1412         }
1413 }
1414
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1416                    store_rtap_iface);
1417
1418 static ssize_t store_rtap_filter(struct device *d,
1419                          struct device_attribute *attr,
1420                          const char *buf, size_t count)
1421 {
1422         struct ipw_priv *priv = dev_get_drvdata(d);
1423
1424         if (!priv->prom_priv) {
1425                 IPW_ERROR("Attempting to set filter without "
1426                           "rtap_iface enabled.\n");
1427                 return -EPERM;
1428         }
1429
1430         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1431
1432         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433                        BIT_ARG16(priv->prom_priv->filter));
1434
1435         return count;
1436 }
1437
1438 static ssize_t show_rtap_filter(struct device *d,
1439                         struct device_attribute *attr,
1440                         char *buf)
1441 {
1442         struct ipw_priv *priv = dev_get_drvdata(d);
1443         return sprintf(buf, "0x%04X",
1444                        priv->prom_priv ? priv->prom_priv->filter : 0);
1445 }
1446
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1448                    store_rtap_filter);
1449 #endif
1450
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1452                              char *buf)
1453 {
1454         struct ipw_priv *priv = dev_get_drvdata(d);
1455         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1456 }
1457
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459                               const char *buf, size_t count)
1460 {
1461         struct ipw_priv *priv = dev_get_drvdata(d);
1462         struct net_device *dev = priv->net_dev;
1463         char buffer[] = "00000000";
1464         unsigned long len =
1465             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1466         unsigned long val;
1467         char *p = buffer;
1468
1469         IPW_DEBUG_INFO("enter\n");
1470
1471         strncpy(buffer, buf, len);
1472         buffer[len] = 0;
1473
1474         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1475                 p++;
1476                 if (p[0] == 'x' || p[0] == 'X')
1477                         p++;
1478                 val = simple_strtoul(p, &p, 16);
1479         } else
1480                 val = simple_strtoul(p, &p, 10);
1481         if (p == buffer) {
1482                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1483         } else {
1484                 priv->ieee->scan_age = val;
1485                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1486         }
1487
1488         IPW_DEBUG_INFO("exit\n");
1489         return len;
1490 }
1491
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1493
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1495                         char *buf)
1496 {
1497         struct ipw_priv *priv = dev_get_drvdata(d);
1498         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1499 }
1500
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502                          const char *buf, size_t count)
1503 {
1504         struct ipw_priv *priv = dev_get_drvdata(d);
1505
1506         IPW_DEBUG_INFO("enter\n");
1507
1508         if (count == 0)
1509                 return 0;
1510
1511         if (*buf == 0) {
1512                 IPW_DEBUG_LED("Disabling LED control.\n");
1513                 priv->config |= CFG_NO_LED;
1514                 ipw_led_shutdown(priv);
1515         } else {
1516                 IPW_DEBUG_LED("Enabling LED control.\n");
1517                 priv->config &= ~CFG_NO_LED;
1518                 ipw_led_init(priv);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return count;
1523 }
1524
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1526
1527 static ssize_t show_status(struct device *d,
1528                            struct device_attribute *attr, char *buf)
1529 {
1530         struct ipw_priv *p = dev_get_drvdata(d);
1531         return sprintf(buf, "0x%08x\n", (int)p->status);
1532 }
1533
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1535
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1537                         char *buf)
1538 {
1539         struct ipw_priv *p = dev_get_drvdata(d);
1540         return sprintf(buf, "0x%08x\n", (int)p->config);
1541 }
1542
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1544
1545 static ssize_t show_nic_type(struct device *d,
1546                              struct device_attribute *attr, char *buf)
1547 {
1548         struct ipw_priv *priv = dev_get_drvdata(d);
1549         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1550 }
1551
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1553
1554 static ssize_t show_ucode_version(struct device *d,
1555                                   struct device_attribute *attr, char *buf)
1556 {
1557         u32 len = sizeof(u32), tmp = 0;
1558         struct ipw_priv *p = dev_get_drvdata(d);
1559
1560         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1561                 return 0;
1562
1563         return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1567
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1569                         char *buf)
1570 {
1571         u32 len = sizeof(u32), tmp = 0;
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573
1574         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1575                 return 0;
1576
1577         return sprintf(buf, "0x%08x\n", tmp);
1578 }
1579
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1581
1582 /*
1583  * Add a device attribute to view/control the delay between eeprom
1584  * operations.
1585  */
1586 static ssize_t show_eeprom_delay(struct device *d,
1587                                  struct device_attribute *attr, char *buf)
1588 {
1589         struct ipw_priv *p = dev_get_drvdata(d);
1590         int n = p->eeprom_delay;
1591         return sprintf(buf, "%i\n", n);
1592 }
1593 static ssize_t store_eeprom_delay(struct device *d,
1594                                   struct device_attribute *attr,
1595                                   const char *buf, size_t count)
1596 {
1597         struct ipw_priv *p = dev_get_drvdata(d);
1598         sscanf(buf, "%i", &p->eeprom_delay);
1599         return strnlen(buf, count);
1600 }
1601
1602 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1603                    show_eeprom_delay, store_eeprom_delay);
1604
1605 static ssize_t show_command_event_reg(struct device *d,
1606                                       struct device_attribute *attr, char *buf)
1607 {
1608         u32 reg = 0;
1609         struct ipw_priv *p = dev_get_drvdata(d);
1610
1611         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1612         return sprintf(buf, "0x%08x\n", reg);
1613 }
1614 static ssize_t store_command_event_reg(struct device *d,
1615                                        struct device_attribute *attr,
1616                                        const char *buf, size_t count)
1617 {
1618         u32 reg;
1619         struct ipw_priv *p = dev_get_drvdata(d);
1620
1621         sscanf(buf, "%x", &reg);
1622         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1623         return strnlen(buf, count);
1624 }
1625
1626 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1627                    show_command_event_reg, store_command_event_reg);
1628
1629 static ssize_t show_mem_gpio_reg(struct device *d,
1630                                  struct device_attribute *attr, char *buf)
1631 {
1632         u32 reg = 0;
1633         struct ipw_priv *p = dev_get_drvdata(d);
1634
1635         reg = ipw_read_reg32(p, 0x301100);
1636         return sprintf(buf, "0x%08x\n", reg);
1637 }
1638 static ssize_t store_mem_gpio_reg(struct device *d,
1639                                   struct device_attribute *attr,
1640                                   const char *buf, size_t count)
1641 {
1642         u32 reg;
1643         struct ipw_priv *p = dev_get_drvdata(d);
1644
1645         sscanf(buf, "%x", &reg);
1646         ipw_write_reg32(p, 0x301100, reg);
1647         return strnlen(buf, count);
1648 }
1649
1650 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1651                    show_mem_gpio_reg, store_mem_gpio_reg);
1652
1653 static ssize_t show_indirect_dword(struct device *d,
1654                                    struct device_attribute *attr, char *buf)
1655 {
1656         u32 reg = 0;
1657         struct ipw_priv *priv = dev_get_drvdata(d);
1658
1659         if (priv->status & STATUS_INDIRECT_DWORD)
1660                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1661         else
1662                 reg = 0;
1663
1664         return sprintf(buf, "0x%08x\n", reg);
1665 }
1666 static ssize_t store_indirect_dword(struct device *d,
1667                                     struct device_attribute *attr,
1668                                     const char *buf, size_t count)
1669 {
1670         struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672         sscanf(buf, "%x", &priv->indirect_dword);
1673         priv->status |= STATUS_INDIRECT_DWORD;
1674         return strnlen(buf, count);
1675 }
1676
1677 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1678                    show_indirect_dword, store_indirect_dword);
1679
1680 static ssize_t show_indirect_byte(struct device *d,
1681                                   struct device_attribute *attr, char *buf)
1682 {
1683         u8 reg = 0;
1684         struct ipw_priv *priv = dev_get_drvdata(d);
1685
1686         if (priv->status & STATUS_INDIRECT_BYTE)
1687                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%02x\n", reg);
1692 }
1693 static ssize_t store_indirect_byte(struct device *d,
1694                                    struct device_attribute *attr,
1695                                    const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699         sscanf(buf, "%x", &priv->indirect_byte);
1700         priv->status |= STATUS_INDIRECT_BYTE;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1705                    show_indirect_byte, store_indirect_byte);
1706
1707 static ssize_t show_direct_dword(struct device *d,
1708                                  struct device_attribute *attr, char *buf)
1709 {
1710         u32 reg = 0;
1711         struct ipw_priv *priv = dev_get_drvdata(d);
1712
1713         if (priv->status & STATUS_DIRECT_DWORD)
1714                 reg = ipw_read32(priv, priv->direct_dword);
1715         else
1716                 reg = 0;
1717
1718         return sprintf(buf, "0x%08x\n", reg);
1719 }
1720 static ssize_t store_direct_dword(struct device *d,
1721                                   struct device_attribute *attr,
1722                                   const char *buf, size_t count)
1723 {
1724         struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726         sscanf(buf, "%x", &priv->direct_dword);
1727         priv->status |= STATUS_DIRECT_DWORD;
1728         return strnlen(buf, count);
1729 }
1730
1731 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1732                    show_direct_dword, store_direct_dword);
1733
1734 static int rf_kill_active(struct ipw_priv *priv)
1735 {
1736         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1737                 priv->status |= STATUS_RF_KILL_HW;
1738         else
1739                 priv->status &= ~STATUS_RF_KILL_HW;
1740
1741         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1742 }
1743
1744 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1745                             char *buf)
1746 {
1747         /* 0 - RF kill not enabled
1748            1 - SW based RF kill active (sysfs)
1749            2 - HW based RF kill active
1750            3 - Both HW and SW baed RF kill active */
1751         struct ipw_priv *priv = dev_get_drvdata(d);
1752         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1753             (rf_kill_active(priv) ? 0x2 : 0x0);
1754         return sprintf(buf, "%i\n", val);
1755 }
1756
1757 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1758 {
1759         if ((disable_radio ? 1 : 0) ==
1760             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1761                 return 0;
1762
1763         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1764                           disable_radio ? "OFF" : "ON");
1765
1766         if (disable_radio) {
1767                 priv->status |= STATUS_RF_KILL_SW;
1768
1769                 if (priv->workqueue) {
1770                         cancel_delayed_work(&priv->request_scan);
1771                         cancel_delayed_work(&priv->request_direct_scan);
1772                         cancel_delayed_work(&priv->request_passive_scan);
1773                         cancel_delayed_work(&priv->scan_event);
1774                 }
1775                 queue_work(priv->workqueue, &priv->down);
1776         } else {
1777                 priv->status &= ~STATUS_RF_KILL_SW;
1778                 if (rf_kill_active(priv)) {
1779                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1780                                           "disabled by HW switch\n");
1781                         /* Make sure the RF_KILL check timer is running */
1782                         cancel_delayed_work(&priv->rf_kill);
1783                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1784                                            round_jiffies_relative(2 * HZ));
1785                 } else
1786                         queue_work(priv->workqueue, &priv->up);
1787         }
1788
1789         return 1;
1790 }
1791
1792 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1793                              const char *buf, size_t count)
1794 {
1795         struct ipw_priv *priv = dev_get_drvdata(d);
1796
1797         ipw_radio_kill_sw(priv, buf[0] == '1');
1798
1799         return count;
1800 }
1801
1802 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1803
1804 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1805                                char *buf)
1806 {
1807         struct ipw_priv *priv = dev_get_drvdata(d);
1808         int pos = 0, len = 0;
1809         if (priv->config & CFG_SPEED_SCAN) {
1810                 while (priv->speed_scan[pos] != 0)
1811                         len += sprintf(&buf[len], "%d ",
1812                                        priv->speed_scan[pos++]);
1813                 return len + sprintf(&buf[len], "\n");
1814         }
1815
1816         return sprintf(buf, "0\n");
1817 }
1818
1819 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1820                                 const char *buf, size_t count)
1821 {
1822         struct ipw_priv *priv = dev_get_drvdata(d);
1823         int channel, pos = 0;
1824         const char *p = buf;
1825
1826         /* list of space separated channels to scan, optionally ending with 0 */
1827         while ((channel = simple_strtol(p, NULL, 0))) {
1828                 if (pos == MAX_SPEED_SCAN - 1) {
1829                         priv->speed_scan[pos] = 0;
1830                         break;
1831                 }
1832
1833                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1834                         priv->speed_scan[pos++] = channel;
1835                 else
1836                         IPW_WARNING("Skipping invalid channel request: %d\n",
1837                                     channel);
1838                 p = strchr(p, ' ');
1839                 if (!p)
1840                         break;
1841                 while (*p == ' ' || *p == '\t')
1842                         p++;
1843         }
1844
1845         if (pos == 0)
1846                 priv->config &= ~CFG_SPEED_SCAN;
1847         else {
1848                 priv->speed_scan_pos = 0;
1849                 priv->config |= CFG_SPEED_SCAN;
1850         }
1851
1852         return count;
1853 }
1854
1855 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1856                    store_speed_scan);
1857
1858 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1859                               char *buf)
1860 {
1861         struct ipw_priv *priv = dev_get_drvdata(d);
1862         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1863 }
1864
1865 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1866                                const char *buf, size_t count)
1867 {
1868         struct ipw_priv *priv = dev_get_drvdata(d);
1869         if (buf[0] == '1')
1870                 priv->config |= CFG_NET_STATS;
1871         else
1872                 priv->config &= ~CFG_NET_STATS;
1873
1874         return count;
1875 }
1876
1877 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1878                    show_net_stats, store_net_stats);
1879
1880 static ssize_t show_channels(struct device *d,
1881                              struct device_attribute *attr,
1882                              char *buf)
1883 {
1884         struct ipw_priv *priv = dev_get_drvdata(d);
1885         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1886         int len = 0, i;
1887
1888         len = sprintf(&buf[len],
1889                       "Displaying %d channels in 2.4Ghz band "
1890                       "(802.11bg):\n", geo->bg_channels);
1891
1892         for (i = 0; i < geo->bg_channels; i++) {
1893                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1894                                geo->bg[i].channel,
1895                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896                                " (radar spectrum)" : "",
1897                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1898                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1899                                ? "" : ", IBSS",
1900                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901                                "passive only" : "active/passive",
1902                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1903                                "B" : "B/G");
1904         }
1905
1906         len += sprintf(&buf[len],
1907                        "Displaying %d channels in 5.2Ghz band "
1908                        "(802.11a):\n", geo->a_channels);
1909         for (i = 0; i < geo->a_channels; i++) {
1910                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1911                                geo->a[i].channel,
1912                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1913                                " (radar spectrum)" : "",
1914                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1915                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1916                                ? "" : ", IBSS",
1917                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1918                                "passive only" : "active/passive");
1919         }
1920
1921         return len;
1922 }
1923
1924 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1925
1926 static void notify_wx_assoc_event(struct ipw_priv *priv)
1927 {
1928         union iwreq_data wrqu;
1929         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1930         if (priv->status & STATUS_ASSOCIATED)
1931                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1932         else
1933                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1934         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1935 }
1936
1937 static void ipw_irq_tasklet(struct ipw_priv *priv)
1938 {
1939         u32 inta, inta_mask, handled = 0;
1940         unsigned long flags;
1941         int rc = 0;
1942
1943         spin_lock_irqsave(&priv->irq_lock, flags);
1944
1945         inta = ipw_read32(priv, IPW_INTA_RW);
1946         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1947         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1948
1949         /* Add any cached INTA values that need to be handled */
1950         inta |= priv->isr_inta;
1951
1952         spin_unlock_irqrestore(&priv->irq_lock, flags);
1953
1954         spin_lock_irqsave(&priv->lock, flags);
1955
1956         /* handle all the justifications for the interrupt */
1957         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1958                 ipw_rx(priv);
1959                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1960         }
1961
1962         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1963                 IPW_DEBUG_HC("Command completed.\n");
1964                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1965                 priv->status &= ~STATUS_HCMD_ACTIVE;
1966                 wake_up_interruptible(&priv->wait_command_queue);
1967                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1968         }
1969
1970         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1971                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1972                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1973                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1974         }
1975
1976         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1977                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1978                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1979                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1980         }
1981
1982         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1983                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1984                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1985                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1986         }
1987
1988         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1989                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1990                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1991                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1992         }
1993
1994         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1995                 IPW_WARNING("STATUS_CHANGE\n");
1996                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1997         }
1998
1999         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2000                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2001                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2002         }
2003
2004         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2005                 IPW_WARNING("HOST_CMD_DONE\n");
2006                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2007         }
2008
2009         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2010                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2011                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2012         }
2013
2014         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2015                 IPW_WARNING("PHY_OFF_DONE\n");
2016                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2017         }
2018
2019         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2020                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2021                 priv->status |= STATUS_RF_KILL_HW;
2022                 wake_up_interruptible(&priv->wait_command_queue);
2023                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2024                 cancel_delayed_work(&priv->request_scan);
2025                 cancel_delayed_work(&priv->request_direct_scan);
2026                 cancel_delayed_work(&priv->request_passive_scan);
2027                 cancel_delayed_work(&priv->scan_event);
2028                 schedule_work(&priv->link_down);
2029                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2030                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2031         }
2032
2033         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2034                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2035                 if (priv->error) {
2036                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2037                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2038                                 struct ipw_fw_error *error =
2039                                     ipw_alloc_error_log(priv);
2040                                 ipw_dump_error_log(priv, error);
2041                                 kfree(error);
2042                         }
2043                 } else {
2044                         priv->error = ipw_alloc_error_log(priv);
2045                         if (priv->error)
2046                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2047                         else
2048                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2049                                              "log.\n");
2050                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2051                                 ipw_dump_error_log(priv, priv->error);
2052                 }
2053
2054                 /* XXX: If hardware encryption is for WPA/WPA2,
2055                  * we have to notify the supplicant. */
2056                 if (priv->ieee->sec.encrypt) {
2057                         priv->status &= ~STATUS_ASSOCIATED;
2058                         notify_wx_assoc_event(priv);
2059                 }
2060
2061                 /* Keep the restart process from trying to send host
2062                  * commands by clearing the INIT status bit */
2063                 priv->status &= ~STATUS_INIT;
2064
2065                 /* Cancel currently queued command. */
2066                 priv->status &= ~STATUS_HCMD_ACTIVE;
2067                 wake_up_interruptible(&priv->wait_command_queue);
2068
2069                 queue_work(priv->workqueue, &priv->adapter_restart);
2070                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2071         }
2072
2073         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2074                 IPW_ERROR("Parity error\n");
2075                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2076         }
2077
2078         if (handled != inta) {
2079                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2080         }
2081
2082         spin_unlock_irqrestore(&priv->lock, flags);
2083
2084         /* enable all interrupts */
2085         ipw_enable_interrupts(priv);
2086 }
2087
2088 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2089 static char *get_cmd_string(u8 cmd)
2090 {
2091         switch (cmd) {
2092                 IPW_CMD(HOST_COMPLETE);
2093                 IPW_CMD(POWER_DOWN);
2094                 IPW_CMD(SYSTEM_CONFIG);
2095                 IPW_CMD(MULTICAST_ADDRESS);
2096                 IPW_CMD(SSID);
2097                 IPW_CMD(ADAPTER_ADDRESS);
2098                 IPW_CMD(PORT_TYPE);
2099                 IPW_CMD(RTS_THRESHOLD);
2100                 IPW_CMD(FRAG_THRESHOLD);
2101                 IPW_CMD(POWER_MODE);
2102                 IPW_CMD(WEP_KEY);
2103                 IPW_CMD(TGI_TX_KEY);
2104                 IPW_CMD(SCAN_REQUEST);
2105                 IPW_CMD(SCAN_REQUEST_EXT);
2106                 IPW_CMD(ASSOCIATE);
2107                 IPW_CMD(SUPPORTED_RATES);
2108                 IPW_CMD(SCAN_ABORT);
2109                 IPW_CMD(TX_FLUSH);
2110                 IPW_CMD(QOS_PARAMETERS);
2111                 IPW_CMD(DINO_CONFIG);
2112                 IPW_CMD(RSN_CAPABILITIES);
2113                 IPW_CMD(RX_KEY);
2114                 IPW_CMD(CARD_DISABLE);
2115                 IPW_CMD(SEED_NUMBER);
2116                 IPW_CMD(TX_POWER);
2117                 IPW_CMD(COUNTRY_INFO);
2118                 IPW_CMD(AIRONET_INFO);
2119                 IPW_CMD(AP_TX_POWER);
2120                 IPW_CMD(CCKM_INFO);
2121                 IPW_CMD(CCX_VER_INFO);
2122                 IPW_CMD(SET_CALIBRATION);
2123                 IPW_CMD(SENSITIVITY_CALIB);
2124                 IPW_CMD(RETRY_LIMIT);
2125                 IPW_CMD(IPW_PRE_POWER_DOWN);
2126                 IPW_CMD(VAP_BEACON_TEMPLATE);
2127                 IPW_CMD(VAP_DTIM_PERIOD);
2128                 IPW_CMD(EXT_SUPPORTED_RATES);
2129                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2130                 IPW_CMD(VAP_QUIET_INTERVALS);
2131                 IPW_CMD(VAP_CHANNEL_SWITCH);
2132                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2133                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2134                 IPW_CMD(VAP_CF_PARAM_SET);
2135                 IPW_CMD(VAP_SET_BEACONING_STATE);
2136                 IPW_CMD(MEASUREMENT);
2137                 IPW_CMD(POWER_CAPABILITY);
2138                 IPW_CMD(SUPPORTED_CHANNELS);
2139                 IPW_CMD(TPC_REPORT);
2140                 IPW_CMD(WME_INFO);
2141                 IPW_CMD(PRODUCTION_COMMAND);
2142         default:
2143                 return "UNKNOWN";
2144         }
2145 }
2146
2147 #define HOST_COMPLETE_TIMEOUT HZ
2148
2149 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2150 {
2151         int rc = 0;
2152         unsigned long flags;
2153
2154         spin_lock_irqsave(&priv->lock, flags);
2155         if (priv->status & STATUS_HCMD_ACTIVE) {
2156                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2157                           get_cmd_string(cmd->cmd));
2158                 spin_unlock_irqrestore(&priv->lock, flags);
2159                 return -EAGAIN;
2160         }
2161
2162         priv->status |= STATUS_HCMD_ACTIVE;
2163
2164         if (priv->cmdlog) {
2165                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2166                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2167                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2168                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2169                        cmd->len);
2170                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2171         }
2172
2173         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2174                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2175                      priv->status);
2176
2177 #ifndef DEBUG_CMD_WEP_KEY
2178         if (cmd->cmd == IPW_CMD_WEP_KEY)
2179                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2180         else
2181 #endif
2182                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2183
2184         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2185         if (rc) {
2186                 priv->status &= ~STATUS_HCMD_ACTIVE;
2187                 IPW_ERROR("Failed to send %s: Reason %d\n",
2188                           get_cmd_string(cmd->cmd), rc);
2189                 spin_unlock_irqrestore(&priv->lock, flags);
2190                 goto exit;
2191         }
2192         spin_unlock_irqrestore(&priv->lock, flags);
2193
2194         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2195                                               !(priv->
2196                                                 status & STATUS_HCMD_ACTIVE),
2197                                               HOST_COMPLETE_TIMEOUT);
2198         if (rc == 0) {
2199                 spin_lock_irqsave(&priv->lock, flags);
2200                 if (priv->status & STATUS_HCMD_ACTIVE) {
2201                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2202                                   get_cmd_string(cmd->cmd));
2203                         priv->status &= ~STATUS_HCMD_ACTIVE;
2204                         spin_unlock_irqrestore(&priv->lock, flags);
2205                         rc = -EIO;
2206                         goto exit;
2207                 }
2208                 spin_unlock_irqrestore(&priv->lock, flags);
2209         } else
2210                 rc = 0;
2211
2212         if (priv->status & STATUS_RF_KILL_HW) {
2213                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2214                           get_cmd_string(cmd->cmd));
2215                 rc = -EIO;
2216                 goto exit;
2217         }
2218
2219       exit:
2220         if (priv->cmdlog) {
2221                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2222                 priv->cmdlog_pos %= priv->cmdlog_len;
2223         }
2224         return rc;
2225 }
2226
2227 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2228 {
2229         struct host_cmd cmd = {
2230                 .cmd = command,
2231         };
2232
2233         return __ipw_send_cmd(priv, &cmd);
2234 }
2235
2236 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2237                             void *data)
2238 {
2239         struct host_cmd cmd = {
2240                 .cmd = command,
2241                 .len = len,
2242                 .param = data,
2243         };
2244
2245         return __ipw_send_cmd(priv, &cmd);
2246 }
2247
2248 static int ipw_send_host_complete(struct ipw_priv *priv)
2249 {
2250         if (!priv) {
2251                 IPW_ERROR("Invalid args\n");
2252                 return -1;
2253         }
2254
2255         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2256 }
2257
2258 static int ipw_send_system_config(struct ipw_priv *priv)
2259 {
2260         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2261                                 sizeof(priv->sys_config),
2262                                 &priv->sys_config);
2263 }
2264
2265 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2266 {
2267         if (!priv || !ssid) {
2268                 IPW_ERROR("Invalid args\n");
2269                 return -1;
2270         }
2271
2272         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2273                                 ssid);
2274 }
2275
2276 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2277 {
2278         if (!priv || !mac) {
2279                 IPW_ERROR("Invalid args\n");
2280                 return -1;
2281         }
2282
2283         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2284                        priv->net_dev->name, mac);
2285
2286         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2287 }
2288
2289 /*
2290  * NOTE: This must be executed from our workqueue as it results in udelay
2291  * being called which may corrupt the keyboard if executed on default
2292  * workqueue
2293  */
2294 static void ipw_adapter_restart(void *adapter)
2295 {
2296         struct ipw_priv *priv = adapter;
2297
2298         if (priv->status & STATUS_RF_KILL_MASK)
2299                 return;
2300
2301         ipw_down(priv);
2302
2303         if (priv->assoc_network &&
2304             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2305                 ipw_remove_current_network(priv);
2306
2307         if (ipw_up(priv)) {
2308                 IPW_ERROR("Failed to up device\n");
2309                 return;
2310         }
2311 }
2312
2313 static void ipw_bg_adapter_restart(struct work_struct *work)
2314 {
2315         struct ipw_priv *priv =
2316                 container_of(work, struct ipw_priv, adapter_restart);
2317         mutex_lock(&priv->mutex);
2318         ipw_adapter_restart(priv);
2319         mutex_unlock(&priv->mutex);
2320 }
2321
2322 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2323
2324 static void ipw_scan_check(void *data)
2325 {
2326         struct ipw_priv *priv = data;
2327         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2328                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2329                                "adapter after (%dms).\n",
2330                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2331                 queue_work(priv->workqueue, &priv->adapter_restart);
2332         }
2333 }
2334
2335 static void ipw_bg_scan_check(struct work_struct *work)
2336 {
2337         struct ipw_priv *priv =
2338                 container_of(work, struct ipw_priv, scan_check.work);
2339         mutex_lock(&priv->mutex);
2340         ipw_scan_check(priv);
2341         mutex_unlock(&priv->mutex);
2342 }
2343
2344 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2345                                      struct ipw_scan_request_ext *request)
2346 {
2347         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2348                                 sizeof(*request), request);
2349 }
2350
2351 static int ipw_send_scan_abort(struct ipw_priv *priv)
2352 {
2353         if (!priv) {
2354                 IPW_ERROR("Invalid args\n");
2355                 return -1;
2356         }
2357
2358         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2359 }
2360
2361 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2362 {
2363         struct ipw_sensitivity_calib calib = {
2364                 .beacon_rssi_raw = cpu_to_le16(sens),
2365         };
2366
2367         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2368                                 &calib);
2369 }
2370
2371 static int ipw_send_associate(struct ipw_priv *priv,
2372                               struct ipw_associate *associate)
2373 {
2374         if (!priv || !associate) {
2375                 IPW_ERROR("Invalid args\n");
2376                 return -1;
2377         }
2378
2379         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2380                                 associate);
2381 }
2382
2383 static int ipw_send_supported_rates(struct ipw_priv *priv,
2384                                     struct ipw_supported_rates *rates)
2385 {
2386         if (!priv || !rates) {
2387                 IPW_ERROR("Invalid args\n");
2388                 return -1;
2389         }
2390
2391         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2392                                 rates);
2393 }
2394
2395 static int ipw_set_random_seed(struct ipw_priv *priv)
2396 {
2397         u32 val;
2398
2399         if (!priv) {
2400                 IPW_ERROR("Invalid args\n");
2401                 return -1;
2402         }
2403
2404         get_random_bytes(&val, sizeof(val));
2405
2406         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2407 }
2408
2409 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2410 {
2411         __le32 v = cpu_to_le32(phy_off);
2412         if (!priv) {
2413                 IPW_ERROR("Invalid args\n");
2414                 return -1;
2415         }
2416
2417         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2418 }
2419
2420 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2421 {
2422         if (!priv || !power) {
2423                 IPW_ERROR("Invalid args\n");
2424                 return -1;
2425         }
2426
2427         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2428 }
2429
2430 static int ipw_set_tx_power(struct ipw_priv *priv)
2431 {
2432         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2433         struct ipw_tx_power tx_power;
2434         s8 max_power;
2435         int i;
2436
2437         memset(&tx_power, 0, sizeof(tx_power));
2438
2439         /* configure device for 'G' band */
2440         tx_power.ieee_mode = IPW_G_MODE;
2441         tx_power.num_channels = geo->bg_channels;
2442         for (i = 0; i < geo->bg_channels; i++) {
2443                 max_power = geo->bg[i].max_power;
2444                 tx_power.channels_tx_power[i].channel_number =
2445                     geo->bg[i].channel;
2446                 tx_power.channels_tx_power[i].tx_power = max_power ?
2447                     min(max_power, priv->tx_power) : priv->tx_power;
2448         }
2449         if (ipw_send_tx_power(priv, &tx_power))
2450                 return -EIO;
2451
2452         /* configure device to also handle 'B' band */
2453         tx_power.ieee_mode = IPW_B_MODE;
2454         if (ipw_send_tx_power(priv, &tx_power))
2455                 return -EIO;
2456
2457         /* configure device to also handle 'A' band */
2458         if (priv->ieee->abg_true) {
2459                 tx_power.ieee_mode = IPW_A_MODE;
2460                 tx_power.num_channels = geo->a_channels;
2461                 for (i = 0; i < tx_power.num_channels; i++) {
2462                         max_power = geo->a[i].max_power;
2463                         tx_power.channels_tx_power[i].channel_number =
2464                             geo->a[i].channel;
2465                         tx_power.channels_tx_power[i].tx_power = max_power ?
2466                             min(max_power, priv->tx_power) : priv->tx_power;
2467                 }
2468                 if (ipw_send_tx_power(priv, &tx_power))
2469                         return -EIO;
2470         }
2471         return 0;
2472 }
2473
2474 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2475 {
2476         struct ipw_rts_threshold rts_threshold = {
2477                 .rts_threshold = cpu_to_le16(rts),
2478         };
2479
2480         if (!priv) {
2481                 IPW_ERROR("Invalid args\n");
2482                 return -1;
2483         }
2484
2485         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2486                                 sizeof(rts_threshold), &rts_threshold);
2487 }
2488
2489 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2490 {
2491         struct ipw_frag_threshold frag_threshold = {
2492                 .frag_threshold = cpu_to_le16(frag),
2493         };
2494
2495         if (!priv) {
2496                 IPW_ERROR("Invalid args\n");
2497                 return -1;
2498         }
2499
2500         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2501                                 sizeof(frag_threshold), &frag_threshold);
2502 }
2503
2504 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2505 {
2506         __le32 param;
2507
2508         if (!priv) {
2509                 IPW_ERROR("Invalid args\n");
2510                 return -1;
2511         }
2512
2513         /* If on battery, set to 3, if AC set to CAM, else user
2514          * level */
2515         switch (mode) {
2516         case IPW_POWER_BATTERY:
2517                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2518                 break;
2519         case IPW_POWER_AC:
2520                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2521                 break;
2522         default:
2523                 param = cpu_to_le32(mode);
2524                 break;
2525         }
2526
2527         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2528                                 &param);
2529 }
2530
2531 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2532 {
2533         struct ipw_retry_limit retry_limit = {
2534                 .short_retry_limit = slimit,
2535                 .long_retry_limit = llimit
2536         };
2537
2538         if (!priv) {
2539                 IPW_ERROR("Invalid args\n");
2540                 return -1;
2541         }
2542
2543         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2544                                 &retry_limit);
2545 }
2546
2547 /*
2548  * The IPW device contains a Microwire compatible EEPROM that stores
2549  * various data like the MAC address.  Usually the firmware has exclusive
2550  * access to the eeprom, but during device initialization (before the
2551  * device driver has sent the HostComplete command to the firmware) the
2552  * device driver has read access to the EEPROM by way of indirect addressing
2553  * through a couple of memory mapped registers.
2554  *
2555  * The following is a simplified implementation for pulling data out of the
2556  * the eeprom, along with some helper functions to find information in
2557  * the per device private data's copy of the eeprom.
2558  *
2559  * NOTE: To better understand how these functions work (i.e what is a chip
2560  *       select and why do have to keep driving the eeprom clock?), read
2561  *       just about any data sheet for a Microwire compatible EEPROM.
2562  */
2563
2564 /* write a 32 bit value into the indirect accessor register */
2565 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2566 {
2567         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2568
2569         /* the eeprom requires some time to complete the operation */
2570         udelay(p->eeprom_delay);
2571
2572         return;
2573 }
2574
2575 /* perform a chip select operation */
2576 static void eeprom_cs(struct ipw_priv *priv)
2577 {
2578         eeprom_write_reg(priv, 0);
2579         eeprom_write_reg(priv, EEPROM_BIT_CS);
2580         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2581         eeprom_write_reg(priv, EEPROM_BIT_CS);
2582 }
2583
2584 /* perform a chip select operation */
2585 static void eeprom_disable_cs(struct ipw_priv *priv)
2586 {
2587         eeprom_write_reg(priv, EEPROM_BIT_CS);
2588         eeprom_write_reg(priv, 0);
2589         eeprom_write_reg(priv, EEPROM_BIT_SK);
2590 }
2591
2592 /* push a single bit down to the eeprom */
2593 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594 {
2595         int d = (bit ? EEPROM_BIT_DI : 0);
2596         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2597         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2598 }
2599
2600 /* push an opcode followed by an address down to the eeprom */
2601 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2602 {
2603         int i;
2604
2605         eeprom_cs(priv);
2606         eeprom_write_bit(priv, 1);
2607         eeprom_write_bit(priv, op & 2);
2608         eeprom_write_bit(priv, op & 1);
2609         for (i = 7; i >= 0; i--) {
2610                 eeprom_write_bit(priv, addr & (1 << i));
2611         }
2612 }
2613
2614 /* pull 16 bits off the eeprom, one bit at a time */
2615 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2616 {
2617         int i;
2618         u16 r = 0;
2619
2620         /* Send READ Opcode */
2621         eeprom_op(priv, EEPROM_CMD_READ, addr);
2622
2623         /* Send dummy bit */
2624         eeprom_write_reg(priv, EEPROM_BIT_CS);
2625
2626         /* Read the byte off the eeprom one bit at a time */
2627         for (i = 0; i < 16; i++) {
2628                 u32 data = 0;
2629                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2630                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2631                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2632                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2633         }
2634
2635         /* Send another dummy bit */
2636         eeprom_write_reg(priv, 0);
2637         eeprom_disable_cs(priv);
2638
2639         return r;
2640 }
2641
2642 /* helper function for pulling the mac address out of the private */
2643 /* data's copy of the eeprom data                                 */
2644 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645 {
2646         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2647 }
2648
2649 /*
2650  * Either the device driver (i.e. the host) or the firmware can
2651  * load eeprom data into the designated region in SRAM.  If neither
2652  * happens then the FW will shutdown with a fatal error.
2653  *
2654  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2655  * bit needs region of shared SRAM needs to be non-zero.
2656  */
2657 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2658 {
2659         int i;
2660         __le16 *eeprom = (__le16 *) priv->eeprom;
2661
2662         IPW_DEBUG_TRACE(">>\n");
2663
2664         /* read entire contents of eeprom into private buffer */
2665         for (i = 0; i < 128; i++)
2666                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2667
2668         /*
2669            If the data looks correct, then copy it to our private
2670            copy.  Otherwise let the firmware know to perform the operation
2671            on its own.
2672          */
2673         if (priv->eeprom[EEPROM_VERSION] != 0) {
2674                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2675
2676                 /* write the eeprom data to sram */
2677                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2678                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2679
2680                 /* Do not load eeprom data on fatal error or suspend */
2681                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2682         } else {
2683                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2684
2685                 /* Load eeprom data on fatal error or suspend */
2686                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2687         }
2688
2689         IPW_DEBUG_TRACE("<<\n");
2690 }
2691
2692 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2693 {
2694         count >>= 2;
2695         if (!count)
2696                 return;
2697         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2698         while (count--)
2699                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2700 }
2701
2702 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2703 {
2704         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2705                         CB_NUMBER_OF_ELEMENTS_SMALL *
2706                         sizeof(struct command_block));
2707 }
2708
2709 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2710 {                               /* start dma engine but no transfers yet */
2711
2712         IPW_DEBUG_FW(">> : \n");
2713
2714         /* Start the dma */
2715         ipw_fw_dma_reset_command_blocks(priv);
2716
2717         /* Write CB base address */
2718         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2719
2720         IPW_DEBUG_FW("<< : \n");
2721         return 0;
2722 }
2723
2724 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2725 {
2726         u32 control = 0;
2727
2728         IPW_DEBUG_FW(">> :\n");
2729
2730         /* set the Stop and Abort bit */
2731         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2732         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2733         priv->sram_desc.last_cb_index = 0;
2734
2735         IPW_DEBUG_FW("<< \n");
2736 }
2737
2738 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2739                                           struct command_block *cb)
2740 {
2741         u32 address =
2742             IPW_SHARED_SRAM_DMA_CONTROL +
2743             (sizeof(struct command_block) * index);
2744         IPW_DEBUG_FW(">> :\n");
2745
2746         ipw_write_indirect(priv, address, (u8 *) cb,
2747                            (int)sizeof(struct command_block));
2748
2749         IPW_DEBUG_FW("<< :\n");
2750         return 0;
2751
2752 }
2753
2754 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2755 {
2756         u32 control = 0;
2757         u32 index = 0;
2758
2759         IPW_DEBUG_FW(">> :\n");
2760
2761         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2762                 ipw_fw_dma_write_command_block(priv, index,
2763                                                &priv->sram_desc.cb_list[index]);
2764
2765         /* Enable the DMA in the CSR register */
2766         ipw_clear_bit(priv, IPW_RESET_REG,
2767                       IPW_RESET_REG_MASTER_DISABLED |
2768                       IPW_RESET_REG_STOP_MASTER);
2769
2770         /* Set the Start bit. */
2771         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2772         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2773
2774         IPW_DEBUG_FW("<< :\n");
2775         return 0;
2776 }
2777
2778 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2779 {
2780         u32 address;
2781         u32 register_value = 0;
2782         u32 cb_fields_address = 0;
2783
2784         IPW_DEBUG_FW(">> :\n");
2785         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2786         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2787
2788         /* Read the DMA Controlor register */
2789         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2790         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2791
2792         /* Print the CB values */
2793         cb_fields_address = address;
2794         register_value = ipw_read_reg32(priv, cb_fields_address);
2795         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2796
2797         cb_fields_address += sizeof(u32);
2798         register_value = ipw_read_reg32(priv, cb_fields_address);
2799         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2800
2801         cb_fields_address += sizeof(u32);
2802         register_value = ipw_read_reg32(priv, cb_fields_address);
2803         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2804                           register_value);
2805
2806         cb_fields_address += sizeof(u32);
2807         register_value = ipw_read_reg32(priv, cb_fields_address);
2808         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2809
2810         IPW_DEBUG_FW(">> :\n");
2811 }
2812
2813 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2814 {
2815         u32 current_cb_address = 0;
2816         u32 current_cb_index = 0;
2817
2818         IPW_DEBUG_FW("<< :\n");
2819         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2820
2821         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2822             sizeof(struct command_block);
2823
2824         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2825                           current_cb_index, current_cb_address);
2826
2827         IPW_DEBUG_FW(">> :\n");
2828         return current_cb_index;
2829
2830 }
2831
2832 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2833                                         u32 src_address,
2834                                         u32 dest_address,
2835                                         u32 length,
2836                                         int interrupt_enabled, int is_last)
2837 {
2838
2839         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2840             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2841             CB_DEST_SIZE_LONG;
2842         struct command_block *cb;
2843         u32 last_cb_element = 0;
2844
2845         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2846                           src_address, dest_address, length);
2847
2848         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2849                 return -1;
2850
2851         last_cb_element = priv->sram_desc.last_cb_index;
2852         cb = &priv->sram_desc.cb_list[last_cb_element];
2853         priv->sram_desc.last_cb_index++;
2854
2855         /* Calculate the new CB control word */
2856         if (interrupt_enabled)
2857                 control |= CB_INT_ENABLED;
2858
2859         if (is_last)
2860                 control |= CB_LAST_VALID;
2861
2862         control |= length;
2863
2864         /* Calculate the CB Element's checksum value */
2865         cb->status = control ^ src_address ^ dest_address;
2866
2867         /* Copy the Source and Destination addresses */
2868         cb->dest_addr = dest_address;
2869         cb->source_addr = src_address;
2870
2871         /* Copy the Control Word last */
2872         cb->control = control;
2873
2874         return 0;
2875 }
2876
2877 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2878                                  u32 src_phys, u32 dest_address, u32 length)
2879 {
2880         u32 bytes_left = length;
2881         u32 src_offset = 0;
2882         u32 dest_offset = 0;
2883         int status = 0;
2884         IPW_DEBUG_FW(">> \n");
2885         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2886                           src_phys, dest_address, length);
2887         while (bytes_left > CB_MAX_LENGTH) {
2888                 status = ipw_fw_dma_add_command_block(priv,
2889                                                       src_phys + src_offset,
2890                                                       dest_address +
2891                                                       dest_offset,
2892                                                       CB_MAX_LENGTH, 0, 0);
2893                 if (status) {
2894                         IPW_DEBUG_FW_INFO(": Failed\n");
2895                         return -1;
2896                 } else
2897                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2898
2899                 src_offset += CB_MAX_LENGTH;
2900                 dest_offset += CB_MAX_LENGTH;
2901                 bytes_left -= CB_MAX_LENGTH;
2902         }
2903
2904         /* add the buffer tail */
2905         if (bytes_left > 0) {
2906                 status =
2907                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2908                                                  dest_address + dest_offset,
2909                                                  bytes_left, 0, 0);
2910                 if (status) {
2911                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2912                         return -1;
2913                 } else
2914                         IPW_DEBUG_FW_INFO
2915                             (": Adding new cb - the buffer tail\n");
2916         }
2917
2918         IPW_DEBUG_FW("<< \n");
2919         return 0;
2920 }
2921
2922 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2923 {
2924         u32 current_index = 0, previous_index;
2925         u32 watchdog = 0;
2926
2927         IPW_DEBUG_FW(">> : \n");
2928
2929         current_index = ipw_fw_dma_command_block_index(priv);
2930         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2931                           (int)priv->sram_desc.last_cb_index);
2932
2933         while (current_index < priv->sram_desc.last_cb_index) {
2934                 udelay(50);
2935                 previous_index = current_index;
2936                 current_index = ipw_fw_dma_command_block_index(priv);
2937
2938                 if (previous_index < current_index) {
2939                         watchdog = 0;
2940                         continue;
2941                 }
2942                 if (++watchdog > 400) {
2943                         IPW_DEBUG_FW_INFO("Timeout\n");
2944                         ipw_fw_dma_dump_command_block(priv);
2945                         ipw_fw_dma_abort(priv);
2946                         return -1;
2947                 }
2948         }
2949
2950         ipw_fw_dma_abort(priv);
2951
2952         /*Disable the DMA in the CSR register */
2953         ipw_set_bit(priv, IPW_RESET_REG,
2954                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2955
2956         IPW_DEBUG_FW("<< dmaWaitSync \n");
2957         return 0;
2958 }
2959
2960 static void ipw_remove_current_network(struct ipw_priv *priv)
2961 {
2962         struct list_head *element, *safe;
2963         struct ieee80211_network *network = NULL;
2964         unsigned long flags;
2965
2966         spin_lock_irqsave(&priv->ieee->lock, flags);
2967         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2968                 network = list_entry(element, struct ieee80211_network, list);
2969                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2970                         list_del(element);
2971                         list_add_tail(&network->list,
2972                                       &priv->ieee->network_free_list);
2973                 }
2974         }
2975         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2976 }
2977
2978 /**
2979  * Check that card is still alive.
2980  * Reads debug register from domain0.
2981  * If card is present, pre-defined value should
2982  * be found there.
2983  *
2984  * @param priv
2985  * @return 1 if card is present, 0 otherwise
2986  */
2987 static inline int ipw_alive(struct ipw_priv *priv)
2988 {
2989         return ipw_read32(priv, 0x90) == 0xd55555d5;
2990 }
2991
2992 /* timeout in msec, attempted in 10-msec quanta */
2993 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2994                                int timeout)
2995 {
2996         int i = 0;
2997
2998         do {
2999                 if ((ipw_read32(priv, addr) & mask) == mask)
3000                         return i;
3001                 mdelay(10);
3002                 i += 10;
3003         } while (i < timeout);
3004
3005         return -ETIME;
3006 }
3007
3008 /* These functions load the firmware and micro code for the operation of
3009  * the ipw hardware.  It assumes the buffer has all the bits for the
3010  * image and the caller is handling the memory allocation and clean up.
3011  */
3012
3013 static int ipw_stop_master(struct ipw_priv *priv)
3014 {
3015         int rc;
3016
3017         IPW_DEBUG_TRACE(">> \n");
3018         /* stop master. typical delay - 0 */
3019         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3020
3021         /* timeout is in msec, polled in 10-msec quanta */
3022         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3023                           IPW_RESET_REG_MASTER_DISABLED, 100);
3024         if (rc < 0) {
3025                 IPW_ERROR("wait for stop master failed after 100ms\n");
3026                 return -1;
3027         }
3028
3029         IPW_DEBUG_INFO("stop master %dms\n", rc);
3030
3031         return rc;
3032 }
3033
3034 static void ipw_arc_release(struct ipw_priv *priv)
3035 {
3036         IPW_DEBUG_TRACE(">> \n");
3037         mdelay(5);
3038
3039         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3040
3041         /* no one knows timing, for safety add some delay */
3042         mdelay(5);
3043 }
3044
3045 struct fw_chunk {
3046         __le32 address;
3047         __le32 length;
3048 };
3049
3050 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3051 {
3052         int rc = 0, i, addr;
3053         u8 cr = 0;
3054         __le16 *image;
3055
3056         image = (__le16 *) data;
3057
3058         IPW_DEBUG_TRACE(">> \n");
3059
3060         rc = ipw_stop_master(priv);
3061
3062         if (rc < 0)
3063                 return rc;
3064
3065         for (addr = IPW_SHARED_LOWER_BOUND;
3066              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3067                 ipw_write32(priv, addr, 0);
3068         }
3069
3070         /* no ucode (yet) */
3071         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3072         /* destroy DMA queues */
3073         /* reset sequence */
3074
3075         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3076         ipw_arc_release(priv);
3077         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3078         mdelay(1);
3079
3080         /* reset PHY */
3081         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3082         mdelay(1);
3083
3084         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3085         mdelay(1);
3086
3087         /* enable ucode store */
3088         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3089         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3090         mdelay(1);
3091
3092         /* write ucode */
3093         /**
3094          * @bug
3095          * Do NOT set indirect address register once and then
3096          * store data to indirect data register in the loop.
3097          * It seems very reasonable, but in this case DINO do not
3098          * accept ucode. It is essential to set address each time.
3099          */
3100         /* load new ipw uCode */
3101         for (i = 0; i < len / 2; i++)
3102                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3103                                 le16_to_cpu(image[i]));
3104
3105         /* enable DINO */
3106         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3107         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3108
3109         /* this is where the igx / win driver deveates from the VAP driver. */
3110
3111         /* wait for alive response */
3112         for (i = 0; i < 100; i++) {
3113                 /* poll for incoming data */
3114                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3115                 if (cr & DINO_RXFIFO_DATA)
3116                         break;
3117                 mdelay(1);
3118         }
3119
3120         if (cr & DINO_RXFIFO_DATA) {
3121                 /* alive_command_responce size is NOT multiple of 4 */
3122                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3123
3124                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3125                         response_buffer[i] =
3126                             cpu_to_le32(ipw_read_reg32(priv,
3127                                                        IPW_BASEBAND_RX_FIFO_READ));
3128                 memcpy(&priv->dino_alive, response_buffer,
3129                        sizeof(priv->dino_alive));
3130                 if (priv->dino_alive.alive_command == 1
3131                     && priv->dino_alive.ucode_valid == 1) {
3132                         rc = 0;
3133                         IPW_DEBUG_INFO
3134                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3135                              "of %02d/%02d/%02d %02d:%02d\n",
3136                              priv->dino_alive.software_revision,
3137                              priv->dino_alive.software_revision,
3138                              priv->dino_alive.device_identifier,
3139                              priv->dino_alive.device_identifier,
3140                              priv->dino_alive.time_stamp[0],
3141                              priv->dino_alive.time_stamp[1],
3142                              priv->dino_alive.time_stamp[2],
3143                              priv->dino_alive.time_stamp[3],
3144                              priv->dino_alive.time_stamp[4]);
3145                 } else {
3146                         IPW_DEBUG_INFO("Microcode is not alive\n");
3147                         rc = -EINVAL;
3148                 }
3149         } else {
3150                 IPW_DEBUG_INFO("No alive response from DINO\n");
3151                 rc = -ETIME;
3152         }
3153
3154         /* disable DINO, otherwise for some reason
3155            firmware have problem getting alive resp. */
3156         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3157
3158         return rc;
3159 }
3160
3161 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3162 {
3163         int rc = -1;
3164         int offset = 0;
3165         struct fw_chunk *chunk;
3166         dma_addr_t shared_phys;
3167         u8 *shared_virt;
3168
3169         IPW_DEBUG_TRACE("<< : \n");
3170         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3171
3172         if (!shared_virt)
3173                 return -ENOMEM;
3174
3175         memmove(shared_virt, data, len);
3176
3177         /* Start the Dma */
3178         rc = ipw_fw_dma_enable(priv);
3179
3180         /* the DMA is already ready this would be a bug. */
3181         BUG_ON(priv->sram_desc.last_cb_index > 0);
3182
3183         do {
3184                 chunk = (struct fw_chunk *)(data + offset);
3185                 offset += sizeof(struct fw_chunk);
3186                 /* build DMA packet and queue up for sending */
3187                 /* dma to chunk->address, the chunk->length bytes from data +
3188                  * offeset*/
3189                 /* Dma loading */
3190                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3191                                            le32_to_cpu(chunk->address),
3192                                            le32_to_cpu(chunk->length));
3193                 if (rc) {
3194                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3195                         goto out;
3196                 }
3197
3198                 offset += le32_to_cpu(chunk->length);
3199         } while (offset < len);
3200
3201         /* Run the DMA and wait for the answer */
3202         rc = ipw_fw_dma_kick(priv);
3203         if (rc) {
3204                 IPW_ERROR("dmaKick Failed\n");
3205                 goto out;
3206         }
3207
3208         rc = ipw_fw_dma_wait(priv);
3209         if (rc) {
3210                 IPW_ERROR("dmaWaitSync Failed\n");
3211                 goto out;
3212         }
3213       out:
3214         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3215         return rc;
3216 }
3217
3218 /* stop nic */
3219 static int ipw_stop_nic(struct ipw_priv *priv)
3220 {
3221         int rc = 0;
3222
3223         /* stop */
3224         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3225
3226         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3227                           IPW_RESET_REG_MASTER_DISABLED, 500);
3228         if (rc < 0) {
3229                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3230                 return rc;
3231         }
3232
3233         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3234
3235         return rc;
3236 }
3237
3238 static void ipw_start_nic(struct ipw_priv *priv)
3239 {
3240         IPW_DEBUG_TRACE(">>\n");
3241
3242         /* prvHwStartNic  release ARC */
3243         ipw_clear_bit(priv, IPW_RESET_REG,
3244                       IPW_RESET_REG_MASTER_DISABLED |
3245                       IPW_RESET_REG_STOP_MASTER |
3246                       CBD_RESET_REG_PRINCETON_RESET);
3247
3248         /* enable power management */
3249         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3250                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3251
3252         IPW_DEBUG_TRACE("<<\n");
3253 }
3254
3255 static int ipw_init_nic(struct ipw_priv *priv)
3256 {
3257         int rc;
3258
3259         IPW_DEBUG_TRACE(">>\n");
3260         /* reset */
3261         /*prvHwInitNic */
3262         /* set "initialization complete" bit to move adapter to D0 state */
3263         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3264
3265         /* low-level PLL activation */
3266         ipw_write32(priv, IPW_READ_INT_REGISTER,
3267                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3268
3269         /* wait for clock stabilization */
3270         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3271                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3272         if (rc < 0)
3273                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3274
3275         /* assert SW reset */
3276         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3277
3278         udelay(10);
3279
3280         /* set "initialization complete" bit to move adapter to D0 state */
3281         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3282
3283         IPW_DEBUG_TRACE(">>\n");
3284         return 0;
3285 }
3286
3287 /* Call this function from process context, it will sleep in request_firmware.
3288  * Probe is an ok place to call this from.
3289  */
3290 static int ipw_reset_nic(struct ipw_priv *priv)
3291 {
3292         int rc = 0;
3293         unsigned long flags;
3294
3295         IPW_DEBUG_TRACE(">>\n");
3296
3297         rc = ipw_init_nic(priv);
3298
3299         spin_lock_irqsave(&priv->lock, flags);
3300         /* Clear the 'host command active' bit... */
3301         priv->status &= ~STATUS_HCMD_ACTIVE;
3302         wake_up_interruptible(&priv->wait_command_queue);
3303         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3304         wake_up_interruptible(&priv->wait_state);
3305         spin_unlock_irqrestore(&priv->lock, flags);
3306
3307         IPW_DEBUG_TRACE("<<\n");
3308         return rc;
3309 }
3310
3311
3312 struct ipw_fw {
3313         __le32 ver;
3314         __le32 boot_size;
3315         __le32 ucode_size;
3316         __le32 fw_size;
3317         u8 data[0];
3318 };
3319
3320 static int ipw_get_fw(struct ipw_priv *priv,
3321                       const struct firmware **raw, const char *name)
3322 {
3323         struct ipw_fw *fw;
3324         int rc;
3325
3326         /* ask firmware_class module to get the boot firmware off disk */
3327         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3328         if (rc < 0) {
3329                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3330                 return rc;
3331         }
3332
3333         if ((*raw)->size < sizeof(*fw)) {
3334                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3335                 return -EINVAL;
3336         }
3337
3338         fw = (void *)(*raw)->data;
3339
3340         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3341             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3342                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3343                           name, (*raw)->size);
3344                 return -EINVAL;
3345         }
3346
3347         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3348                        name,
3349                        le32_to_cpu(fw->ver) >> 16,
3350                        le32_to_cpu(fw->ver) & 0xff,
3351                        (*raw)->size - sizeof(*fw));
3352         return 0;
3353 }
3354
3355 #define IPW_RX_BUF_SIZE (3000)
3356
3357 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3358                                       struct ipw_rx_queue *rxq)
3359 {
3360         unsigned long flags;
3361         int i;
3362
3363         spin_lock_irqsave(&rxq->lock, flags);
3364
3365         INIT_LIST_HEAD(&rxq->rx_free);
3366         INIT_LIST_HEAD(&rxq->rx_used);
3367
3368         /* Fill the rx_used queue with _all_ of the Rx buffers */
3369         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3370                 /* In the reset function, these buffers may have been allocated
3371                  * to an SKB, so we need to unmap and free potential storage */
3372                 if (rxq->pool[i].skb != NULL) {
3373                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3374                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3375                         dev_kfree_skb(rxq->pool[i].skb);
3376                         rxq->pool[i].skb = NULL;
3377                 }
3378                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3379         }
3380
3381         /* Set us so that we have processed and used all buffers, but have
3382          * not restocked the Rx queue with fresh buffers */
3383         rxq->read = rxq->write = 0;
3384         rxq->free_count = 0;
3385         spin_unlock_irqrestore(&rxq->lock, flags);
3386 }
3387
3388 #ifdef CONFIG_PM
3389 static int fw_loaded = 0;
3390 static const struct firmware *raw = NULL;
3391
3392 static void free_firmware(void)
3393 {
3394         if (fw_loaded) {
3395                 release_firmware(raw);
3396                 raw = NULL;
3397                 fw_loaded = 0;
3398         }
3399 }
3400 #else
3401 #define free_firmware() do {} while (0)
3402 #endif
3403
3404 static int ipw_load(struct ipw_priv *priv)
3405 {
3406 #ifndef CONFIG_PM
3407         const struct firmware *raw = NULL;
3408 #endif
3409         struct ipw_fw *fw;
3410         u8 *boot_img, *ucode_img, *fw_img;
3411         u8 *name = NULL;
3412         int rc = 0, retries = 3;
3413
3414         switch (priv->ieee->iw_mode) {
3415         case IW_MODE_ADHOC:
3416                 name = "ipw2200-ibss.fw";
3417                 break;
3418 #ifdef CONFIG_IPW2200_MONITOR
3419         case IW_MODE_MONITOR:
3420                 name = "ipw2200-sniffer.fw";
3421                 break;
3422 #endif
3423         case IW_MODE_INFRA:
3424                 name = "ipw2200-bss.fw";
3425                 break;
3426         }
3427
3428         if (!name) {
3429                 rc = -EINVAL;
3430                 goto error;
3431         }
3432
3433 #ifdef CONFIG_PM
3434         if (!fw_loaded) {
3435 #endif
3436                 rc = ipw_get_fw(priv, &raw, name);
3437                 if (rc < 0)
3438                         goto error;
3439 #ifdef CONFIG_PM
3440         }
3441 #endif
3442
3443         fw = (void *)raw->data;
3444         boot_img = &fw->data[0];
3445         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3446         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3447                            le32_to_cpu(fw->ucode_size)];
3448
3449         if (rc < 0)
3450                 goto error;
3451
3452         if (!priv->rxq)
3453                 priv->rxq = ipw_rx_queue_alloc(priv);
3454         else
3455                 ipw_rx_queue_reset(priv, priv->rxq);
3456         if (!priv->rxq) {
3457                 IPW_ERROR("Unable to initialize Rx queue\n");
3458                 goto error;
3459         }
3460
3461       retry:
3462         /* Ensure interrupts are disabled */
3463         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3464         priv->status &= ~STATUS_INT_ENABLED;
3465
3466         /* ack pending interrupts */
3467         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3468
3469         ipw_stop_nic(priv);
3470
3471         rc = ipw_reset_nic(priv);
3472         if (rc < 0) {
3473                 IPW_ERROR("Unable to reset NIC\n");
3474                 goto error;
3475         }
3476
3477         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3478                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3479
3480         /* DMA the initial boot firmware into the device */
3481         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3482         if (rc < 0) {
3483                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3484                 goto error;
3485         }
3486
3487         /* kick start the device */
3488         ipw_start_nic(priv);
3489
3490         /* wait for the device to finish its initial startup sequence */
3491         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3492                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3493         if (rc < 0) {
3494                 IPW_ERROR("device failed to boot initial fw image\n");
3495                 goto error;
3496         }
3497         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3498
3499         /* ack fw init done interrupt */
3500         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3501
3502         /* DMA the ucode into the device */
3503         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3504         if (rc < 0) {
3505                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3506                 goto error;
3507         }
3508
3509         /* stop nic */
3510         ipw_stop_nic(priv);
3511
3512         /* DMA bss firmware into the device */
3513         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3514         if (rc < 0) {
3515                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3516                 goto error;
3517         }
3518 #ifdef CONFIG_PM
3519         fw_loaded = 1;
3520 #endif
3521
3522         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3523
3524         rc = ipw_queue_reset(priv);
3525         if (rc < 0) {
3526                 IPW_ERROR("Unable to initialize queues\n");
3527                 goto error;
3528         }
3529
3530         /* Ensure interrupts are disabled */
3531         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3532         /* ack pending interrupts */
3533         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3534
3535         /* kick start the device */
3536         ipw_start_nic(priv);
3537
3538         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3539                 if (retries > 0) {
3540                         IPW_WARNING("Parity error.  Retrying init.\n");
3541                         retries--;
3542                         goto retry;
3543                 }
3544
3545                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3546                 rc = -EIO;
3547                 goto error;
3548         }
3549
3550         /* wait for the device */
3551         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3552                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3553         if (rc < 0) {
3554                 IPW_ERROR("device failed to start within 500ms\n");
3555                 goto error;
3556         }
3557         IPW_DEBUG_INFO("device response after %dms\n", rc);
3558
3559         /* ack fw init done interrupt */
3560         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3561
3562         /* read eeprom data and initialize the eeprom region of sram */
3563         priv->eeprom_delay = 1;
3564         ipw_eeprom_init_sram(priv);
3565
3566         /* enable interrupts */
3567         ipw_enable_interrupts(priv);
3568
3569         /* Ensure our queue has valid packets */
3570         ipw_rx_queue_replenish(priv);
3571
3572         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3573
3574         /* ack pending interrupts */
3575         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3576
3577 #ifndef CONFIG_PM
3578         release_firmware(raw);
3579 #endif
3580         return 0;
3581
3582       error:
3583         if (priv->rxq) {
3584                 ipw_rx_queue_free(priv, priv->rxq);
3585                 priv->rxq = NULL;
3586         }
3587         ipw_tx_queue_free(priv);
3588         if (raw)
3589                 release_firmware(raw);
3590 #ifdef CONFIG_PM
3591         fw_loaded = 0;
3592         raw = NULL;
3593 #endif
3594
3595         return rc;
3596 }
3597
3598 /**
3599  * DMA services
3600  *
3601  * Theory of operation
3602  *
3603  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3604  * 2 empty entries always kept in the buffer to protect from overflow.
3605  *
3606  * For Tx queue, there are low mark and high mark limits. If, after queuing
3607  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3608  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3609  * Tx queue resumed.
3610  *
3611  * The IPW operates with six queues, one receive queue in the device's
3612  * sram, one transmit queue for sending commands to the device firmware,
3613  * and four transmit queues for data.
3614  *
3615  * The four transmit queues allow for performing quality of service (qos)
3616  * transmissions as per the 802.11 protocol.  Currently Linux does not
3617  * provide a mechanism to the user for utilizing prioritized queues, so
3618  * we only utilize the first data transmit queue (queue1).
3619  */
3620
3621 /**
3622  * Driver allocates buffers of this size for Rx
3623  */
3624
3625 /**
3626  * ipw_rx_queue_space - Return number of free slots available in queue.
3627  */
3628 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3629 {
3630         int s = q->read - q->write;
3631         if (s <= 0)
3632                 s += RX_QUEUE_SIZE;
3633         /* keep some buffer to not confuse full and empty queue */
3634         s -= 2;
3635         if (s < 0)
3636                 s = 0;
3637         return s;
3638 }
3639
3640 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3641 {
3642         int s = q->last_used - q->first_empty;
3643         if (s <= 0)
3644                 s += q->n_bd;
3645         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3646         if (s < 0)
3647                 s = 0;
3648         return s;
3649 }
3650
3651 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3652 {
3653         return (++index == n_bd) ? 0 : index;
3654 }
3655
3656 /**
3657  * Initialize common DMA queue structure
3658  *
3659  * @param q                queue to init
3660  * @param count            Number of BD's to allocate. Should be power of 2
3661  * @param read_register    Address for 'read' register
3662  *                         (not offset within BAR, full address)
3663  * @param write_register   Address for 'write' register
3664  *                         (not offset within BAR, full address)
3665  * @param base_register    Address for 'base' register
3666  *                         (not offset within BAR, full address)
3667  * @param size             Address for 'size' register
3668  *                         (not offset within BAR, full address)
3669  */
3670 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3671                            int count, u32 read, u32 write, u32 base, u32 size)
3672 {
3673         q->n_bd = count;
3674
3675         q->low_mark = q->n_bd / 4;
3676         if (q->low_mark < 4)
3677                 q->low_mark = 4;
3678
3679         q->high_mark = q->n_bd / 8;
3680         if (q->high_mark < 2)
3681                 q->high_mark = 2;
3682
3683         q->first_empty = q->last_used = 0;
3684         q->reg_r = read;
3685         q->reg_w = write;
3686
3687         ipw_write32(priv, base, q->dma_addr);
3688         ipw_write32(priv, size, count);
3689         ipw_write32(priv, read, 0);
3690         ipw_write32(priv, write, 0);
3691
3692         _ipw_read32(priv, 0x90);
3693 }
3694
3695 static int ipw_queue_tx_init(struct ipw_priv *priv,
3696                              struct clx2_tx_queue *q,
3697                              int count, u32 read, u32 write, u32 base, u32 size)
3698 {
3699         struct pci_dev *dev = priv->pci_dev;
3700
3701         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3702         if (!q->txb) {
3703                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3704                 return -ENOMEM;
3705         }
3706
3707         q->bd =
3708             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3709         if (!q->bd) {
3710                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3711                           sizeof(q->bd[0]) * count);
3712                 kfree(q->txb);
3713                 q->txb = NULL;
3714                 return -ENOMEM;
3715         }
3716
3717         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3718         return 0;
3719 }
3720
3721 /**
3722  * Free one TFD, those at index [txq->q.last_used].
3723  * Do NOT advance any indexes
3724  *
3725  * @param dev
3726  * @param txq
3727  */
3728 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3729                                   struct clx2_tx_queue *txq)
3730 {
3731         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3732         struct pci_dev *dev = priv->pci_dev;
3733         int i;
3734
3735         /* classify bd */
3736         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3737                 /* nothing to cleanup after for host commands */
3738                 return;
3739
3740         /* sanity check */
3741         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3742                 IPW_ERROR("Too many chunks: %i\n",
3743                           le32_to_cpu(bd->u.data.num_chunks));
3744                 /** @todo issue fatal error, it is quite serious situation */
3745                 return;
3746         }
3747
3748         /* unmap chunks if any */
3749         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3750                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3751                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3752                                  PCI_DMA_TODEVICE);
3753                 if (txq->txb[txq->q.last_used]) {
3754                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3755                         txq->txb[txq->q.last_used] = NULL;
3756                 }
3757         }
3758 }
3759
3760 /**
3761  * Deallocate DMA queue.
3762  *
3763  * Empty queue by removing and destroying all BD's.
3764  * Free all buffers.
3765  *
3766  * @param dev
3767  * @param q
3768  */
3769 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3770 {
3771         struct clx2_queue *q = &txq->q;
3772         struct pci_dev *dev = priv->pci_dev;
3773
3774         if (q->n_bd == 0)
3775                 return;
3776
3777         /* first, empty all BD's */
3778         for (; q->first_empty != q->last_used;
3779              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3780                 ipw_queue_tx_free_tfd(priv, txq);
3781         }
3782
3783         /* free buffers belonging to queue itself */
3784         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3785                             q->dma_addr);
3786         kfree(txq->txb);
3787
3788         /* 0 fill whole structure */
3789         memset(txq, 0, sizeof(*txq));
3790 }
3791
3792 /**
3793  * Destroy all DMA queues and structures
3794  *
3795  * @param priv
3796  */
3797 static void ipw_tx_queue_free(struct ipw_priv *priv)
3798 {
3799         /* Tx CMD queue */
3800         ipw_queue_tx_free(priv, &priv->txq_cmd);
3801
3802         /* Tx queues */
3803         ipw_queue_tx_free(priv, &priv->txq[0]);
3804         ipw_queue_tx_free(priv, &priv->txq[1]);
3805         ipw_queue_tx_free(priv, &priv->txq[2]);
3806         ipw_queue_tx_free(priv, &priv->txq[3]);
3807 }
3808
3809 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3810 {
3811         /* First 3 bytes are manufacturer */
3812         bssid[0] = priv->mac_addr[0];
3813         bssid[1] = priv->mac_addr[1];
3814         bssid[2] = priv->mac_addr[2];
3815
3816         /* Last bytes are random */
3817         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3818
3819         bssid[0] &= 0xfe;       /* clear multicast bit */
3820         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3821 }
3822
3823 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3824 {
3825         struct ipw_station_entry entry;
3826         int i;
3827
3828         for (i = 0; i < priv->num_stations; i++) {
3829                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3830                         /* Another node is active in network */
3831                         priv->missed_adhoc_beacons = 0;
3832                         if (!(priv->config & CFG_STATIC_CHANNEL))
3833                                 /* when other nodes drop out, we drop out */
3834                                 priv->config &= ~CFG_ADHOC_PERSIST;
3835
3836                         return i;
3837                 }
3838         }
3839
3840         if (i == MAX_STATIONS)
3841                 return IPW_INVALID_STATION;
3842
3843         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3844
3845         entry.reserved = 0;
3846         entry.support_mode = 0;
3847         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3848         memcpy(priv->stations[i], bssid, ETH_ALEN);
3849         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3850                          &entry, sizeof(entry));
3851         priv->num_stations++;
3852
3853         return i;
3854 }
3855
3856 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3857 {
3858         int i;
3859
3860         for (i = 0; i < priv->num_stations; i++)
3861                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3862                         return i;
3863
3864         return IPW_INVALID_STATION;
3865 }
3866
3867 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3868 {
3869         int err;
3870
3871         if (priv->status & STATUS_ASSOCIATING) {
3872                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3873                 queue_work(priv->workqueue, &priv->disassociate);
3874                 return;
3875         }
3876
3877         if (!(priv->status & STATUS_ASSOCIATED)) {
3878                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3879                 return;
3880         }
3881
3882         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3883                         "on channel %d.\n",
3884                         priv->assoc_request.bssid,
3885                         priv->assoc_request.channel);
3886
3887         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3888         priv->status |= STATUS_DISASSOCIATING;
3889
3890         if (quiet)
3891                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3892         else
3893                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3894
3895         err = ipw_send_associate(priv, &priv->assoc_request);
3896         if (err) {
3897                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3898                              "failed.\n");
3899                 return;
3900         }
3901
3902 }
3903
3904 static int ipw_disassociate(void *data)
3905 {
3906         struct ipw_priv *priv = data;
3907         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3908                 return 0;
3909         ipw_send_disassociate(data, 0);
3910         netif_carrier_off(priv->net_dev);
3911         return 1;
3912 }
3913
3914 static void ipw_bg_disassociate(struct work_struct *work)
3915 {
3916         struct ipw_priv *priv =
3917                 container_of(work, struct ipw_priv, disassociate);
3918         mutex_lock(&priv->mutex);
3919         ipw_disassociate(priv);
3920         mutex_unlock(&priv->mutex);
3921 }
3922
3923 static void ipw_system_config(struct work_struct *work)
3924 {
3925         struct ipw_priv *priv =
3926                 container_of(work, struct ipw_priv, system_config);
3927
3928 #ifdef CONFIG_IPW2200_PROMISCUOUS
3929         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3930                 priv->sys_config.accept_all_data_frames = 1;
3931                 priv->sys_config.accept_non_directed_frames = 1;
3932                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3933                 priv->sys_config.accept_all_mgmt_frames = 1;
3934         }
3935 #endif
3936
3937         ipw_send_system_config(priv);
3938 }
3939
3940 struct ipw_status_code {
3941         u16 status;
3942         const char *reason;
3943 };
3944
3945 static const struct ipw_status_code ipw_status_codes[] = {
3946         {0x00, "Successful"},
3947         {0x01, "Unspecified failure"},
3948         {0x0A, "Cannot support all requested capabilities in the "
3949          "Capability information field"},
3950         {0x0B, "Reassociation denied due to inability to confirm that "
3951          "association exists"},
3952         {0x0C, "Association denied due to reason outside the scope of this "
3953          "standard"},
3954         {0x0D,
3955          "Responding station does not support the specified authentication "
3956          "algorithm"},
3957         {0x0E,
3958          "Received an Authentication frame with authentication sequence "
3959          "transaction sequence number out of expected sequence"},
3960         {0x0F, "Authentication rejected because of challenge failure"},
3961         {0x10, "Authentication rejected due to timeout waiting for next "
3962          "frame in sequence"},
3963         {0x11, "Association denied because AP is unable to handle additional "
3964          "associated stations"},
3965         {0x12,
3966          "Association denied due to requesting station not supporting all "
3967          "of the datarates in the BSSBasicServiceSet Parameter"},
3968         {0x13,
3969          "Association denied due to requesting station not supporting "
3970          "short preamble operation"},
3971         {0x14,
3972          "Association denied due to requesting station not supporting "
3973          "PBCC encoding"},
3974         {0x15,
3975          "Association denied due to requesting station not supporting "
3976          "channel agility"},
3977         {0x19,
3978          "Association denied due to requesting station not supporting "
3979          "short slot operation"},
3980         {0x1A,
3981          "Association denied due to requesting station not supporting "
3982          "DSSS-OFDM operation"},
3983         {0x28, "Invalid Information Element"},
3984         {0x29, "Group Cipher is not valid"},
3985         {0x2A, "Pairwise Cipher is not valid"},
3986         {0x2B, "AKMP is not valid"},
3987         {0x2C, "Unsupported RSN IE version"},
3988         {0x2D, "Invalid RSN IE Capabilities"},
3989         {0x2E, "Cipher suite is rejected per security policy"},
3990 };
3991
3992 static const char *ipw_get_status_code(u16 status)
3993 {
3994         int i;
3995         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3996                 if (ipw_status_codes[i].status == (status & 0xff))
3997                         return ipw_status_codes[i].reason;
3998         return "Unknown status value.";
3999 }
4000
4001 static void inline average_init(struct average *avg)
4002 {
4003         memset(avg, 0, sizeof(*avg));
4004 }
4005
4006 #define DEPTH_RSSI 8
4007 #define DEPTH_NOISE 16
4008 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4009 {
4010         return ((depth-1)*prev_avg +  val)/depth;
4011 }
4012
4013 static void average_add(struct average *avg, s16 val)
4014 {
4015         avg->sum -= avg->entries[avg->pos];
4016         avg->sum += val;
4017         avg->entries[avg->pos++] = val;
4018         if (unlikely(avg->pos == AVG_ENTRIES)) {
4019                 avg->init = 1;
4020                 avg->pos = 0;
4021         }
4022 }
4023
4024 static s16 average_value(struct average *avg)
4025 {
4026         if (!unlikely(avg->init)) {
4027                 if (avg->pos)
4028                         return avg->sum / avg->pos;
4029                 return 0;
4030         }
4031
4032         return avg->sum / AVG_ENTRIES;
4033 }
4034
4035 static void ipw_reset_stats(struct ipw_priv *priv)
4036 {
4037         u32 len = sizeof(u32);
4038
4039         priv->quality = 0;
4040
4041         average_init(&priv->average_missed_beacons);
4042         priv->exp_avg_rssi = -60;
4043         priv->exp_avg_noise = -85 + 0x100;
4044
4045         priv->last_rate = 0;
4046         priv->last_missed_beacons = 0;
4047         priv->last_rx_packets = 0;
4048         priv->last_tx_packets = 0;
4049         priv->last_tx_failures = 0;
4050
4051         /* Firmware managed, reset only when NIC is restarted, so we have to
4052          * normalize on the current value */
4053         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4054                         &priv->last_rx_err, &len);
4055         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4056                         &priv->last_tx_failures, &len);
4057
4058         /* Driver managed, reset with each association */
4059         priv->missed_adhoc_beacons = 0;
4060         priv->missed_beacons = 0;
4061         priv->tx_packets = 0;
4062         priv->rx_packets = 0;
4063
4064 }
4065
4066 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4067 {
4068         u32 i = 0x80000000;
4069         u32 mask = priv->rates_mask;
4070         /* If currently associated in B mode, restrict the maximum
4071          * rate match to B rates */
4072         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4073                 mask &= IEEE80211_CCK_RATES_MASK;
4074
4075         /* TODO: Verify that the rate is supported by the current rates
4076          * list. */
4077
4078         while (i && !(mask & i))
4079                 i >>= 1;
4080         switch (i) {
4081         case IEEE80211_CCK_RATE_1MB_MASK:
4082                 return 1000000;
4083         case IEEE80211_CCK_RATE_2MB_MASK:
4084                 return 2000000;
4085         case IEEE80211_CCK_RATE_5MB_MASK:
4086                 return 5500000;
4087         case IEEE80211_OFDM_RATE_6MB_MASK:
4088                 return 6000000;
4089         case IEEE80211_OFDM_RATE_9MB_MASK:
4090                 return 9000000;
4091         case IEEE80211_CCK_RATE_11MB_MASK:
4092                 return 11000000;
4093         case IEEE80211_OFDM_RATE_12MB_MASK:
4094                 return 12000000;
4095         case IEEE80211_OFDM_RATE_18MB_MASK:
4096                 return 18000000;
4097         case IEEE80211_OFDM_RATE_24MB_MASK:
4098                 return 24000000;
4099         case IEEE80211_OFDM_RATE_36MB_MASK:
4100                 return 36000000;
4101         case IEEE80211_OFDM_RATE_48MB_MASK:
4102                 return 48000000;
4103         case IEEE80211_OFDM_RATE_54MB_MASK:
4104                 return 54000000;
4105         }
4106
4107         if (priv->ieee->mode == IEEE_B)
4108                 return 11000000;
4109         else
4110                 return 54000000;
4111 }
4112
4113 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4114 {
4115         u32 rate, len = sizeof(rate);
4116         int err;
4117
4118         if (!(priv->status & STATUS_ASSOCIATED))
4119                 return 0;
4120
4121         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4122                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4123                                       &len);
4124                 if (err) {
4125                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4126                         return 0;
4127                 }
4128         } else
4129                 return ipw_get_max_rate(priv);
4130
4131         switch (rate) {
4132         case IPW_TX_RATE_1MB:
4133                 return 1000000;
4134         case IPW_TX_RATE_2MB:
4135                 return 2000000;
4136         case IPW_TX_RATE_5MB:
4137                 return 5500000;
4138         case IPW_TX_RATE_6MB:
4139                 return 6000000;
4140         case IPW_TX_RATE_9MB:
4141                 return 9000000;
4142         case IPW_TX_RATE_11MB:
4143                 return 11000000;
4144         case IPW_TX_RATE_12MB:
4145                 return 12000000;
4146         case IPW_TX_RATE_18MB:
4147                 return 18000000;
4148         case IPW_TX_RATE_24MB:
4149                 return 24000000;
4150         case IPW_TX_RATE_36MB:
4151                 return 36000000;
4152         case IPW_TX_RATE_48MB:
4153                 return 48000000;
4154         case IPW_TX_RATE_54MB:
4155                 return 54000000;
4156         }
4157
4158         return 0;
4159 }
4160
4161 #define IPW_STATS_INTERVAL (2 * HZ)
4162 static void ipw_gather_stats(struct ipw_priv *priv)
4163 {
4164         u32 rx_err, rx_err_delta, rx_packets_delta;
4165         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4166         u32 missed_beacons_percent, missed_beacons_delta;
4167         u32 quality = 0;
4168         u32 len = sizeof(u32);
4169         s16 rssi;
4170         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4171             rate_quality;
4172         u32 max_rate;
4173
4174         if (!(priv->status & STATUS_ASSOCIATED)) {
4175                 priv->quality = 0;
4176                 return;
4177         }
4178
4179         /* Update the statistics */
4180         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4181                         &priv->missed_beacons, &len);
4182         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4183         priv->last_missed_beacons = priv->missed_beacons;
4184         if (priv->assoc_request.beacon_interval) {
4185                 missed_beacons_percent = missed_beacons_delta *
4186                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4187                     (IPW_STATS_INTERVAL * 10);
4188         } else {
4189                 missed_beacons_percent = 0;
4190         }
4191         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4192
4193         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4194         rx_err_delta = rx_err - priv->last_rx_err;
4195         priv->last_rx_err = rx_err;
4196
4197         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4198         tx_failures_delta = tx_failures - priv->last_tx_failures;
4199         priv->last_tx_failures = tx_failures;
4200
4201         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4202         priv->last_rx_packets = priv->rx_packets;
4203
4204         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4205         priv->last_tx_packets = priv->tx_packets;
4206
4207         /* Calculate quality based on the following:
4208          *
4209          * Missed beacon: 100% = 0, 0% = 70% missed
4210          * Rate: 60% = 1Mbs, 100% = Max
4211          * Rx and Tx errors represent a straight % of total Rx/Tx
4212          * RSSI: 100% = > -50,  0% = < -80
4213          * Rx errors: 100% = 0, 0% = 50% missed
4214          *
4215          * The lowest computed quality is used.
4216          *
4217          */
4218 #define BEACON_THRESHOLD 5
4219         beacon_quality = 100 - missed_beacons_percent;
4220         if (beacon_quality < BEACON_THRESHOLD)
4221                 beacon_quality = 0;
4222         else
4223                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4224                     (100 - BEACON_THRESHOLD);
4225         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4226                         beacon_quality, missed_beacons_percent);
4227
4228         priv->last_rate = ipw_get_current_rate(priv);
4229         max_rate = ipw_get_max_rate(priv);
4230         rate_quality = priv->last_rate * 40 / max_rate + 60;
4231         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4232                         rate_quality, priv->last_rate / 1000000);
4233
4234         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4235                 rx_quality = 100 - (rx_err_delta * 100) /
4236                     (rx_packets_delta + rx_err_delta);
4237         else
4238                 rx_quality = 100;
4239         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4240                         rx_quality, rx_err_delta, rx_packets_delta);
4241
4242         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4243                 tx_quality = 100 - (tx_failures_delta * 100) /
4244                     (tx_packets_delta + tx_failures_delta);
4245         else
4246                 tx_quality = 100;
4247         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4248                         tx_quality, tx_failures_delta, tx_packets_delta);
4249
4250         rssi = priv->exp_avg_rssi;
4251         signal_quality =
4252             (100 *
4253              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4254              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4255              (priv->ieee->perfect_rssi - rssi) *
4256              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4257               62 * (priv->ieee->perfect_rssi - rssi))) /
4258             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4259              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4260         if (signal_quality > 100)
4261                 signal_quality = 100;
4262         else if (signal_quality < 1)
4263                 signal_quality = 0;
4264
4265         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4266                         signal_quality, rssi);
4267
4268         quality = min(beacon_quality,
4269                       min(rate_quality,
4270                           min(tx_quality, min(rx_quality, signal_quality))));
4271         if (quality == beacon_quality)
4272                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4273                                 quality);
4274         if (quality == rate_quality)
4275                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4276                                 quality);
4277         if (quality == tx_quality)
4278                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4279                                 quality);
4280         if (quality == rx_quality)
4281                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4282                                 quality);
4283         if (quality == signal_quality)
4284                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4285                                 quality);
4286
4287         priv->quality = quality;
4288
4289         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4290                            IPW_STATS_INTERVAL);
4291 }
4292
4293 static void ipw_bg_gather_stats(struct work_struct *work)
4294 {
4295         struct ipw_priv *priv =
4296                 container_of(work, struct ipw_priv, gather_stats.work);
4297         mutex_lock(&priv->mutex);
4298         ipw_gather_stats(priv);
4299         mutex_unlock(&priv->mutex);
4300 }
4301
4302 /* Missed beacon behavior:
4303  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4304  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4305  * Above disassociate threshold, give up and stop scanning.
4306  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4307 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4308                                             int missed_count)
4309 {
4310         priv->notif_missed_beacons = missed_count;
4311
4312         if (missed_count > priv->disassociate_threshold &&
4313             priv->status & STATUS_ASSOCIATED) {
4314                 /* If associated and we've hit the missed
4315                  * beacon threshold, disassociate, turn
4316                  * off roaming, and abort any active scans */
4317                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4318                           IPW_DL_STATE | IPW_DL_ASSOC,
4319                           "Missed beacon: %d - disassociate\n", missed_count);
4320                 priv->status &= ~STATUS_ROAMING;
4321                 if (priv->status & STATUS_SCANNING) {
4322                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4323                                   IPW_DL_STATE,
4324                                   "Aborting scan with missed beacon.\n");
4325                         queue_work(priv->workqueue, &priv->abort_scan);
4326                 }
4327
4328                 queue_work(priv->workqueue, &priv->disassociate);
4329                 return;
4330         }
4331
4332         if (priv->status & STATUS_ROAMING) {
4333                 /* If we are currently roaming, then just
4334                  * print a debug statement... */
4335                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336                           "Missed beacon: %d - roam in progress\n",
4337                           missed_count);
4338                 return;
4339         }
4340
4341         if (roaming &&
4342             (missed_count > priv->roaming_threshold &&
4343              missed_count <= priv->disassociate_threshold)) {
4344                 /* If we are not already roaming, set the ROAM
4345                  * bit in the status and kick off a scan.
4346                  * This can happen several times before we reach
4347                  * disassociate_threshold. */
4348                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4349                           "Missed beacon: %d - initiate "
4350                           "roaming\n", missed_count);
4351                 if (!(priv->status & STATUS_ROAMING)) {
4352                         priv->status |= STATUS_ROAMING;
4353                         if (!(priv->status & STATUS_SCANNING))
4354                                 queue_delayed_work(priv->workqueue,
4355                                                    &priv->request_scan, 0);
4356                 }
4357                 return;
4358         }
4359
4360         if (priv->status & STATUS_SCANNING &&
4361             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4362                 /* Stop scan to keep fw from getting
4363                  * stuck (only if we aren't roaming --
4364                  * otherwise we'll never scan more than 2 or 3
4365                  * channels..) */
4366                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4367                           "Aborting scan with missed beacon.\n");
4368                 queue_work(priv->workqueue, &priv->abort_scan);
4369         }
4370
4371         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4372 }
4373
4374 static void ipw_scan_event(struct work_struct *work)
4375 {
4376         union iwreq_data wrqu;
4377
4378         struct ipw_priv *priv =
4379                 container_of(work, struct ipw_priv, scan_event.work);
4380
4381         wrqu.data.length = 0;
4382         wrqu.data.flags = 0;
4383         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4384 }
4385
4386 static void handle_scan_event(struct ipw_priv *priv)
4387 {
4388         /* Only userspace-requested scan completion events go out immediately */
4389         if (!priv->user_requested_scan) {
4390                 if (!delayed_work_pending(&priv->scan_event))
4391                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4392                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4393         } else {
4394                 union iwreq_data wrqu;
4395
4396                 priv->user_requested_scan = 0;
4397                 cancel_delayed_work(&priv->scan_event);
4398
4399                 wrqu.data.length = 0;
4400                 wrqu.data.flags = 0;
4401                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4402         }
4403 }
4404
4405 /**
4406  * Handle host notification packet.
4407  * Called from interrupt routine
4408  */
4409 static void ipw_rx_notification(struct ipw_priv *priv,
4410                                        struct ipw_rx_notification *notif)
4411 {
4412         DECLARE_SSID_BUF(ssid);
4413         u16 size = le16_to_cpu(notif->size);
4414         notif->size = le16_to_cpu(notif->size);
4415
4416         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4417
4418         switch (notif->subtype) {
4419         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4420                         struct notif_association *assoc = &notif->u.assoc;
4421
4422                         switch (assoc->state) {
4423                         case CMAS_ASSOCIATED:{
4424                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4425                                                   IPW_DL_ASSOC,
4426                                                   "associated: '%s' %pM \n",
4427                                                   print_ssid(ssid, priv->essid,
4428                                                              priv->essid_len),
4429                                                   priv->bssid);
4430
4431                                         switch (priv->ieee->iw_mode) {
4432                                         case IW_MODE_INFRA:
4433                                                 memcpy(priv->ieee->bssid,
4434                                                        priv->bssid, ETH_ALEN);
4435                                                 break;
4436
4437                                         case IW_MODE_ADHOC:
4438                                                 memcpy(priv->ieee->bssid,
4439                                                        priv->bssid, ETH_ALEN);
4440
4441                                                 /* clear out the station table */
4442                                                 priv->num_stations = 0;
4443
4444                                                 IPW_DEBUG_ASSOC
4445                                                     ("queueing adhoc check\n");
4446                                                 queue_delayed_work(priv->
4447                                                                    workqueue,
4448                                                                    &priv->
4449                                                                    adhoc_check,
4450                                                                    le16_to_cpu(priv->
4451                                                                    assoc_request.
4452                                                                    beacon_interval));
4453                                                 break;
4454                                         }
4455
4456                                         priv->status &= ~STATUS_ASSOCIATING;
4457                                         priv->status |= STATUS_ASSOCIATED;
4458                                         queue_work(priv->workqueue,
4459                                                    &priv->system_config);
4460
4461 #ifdef CONFIG_IPW2200_QOS
4462 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4463                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4464                                         if ((priv->status & STATUS_AUTH) &&
4465                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4466                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4467                                                 if ((sizeof
4468                                                      (struct
4469                                                       ieee80211_assoc_response)
4470                                                      <= size)
4471                                                     && (size <= 2314)) {
4472                                                         struct
4473                                                         ieee80211_rx_stats
4474                                                             stats = {
4475                                                                 .len = size - 1,
4476                                                         };
4477
4478                                                         IPW_DEBUG_QOS
4479                                                             ("QoS Associate "
4480                                                              "size %d\n", size);
4481                                                         ieee80211_rx_mgt(priv->
4482                                                                          ieee,
4483                                                                          (struct
4484                                                                           ieee80211_hdr_4addr
4485                                                                           *)
4486                                                                          &notif->u.raw, &stats);
4487                                                 }
4488                                         }
4489 #endif
4490
4491                                         schedule_work(&priv->link_up);
4492
4493                                         break;
4494                                 }
4495
4496                         case CMAS_AUTHENTICATED:{
4497                                         if (priv->
4498                                             status & (STATUS_ASSOCIATED |
4499                                                       STATUS_AUTH)) {
4500                                                 struct notif_authenticate *auth
4501                                                     = &notif->u.auth;
4502                                                 IPW_DEBUG(IPW_DL_NOTIF |
4503                                                           IPW_DL_STATE |
4504                                                           IPW_DL_ASSOC,
4505                                                           "deauthenticated: '%s' "
4506                                                           "%pM"
4507                                                           ": (0x%04X) - %s \n",
4508                                                           print_ssid(ssid,
4509                                                                      priv->
4510                                                                      essid,
4511                                                                      priv->
4512                                                                      essid_len),
4513                                                           priv->bssid,
4514                                                           le16_to_cpu(auth->status),
4515                                                           ipw_get_status_code
4516                                                           (le16_to_cpu
4517                                                            (auth->status)));
4518
4519                                                 priv->status &=
4520                                                     ~(STATUS_ASSOCIATING |
4521                                                       STATUS_AUTH |
4522                                                       STATUS_ASSOCIATED);
4523
4524                                                 schedule_work(&priv->link_down);
4525                                                 break;
4526                                         }
4527
4528                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529                                                   IPW_DL_ASSOC,
4530                                                   "authenticated: '%s' %pM\n",
4531                                                   print_ssid(ssid, priv->essid,
4532                                                              priv->essid_len),
4533                                                   priv->bssid);
4534                                         break;
4535                                 }
4536
4537                         case CMAS_INIT:{
4538                                         if (priv->status & STATUS_AUTH) {
4539                                                 struct
4540                                                     ieee80211_assoc_response
4541                                                 *resp;
4542                                                 resp =
4543                                                     (struct
4544                                                      ieee80211_assoc_response
4545                                                      *)&notif->u.raw;
4546                                                 IPW_DEBUG(IPW_DL_NOTIF |
4547                                                           IPW_DL_STATE |
4548                                                           IPW_DL_ASSOC,
4549                                                           "association failed (0x%04X): %s\n",
4550                                                           le16_to_cpu(resp->status),
4551                                                           ipw_get_status_code
4552                                                           (le16_to_cpu
4553                                                            (resp->status)));
4554                                         }
4555
4556                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557                                                   IPW_DL_ASSOC,
4558                                                   "disassociated: '%s' %pM \n",
4559                                                   print_ssid(ssid, priv->essid,
4560                                                              priv->essid_len),
4561                                                   priv->bssid);
4562
4563                                         priv->status &=
4564                                             ~(STATUS_DISASSOCIATING |
4565                                               STATUS_ASSOCIATING |
4566                                               STATUS_ASSOCIATED | STATUS_AUTH);
4567                                         if (priv->assoc_network
4568                                             && (priv->assoc_network->
4569                                                 capability &
4570                                                 WLAN_CAPABILITY_IBSS))
4571                                                 ipw_remove_current_network
4572                                                     (priv);
4573
4574                                         schedule_work(&priv->link_down);
4575
4576                                         break;
4577                                 }
4578
4579                         case CMAS_RX_ASSOC_RESP:
4580                                 break;
4581
4582                         default:
4583                                 IPW_ERROR("assoc: unknown (%d)\n",
4584                                           assoc->state);
4585                                 break;
4586                         }
4587
4588                         break;
4589                 }
4590
4591         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4592                         struct notif_authenticate *auth = &notif->u.auth;
4593                         switch (auth->state) {
4594                         case CMAS_AUTHENTICATED:
4595                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4596                                           "authenticated: '%s' %pM \n",
4597                                           print_ssid(ssid, priv->essid,
4598                                                      priv->essid_len),
4599                                           priv->bssid);
4600                                 priv->status |= STATUS_AUTH;
4601                                 break;
4602
4603                         case CMAS_INIT:
4604                                 if (priv->status & STATUS_AUTH) {
4605                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4606                                                   IPW_DL_ASSOC,
4607                                                   "authentication failed (0x%04X): %s\n",
4608                                                   le16_to_cpu(auth->status),
4609                                                   ipw_get_status_code(le16_to_cpu
4610                                                                       (auth->
4611                                                                        status)));
4612                                 }
4613                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4614                                           IPW_DL_ASSOC,
4615                                           "deauthenticated: '%s' %pM\n",
4616                                           print_ssid(ssid, priv->essid,
4617                                                      priv->essid_len),
4618                                           priv->bssid);
4619
4620                                 priv->status &= ~(STATUS_ASSOCIATING |
4621                                                   STATUS_AUTH |
4622                                                   STATUS_ASSOCIATED);
4623
4624                                 schedule_work(&priv->link_down);
4625                                 break;
4626
4627                         case CMAS_TX_AUTH_SEQ_1:
4628                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4629                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4630                                 break;
4631                         case CMAS_RX_AUTH_SEQ_2:
4632                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4633                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4634                                 break;
4635                         case CMAS_AUTH_SEQ_1_PASS:
4636                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4637                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4638                                 break;
4639                         case CMAS_AUTH_SEQ_1_FAIL:
4640                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4641                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4642                                 break;
4643                         case CMAS_TX_AUTH_SEQ_3:
4644                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4645                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4646                                 break;
4647                         case CMAS_RX_AUTH_SEQ_4:
4648                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4649                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4650                                 break;
4651                         case CMAS_AUTH_SEQ_2_PASS:
4652                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4653                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4654                                 break;
4655                         case CMAS_AUTH_SEQ_2_FAIL:
4656                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4657                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4658                                 break;
4659                         case CMAS_TX_ASSOC:
4660                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4661                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4662                                 break;
4663                         case CMAS_RX_ASSOC_RESP:
4664                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4665                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4666
4667                                 break;
4668                         case CMAS_ASSOCIATED:
4669                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4670                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4671                                 break;
4672                         default:
4673                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4674                                                 auth->state);
4675                                 break;
4676                         }
4677                         break;
4678                 }
4679
4680         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4681                         struct notif_channel_result *x =
4682                             &notif->u.channel_result;
4683
4684                         if (size == sizeof(*x)) {
4685                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4686                                                x->channel_num);
4687                         } else {
4688                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4689                                                "(should be %zd)\n",
4690                                                size, sizeof(*x));
4691                         }
4692                         break;
4693                 }
4694
4695         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4696                         struct notif_scan_complete *x = &notif->u.scan_complete;
4697                         if (size == sizeof(*x)) {
4698                                 IPW_DEBUG_SCAN
4699                                     ("Scan completed: type %d, %d channels, "
4700                                      "%d status\n", x->scan_type,
4701                                      x->num_channels, x->status);
4702                         } else {
4703                                 IPW_ERROR("Scan completed of wrong size %d "
4704                                           "(should be %zd)\n",
4705                                           size, sizeof(*x));
4706                         }
4707
4708                         priv->status &=
4709                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4710
4711                         wake_up_interruptible(&priv->wait_state);
4712                         cancel_delayed_work(&priv->scan_check);
4713
4714                         if (priv->status & STATUS_EXIT_PENDING)
4715                                 break;
4716
4717                         priv->ieee->scans++;
4718
4719 #ifdef CONFIG_IPW2200_MONITOR
4720                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4721                                 priv->status |= STATUS_SCAN_FORCED;
4722                                 queue_delayed_work(priv->workqueue,
4723                                                    &priv->request_scan, 0);
4724                                 break;
4725                         }
4726                         priv->status &= ~STATUS_SCAN_FORCED;
4727 #endif                          /* CONFIG_IPW2200_MONITOR */
4728
4729                         /* Do queued direct scans first */
4730                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4731                                 queue_delayed_work(priv->workqueue,
4732                                                    &priv->request_direct_scan, 0);
4733                         }
4734
4735                         if (!(priv->status & (STATUS_ASSOCIATED |
4736                                               STATUS_ASSOCIATING |
4737                                               STATUS_ROAMING |
4738                                               STATUS_DISASSOCIATING)))
4739                                 queue_work(priv->workqueue, &priv->associate);
4740                         else if (priv->status & STATUS_ROAMING) {
4741                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4742                                         /* If a scan completed and we are in roam mode, then
4743                                          * the scan that completed was the one requested as a
4744                                          * result of entering roam... so, schedule the
4745                                          * roam work */
4746                                         queue_work(priv->workqueue,
4747                                                    &priv->roam);
4748                                 else
4749                                         /* Don't schedule if we aborted the scan */
4750                                         priv->status &= ~STATUS_ROAMING;
4751                         } else if (priv->status & STATUS_SCAN_PENDING)
4752                                 queue_delayed_work(priv->workqueue,
4753                                                    &priv->request_scan, 0);
4754                         else if (priv->config & CFG_BACKGROUND_SCAN
4755                                  && priv->status & STATUS_ASSOCIATED)
4756                                 queue_delayed_work(priv->workqueue,
4757                                                    &priv->request_scan,
4758                                                    round_jiffies_relative(HZ));
4759
4760                         /* Send an empty event to user space.
4761                          * We don't send the received data on the event because
4762                          * it would require us to do complex transcoding, and
4763                          * we want to minimise the work done in the irq handler
4764                          * Use a request to extract the data.
4765                          * Also, we generate this even for any scan, regardless
4766                          * on how the scan was initiated. User space can just
4767                          * sync on periodic scan to get fresh data...
4768                          * Jean II */
4769                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4770                                 handle_scan_event(priv);
4771                         break;
4772                 }
4773
4774         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4775                         struct notif_frag_length *x = &notif->u.frag_len;
4776
4777                         if (size == sizeof(*x))
4778                                 IPW_ERROR("Frag length: %d\n",
4779                                           le16_to_cpu(x->frag_length));
4780                         else
4781                                 IPW_ERROR("Frag length of wrong size %d "
4782                                           "(should be %zd)\n",
4783                                           size, sizeof(*x));
4784                         break;
4785                 }
4786
4787         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4788                         struct notif_link_deterioration *x =
4789                             &notif->u.link_deterioration;
4790
4791                         if (size == sizeof(*x)) {
4792                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4793                                         "link deterioration: type %d, cnt %d\n",
4794                                         x->silence_notification_type,
4795                                         x->silence_count);
4796                                 memcpy(&priv->last_link_deterioration, x,
4797                                        sizeof(*x));
4798                         } else {
4799                                 IPW_ERROR("Link Deterioration of wrong size %d "
4800                                           "(should be %zd)\n",
4801                                           size, sizeof(*x));
4802                         }
4803                         break;
4804                 }
4805
4806         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4807                         IPW_ERROR("Dino config\n");
4808                         if (priv->hcmd
4809                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4810                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4811
4812                         break;
4813                 }
4814
4815         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4816                         struct notif_beacon_state *x = &notif->u.beacon_state;
4817                         if (size != sizeof(*x)) {
4818                                 IPW_ERROR
4819                                     ("Beacon state of wrong size %d (should "
4820                                      "be %zd)\n", size, sizeof(*x));
4821                                 break;
4822                         }
4823
4824                         if (le32_to_cpu(x->state) ==
4825                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4826                                 ipw_handle_missed_beacon(priv,
4827                                                          le32_to_cpu(x->
4828                                                                      number));
4829
4830                         break;
4831                 }
4832
4833         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4834                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4835                         if (size == sizeof(*x)) {
4836                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4837                                           "0x%02x station %d\n",
4838                                           x->key_state, x->security_type,
4839                                           x->station_index);
4840                                 break;
4841                         }
4842
4843                         IPW_ERROR
4844                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4845                              size, sizeof(*x));
4846                         break;
4847                 }
4848
4849         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4850                         struct notif_calibration *x = &notif->u.calibration;
4851
4852                         if (size == sizeof(*x)) {
4853                                 memcpy(&priv->calib, x, sizeof(*x));
4854                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4855                                 break;
4856                         }
4857
4858                         IPW_ERROR
4859                             ("Calibration of wrong size %d (should be %zd)\n",
4860                              size, sizeof(*x));
4861                         break;
4862                 }
4863
4864         case HOST_NOTIFICATION_NOISE_STATS:{
4865                         if (size == sizeof(u32)) {
4866                                 priv->exp_avg_noise =
4867                                     exponential_average(priv->exp_avg_noise,
4868                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4869                                     DEPTH_NOISE);
4870                                 break;
4871                         }
4872
4873                         IPW_ERROR
4874                             ("Noise stat is wrong size %d (should be %zd)\n",
4875                              size, sizeof(u32));
4876                         break;
4877                 }
4878
4879         default:
4880                 IPW_DEBUG_NOTIF("Unknown notification: "
4881                                 "subtype=%d,flags=0x%2x,size=%d\n",
4882                                 notif->subtype, notif->flags, size);
4883         }
4884 }
4885
4886 /**
4887  * Destroys all DMA structures and initialise them again
4888  *
4889  * @param priv
4890  * @return error code
4891  */
4892 static int ipw_queue_reset(struct ipw_priv *priv)
4893 {
4894         int rc = 0;
4895         /** @todo customize queue sizes */
4896         int nTx = 64, nTxCmd = 8;
4897         ipw_tx_queue_free(priv);
4898         /* Tx CMD queue */
4899         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4900                                IPW_TX_CMD_QUEUE_READ_INDEX,
4901                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4902                                IPW_TX_CMD_QUEUE_BD_BASE,
4903                                IPW_TX_CMD_QUEUE_BD_SIZE);
4904         if (rc) {
4905                 IPW_ERROR("Tx Cmd queue init failed\n");
4906                 goto error;
4907         }
4908         /* Tx queue(s) */
4909         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4910                                IPW_TX_QUEUE_0_READ_INDEX,
4911                                IPW_TX_QUEUE_0_WRITE_INDEX,
4912                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4913         if (rc) {
4914                 IPW_ERROR("Tx 0 queue init failed\n");
4915                 goto error;
4916         }
4917         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4918                                IPW_TX_QUEUE_1_READ_INDEX,
4919                                IPW_TX_QUEUE_1_WRITE_INDEX,
4920                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4921         if (rc) {
4922                 IPW_ERROR("Tx 1 queue init failed\n");
4923                 goto error;
4924         }
4925         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4926                                IPW_TX_QUEUE_2_READ_INDEX,
4927                                IPW_TX_QUEUE_2_WRITE_INDEX,
4928                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4929         if (rc) {
4930                 IPW_ERROR("Tx 2 queue init failed\n");
4931                 goto error;
4932         }
4933         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4934                                IPW_TX_QUEUE_3_READ_INDEX,
4935                                IPW_TX_QUEUE_3_WRITE_INDEX,
4936                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4937         if (rc) {
4938                 IPW_ERROR("Tx 3 queue init failed\n");
4939                 goto error;
4940         }
4941         /* statistics */
4942         priv->rx_bufs_min = 0;
4943         priv->rx_pend_max = 0;
4944         return rc;
4945
4946       error:
4947         ipw_tx_queue_free(priv);
4948         return rc;
4949 }
4950
4951 /**
4952  * Reclaim Tx queue entries no more used by NIC.
4953  *
4954  * When FW advances 'R' index, all entries between old and
4955  * new 'R' index need to be reclaimed. As result, some free space
4956  * forms. If there is enough free space (> low mark), wake Tx queue.
4957  *
4958  * @note Need to protect against garbage in 'R' index
4959  * @param priv
4960  * @param txq
4961  * @param qindex
4962  * @return Number of used entries remains in the queue
4963  */
4964 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4965                                 struct clx2_tx_queue *txq, int qindex)
4966 {
4967         u32 hw_tail;
4968         int used;
4969         struct clx2_queue *q = &txq->q;
4970
4971         hw_tail = ipw_read32(priv, q->reg_r);
4972         if (hw_tail >= q->n_bd) {
4973                 IPW_ERROR
4974                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4975                      hw_tail, q->n_bd);
4976                 goto done;
4977         }
4978         for (; q->last_used != hw_tail;
4979              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4980                 ipw_queue_tx_free_tfd(priv, txq);
4981                 priv->tx_packets++;
4982         }
4983       done:
4984         if ((ipw_tx_queue_space(q) > q->low_mark) &&
4985             (qindex >= 0))
4986                 netif_wake_queue(priv->net_dev);
4987         used = q->first_empty - q->last_used;
4988         if (used < 0)
4989                 used += q->n_bd;
4990
4991         return used;
4992 }
4993
4994 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4995                              int len, int sync)
4996 {
4997         struct clx2_tx_queue *txq = &priv->txq_cmd;
4998         struct clx2_queue *q = &txq->q;
4999         struct tfd_frame *tfd;
5000
5001         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5002                 IPW_ERROR("No space for Tx\n");
5003                 return -EBUSY;
5004         }
5005
5006         tfd = &txq->bd[q->first_empty];
5007         txq->txb[q->first_empty] = NULL;
5008
5009         memset(tfd, 0, sizeof(*tfd));
5010         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5011         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5012         priv->hcmd_seq++;
5013         tfd->u.cmd.index = hcmd;
5014         tfd->u.cmd.length = len;
5015         memcpy(tfd->u.cmd.payload, buf, len);
5016         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5017         ipw_write32(priv, q->reg_w, q->first_empty);
5018         _ipw_read32(priv, 0x90);
5019
5020         return 0;
5021 }
5022
5023 /*
5024  * Rx theory of operation
5025  *
5026  * The host allocates 32 DMA target addresses and passes the host address
5027  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5028  * 0 to 31
5029  *
5030  * Rx Queue Indexes
5031  * The host/firmware share two index registers for managing the Rx buffers.
5032  *
5033  * The READ index maps to the first position that the firmware may be writing
5034  * to -- the driver can read up to (but not including) this position and get
5035  * good data.
5036  * The READ index is managed by the firmware once the card is enabled.
5037  *
5038  * The WRITE index maps to the last position the driver has read from -- the
5039  * position preceding WRITE is the last slot the firmware can place a packet.
5040  *
5041  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5042  * WRITE = READ.
5043  *
5044  * During initialization the host sets up the READ queue position to the first
5045  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5046  *
5047  * When the firmware places a packet in a buffer it will advance the READ index
5048  * and fire the RX interrupt.  The driver can then query the READ index and
5049  * process as many packets as possible, moving the WRITE index forward as it
5050  * resets the Rx queue buffers with new memory.
5051  *
5052  * The management in the driver is as follows:
5053  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5054  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5055  *   to replensish the ipw->rxq->rx_free.
5056  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5057  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5058  *   'processed' and 'read' driver indexes as well)
5059  * + A received packet is processed and handed to the kernel network stack,
5060  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5061  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5062  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5063  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5064  *   were enough free buffers and RX_STALLED is set it is cleared.
5065  *
5066  *
5067  * Driver sequence:
5068  *
5069  * ipw_rx_queue_alloc()       Allocates rx_free
5070  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5071  *                            ipw_rx_queue_restock
5072  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5073  *                            queue, updates firmware pointers, and updates
5074  *                            the WRITE index.  If insufficient rx_free buffers
5075  *                            are available, schedules ipw_rx_queue_replenish
5076  *
5077  * -- enable interrupts --
5078  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5079  *                            READ INDEX, detaching the SKB from the pool.
5080  *                            Moves the packet buffer from queue to rx_used.
5081  *                            Calls ipw_rx_queue_restock to refill any empty
5082  *                            slots.
5083  * ...
5084  *
5085  */
5086
5087 /*
5088  * If there are slots in the RX queue that  need to be restocked,
5089  * and we have free pre-allocated buffers, fill the ranks as much
5090  * as we can pulling from rx_free.
5091  *
5092  * This moves the 'write' index forward to catch up with 'processed', and
5093  * also updates the memory address in the firmware to reference the new
5094  * target buffer.
5095  */
5096 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5097 {
5098         struct ipw_rx_queue *rxq = priv->rxq;
5099         struct list_head *element;
5100         struct ipw_rx_mem_buffer *rxb;
5101         unsigned long flags;
5102         int write;
5103
5104         spin_lock_irqsave(&rxq->lock, flags);
5105         write = rxq->write;
5106         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5107                 element = rxq->rx_free.next;
5108                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5109                 list_del(element);
5110
5111                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5112                             rxb->dma_addr);
5113                 rxq->queue[rxq->write] = rxb;
5114                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5115                 rxq->free_count--;
5116         }
5117         spin_unlock_irqrestore(&rxq->lock, flags);
5118
5119         /* If the pre-allocated buffer pool is dropping low, schedule to
5120          * refill it */
5121         if (rxq->free_count <= RX_LOW_WATERMARK)
5122                 queue_work(priv->workqueue, &priv->rx_replenish);
5123
5124         /* If we've added more space for the firmware to place data, tell it */
5125         if (write != rxq->write)
5126                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5127 }
5128
5129 /*
5130  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5131  * Also restock the Rx queue via ipw_rx_queue_restock.
5132  *
5133  * This is called as a scheduled work item (except for during intialization)
5134  */
5135 static void ipw_rx_queue_replenish(void *data)
5136 {
5137         struct ipw_priv *priv = data;
5138         struct ipw_rx_queue *rxq = priv->rxq;
5139         struct list_head *element;
5140         struct ipw_rx_mem_buffer *rxb;
5141         unsigned long flags;
5142
5143         spin_lock_irqsave(&rxq->lock, flags);
5144         while (!list_empty(&rxq->rx_used)) {
5145                 element = rxq->rx_used.next;
5146                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5147                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5148                 if (!rxb->skb) {
5149                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5150                                priv->net_dev->name);
5151                         /* We don't reschedule replenish work here -- we will
5152                          * call the restock method and if it still needs
5153                          * more buffers it will schedule replenish */
5154                         break;
5155                 }
5156                 list_del(element);
5157
5158                 rxb->dma_addr =
5159                     pci_map_single(priv->pci_dev, rxb->skb->data,
5160                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5161
5162                 list_add_tail(&rxb->list, &rxq->rx_free);
5163                 rxq->free_count++;
5164         }
5165         spin_unlock_irqrestore(&rxq->lock, flags);
5166
5167         ipw_rx_queue_restock(priv);
5168 }
5169
5170 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5171 {
5172         struct ipw_priv *priv =
5173                 container_of(work, struct ipw_priv, rx_replenish);
5174         mutex_lock(&priv->mutex);
5175         ipw_rx_queue_replenish(priv);
5176         mutex_unlock(&priv->mutex);
5177 }
5178
5179 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5180  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5181  * This free routine walks the list of POOL entries and if SKB is set to
5182  * non NULL it is unmapped and freed
5183  */
5184 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5185 {
5186         int i;
5187
5188         if (!rxq)
5189                 return;
5190
5191         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5192                 if (rxq->pool[i].skb != NULL) {
5193                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5194                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5195                         dev_kfree_skb(rxq->pool[i].skb);
5196                 }
5197         }
5198
5199         kfree(rxq);
5200 }
5201
5202 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5203 {
5204         struct ipw_rx_queue *rxq;
5205         int i;
5206
5207         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5208         if (unlikely(!rxq)) {
5209                 IPW_ERROR("memory allocation failed\n");
5210                 return NULL;
5211         }
5212         spin_lock_init(&rxq->lock);
5213         INIT_LIST_HEAD(&rxq->rx_free);
5214         INIT_LIST_HEAD(&rxq->rx_used);
5215
5216         /* Fill the rx_used queue with _all_ of the Rx buffers */
5217         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5218                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5219
5220         /* Set us so that we have processed and used all buffers, but have
5221          * not restocked the Rx queue with fresh buffers */
5222         rxq->read = rxq->write = 0;
5223         rxq->free_count = 0;
5224
5225         return rxq;
5226 }
5227
5228 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5229 {
5230         rate &= ~IEEE80211_BASIC_RATE_MASK;
5231         if (ieee_mode == IEEE_A) {
5232                 switch (rate) {
5233                 case IEEE80211_OFDM_RATE_6MB:
5234                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5235                             1 : 0;
5236                 case IEEE80211_OFDM_RATE_9MB:
5237                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5238                             1 : 0;
5239                 case IEEE80211_OFDM_RATE_12MB:
5240                         return priv->
5241                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5242                 case IEEE80211_OFDM_RATE_18MB:
5243                         return priv->
5244                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5245                 case IEEE80211_OFDM_RATE_24MB:
5246                         return priv->
5247                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5248                 case IEEE80211_OFDM_RATE_36MB:
5249                         return priv->
5250                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5251                 case IEEE80211_OFDM_RATE_48MB:
5252                         return priv->
5253                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5254                 case IEEE80211_OFDM_RATE_54MB:
5255                         return priv->
5256                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5257                 default:
5258                         return 0;
5259                 }
5260         }
5261
5262         /* B and G mixed */
5263         switch (rate) {
5264         case IEEE80211_CCK_RATE_1MB:
5265                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5266         case IEEE80211_CCK_RATE_2MB:
5267                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5268         case IEEE80211_CCK_RATE_5MB:
5269                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5270         case IEEE80211_CCK_RATE_11MB:
5271                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5272         }
5273
5274         /* If we are limited to B modulations, bail at this point */
5275         if (ieee_mode == IEEE_B)
5276                 return 0;
5277
5278         /* G */
5279         switch (rate) {
5280         case IEEE80211_OFDM_RATE_6MB:
5281                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5282         case IEEE80211_OFDM_RATE_9MB:
5283                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5284         case IEEE80211_OFDM_RATE_12MB:
5285                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5286         case IEEE80211_OFDM_RATE_18MB:
5287                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5288         case IEEE80211_OFDM_RATE_24MB:
5289                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5290         case IEEE80211_OFDM_RATE_36MB:
5291                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5292         case IEEE80211_OFDM_RATE_48MB:
5293                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5294         case IEEE80211_OFDM_RATE_54MB:
5295                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5296         }
5297
5298         return 0;
5299 }
5300
5301 static int ipw_compatible_rates(struct ipw_priv *priv,
5302                                 const struct ieee80211_network *network,
5303                                 struct ipw_supported_rates *rates)
5304 {
5305         int num_rates, i;
5306
5307         memset(rates, 0, sizeof(*rates));
5308         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5309         rates->num_rates = 0;
5310         for (i = 0; i < num_rates; i++) {
5311                 if (!ipw_is_rate_in_mask(priv, network->mode,
5312                                          network->rates[i])) {
5313
5314                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5315                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5316                                                "rate %02X\n",
5317                                                network->rates[i]);
5318                                 rates->supported_rates[rates->num_rates++] =
5319                                     network->rates[i];
5320                                 continue;
5321                         }
5322
5323                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5324                                        network->rates[i], priv->rates_mask);
5325                         continue;
5326                 }
5327
5328                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5329         }
5330
5331         num_rates = min(network->rates_ex_len,
5332                         (u8) (IPW_MAX_RATES - num_rates));
5333         for (i = 0; i < num_rates; i++) {
5334                 if (!ipw_is_rate_in_mask(priv, network->mode,
5335                                          network->rates_ex[i])) {
5336                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5337                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5338                                                "rate %02X\n",
5339                                                network->rates_ex[i]);
5340                                 rates->supported_rates[rates->num_rates++] =
5341                                     network->rates[i];
5342                                 continue;
5343                         }
5344
5345                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5346                                        network->rates_ex[i], priv->rates_mask);
5347                         continue;
5348                 }
5349
5350                 rates->supported_rates[rates->num_rates++] =
5351                     network->rates_ex[i];
5352         }
5353
5354         return 1;
5355 }
5356
5357 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5358                                   const struct ipw_supported_rates *src)
5359 {
5360         u8 i;
5361         for (i = 0; i < src->num_rates; i++)
5362                 dest->supported_rates[i] = src->supported_rates[i];
5363         dest->num_rates = src->num_rates;
5364 }
5365
5366 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5367  * mask should ever be used -- right now all callers to add the scan rates are
5368  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5369 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5370                                    u8 modulation, u32 rate_mask)
5371 {
5372         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5373             IEEE80211_BASIC_RATE_MASK : 0;
5374
5375         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5376                 rates->supported_rates[rates->num_rates++] =
5377                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5378
5379         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5380                 rates->supported_rates[rates->num_rates++] =
5381                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5382
5383         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5384                 rates->supported_rates[rates->num_rates++] = basic_mask |
5385                     IEEE80211_CCK_RATE_5MB;
5386
5387         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5388                 rates->supported_rates[rates->num_rates++] = basic_mask |
5389                     IEEE80211_CCK_RATE_11MB;
5390 }
5391
5392 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5393                                     u8 modulation, u32 rate_mask)
5394 {
5395         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5396             IEEE80211_BASIC_RATE_MASK : 0;
5397
5398         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5399                 rates->supported_rates[rates->num_rates++] = basic_mask |
5400                     IEEE80211_OFDM_RATE_6MB;
5401
5402         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5403                 rates->supported_rates[rates->num_rates++] =
5404                     IEEE80211_OFDM_RATE_9MB;
5405
5406         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5407                 rates->supported_rates[rates->num_rates++] = basic_mask |
5408                     IEEE80211_OFDM_RATE_12MB;
5409
5410         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5411                 rates->supported_rates[rates->num_rates++] =
5412                     IEEE80211_OFDM_RATE_18MB;
5413
5414         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5415                 rates->supported_rates[rates->num_rates++] = basic_mask |
5416                     IEEE80211_OFDM_RATE_24MB;
5417
5418         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5419                 rates->supported_rates[rates->num_rates++] =
5420                     IEEE80211_OFDM_RATE_36MB;
5421
5422         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5423                 rates->supported_rates[rates->num_rates++] =
5424                     IEEE80211_OFDM_RATE_48MB;
5425
5426         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5427                 rates->supported_rates[rates->num_rates++] =
5428                     IEEE80211_OFDM_RATE_54MB;
5429 }
5430
5431 struct ipw_network_match {
5432         struct ieee80211_network *network;
5433         struct ipw_supported_rates rates;
5434 };
5435
5436 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5437                                   struct ipw_network_match *match,
5438                                   struct ieee80211_network *network,
5439                                   int roaming)
5440 {
5441         struct ipw_supported_rates rates;
5442         DECLARE_SSID_BUF(ssid);
5443
5444         /* Verify that this network's capability is compatible with the
5445          * current mode (AdHoc or Infrastructure) */
5446         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5447              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5448                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5449                                 "capability mismatch.\n",
5450                                 print_ssid(ssid, network->ssid,
5451                                            network->ssid_len),
5452                                 network->bssid);
5453                 return 0;
5454         }
5455
5456         if (unlikely(roaming)) {
5457                 /* If we are roaming, then ensure check if this is a valid
5458                  * network to try and roam to */
5459                 if ((network->ssid_len != match->network->ssid_len) ||
5460                     memcmp(network->ssid, match->network->ssid,
5461                            network->ssid_len)) {
5462                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5463                                         "because of non-network ESSID.\n",
5464                                         print_ssid(ssid, network->ssid,
5465                                                    network->ssid_len),
5466                                         network->bssid);
5467                         return 0;
5468                 }
5469         } else {
5470                 /* If an ESSID has been configured then compare the broadcast
5471                  * ESSID to ours */
5472                 if ((priv->config & CFG_STATIC_ESSID) &&
5473                     ((network->ssid_len != priv->essid_len) ||
5474                      memcmp(network->ssid, priv->essid,
5475                             min(network->ssid_len, priv->essid_len)))) {
5476                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5477
5478                         strncpy(escaped,
5479                                 print_ssid(ssid, network->ssid,
5480                                            network->ssid_len),
5481                                 sizeof(escaped));
5482                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5483                                         "because of ESSID mismatch: '%s'.\n",
5484                                         escaped, network->bssid,
5485                                         print_ssid(ssid, priv->essid,
5486                                                    priv->essid_len));
5487                         return 0;
5488                 }
5489         }
5490
5491         /* If the old network rate is better than this one, don't bother
5492          * testing everything else. */
5493
5494         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5495                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5496                                 "current network.\n",
5497                                 print_ssid(ssid, match->network->ssid,
5498                                            match->network->ssid_len));
5499                 return 0;
5500         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5501                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5502                                 "current network.\n",
5503                                 print_ssid(ssid, match->network->ssid,
5504                                            match->network->ssid_len));
5505                 return 0;
5506         }
5507
5508         /* Now go through and see if the requested network is valid... */
5509         if (priv->ieee->scan_age != 0 &&
5510             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5511                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5512                                 "because of age: %ums.\n",
5513                                 print_ssid(ssid, network->ssid,
5514                                            network->ssid_len),
5515                                 network->bssid,
5516                                 jiffies_to_msecs(jiffies -
5517                                                  network->last_scanned));
5518                 return 0;
5519         }
5520
5521         if ((priv->config & CFG_STATIC_CHANNEL) &&
5522             (network->channel != priv->channel)) {
5523                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5524                                 "because of channel mismatch: %d != %d.\n",
5525                                 print_ssid(ssid, network->ssid,
5526                                            network->ssid_len),
5527                                 network->bssid,
5528                                 network->channel, priv->channel);
5529                 return 0;
5530         }
5531
5532         /* Verify privacy compatability */
5533         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5534             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5535                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5536                                 "because of privacy mismatch: %s != %s.\n",
5537                                 print_ssid(ssid, network->ssid,
5538                                            network->ssid_len),
5539                                 network->bssid,
5540                                 priv->
5541                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5542                                 network->
5543                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5544                                 "off");
5545                 return 0;
5546         }
5547
5548         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5549                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5550                                 "because of the same BSSID match: %pM"
5551                                 ".\n", print_ssid(ssid, network->ssid,
5552                                                   network->ssid_len),
5553                                 network->bssid,
5554                                 priv->bssid);
5555                 return 0;
5556         }
5557
5558         /* Filter out any incompatible freq / mode combinations */
5559         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5560                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5561                                 "because of invalid frequency/mode "
5562                                 "combination.\n",
5563                                 print_ssid(ssid, network->ssid,
5564                                            network->ssid_len),
5565                                 network->bssid);
5566                 return 0;
5567         }
5568
5569         /* Ensure that the rates supported by the driver are compatible with
5570          * this AP, including verification of basic rates (mandatory) */
5571         if (!ipw_compatible_rates(priv, network, &rates)) {
5572                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5573                                 "because configured rate mask excludes "
5574                                 "AP mandatory rate.\n",
5575                                 print_ssid(ssid, network->ssid,
5576                                            network->ssid_len),
5577                                 network->bssid);
5578                 return 0;
5579         }
5580
5581         if (rates.num_rates == 0) {
5582                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5583                                 "because of no compatible rates.\n",
5584                                 print_ssid(ssid, network->ssid,
5585                                            network->ssid_len),
5586                                 network->bssid);
5587                 return 0;
5588         }
5589
5590         /* TODO: Perform any further minimal comparititive tests.  We do not
5591          * want to put too much policy logic here; intelligent scan selection
5592          * should occur within a generic IEEE 802.11 user space tool.  */
5593
5594         /* Set up 'new' AP to this network */
5595         ipw_copy_rates(&match->rates, &rates);
5596         match->network = network;
5597         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5598                         print_ssid(ssid, network->ssid, network->ssid_len),
5599                         network->bssid);
5600
5601         return 1;
5602 }
5603
5604 static void ipw_merge_adhoc_network(struct work_struct *work)
5605 {
5606         DECLARE_SSID_BUF(ssid);
5607         struct ipw_priv *priv =
5608                 container_of(work, struct ipw_priv, merge_networks);
5609         struct ieee80211_network *network = NULL;
5610         struct ipw_network_match match = {
5611                 .network = priv->assoc_network
5612         };
5613
5614         if ((priv->status & STATUS_ASSOCIATED) &&
5615             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5616                 /* First pass through ROAM process -- look for a better
5617                  * network */
5618                 unsigned long flags;
5619
5620                 spin_lock_irqsave(&priv->ieee->lock, flags);
5621                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5622                         if (network != priv->assoc_network)
5623                                 ipw_find_adhoc_network(priv, &match, network,
5624                                                        1);
5625                 }
5626                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5627
5628                 if (match.network == priv->assoc_network) {
5629                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5630                                         "merge to.\n");
5631                         return;
5632                 }
5633
5634                 mutex_lock(&priv->mutex);
5635                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5636                         IPW_DEBUG_MERGE("remove network %s\n",
5637                                         print_ssid(ssid, priv->essid,
5638                                                    priv->essid_len));
5639                         ipw_remove_current_network(priv);
5640                 }
5641
5642                 ipw_disassociate(priv);
5643                 priv->assoc_network = match.network;
5644                 mutex_unlock(&priv->mutex);
5645                 return;
5646         }
5647 }
5648
5649 static int ipw_best_network(struct ipw_priv *priv,
5650                             struct ipw_network_match *match,
5651                             struct ieee80211_network *network, int roaming)
5652 {
5653         struct ipw_supported_rates rates;
5654         DECLARE_SSID_BUF(ssid);
5655
5656         /* Verify that this network's capability is compatible with the
5657          * current mode (AdHoc or Infrastructure) */
5658         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5659              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5660             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5661              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5662                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5663                                 "capability mismatch.\n",
5664                                 print_ssid(ssid, network->ssid,
5665                                            network->ssid_len),
5666                                 network->bssid);
5667                 return 0;
5668         }
5669
5670         if (unlikely(roaming)) {
5671                 /* If we are roaming, then ensure check if this is a valid
5672                  * network to try and roam to */
5673                 if ((network->ssid_len != match->network->ssid_len) ||
5674                     memcmp(network->ssid, match->network->ssid,
5675                            network->ssid_len)) {
5676                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5677                                         "because of non-network ESSID.\n",
5678                                         print_ssid(ssid, network->ssid,
5679                                                    network->ssid_len),
5680                                         network->bssid);
5681                         return 0;
5682                 }
5683         } else {
5684                 /* If an ESSID has been configured then compare the broadcast
5685                  * ESSID to ours */
5686                 if ((priv->config & CFG_STATIC_ESSID) &&
5687                     ((network->ssid_len != priv->essid_len) ||
5688                      memcmp(network->ssid, priv->essid,
5689                             min(network->ssid_len, priv->essid_len)))) {
5690                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5691                         strncpy(escaped,
5692                                 print_ssid(ssid, network->ssid,
5693                                            network->ssid_len),
5694                                 sizeof(escaped));
5695                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5696                                         "because of ESSID mismatch: '%s'.\n",
5697                                         escaped, network->bssid,
5698                                         print_ssid(ssid, priv->essid,
5699                                                    priv->essid_len));
5700                         return 0;
5701                 }
5702         }
5703
5704         /* If the old network rate is better than this one, don't bother
5705          * testing everything else. */
5706         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5707                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5708                 strncpy(escaped,
5709                         print_ssid(ssid, network->ssid, network->ssid_len),
5710                         sizeof(escaped));
5711                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5712                                 "'%s (%pM)' has a stronger signal.\n",
5713                                 escaped, network->bssid,
5714                                 print_ssid(ssid, match->network->ssid,
5715                                            match->network->ssid_len),
5716                                 match->network->bssid);
5717                 return 0;
5718         }
5719
5720         /* If this network has already had an association attempt within the
5721          * last 3 seconds, do not try and associate again... */
5722         if (network->last_associate &&
5723             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5724                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5725                                 "because of storming (%ums since last "
5726                                 "assoc attempt).\n",
5727                                 print_ssid(ssid, network->ssid,
5728                                            network->ssid_len),
5729                                 network->bssid,
5730                                 jiffies_to_msecs(jiffies -
5731                                                  network->last_associate));
5732                 return 0;
5733         }
5734
5735         /* Now go through and see if the requested network is valid... */
5736         if (priv->ieee->scan_age != 0 &&
5737             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5738                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5739                                 "because of age: %ums.\n",
5740                                 print_ssid(ssid, network->ssid,
5741                                            network->ssid_len),
5742                                 network->bssid,
5743                                 jiffies_to_msecs(jiffies -
5744                                                  network->last_scanned));
5745                 return 0;
5746         }
5747
5748         if ((priv->config & CFG_STATIC_CHANNEL) &&
5749             (network->channel != priv->channel)) {
5750                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5751                                 "because of channel mismatch: %d != %d.\n",
5752                                 print_ssid(ssid, network->ssid,
5753                                            network->ssid_len),
5754                                 network->bssid,
5755                                 network->channel, priv->channel);
5756                 return 0;
5757         }
5758
5759         /* Verify privacy compatability */
5760         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5761             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5762                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5763                                 "because of privacy mismatch: %s != %s.\n",
5764                                 print_ssid(ssid, network->ssid,
5765                                            network->ssid_len),
5766                                 network->bssid,
5767                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5768                                 "off",
5769                                 network->capability &
5770                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5771                 return 0;
5772         }
5773
5774         if ((priv->config & CFG_STATIC_BSSID) &&
5775             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5776                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5777                                 "because of BSSID mismatch: %pM.\n",
5778                                 print_ssid(ssid, network->ssid,
5779                                            network->ssid_len),
5780                                 network->bssid, priv->bssid);
5781                 return 0;
5782         }
5783
5784         /* Filter out any incompatible freq / mode combinations */
5785         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5786                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5787                                 "because of invalid frequency/mode "
5788                                 "combination.\n",
5789                                 print_ssid(ssid, network->ssid,
5790                                            network->ssid_len),
5791                                 network->bssid);
5792                 return 0;
5793         }
5794
5795         /* Filter out invalid channel in current GEO */
5796         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5797                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5798                                 "because of invalid channel in current GEO\n",
5799                                 print_ssid(ssid, network->ssid,
5800                                            network->ssid_len),
5801                                 network->bssid);
5802                 return 0;
5803         }
5804
5805         /* Ensure that the rates supported by the driver are compatible with
5806          * this AP, including verification of basic rates (mandatory) */
5807         if (!ipw_compatible_rates(priv, network, &rates)) {
5808                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5809                                 "because configured rate mask excludes "
5810                                 "AP mandatory rate.\n",
5811                                 print_ssid(ssid, network->ssid,
5812                                            network->ssid_len),
5813                                 network->bssid);
5814                 return 0;
5815         }
5816
5817         if (rates.num_rates == 0) {
5818                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5819                                 "because of no compatible rates.\n",
5820                                 print_ssid(ssid, network->ssid,
5821                                            network->ssid_len),
5822                                 network->bssid);
5823                 return 0;
5824         }
5825
5826         /* TODO: Perform any further minimal comparititive tests.  We do not
5827          * want to put too much policy logic here; intelligent scan selection
5828          * should occur within a generic IEEE 802.11 user space tool.  */
5829
5830         /* Set up 'new' AP to this network */
5831         ipw_copy_rates(&match->rates, &rates);
5832         match->network = network;
5833
5834         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5835                         print_ssid(ssid, network->ssid, network->ssid_len),
5836                         network->bssid);
5837
5838         return 1;
5839 }
5840
5841 static void ipw_adhoc_create(struct ipw_priv *priv,
5842                              struct ieee80211_network *network)
5843 {
5844         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5845         int i;
5846
5847         /*
5848          * For the purposes of scanning, we can set our wireless mode
5849          * to trigger scans across combinations of bands, but when it
5850          * comes to creating a new ad-hoc network, we have tell the FW
5851          * exactly which band to use.
5852          *
5853          * We also have the possibility of an invalid channel for the
5854          * chossen band.  Attempting to create a new ad-hoc network
5855          * with an invalid channel for wireless mode will trigger a
5856          * FW fatal error.
5857          *
5858          */
5859         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5860         case IEEE80211_52GHZ_BAND:
5861                 network->mode = IEEE_A;
5862                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5863                 BUG_ON(i == -1);
5864                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5865                         IPW_WARNING("Overriding invalid channel\n");
5866                         priv->channel = geo->a[0].channel;
5867                 }
5868                 break;
5869
5870         case IEEE80211_24GHZ_BAND:
5871                 if (priv->ieee->mode & IEEE_G)
5872                         network->mode = IEEE_G;
5873                 else
5874                         network->mode = IEEE_B;
5875                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5876                 BUG_ON(i == -1);
5877                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5878                         IPW_WARNING("Overriding invalid channel\n");
5879                         priv->channel = geo->bg[0].channel;
5880                 }
5881                 break;
5882
5883         default:
5884                 IPW_WARNING("Overriding invalid channel\n");
5885                 if (priv->ieee->mode & IEEE_A) {
5886                         network->mode = IEEE_A;
5887                         priv->channel = geo->a[0].channel;
5888                 } else if (priv->ieee->mode & IEEE_G) {
5889                         network->mode = IEEE_G;
5890                         priv->channel = geo->bg[0].channel;
5891                 } else {
5892                         network->mode = IEEE_B;
5893                         priv->channel = geo->bg[0].channel;
5894                 }
5895                 break;
5896         }
5897
5898         network->channel = priv->channel;
5899         priv->config |= CFG_ADHOC_PERSIST;
5900         ipw_create_bssid(priv, network->bssid);
5901         network->ssid_len = priv->essid_len;
5902         memcpy(network->ssid, priv->essid, priv->essid_len);
5903         memset(&network->stats, 0, sizeof(network->stats));
5904         network->capability = WLAN_CAPABILITY_IBSS;
5905         if (!(priv->config & CFG_PREAMBLE_LONG))
5906                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5907         if (priv->capability & CAP_PRIVACY_ON)
5908                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5909         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5910         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5911         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5912         memcpy(network->rates_ex,
5913                &priv->rates.supported_rates[network->rates_len],
5914                network->rates_ex_len);
5915         network->last_scanned = 0;
5916         network->flags = 0;
5917         network->last_associate = 0;
5918         network->time_stamp[0] = 0;
5919         network->time_stamp[1] = 0;
5920         network->beacon_interval = 100; /* Default */
5921         network->listen_interval = 10;  /* Default */
5922         network->atim_window = 0;       /* Default */
5923         network->wpa_ie_len = 0;
5924         network->rsn_ie_len = 0;
5925 }
5926
5927 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5928 {
5929         struct ipw_tgi_tx_key key;
5930
5931         if (!(priv->ieee->sec.flags & (1 << index)))
5932                 return;
5933
5934         key.key_id = index;
5935         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5936         key.security_type = type;
5937         key.station_index = 0;  /* always 0 for BSS */
5938         key.flags = 0;
5939         /* 0 for new key; previous value of counter (after fatal error) */
5940         key.tx_counter[0] = cpu_to_le32(0);
5941         key.tx_counter[1] = cpu_to_le32(0);
5942
5943         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5944 }
5945
5946 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5947 {
5948         struct ipw_wep_key key;
5949         int i;
5950
5951         key.cmd_id = DINO_CMD_WEP_KEY;
5952         key.seq_num = 0;
5953
5954         /* Note: AES keys cannot be set for multiple times.
5955          * Only set it at the first time. */
5956         for (i = 0; i < 4; i++) {
5957                 key.key_index = i | type;
5958                 if (!(priv->ieee->sec.flags & (1 << i))) {
5959                         key.key_size = 0;
5960                         continue;
5961                 }
5962
5963                 key.key_size = priv->ieee->sec.key_sizes[i];
5964                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5965
5966                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5967         }
5968 }
5969
5970 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5971 {
5972         if (priv->ieee->host_encrypt)
5973                 return;
5974
5975         switch (level) {
5976         case SEC_LEVEL_3:
5977                 priv->sys_config.disable_unicast_decryption = 0;
5978                 priv->ieee->host_decrypt = 0;
5979                 break;
5980         case SEC_LEVEL_2:
5981                 priv->sys_config.disable_unicast_decryption = 1;
5982                 priv->ieee->host_decrypt = 1;
5983                 break;
5984         case SEC_LEVEL_1:
5985                 priv->sys_config.disable_unicast_decryption = 0;
5986                 priv->ieee->host_decrypt = 0;
5987                 break;
5988         case SEC_LEVEL_0:
5989                 priv->sys_config.disable_unicast_decryption = 1;
5990                 break;
5991         default:
5992                 break;
5993         }
5994 }
5995
5996 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5997 {
5998         if (priv->ieee->host_encrypt)
5999                 return;
6000
6001         switch (level) {
6002         case SEC_LEVEL_3:
6003                 priv->sys_config.disable_multicast_decryption = 0;
6004                 break;
6005         case SEC_LEVEL_2:
6006                 priv->sys_config.disable_multicast_decryption = 1;
6007                 break;
6008         case SEC_LEVEL_1:
6009                 priv->sys_config.disable_multicast_decryption = 0;
6010                 break;
6011         case SEC_LEVEL_0:
6012                 priv->sys_config.disable_multicast_decryption = 1;
6013                 break;
6014         default:
6015                 break;
6016         }
6017 }
6018
6019 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6020 {
6021         switch (priv->ieee->sec.level) {
6022         case SEC_LEVEL_3:
6023                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6024                         ipw_send_tgi_tx_key(priv,
6025                                             DCT_FLAG_EXT_SECURITY_CCM,
6026                                             priv->ieee->sec.active_key);
6027
6028                 if (!priv->ieee->host_mc_decrypt)
6029                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6030                 break;
6031         case SEC_LEVEL_2:
6032                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6033                         ipw_send_tgi_tx_key(priv,
6034                                             DCT_FLAG_EXT_SECURITY_TKIP,
6035                                             priv->ieee->sec.active_key);
6036                 break;
6037         case SEC_LEVEL_1:
6038                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6039                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6040                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6041                 break;
6042         case SEC_LEVEL_0:
6043         default:
6044                 break;
6045         }
6046 }
6047
6048 static void ipw_adhoc_check(void *data)
6049 {
6050         struct ipw_priv *priv = data;
6051
6052         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6053             !(priv->config & CFG_ADHOC_PERSIST)) {
6054                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6055                           IPW_DL_STATE | IPW_DL_ASSOC,
6056                           "Missed beacon: %d - disassociate\n",
6057                           priv->missed_adhoc_beacons);
6058                 ipw_remove_current_network(priv);
6059                 ipw_disassociate(priv);
6060                 return;
6061         }
6062
6063         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6064                            le16_to_cpu(priv->assoc_request.beacon_interval));
6065 }
6066
6067 static void ipw_bg_adhoc_check(struct work_struct *work)
6068 {
6069         struct ipw_priv *priv =
6070                 container_of(work, struct ipw_priv, adhoc_check.work);
6071         mutex_lock(&priv->mutex);
6072         ipw_adhoc_check(priv);
6073         mutex_unlock(&priv->mutex);
6074 }
6075
6076 static void ipw_debug_config(struct ipw_priv *priv)
6077 {
6078         DECLARE_SSID_BUF(ssid);
6079         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6080                        "[CFG 0x%08X]\n", priv->config);
6081         if (priv->config & CFG_STATIC_CHANNEL)
6082                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6083         else
6084                 IPW_DEBUG_INFO("Channel unlocked.\n");
6085         if (priv->config & CFG_STATIC_ESSID)
6086                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6087                                print_ssid(ssid, priv->essid, priv->essid_len));
6088         else
6089                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6090         if (priv->config & CFG_STATIC_BSSID)
6091                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6092         else
6093                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6094         if (priv->capability & CAP_PRIVACY_ON)
6095                 IPW_DEBUG_INFO("PRIVACY on\n");
6096         else
6097                 IPW_DEBUG_INFO("PRIVACY off\n");
6098         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6099 }
6100
6101 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6102 {
6103         /* TODO: Verify that this works... */
6104         struct ipw_fixed_rate fr = {
6105                 .tx_rates = priv->rates_mask
6106         };
6107         u32 reg;
6108         u16 mask = 0;
6109
6110         /* Identify 'current FW band' and match it with the fixed
6111          * Tx rates */
6112
6113         switch (priv->ieee->freq_band) {
6114         case IEEE80211_52GHZ_BAND:      /* A only */
6115                 /* IEEE_A */
6116                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6117                         /* Invalid fixed rate mask */
6118                         IPW_DEBUG_WX
6119                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6120                         fr.tx_rates = 0;
6121                         break;
6122                 }
6123
6124                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6125                 break;
6126
6127         default:                /* 2.4Ghz or Mixed */
6128                 /* IEEE_B */
6129                 if (mode == IEEE_B) {
6130                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6131                                 /* Invalid fixed rate mask */
6132                                 IPW_DEBUG_WX
6133                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6134                                 fr.tx_rates = 0;
6135                         }
6136                         break;
6137                 }
6138
6139                 /* IEEE_G */
6140                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6141                                     IEEE80211_OFDM_RATES_MASK)) {
6142                         /* Invalid fixed rate mask */
6143                         IPW_DEBUG_WX
6144                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6145                         fr.tx_rates = 0;
6146                         break;
6147                 }
6148
6149                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6150                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6151                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6152                 }
6153
6154                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6155                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6156                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6157                 }
6158
6159                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6160                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6161                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6162                 }
6163
6164                 fr.tx_rates |= mask;
6165                 break;
6166         }
6167
6168         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6169         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6170 }
6171
6172 static void ipw_abort_scan(struct ipw_priv *priv)
6173 {
6174         int err;
6175
6176         if (priv->status & STATUS_SCAN_ABORTING) {
6177                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6178                 return;
6179         }
6180         priv->status |= STATUS_SCAN_ABORTING;
6181
6182         err = ipw_send_scan_abort(priv);
6183         if (err)
6184                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6185 }
6186
6187 static void ipw_add_scan_channels(struct ipw_priv *priv,
6188                                   struct ipw_scan_request_ext *scan,
6189                                   int scan_type)
6190 {
6191         int channel_index = 0;
6192         const struct ieee80211_geo *geo;
6193         int i;
6194
6195         geo = ieee80211_get_geo(priv->ieee);
6196
6197         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6198                 int start = channel_index;
6199                 for (i = 0; i < geo->a_channels; i++) {
6200                         if ((priv->status & STATUS_ASSOCIATED) &&
6201                             geo->a[i].channel == priv->channel)
6202                                 continue;
6203                         channel_index++;
6204                         scan->channels_list[channel_index] = geo->a[i].channel;
6205                         ipw_set_scan_type(scan, channel_index,
6206                                           geo->a[i].
6207                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6208                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6209                                           scan_type);
6210                 }
6211
6212                 if (start != channel_index) {
6213                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6214                             (channel_index - start);
6215                         channel_index++;
6216                 }
6217         }
6218
6219         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6220                 int start = channel_index;
6221                 if (priv->config & CFG_SPEED_SCAN) {
6222                         int index;
6223                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6224                                 /* nop out the list */
6225                                 [0] = 0
6226                         };
6227
6228                         u8 channel;
6229                         while (channel_index < IPW_SCAN_CHANNELS) {
6230                                 channel =
6231                                     priv->speed_scan[priv->speed_scan_pos];
6232                                 if (channel == 0) {
6233                                         priv->speed_scan_pos = 0;
6234                                         channel = priv->speed_scan[0];
6235                                 }
6236                                 if ((priv->status & STATUS_ASSOCIATED) &&
6237                                     channel == priv->channel) {
6238                                         priv->speed_scan_pos++;
6239                                         continue;
6240                                 }
6241
6242                                 /* If this channel has already been
6243                                  * added in scan, break from loop
6244                                  * and this will be the first channel
6245                                  * in the next scan.
6246                                  */
6247                                 if (channels[channel - 1] != 0)
6248                                         break;
6249
6250                                 channels[channel - 1] = 1;
6251                                 priv->speed_scan_pos++;
6252                                 channel_index++;
6253                                 scan->channels_list[channel_index] = channel;
6254                                 index =
6255                                     ieee80211_channel_to_index(priv->ieee, channel);
6256                                 ipw_set_scan_type(scan, channel_index,
6257                                                   geo->bg[index].
6258                                                   flags &
6259                                                   IEEE80211_CH_PASSIVE_ONLY ?
6260                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6261                                                   : scan_type);
6262                         }
6263                 } else {
6264                         for (i = 0; i < geo->bg_channels; i++) {
6265                                 if ((priv->status & STATUS_ASSOCIATED) &&
6266                                     geo->bg[i].channel == priv->channel)
6267                                         continue;
6268                                 channel_index++;
6269                                 scan->channels_list[channel_index] =
6270                                     geo->bg[i].channel;
6271                                 ipw_set_scan_type(scan, channel_index,
6272                                                   geo->bg[i].
6273                                                   flags &
6274                                                   IEEE80211_CH_PASSIVE_ONLY ?
6275                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6276                                                   : scan_type);
6277                         }
6278                 }
6279
6280                 if (start != channel_index) {
6281                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6282                             (channel_index - start);
6283                 }
6284         }
6285 }
6286
6287 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6288 {
6289         /* staying on passive channels longer than the DTIM interval during a
6290          * scan, while associated, causes the firmware to cancel the scan
6291          * without notification. Hence, don't stay on passive channels longer
6292          * than the beacon interval.
6293          */
6294         if (priv->status & STATUS_ASSOCIATED
6295             && priv->assoc_network->beacon_interval > 10)
6296                 return priv->assoc_network->beacon_interval - 10;
6297         else
6298                 return 120;
6299 }
6300
6301 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6302 {
6303         struct ipw_scan_request_ext scan;
6304         int err = 0, scan_type;
6305
6306         if (!(priv->status & STATUS_INIT) ||
6307             (priv->status & STATUS_EXIT_PENDING))
6308                 return 0;
6309
6310         mutex_lock(&priv->mutex);
6311
6312         if (direct && (priv->direct_scan_ssid_len == 0)) {
6313                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6314                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6315                 goto done;
6316         }
6317
6318         if (priv->status & STATUS_SCANNING) {
6319                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6320                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6321                                         STATUS_SCAN_PENDING;
6322                 goto done;
6323         }
6324
6325         if (!(priv->status & STATUS_SCAN_FORCED) &&
6326             priv->status & STATUS_SCAN_ABORTING) {
6327                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6328                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6329                                         STATUS_SCAN_PENDING;
6330                 goto done;
6331         }
6332
6333         if (priv->status & STATUS_RF_KILL_MASK) {
6334                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6335                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6336                                         STATUS_SCAN_PENDING;
6337                 goto done;
6338         }
6339
6340         memset(&scan, 0, sizeof(scan));
6341         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6342
6343         if (type == IW_SCAN_TYPE_PASSIVE) {
6344                 IPW_DEBUG_WX("use passive scanning\n");
6345                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6346                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6347                         cpu_to_le16(ipw_passive_dwell_time(priv));
6348                 ipw_add_scan_channels(priv, &scan, scan_type);
6349                 goto send_request;
6350         }
6351
6352         /* Use active scan by default. */
6353         if (priv->config & CFG_SPEED_SCAN)
6354                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6355                         cpu_to_le16(30);
6356         else
6357                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6358                         cpu_to_le16(20);
6359
6360         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6361                 cpu_to_le16(20);
6362
6363         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6364                 cpu_to_le16(ipw_passive_dwell_time(priv));
6365         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6366
6367 #ifdef CONFIG_IPW2200_MONITOR
6368         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6369                 u8 channel;
6370                 u8 band = 0;
6371
6372                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6373                 case IEEE80211_52GHZ_BAND:
6374                         band = (u8) (IPW_A_MODE << 6) | 1;
6375                         channel = priv->channel;
6376                         break;
6377
6378                 case IEEE80211_24GHZ_BAND:
6379                         band = (u8) (IPW_B_MODE << 6) | 1;
6380                         channel = priv->channel;
6381                         break;
6382
6383                 default:
6384                         band = (u8) (IPW_B_MODE << 6) | 1;
6385                         channel = 9;
6386                         break;
6387                 }
6388
6389                 scan.channels_list[0] = band;
6390                 scan.channels_list[1] = channel;
6391                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6392
6393                 /* NOTE:  The card will sit on this channel for this time
6394                  * period.  Scan aborts are timing sensitive and frequently
6395                  * result in firmware restarts.  As such, it is best to
6396                  * set a small dwell_time here and just keep re-issuing
6397                  * scans.  Otherwise fast channel hopping will not actually
6398                  * hop channels.
6399                  *
6400                  * TODO: Move SPEED SCAN support to all modes and bands */
6401                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6402                         cpu_to_le16(2000);
6403         } else {
6404 #endif                          /* CONFIG_IPW2200_MONITOR */
6405                 /* Honor direct scans first, otherwise if we are roaming make
6406                  * this a direct scan for the current network.  Finally,
6407                  * ensure that every other scan is a fast channel hop scan */
6408                 if (direct) {
6409                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6410                                             priv->direct_scan_ssid_len);
6411                         if (err) {
6412                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6413                                              "failed\n");
6414                                 goto done;
6415                         }
6416
6417                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6418                 } else if ((priv->status & STATUS_ROAMING)
6419                            || (!(priv->status & STATUS_ASSOCIATED)
6420                                && (priv->config & CFG_STATIC_ESSID)
6421                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6422                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6423                         if (err) {
6424                                 IPW_DEBUG_HC("Attempt to send SSID command "
6425                                              "failed.\n");
6426                                 goto done;
6427                         }
6428
6429                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6430                 } else
6431                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6432
6433                 ipw_add_scan_channels(priv, &scan, scan_type);
6434 #ifdef CONFIG_IPW2200_MONITOR
6435         }
6436 #endif
6437
6438 send_request:
6439         err = ipw_send_scan_request_ext(priv, &scan);
6440         if (err) {
6441                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6442                 goto done;
6443         }
6444
6445         priv->status |= STATUS_SCANNING;
6446         if (direct) {
6447                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6448                 priv->direct_scan_ssid_len = 0;
6449         } else
6450                 priv->status &= ~STATUS_SCAN_PENDING;
6451
6452         queue_delayed_work(priv->workqueue, &priv->scan_check,
6453                            IPW_SCAN_CHECK_WATCHDOG);
6454 done:
6455         mutex_unlock(&priv->mutex);
6456         return err;
6457 }
6458
6459 static void ipw_request_passive_scan(struct work_struct *work)
6460 {
6461         struct ipw_priv *priv =
6462                 container_of(work, struct ipw_priv, request_passive_scan.work);
6463         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6464 }
6465
6466 static void ipw_request_scan(struct work_struct *work)
6467 {
6468         struct ipw_priv *priv =
6469                 container_of(work, struct ipw_priv, request_scan.work);
6470         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6471 }
6472
6473 static void ipw_request_direct_scan(struct work_struct *work)
6474 {
6475         struct ipw_priv *priv =
6476                 container_of(work, struct ipw_priv, request_direct_scan.work);
6477         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6478 }
6479
6480 static void ipw_bg_abort_scan(struct work_struct *work)
6481 {
6482         struct ipw_priv *priv =
6483                 container_of(work, struct ipw_priv, abort_scan);
6484         mutex_lock(&priv->mutex);
6485         ipw_abort_scan(priv);
6486         mutex_unlock(&priv->mutex);
6487 }
6488
6489 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6490 {
6491         /* This is called when wpa_supplicant loads and closes the driver
6492          * interface. */
6493         priv->ieee->wpa_enabled = value;
6494         return 0;
6495 }
6496
6497 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6498 {
6499         struct ieee80211_device *ieee = priv->ieee;
6500         struct ieee80211_security sec = {
6501                 .flags = SEC_AUTH_MODE,
6502         };
6503         int ret = 0;
6504
6505         if (value & IW_AUTH_ALG_SHARED_KEY) {
6506                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6507                 ieee->open_wep = 0;
6508         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6509                 sec.auth_mode = WLAN_AUTH_OPEN;
6510                 ieee->open_wep = 1;
6511         } else if (value & IW_AUTH_ALG_LEAP) {
6512                 sec.auth_mode = WLAN_AUTH_LEAP;
6513                 ieee->open_wep = 1;
6514         } else
6515                 return -EINVAL;
6516
6517         if (ieee->set_security)
6518                 ieee->set_security(ieee->dev, &sec);
6519         else
6520                 ret = -EOPNOTSUPP;
6521
6522         return ret;
6523 }
6524
6525 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6526                                 int wpa_ie_len)
6527 {
6528         /* make sure WPA is enabled */
6529         ipw_wpa_enable(priv, 1);
6530 }
6531
6532 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6533                             char *capabilities, int length)
6534 {
6535         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6536
6537         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6538                                 capabilities);
6539 }
6540
6541 /*
6542  * WE-18 support
6543  */
6544
6545 /* SIOCSIWGENIE */
6546 static int ipw_wx_set_genie(struct net_device *dev,
6547                             struct iw_request_info *info,
6548                             union iwreq_data *wrqu, char *extra)
6549 {
6550         struct ipw_priv *priv = ieee80211_priv(dev);
6551         struct ieee80211_device *ieee = priv->ieee;
6552         u8 *buf;
6553         int err = 0;
6554
6555         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6556             (wrqu->data.length && extra == NULL))
6557                 return -EINVAL;
6558
6559         if (wrqu->data.length) {
6560                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6561                 if (buf == NULL) {
6562                         err = -ENOMEM;
6563                         goto out;
6564                 }
6565
6566                 memcpy(buf, extra, wrqu->data.length);
6567                 kfree(ieee->wpa_ie);
6568                 ieee->wpa_ie = buf;
6569                 ieee->wpa_ie_len = wrqu->data.length;
6570         } else {
6571                 kfree(ieee->wpa_ie);
6572                 ieee->wpa_ie = NULL;
6573                 ieee->wpa_ie_len = 0;
6574         }
6575
6576         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6577       out:
6578         return err;
6579 }
6580
6581 /* SIOCGIWGENIE */
6582 static int ipw_wx_get_genie(struct net_device *dev,
6583                             struct iw_request_info *info,
6584                             union iwreq_data *wrqu, char *extra)
6585 {
6586         struct ipw_priv *priv = ieee80211_priv(dev);
6587         struct ieee80211_device *ieee = priv->ieee;
6588         int err = 0;
6589
6590         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6591                 wrqu->data.length = 0;
6592                 goto out;
6593         }
6594
6595         if (wrqu->data.length < ieee->wpa_ie_len) {
6596                 err = -E2BIG;
6597                 goto out;
6598         }
6599
6600         wrqu->data.length = ieee->wpa_ie_len;
6601         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6602
6603       out:
6604         return err;
6605 }
6606
6607 static int wext_cipher2level(int cipher)
6608 {
6609         switch (cipher) {
6610         case IW_AUTH_CIPHER_NONE:
6611                 return SEC_LEVEL_0;
6612         case IW_AUTH_CIPHER_WEP40:
6613         case IW_AUTH_CIPHER_WEP104:
6614                 return SEC_LEVEL_1;
6615         case IW_AUTH_CIPHER_TKIP:
6616                 return SEC_LEVEL_2;
6617         case IW_AUTH_CIPHER_CCMP:
6618                 return SEC_LEVEL_3;
6619         default:
6620                 return -1;
6621         }
6622 }
6623
6624 /* SIOCSIWAUTH */
6625 static int ipw_wx_set_auth(struct net_device *dev,
6626                            struct iw_request_info *info,
6627                            union iwreq_data *wrqu, char *extra)
6628 {
6629         struct ipw_priv *priv = ieee80211_priv(dev);
6630         struct ieee80211_device *ieee = priv->ieee;
6631         struct iw_param *param = &wrqu->param;
6632         struct lib80211_crypt_data *crypt;
6633         unsigned long flags;
6634         int ret = 0;
6635
6636         switch (param->flags & IW_AUTH_INDEX) {
6637         case IW_AUTH_WPA_VERSION:
6638                 break;
6639         case IW_AUTH_CIPHER_PAIRWISE:
6640                 ipw_set_hw_decrypt_unicast(priv,
6641                                            wext_cipher2level(param->value));
6642                 break;
6643         case IW_AUTH_CIPHER_GROUP:
6644                 ipw_set_hw_decrypt_multicast(priv,
6645                                              wext_cipher2level(param->value));
6646                 break;
6647         case IW_AUTH_KEY_MGMT:
6648                 /*
6649                  * ipw2200 does not use these parameters
6650                  */
6651                 break;
6652
6653         case IW_AUTH_TKIP_COUNTERMEASURES:
6654                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6655                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6656                         break;
6657
6658                 flags = crypt->ops->get_flags(crypt->priv);
6659
6660                 if (param->value)
6661                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6662                 else
6663                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6664
6665                 crypt->ops->set_flags(flags, crypt->priv);
6666
6667                 break;
6668
6669         case IW_AUTH_DROP_UNENCRYPTED:{
6670                         /* HACK:
6671                          *
6672                          * wpa_supplicant calls set_wpa_enabled when the driver
6673                          * is loaded and unloaded, regardless of if WPA is being
6674                          * used.  No other calls are made which can be used to
6675                          * determine if encryption will be used or not prior to
6676                          * association being expected.  If encryption is not being
6677                          * used, drop_unencrypted is set to false, else true -- we
6678                          * can use this to determine if the CAP_PRIVACY_ON bit should
6679                          * be set.
6680                          */
6681                         struct ieee80211_security sec = {
6682                                 .flags = SEC_ENABLED,
6683                                 .enabled = param->value,
6684                         };
6685                         priv->ieee->drop_unencrypted = param->value;
6686                         /* We only change SEC_LEVEL for open mode. Others
6687                          * are set by ipw_wpa_set_encryption.
6688                          */
6689                         if (!param->value) {
6690                                 sec.flags |= SEC_LEVEL;
6691                                 sec.level = SEC_LEVEL_0;
6692                         } else {
6693                                 sec.flags |= SEC_LEVEL;
6694                                 sec.level = SEC_LEVEL_1;
6695                         }
6696                         if (priv->ieee->set_security)
6697                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6698                         break;
6699                 }
6700
6701         case IW_AUTH_80211_AUTH_ALG:
6702                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6703                 break;
6704
6705         case IW_AUTH_WPA_ENABLED:
6706                 ret = ipw_wpa_enable(priv, param->value);
6707                 ipw_disassociate(priv);
6708                 break;
6709
6710         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6711                 ieee->ieee802_1x = param->value;
6712                 break;
6713
6714         case IW_AUTH_PRIVACY_INVOKED:
6715                 ieee->privacy_invoked = param->value;
6716                 break;
6717
6718         default:
6719                 return -EOPNOTSUPP;
6720         }
6721         return ret;
6722 }
6723
6724 /* SIOCGIWAUTH */
6725 static int ipw_wx_get_auth(struct net_device *dev,
6726                            struct iw_request_info *info,
6727                            union iwreq_data *wrqu, char *extra)
6728 {
6729         struct ipw_priv *priv = ieee80211_priv(dev);
6730         struct ieee80211_device *ieee = priv->ieee;
6731         struct lib80211_crypt_data *crypt;
6732         struct iw_param *param = &wrqu->param;
6733         int ret = 0;
6734
6735         switch (param->flags & IW_AUTH_INDEX) {
6736         case IW_AUTH_WPA_VERSION:
6737         case IW_AUTH_CIPHER_PAIRWISE:
6738         case IW_AUTH_CIPHER_GROUP:
6739         case IW_AUTH_KEY_MGMT:
6740                 /*
6741                  * wpa_supplicant will control these internally
6742                  */
6743                 ret = -EOPNOTSUPP;
6744                 break;
6745
6746         case IW_AUTH_TKIP_COUNTERMEASURES:
6747                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6748                 if (!crypt || !crypt->ops->get_flags)
6749                         break;
6750
6751                 param->value = (crypt->ops->get_flags(crypt->priv) &
6752                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6753
6754                 break;
6755
6756         case IW_AUTH_DROP_UNENCRYPTED:
6757                 param->value = ieee->drop_unencrypted;
6758                 break;
6759
6760         case IW_AUTH_80211_AUTH_ALG:
6761                 param->value = ieee->sec.auth_mode;
6762                 break;
6763
6764         case IW_AUTH_WPA_ENABLED:
6765                 param->value = ieee->wpa_enabled;
6766                 break;
6767
6768         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6769                 param->value = ieee->ieee802_1x;
6770                 break;
6771
6772         case IW_AUTH_ROAMING_CONTROL:
6773         case IW_AUTH_PRIVACY_INVOKED:
6774                 param->value = ieee->privacy_invoked;
6775                 break;
6776
6777         default:
6778                 return -EOPNOTSUPP;
6779         }
6780         return 0;
6781 }
6782
6783 /* SIOCSIWENCODEEXT */
6784 static int ipw_wx_set_encodeext(struct net_device *dev,
6785                                 struct iw_request_info *info,
6786                                 union iwreq_data *wrqu, char *extra)
6787 {
6788         struct ipw_priv *priv = ieee80211_priv(dev);
6789         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6790
6791         if (hwcrypto) {
6792                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6793                         /* IPW HW can't build TKIP MIC,
6794                            host decryption still needed */
6795                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6796                                 priv->ieee->host_mc_decrypt = 1;
6797                         else {
6798                                 priv->ieee->host_encrypt = 0;
6799                                 priv->ieee->host_encrypt_msdu = 1;
6800                                 priv->ieee->host_decrypt = 1;
6801                         }
6802                 } else {
6803                         priv->ieee->host_encrypt = 0;
6804                         priv->ieee->host_encrypt_msdu = 0;
6805                         priv->ieee->host_decrypt = 0;
6806                         priv->ieee->host_mc_decrypt = 0;
6807                 }
6808         }
6809
6810         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6811 }
6812
6813 /* SIOCGIWENCODEEXT */
6814 static int ipw_wx_get_encodeext(struct net_device *dev,
6815                                 struct iw_request_info *info,
6816                                 union iwreq_data *wrqu, char *extra)
6817 {
6818         struct ipw_priv *priv = ieee80211_priv(dev);
6819         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6820 }
6821
6822 /* SIOCSIWMLME */
6823 static int ipw_wx_set_mlme(struct net_device *dev,
6824                            struct iw_request_info *info,
6825                            union iwreq_data *wrqu, char *extra)
6826 {
6827         struct ipw_priv *priv = ieee80211_priv(dev);
6828         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6829         __le16 reason;
6830
6831         reason = cpu_to_le16(mlme->reason_code);
6832
6833         switch (mlme->cmd) {
6834         case IW_MLME_DEAUTH:
6835                 /* silently ignore */
6836                 break;
6837
6838         case IW_MLME_DISASSOC:
6839                 ipw_disassociate(priv);
6840                 break;
6841
6842         default:
6843                 return -EOPNOTSUPP;
6844         }
6845         return 0;
6846 }
6847
6848 #ifdef CONFIG_IPW2200_QOS
6849
6850 /* QoS */
6851 /*
6852 * get the modulation type of the current network or
6853 * the card current mode
6854 */
6855 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6856 {
6857         u8 mode = 0;
6858
6859         if (priv->status & STATUS_ASSOCIATED) {
6860                 unsigned long flags;
6861
6862                 spin_lock_irqsave(&priv->ieee->lock, flags);
6863                 mode = priv->assoc_network->mode;
6864                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6865         } else {
6866                 mode = priv->ieee->mode;
6867         }
6868         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6869         return mode;
6870 }
6871
6872 /*
6873 * Handle management frame beacon and probe response
6874 */
6875 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6876                                          int active_network,
6877                                          struct ieee80211_network *network)
6878 {
6879         u32 size = sizeof(struct ieee80211_qos_parameters);
6880
6881         if (network->capability & WLAN_CAPABILITY_IBSS)
6882                 network->qos_data.active = network->qos_data.supported;
6883
6884         if (network->flags & NETWORK_HAS_QOS_MASK) {
6885                 if (active_network &&
6886                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6887                         network->qos_data.active = network->qos_data.supported;
6888
6889                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6890                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6891                     (network->qos_data.old_param_count !=
6892                      network->qos_data.param_count)) {
6893                         network->qos_data.old_param_count =
6894                             network->qos_data.param_count;
6895                         schedule_work(&priv->qos_activate);
6896                         IPW_DEBUG_QOS("QoS parameters change call "
6897                                       "qos_activate\n");
6898                 }
6899         } else {
6900                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6901                         memcpy(&network->qos_data.parameters,
6902                                &def_parameters_CCK, size);
6903                 else
6904                         memcpy(&network->qos_data.parameters,
6905                                &def_parameters_OFDM, size);
6906
6907                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6908                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6909                         schedule_work(&priv->qos_activate);
6910                 }
6911
6912                 network->qos_data.active = 0;
6913                 network->qos_data.supported = 0;
6914         }
6915         if ((priv->status & STATUS_ASSOCIATED) &&
6916             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6917                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6918                         if (network->capability & WLAN_CAPABILITY_IBSS)
6919                                 if ((network->ssid_len ==
6920                                      priv->assoc_network->ssid_len) &&
6921                                     !memcmp(network->ssid,
6922                                             priv->assoc_network->ssid,
6923                                             network->ssid_len)) {
6924                                         queue_work(priv->workqueue,
6925                                                    &priv->merge_networks);
6926                                 }
6927         }
6928
6929         return 0;
6930 }
6931
6932 /*
6933 * This function set up the firmware to support QoS. It sends
6934 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6935 */
6936 static int ipw_qos_activate(struct ipw_priv *priv,
6937                             struct ieee80211_qos_data *qos_network_data)
6938 {
6939         int err;
6940         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6941         struct ieee80211_qos_parameters *active_one = NULL;
6942         u32 size = sizeof(struct ieee80211_qos_parameters);
6943         u32 burst_duration;
6944         int i;
6945         u8 type;
6946
6947         type = ipw_qos_current_mode(priv);
6948
6949         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6950         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6951         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6952         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6953
6954         if (qos_network_data == NULL) {
6955                 if (type == IEEE_B) {
6956                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6957                         active_one = &def_parameters_CCK;
6958                 } else
6959                         active_one = &def_parameters_OFDM;
6960
6961                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6962                 burst_duration = ipw_qos_get_burst_duration(priv);
6963                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6964                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6965                             cpu_to_le16(burst_duration);
6966         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6967                 if (type == IEEE_B) {
6968                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6969                                       type);
6970                         if (priv->qos_data.qos_enable == 0)
6971                                 active_one = &def_parameters_CCK;
6972                         else
6973                                 active_one = priv->qos_data.def_qos_parm_CCK;
6974                 } else {
6975                         if (priv->qos_data.qos_enable == 0)
6976                                 active_one = &def_parameters_OFDM;
6977                         else
6978                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6979                 }
6980                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6981         } else {
6982                 unsigned long flags;
6983                 int active;
6984
6985                 spin_lock_irqsave(&priv->ieee->lock, flags);
6986                 active_one = &(qos_network_data->parameters);
6987                 qos_network_data->old_param_count =
6988                     qos_network_data->param_count;
6989                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6990                 active = qos_network_data->supported;
6991                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6992
6993                 if (active == 0) {
6994                         burst_duration = ipw_qos_get_burst_duration(priv);
6995                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6996                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6997                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6998                 }
6999         }
7000
7001         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7002         err = ipw_send_qos_params_command(priv,
7003                                           (struct ieee80211_qos_parameters *)
7004                                           &(qos_parameters[0]));
7005         if (err)
7006                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7007
7008         return err;
7009 }
7010
7011 /*
7012 * send IPW_CMD_WME_INFO to the firmware
7013 */
7014 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7015 {
7016         int ret = 0;
7017         struct ieee80211_qos_information_element qos_info;
7018
7019         if (priv == NULL)
7020                 return -1;
7021
7022         qos_info.elementID = QOS_ELEMENT_ID;
7023         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7024
7025         qos_info.version = QOS_VERSION_1;
7026         qos_info.ac_info = 0;
7027
7028         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7029         qos_info.qui_type = QOS_OUI_TYPE;
7030         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7031
7032         ret = ipw_send_qos_info_command(priv, &qos_info);
7033         if (ret != 0) {
7034                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7035         }
7036         return ret;
7037 }
7038
7039 /*
7040 * Set the QoS parameter with the association request structure
7041 */
7042 static int ipw_qos_association(struct ipw_priv *priv,
7043                                struct ieee80211_network *network)
7044 {
7045         int err = 0;
7046         struct ieee80211_qos_data *qos_data = NULL;
7047         struct ieee80211_qos_data ibss_data = {
7048                 .supported = 1,
7049                 .active = 1,
7050         };
7051
7052         switch (priv->ieee->iw_mode) {
7053         case IW_MODE_ADHOC:
7054                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7055
7056                 qos_data = &ibss_data;
7057                 break;
7058
7059         case IW_MODE_INFRA:
7060                 qos_data = &network->qos_data;
7061                 break;
7062
7063         default:
7064                 BUG();
7065                 break;
7066         }
7067
7068         err = ipw_qos_activate(priv, qos_data);
7069         if (err) {
7070                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7071                 return err;
7072         }
7073
7074         if (priv->qos_data.qos_enable && qos_data->supported) {
7075                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7076                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7077                 return ipw_qos_set_info_element(priv);
7078         }
7079
7080         return 0;
7081 }
7082
7083 /*
7084 * handling the beaconing responses. if we get different QoS setting
7085 * off the network from the associated setting, adjust the QoS
7086 * setting
7087 */
7088 static int ipw_qos_association_resp(struct ipw_priv *priv,
7089                                     struct ieee80211_network *network)
7090 {
7091         int ret = 0;
7092         unsigned long flags;
7093         u32 size = sizeof(struct ieee80211_qos_parameters);
7094         int set_qos_param = 0;
7095
7096         if ((priv == NULL) || (network == NULL) ||
7097             (priv->assoc_network == NULL))
7098                 return ret;
7099
7100         if (!(priv->status & STATUS_ASSOCIATED))
7101                 return ret;
7102
7103         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7104                 return ret;
7105
7106         spin_lock_irqsave(&priv->ieee->lock, flags);
7107         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7108                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7109                        sizeof(struct ieee80211_qos_data));
7110                 priv->assoc_network->qos_data.active = 1;
7111                 if ((network->qos_data.old_param_count !=
7112                      network->qos_data.param_count)) {
7113                         set_qos_param = 1;
7114                         network->qos_data.old_param_count =
7115                             network->qos_data.param_count;
7116                 }
7117
7118         } else {
7119                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7120                         memcpy(&priv->assoc_network->qos_data.parameters,
7121                                &def_parameters_CCK, size);
7122                 else
7123                         memcpy(&priv->assoc_network->qos_data.parameters,
7124                                &def_parameters_OFDM, size);
7125                 priv->assoc_network->qos_data.active = 0;
7126                 priv->assoc_network->qos_data.supported = 0;
7127                 set_qos_param = 1;
7128         }
7129
7130         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7131
7132         if (set_qos_param == 1)
7133                 schedule_work(&priv->qos_activate);
7134
7135         return ret;
7136 }
7137
7138 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7139 {
7140         u32 ret = 0;
7141
7142         if ((priv == NULL))
7143                 return 0;
7144
7145         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7146                 ret = priv->qos_data.burst_duration_CCK;
7147         else
7148                 ret = priv->qos_data.burst_duration_OFDM;
7149
7150         return ret;
7151 }
7152
7153 /*
7154 * Initialize the setting of QoS global
7155 */
7156 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7157                          int burst_enable, u32 burst_duration_CCK,
7158                          u32 burst_duration_OFDM)
7159 {
7160         priv->qos_data.qos_enable = enable;
7161
7162         if (priv->qos_data.qos_enable) {
7163                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7164                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7165                 IPW_DEBUG_QOS("QoS is enabled\n");
7166         } else {
7167                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7168                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7169                 IPW_DEBUG_QOS("QoS is not enabled\n");
7170         }
7171
7172         priv->qos_data.burst_enable = burst_enable;
7173
7174         if (burst_enable) {
7175                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7176                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7177         } else {
7178                 priv->qos_data.burst_duration_CCK = 0;
7179                 priv->qos_data.burst_duration_OFDM = 0;
7180         }
7181 }
7182
7183 /*
7184 * map the packet priority to the right TX Queue
7185 */
7186 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7187 {
7188         if (priority > 7 || !priv->qos_data.qos_enable)
7189                 priority = 0;
7190
7191         return from_priority_to_tx_queue[priority] - 1;
7192 }
7193
7194 static int ipw_is_qos_active(struct net_device *dev,
7195                              struct sk_buff *skb)
7196 {
7197         struct ipw_priv *priv = ieee80211_priv(dev);
7198         struct ieee80211_qos_data *qos_data = NULL;
7199         int active, supported;
7200         u8 *daddr = skb->data + ETH_ALEN;
7201         int unicast = !is_multicast_ether_addr(daddr);
7202
7203         if (!(priv->status & STATUS_ASSOCIATED))
7204                 return 0;
7205
7206         qos_data = &priv->assoc_network->qos_data;
7207
7208         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7209                 if (unicast == 0)
7210                         qos_data->active = 0;
7211                 else
7212                         qos_data->active = qos_data->supported;
7213         }
7214         active = qos_data->active;
7215         supported = qos_data->supported;
7216         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7217                       "unicast %d\n",
7218                       priv->qos_data.qos_enable, active, supported, unicast);
7219         if (active && priv->qos_data.qos_enable)
7220                 return 1;
7221
7222         return 0;
7223
7224 }
7225 /*
7226 * add QoS parameter to the TX command
7227 */
7228 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7229                                         u16 priority,
7230                                         struct tfd_data *tfd)
7231 {
7232         int tx_queue_id = 0;
7233
7234
7235         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7236         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7237
7238         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7239                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7240                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7241         }
7242         return 0;
7243 }
7244
7245 /*
7246 * background support to run QoS activate functionality
7247 */
7248 static void ipw_bg_qos_activate(struct work_struct *work)
7249 {
7250         struct ipw_priv *priv =
7251                 container_of(work, struct ipw_priv, qos_activate);
7252
7253         if (priv == NULL)
7254                 return;
7255
7256         mutex_lock(&priv->mutex);
7257
7258         if (priv->status & STATUS_ASSOCIATED)
7259                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7260
7261         mutex_unlock(&priv->mutex);
7262 }
7263
7264 static int ipw_handle_probe_response(struct net_device *dev,
7265                                      struct ieee80211_probe_response *resp,
7266                                      struct ieee80211_network *network)
7267 {
7268         struct ipw_priv *priv = ieee80211_priv(dev);
7269         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7270                               (network == priv->assoc_network));
7271
7272         ipw_qos_handle_probe_response(priv, active_network, network);
7273
7274         return 0;
7275 }
7276
7277 static int ipw_handle_beacon(struct net_device *dev,
7278                              struct ieee80211_beacon *resp,
7279                              struct ieee80211_network *network)
7280 {
7281         struct ipw_priv *priv = ieee80211_priv(dev);
7282         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7283                               (network == priv->assoc_network));
7284
7285         ipw_qos_handle_probe_response(priv, active_network, network);
7286
7287         return 0;
7288 }
7289
7290 static int ipw_handle_assoc_response(struct net_device *dev,
7291                                      struct ieee80211_assoc_response *resp,
7292                                      struct ieee80211_network *network)
7293 {
7294         struct ipw_priv *priv = ieee80211_priv(dev);
7295         ipw_qos_association_resp(priv, network);
7296         return 0;
7297 }
7298
7299 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7300                                        *qos_param)
7301 {
7302         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7303                                 sizeof(*qos_param) * 3, qos_param);
7304 }
7305
7306 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7307                                      *qos_param)
7308 {
7309         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7310                                 qos_param);
7311 }
7312
7313 #endif                          /* CONFIG_IPW2200_QOS */
7314
7315 static int ipw_associate_network(struct ipw_priv *priv,
7316                                  struct ieee80211_network *network,
7317                                  struct ipw_supported_rates *rates, int roaming)
7318 {
7319         int err;
7320         DECLARE_SSID_BUF(ssid);
7321
7322         if (priv->config & CFG_FIXED_RATE)
7323                 ipw_set_fixed_rate(priv, network->mode);
7324
7325         if (!(priv->config & CFG_STATIC_ESSID)) {
7326                 priv->essid_len = min(network->ssid_len,
7327                                       (u8) IW_ESSID_MAX_SIZE);
7328                 memcpy(priv->essid, network->ssid, priv->essid_len);
7329         }
7330
7331         network->last_associate = jiffies;
7332
7333         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7334         priv->assoc_request.channel = network->channel;
7335         priv->assoc_request.auth_key = 0;
7336
7337         if ((priv->capability & CAP_PRIVACY_ON) &&
7338             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7339                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7340                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7341
7342                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7343                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7344
7345         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7346                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7347                 priv->assoc_request.auth_type = AUTH_LEAP;
7348         else
7349                 priv->assoc_request.auth_type = AUTH_OPEN;
7350
7351         if (priv->ieee->wpa_ie_len) {
7352                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7353                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7354                                  priv->ieee->wpa_ie_len);
7355         }
7356
7357         /*
7358          * It is valid for our ieee device to support multiple modes, but
7359          * when it comes to associating to a given network we have to choose
7360          * just one mode.
7361          */
7362         if (network->mode & priv->ieee->mode & IEEE_A)
7363                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7364         else if (network->mode & priv->ieee->mode & IEEE_G)
7365                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7366         else if (network->mode & priv->ieee->mode & IEEE_B)
7367                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7368
7369         priv->assoc_request.capability = cpu_to_le16(network->capability);
7370         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7371             && !(priv->config & CFG_PREAMBLE_LONG)) {
7372                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7373         } else {
7374                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7375
7376                 /* Clear the short preamble if we won't be supporting it */
7377                 priv->assoc_request.capability &=
7378                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7379         }
7380
7381         /* Clear capability bits that aren't used in Ad Hoc */
7382         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7383                 priv->assoc_request.capability &=
7384                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7385
7386         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7387                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7388                         roaming ? "Rea" : "A",
7389                         print_ssid(ssid, priv->essid, priv->essid_len),
7390                         network->channel,
7391                         ipw_modes[priv->assoc_request.ieee_mode],
7392                         rates->num_rates,
7393                         (priv->assoc_request.preamble_length ==
7394                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7395                         network->capability &
7396                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7397                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7398                         priv->capability & CAP_PRIVACY_ON ?
7399                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7400                          "(open)") : "",
7401                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7402                         priv->capability & CAP_PRIVACY_ON ?
7403                         '1' + priv->ieee->sec.active_key : '.',
7404                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7405
7406         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7407         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7408             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7409                 priv->assoc_request.assoc_type = HC_IBSS_START;
7410                 priv->assoc_request.assoc_tsf_msw = 0;
7411                 priv->assoc_request.assoc_tsf_lsw = 0;
7412         } else {
7413                 if (unlikely(roaming))
7414                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7415                 else
7416                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7417                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7418                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7419         }
7420
7421         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7422
7423         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7424                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7425                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7426         } else {
7427                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7428                 priv->assoc_request.atim_window = 0;
7429         }
7430
7431         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7432
7433         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7434         if (err) {
7435                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7436                 return err;
7437         }
7438
7439         rates->ieee_mode = priv->assoc_request.ieee_mode;
7440         rates->purpose = IPW_RATE_CONNECT;
7441         ipw_send_supported_rates(priv, rates);
7442
7443         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7444                 priv->sys_config.dot11g_auto_detection = 1;
7445         else
7446                 priv->sys_config.dot11g_auto_detection = 0;
7447
7448         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7449                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7450         else
7451                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7452
7453         err = ipw_send_system_config(priv);
7454         if (err) {
7455                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7456                 return err;
7457         }
7458
7459         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7460         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7461         if (err) {
7462                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7463                 return err;
7464         }
7465
7466         /*
7467          * If preemption is enabled, it is possible for the association
7468          * to complete before we return from ipw_send_associate.  Therefore
7469          * we have to be sure and update our priviate data first.
7470          */
7471         priv->channel = network->channel;
7472         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7473         priv->status |= STATUS_ASSOCIATING;
7474         priv->status &= ~STATUS_SECURITY_UPDATED;
7475
7476         priv->assoc_network = network;
7477
7478 #ifdef CONFIG_IPW2200_QOS
7479         ipw_qos_association(priv, network);
7480 #endif
7481
7482         err = ipw_send_associate(priv, &priv->assoc_request);
7483         if (err) {
7484                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7485                 return err;
7486         }
7487
7488         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7489                   print_ssid(ssid, priv->essid, priv->essid_len),
7490                   priv->bssid);
7491
7492         return 0;
7493 }
7494
7495 static void ipw_roam(void *data)
7496 {
7497         struct ipw_priv *priv = data;
7498         struct ieee80211_network *network = NULL;
7499         struct ipw_network_match match = {
7500                 .network = priv->assoc_network
7501         };
7502
7503         /* The roaming process is as follows:
7504          *
7505          * 1.  Missed beacon threshold triggers the roaming process by
7506          *     setting the status ROAM bit and requesting a scan.
7507          * 2.  When the scan completes, it schedules the ROAM work
7508          * 3.  The ROAM work looks at all of the known networks for one that
7509          *     is a better network than the currently associated.  If none
7510          *     found, the ROAM process is over (ROAM bit cleared)
7511          * 4.  If a better network is found, a disassociation request is
7512          *     sent.
7513          * 5.  When the disassociation completes, the roam work is again
7514          *     scheduled.  The second time through, the driver is no longer
7515          *     associated, and the newly selected network is sent an
7516          *     association request.
7517          * 6.  At this point ,the roaming process is complete and the ROAM
7518          *     status bit is cleared.
7519          */
7520
7521         /* If we are no longer associated, and the roaming bit is no longer
7522          * set, then we are not actively roaming, so just return */
7523         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7524                 return;
7525
7526         if (priv->status & STATUS_ASSOCIATED) {
7527                 /* First pass through ROAM process -- look for a better
7528                  * network */
7529                 unsigned long flags;
7530                 u8 rssi = priv->assoc_network->stats.rssi;
7531                 priv->assoc_network->stats.rssi = -128;
7532                 spin_lock_irqsave(&priv->ieee->lock, flags);
7533                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7534                         if (network != priv->assoc_network)
7535                                 ipw_best_network(priv, &match, network, 1);
7536                 }
7537                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7538                 priv->assoc_network->stats.rssi = rssi;
7539
7540                 if (match.network == priv->assoc_network) {
7541                         IPW_DEBUG_ASSOC("No better APs in this network to "
7542                                         "roam to.\n");
7543                         priv->status &= ~STATUS_ROAMING;
7544                         ipw_debug_config(priv);
7545                         return;
7546                 }
7547
7548                 ipw_send_disassociate(priv, 1);
7549                 priv->assoc_network = match.network;
7550
7551                 return;
7552         }
7553
7554         /* Second pass through ROAM process -- request association */
7555         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7556         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7557         priv->status &= ~STATUS_ROAMING;
7558 }
7559
7560 static void ipw_bg_roam(struct work_struct *work)
7561 {
7562         struct ipw_priv *priv =
7563                 container_of(work, struct ipw_priv, roam);
7564         mutex_lock(&priv->mutex);
7565         ipw_roam(priv);
7566         mutex_unlock(&priv->mutex);
7567 }
7568
7569 static int ipw_associate(void *data)
7570 {
7571         struct ipw_priv *priv = data;
7572
7573         struct ieee80211_network *network = NULL;
7574         struct ipw_network_match match = {
7575                 .network = NULL
7576         };
7577         struct ipw_supported_rates *rates;
7578         struct list_head *element;
7579         unsigned long flags;
7580         DECLARE_SSID_BUF(ssid);
7581
7582         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7583                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7584                 return 0;
7585         }
7586
7587         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7588                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7589                                 "progress)\n");
7590                 return 0;
7591         }
7592
7593         if (priv->status & STATUS_DISASSOCIATING) {
7594                 IPW_DEBUG_ASSOC("Not attempting association (in "
7595                                 "disassociating)\n ");
7596                 queue_work(priv->workqueue, &priv->associate);
7597                 return 0;
7598         }
7599
7600         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7601                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7602                                 "initialized)\n");
7603                 return 0;
7604         }
7605
7606         if (!(priv->config & CFG_ASSOCIATE) &&
7607             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7608                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7609                 return 0;
7610         }
7611
7612         /* Protect our use of the network_list */
7613         spin_lock_irqsave(&priv->ieee->lock, flags);
7614         list_for_each_entry(network, &priv->ieee->network_list, list)
7615             ipw_best_network(priv, &match, network, 0);
7616
7617         network = match.network;
7618         rates = &match.rates;
7619
7620         if (network == NULL &&
7621             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7622             priv->config & CFG_ADHOC_CREATE &&
7623             priv->config & CFG_STATIC_ESSID &&
7624             priv->config & CFG_STATIC_CHANNEL) {
7625                 /* Use oldest network if the free list is empty */
7626                 if (list_empty(&priv->ieee->network_free_list)) {
7627                         struct ieee80211_network *oldest = NULL;
7628                         struct ieee80211_network *target;
7629
7630                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7631                                 if ((oldest == NULL) ||
7632                                     (target->last_scanned < oldest->last_scanned))
7633                                         oldest = target;
7634                         }
7635
7636                         /* If there are no more slots, expire the oldest */
7637                         list_del(&oldest->list);
7638                         target = oldest;
7639                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7640                                         "network list.\n",
7641                                         print_ssid(ssid, target->ssid,
7642                                                    target->ssid_len),
7643                                         target->bssid);
7644                         list_add_tail(&target->list,
7645                                       &priv->ieee->network_free_list);
7646                 }
7647
7648                 element = priv->ieee->network_free_list.next;
7649                 network = list_entry(element, struct ieee80211_network, list);
7650                 ipw_adhoc_create(priv, network);
7651                 rates = &priv->rates;
7652                 list_del(element);
7653                 list_add_tail(&network->list, &priv->ieee->network_list);
7654         }
7655         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7656
7657         /* If we reached the end of the list, then we don't have any valid
7658          * matching APs */
7659         if (!network) {
7660                 ipw_debug_config(priv);
7661
7662                 if (!(priv->status & STATUS_SCANNING)) {
7663                         if (!(priv->config & CFG_SPEED_SCAN))
7664                                 queue_delayed_work(priv->workqueue,
7665                                                    &priv->request_scan,
7666                                                    SCAN_INTERVAL);
7667                         else
7668                                 queue_delayed_work(priv->workqueue,
7669                                                    &priv->request_scan, 0);
7670                 }
7671
7672                 return 0;
7673         }
7674
7675         ipw_associate_network(priv, network, rates, 0);
7676
7677         return 1;
7678 }
7679
7680 static void ipw_bg_associate(struct work_struct *work)
7681 {
7682         struct ipw_priv *priv =
7683                 container_of(work, struct ipw_priv, associate);
7684         mutex_lock(&priv->mutex);
7685         ipw_associate(priv);
7686         mutex_unlock(&priv->mutex);
7687 }
7688
7689 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7690                                       struct sk_buff *skb)
7691 {
7692         struct ieee80211_hdr *hdr;
7693         u16 fc;
7694
7695         hdr = (struct ieee80211_hdr *)skb->data;
7696         fc = le16_to_cpu(hdr->frame_control);
7697         if (!(fc & IEEE80211_FCTL_PROTECTED))
7698                 return;
7699
7700         fc &= ~IEEE80211_FCTL_PROTECTED;
7701         hdr->frame_control = cpu_to_le16(fc);
7702         switch (priv->ieee->sec.level) {
7703         case SEC_LEVEL_3:
7704                 /* Remove CCMP HDR */
7705                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7706                         skb->data + IEEE80211_3ADDR_LEN + 8,
7707                         skb->len - IEEE80211_3ADDR_LEN - 8);
7708                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7709                 break;
7710         case SEC_LEVEL_2:
7711                 break;
7712         case SEC_LEVEL_1:
7713                 /* Remove IV */
7714                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7715                         skb->data + IEEE80211_3ADDR_LEN + 4,
7716                         skb->len - IEEE80211_3ADDR_LEN - 4);
7717                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7718                 break;
7719         case SEC_LEVEL_0:
7720                 break;
7721         default:
7722                 printk(KERN_ERR "Unknow security level %d\n",
7723                        priv->ieee->sec.level);
7724                 break;
7725         }
7726 }
7727
7728 static void ipw_handle_data_packet(struct ipw_priv *priv,
7729                                    struct ipw_rx_mem_buffer *rxb,
7730                                    struct ieee80211_rx_stats *stats)
7731 {
7732         struct net_device *dev = priv->net_dev;
7733         struct ieee80211_hdr_4addr *hdr;
7734         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7735
7736         /* We received data from the HW, so stop the watchdog */
7737         dev->trans_start = jiffies;
7738
7739         /* We only process data packets if the
7740          * interface is open */
7741         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7742                      skb_tailroom(rxb->skb))) {
7743                 dev->stats.rx_errors++;
7744                 priv->wstats.discard.misc++;
7745                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7746                 return;
7747         } else if (unlikely(!netif_running(priv->net_dev))) {
7748                 dev->stats.rx_dropped++;
7749                 priv->wstats.discard.misc++;
7750                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7751                 return;
7752         }
7753
7754         /* Advance skb->data to the start of the actual payload */
7755         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7756
7757         /* Set the size of the skb to the size of the frame */
7758         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7759
7760         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7761
7762         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7763         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7764         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7765             (is_multicast_ether_addr(hdr->addr1) ?
7766              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7767                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7768
7769         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7770                 dev->stats.rx_errors++;
7771         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7772                 rxb->skb = NULL;
7773                 __ipw_led_activity_on(priv);
7774         }
7775 }
7776
7777 #ifdef CONFIG_IPW2200_RADIOTAP
7778 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7779                                            struct ipw_rx_mem_buffer *rxb,
7780                                            struct ieee80211_rx_stats *stats)
7781 {
7782         struct net_device *dev = priv->net_dev;
7783         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7784         struct ipw_rx_frame *frame = &pkt->u.frame;
7785
7786         /* initial pull of some data */
7787         u16 received_channel = frame->received_channel;
7788         u8 antennaAndPhy = frame->antennaAndPhy;
7789         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7790         u16 pktrate = frame->rate;
7791
7792         /* Magic struct that slots into the radiotap header -- no reason
7793          * to build this manually element by element, we can write it much
7794          * more efficiently than we can parse it. ORDER MATTERS HERE */
7795         struct ipw_rt_hdr *ipw_rt;
7796
7797         short len = le16_to_cpu(pkt->u.frame.length);
7798
7799         /* We received data from the HW, so stop the watchdog */
7800         dev->trans_start = jiffies;
7801
7802         /* We only process data packets if the
7803          * interface is open */
7804         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7805                      skb_tailroom(rxb->skb))) {
7806                 dev->stats.rx_errors++;
7807                 priv->wstats.discard.misc++;
7808                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7809                 return;
7810         } else if (unlikely(!netif_running(priv->net_dev))) {
7811                 dev->stats.rx_dropped++;
7812                 priv->wstats.discard.misc++;
7813                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7814                 return;
7815         }
7816
7817         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7818          * that now */
7819         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7820                 /* FIXME: Should alloc bigger skb instead */
7821                 dev->stats.rx_dropped++;
7822                 priv->wstats.discard.misc++;
7823                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7824                 return;
7825         }
7826
7827         /* copy the frame itself */
7828         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7829                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7830
7831         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7832
7833         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7834         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7835         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7836
7837         /* Big bitfield of all the fields we provide in radiotap */
7838         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7839              (1 << IEEE80211_RADIOTAP_TSFT) |
7840              (1 << IEEE80211_RADIOTAP_FLAGS) |
7841              (1 << IEEE80211_RADIOTAP_RATE) |
7842              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7843              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7844              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7845              (1 << IEEE80211_RADIOTAP_ANTENNA));
7846
7847         /* Zero the flags, we'll add to them as we go */
7848         ipw_rt->rt_flags = 0;
7849         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7850                                frame->parent_tsf[2] << 16 |
7851                                frame->parent_tsf[1] << 8  |
7852                                frame->parent_tsf[0]);
7853
7854         /* Convert signal to DBM */
7855         ipw_rt->rt_dbmsignal = antsignal;
7856         ipw_rt->rt_dbmnoise = frame->noise;
7857
7858         /* Convert the channel data and set the flags */
7859         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7860         if (received_channel > 14) {    /* 802.11a */
7861                 ipw_rt->rt_chbitmask =
7862                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7863         } else if (antennaAndPhy & 32) {        /* 802.11b */
7864                 ipw_rt->rt_chbitmask =
7865                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7866         } else {                /* 802.11g */
7867                 ipw_rt->rt_chbitmask =
7868                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7869         }
7870
7871         /* set the rate in multiples of 500k/s */
7872         switch (pktrate) {
7873         case IPW_TX_RATE_1MB:
7874                 ipw_rt->rt_rate = 2;
7875                 break;
7876         case IPW_TX_RATE_2MB:
7877                 ipw_rt->rt_rate = 4;
7878                 break;
7879         case IPW_TX_RATE_5MB:
7880                 ipw_rt->rt_rate = 10;
7881                 break;
7882         case IPW_TX_RATE_6MB:
7883                 ipw_rt->rt_rate = 12;
7884                 break;
7885         case IPW_TX_RATE_9MB:
7886                 ipw_rt->rt_rate = 18;
7887                 break;
7888         case IPW_TX_RATE_11MB:
7889                 ipw_rt->rt_rate = 22;
7890                 break;
7891         case IPW_TX_RATE_12MB:
7892                 ipw_rt->rt_rate = 24;
7893                 break;
7894         case IPW_TX_RATE_18MB:
7895                 ipw_rt->rt_rate = 36;
7896                 break;
7897         case IPW_TX_RATE_24MB:
7898                 ipw_rt->rt_rate = 48;
7899                 break;
7900         case IPW_TX_RATE_36MB:
7901                 ipw_rt->rt_rate = 72;
7902                 break;
7903         case IPW_TX_RATE_48MB:
7904                 ipw_rt->rt_rate = 96;
7905                 break;
7906         case IPW_TX_RATE_54MB:
7907                 ipw_rt->rt_rate = 108;
7908                 break;
7909         default:
7910                 ipw_rt->rt_rate = 0;
7911                 break;
7912         }
7913
7914         /* antenna number */
7915         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7916
7917         /* set the preamble flag if we have it */
7918         if ((antennaAndPhy & 64))
7919                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7920
7921         /* Set the size of the skb to the size of the frame */
7922         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7923
7924         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7925
7926         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7927                 dev->stats.rx_errors++;
7928         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7929                 rxb->skb = NULL;
7930                 /* no LED during capture */
7931         }
7932 }
7933 #endif
7934
7935 #ifdef CONFIG_IPW2200_PROMISCUOUS
7936 #define ieee80211_is_probe_response(fc) \
7937    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7938     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7939
7940 #define ieee80211_is_management(fc) \
7941    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7942
7943 #define ieee80211_is_control(fc) \
7944    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7945
7946 #define ieee80211_is_data(fc) \
7947    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7948
7949 #define ieee80211_is_assoc_request(fc) \
7950    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7951
7952 #define ieee80211_is_reassoc_request(fc) \
7953    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7954
7955 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7956                                       struct ipw_rx_mem_buffer *rxb,
7957                                       struct ieee80211_rx_stats *stats)
7958 {
7959         struct net_device *dev = priv->prom_net_dev;
7960         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7961         struct ipw_rx_frame *frame = &pkt->u.frame;
7962         struct ipw_rt_hdr *ipw_rt;
7963
7964         /* First cache any information we need before we overwrite
7965          * the information provided in the skb from the hardware */
7966         struct ieee80211_hdr *hdr;
7967         u16 channel = frame->received_channel;
7968         u8 phy_flags = frame->antennaAndPhy;
7969         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7970         s8 noise = frame->noise;
7971         u8 rate = frame->rate;
7972         short len = le16_to_cpu(pkt->u.frame.length);
7973         struct sk_buff *skb;
7974         int hdr_only = 0;
7975         u16 filter = priv->prom_priv->filter;
7976
7977         /* If the filter is set to not include Rx frames then return */
7978         if (filter & IPW_PROM_NO_RX)
7979                 return;
7980
7981         /* We received data from the HW, so stop the watchdog */
7982         dev->trans_start = jiffies;
7983
7984         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7985                 dev->stats.rx_errors++;
7986                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7987                 return;
7988         }
7989
7990         /* We only process data packets if the interface is open */
7991         if (unlikely(!netif_running(dev))) {
7992                 dev->stats.rx_dropped++;
7993                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7994                 return;
7995         }
7996
7997         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7998          * that now */
7999         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8000                 /* FIXME: Should alloc bigger skb instead */
8001                 dev->stats.rx_dropped++;
8002                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8003                 return;
8004         }
8005
8006         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8007         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8008                 if (filter & IPW_PROM_NO_MGMT)
8009                         return;
8010                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8011                         hdr_only = 1;
8012         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8013                 if (filter & IPW_PROM_NO_CTL)
8014                         return;
8015                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8016                         hdr_only = 1;
8017         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8018                 if (filter & IPW_PROM_NO_DATA)
8019                         return;
8020                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8021                         hdr_only = 1;
8022         }
8023
8024         /* Copy the SKB since this is for the promiscuous side */
8025         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8026         if (skb == NULL) {
8027                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8028                 return;
8029         }
8030
8031         /* copy the frame data to write after where the radiotap header goes */
8032         ipw_rt = (void *)skb->data;
8033
8034         if (hdr_only)
8035                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8036
8037         memcpy(ipw_rt->payload, hdr, len);
8038
8039         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8040         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8041         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8042
8043         /* Set the size of the skb to the size of the frame */
8044         skb_put(skb, sizeof(*ipw_rt) + len);
8045
8046         /* Big bitfield of all the fields we provide in radiotap */
8047         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8048              (1 << IEEE80211_RADIOTAP_TSFT) |
8049              (1 << IEEE80211_RADIOTAP_FLAGS) |
8050              (1 << IEEE80211_RADIOTAP_RATE) |
8051              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8052              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8053              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8054              (1 << IEEE80211_RADIOTAP_ANTENNA));
8055
8056         /* Zero the flags, we'll add to them as we go */
8057         ipw_rt->rt_flags = 0;
8058         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8059                                frame->parent_tsf[2] << 16 |
8060                                frame->parent_tsf[1] << 8  |
8061                                frame->parent_tsf[0]);
8062
8063         /* Convert to DBM */
8064         ipw_rt->rt_dbmsignal = signal;
8065         ipw_rt->rt_dbmnoise = noise;
8066
8067         /* Convert the channel data and set the flags */
8068         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8069         if (channel > 14) {     /* 802.11a */
8070                 ipw_rt->rt_chbitmask =
8071                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8072         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8073                 ipw_rt->rt_chbitmask =
8074                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8075         } else {                /* 802.11g */
8076                 ipw_rt->rt_chbitmask =
8077                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8078         }
8079
8080         /* set the rate in multiples of 500k/s */
8081         switch (rate) {
8082         case IPW_TX_RATE_1MB:
8083                 ipw_rt->rt_rate = 2;
8084                 break;
8085         case IPW_TX_RATE_2MB:
8086                 ipw_rt->rt_rate = 4;
8087                 break;
8088         case IPW_TX_RATE_5MB:
8089                 ipw_rt->rt_rate = 10;
8090                 break;
8091         case IPW_TX_RATE_6MB:
8092                 ipw_rt->rt_rate = 12;
8093                 break;
8094         case IPW_TX_RATE_9MB:
8095                 ipw_rt->rt_rate = 18;
8096                 break;
8097         case IPW_TX_RATE_11MB:
8098                 ipw_rt->rt_rate = 22;
8099                 break;
8100         case IPW_TX_RATE_12MB:
8101                 ipw_rt->rt_rate = 24;
8102                 break;
8103         case IPW_TX_RATE_18MB:
8104                 ipw_rt->rt_rate = 36;
8105                 break;
8106         case IPW_TX_RATE_24MB:
8107                 ipw_rt->rt_rate = 48;
8108                 break;
8109         case IPW_TX_RATE_36MB:
8110                 ipw_rt->rt_rate = 72;
8111                 break;
8112         case IPW_TX_RATE_48MB:
8113                 ipw_rt->rt_rate = 96;
8114                 break;
8115         case IPW_TX_RATE_54MB:
8116                 ipw_rt->rt_rate = 108;
8117                 break;
8118         default:
8119                 ipw_rt->rt_rate = 0;
8120                 break;
8121         }
8122
8123         /* antenna number */
8124         ipw_rt->rt_antenna = (phy_flags & 3);
8125
8126         /* set the preamble flag if we have it */
8127         if (phy_flags & (1 << 6))
8128                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8129
8130         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8131
8132         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8133                 dev->stats.rx_errors++;
8134                 dev_kfree_skb_any(skb);
8135         }
8136 }
8137 #endif
8138
8139 static int is_network_packet(struct ipw_priv *priv,
8140                                     struct ieee80211_hdr_4addr *header)
8141 {
8142         /* Filter incoming packets to determine if they are targetted toward
8143          * this network, discarding packets coming from ourselves */
8144         switch (priv->ieee->iw_mode) {
8145         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8146                 /* packets from our adapter are dropped (echo) */
8147                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8148                         return 0;
8149
8150                 /* {broad,multi}cast packets to our BSSID go through */
8151                 if (is_multicast_ether_addr(header->addr1))
8152                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8153
8154                 /* packets to our adapter go through */
8155                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8156                                ETH_ALEN);
8157
8158         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8159                 /* packets from our adapter are dropped (echo) */
8160                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8161                         return 0;
8162
8163                 /* {broad,multi}cast packets to our BSS go through */
8164                 if (is_multicast_ether_addr(header->addr1))
8165                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8166
8167                 /* packets to our adapter go through */
8168                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8169                                ETH_ALEN);
8170         }
8171
8172         return 1;
8173 }
8174
8175 #define IPW_PACKET_RETRY_TIME HZ
8176
8177 static  int is_duplicate_packet(struct ipw_priv *priv,
8178                                       struct ieee80211_hdr_4addr *header)
8179 {
8180         u16 sc = le16_to_cpu(header->seq_ctl);
8181         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8182         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8183         u16 *last_seq, *last_frag;
8184         unsigned long *last_time;
8185
8186         switch (priv->ieee->iw_mode) {
8187         case IW_MODE_ADHOC:
8188                 {
8189                         struct list_head *p;
8190                         struct ipw_ibss_seq *entry = NULL;
8191                         u8 *mac = header->addr2;
8192                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8193
8194                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8195                                 entry =
8196                                     list_entry(p, struct ipw_ibss_seq, list);
8197                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8198                                         break;
8199                         }
8200                         if (p == &priv->ibss_mac_hash[index]) {
8201                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8202                                 if (!entry) {
8203                                         IPW_ERROR
8204                                             ("Cannot malloc new mac entry\n");
8205                                         return 0;
8206                                 }
8207                                 memcpy(entry->mac, mac, ETH_ALEN);
8208                                 entry->seq_num = seq;
8209                                 entry->frag_num = frag;
8210                                 entry->packet_time = jiffies;
8211                                 list_add(&entry->list,
8212                                          &priv->ibss_mac_hash[index]);
8213                                 return 0;
8214                         }
8215                         last_seq = &entry->seq_num;
8216                         last_frag = &entry->frag_num;
8217                         last_time = &entry->packet_time;
8218                         break;
8219                 }
8220         case IW_MODE_INFRA:
8221                 last_seq = &priv->last_seq_num;
8222                 last_frag = &priv->last_frag_num;
8223                 last_time = &priv->last_packet_time;
8224                 break;
8225         default:
8226                 return 0;
8227         }
8228         if ((*last_seq == seq) &&
8229             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8230                 if (*last_frag == frag)
8231                         goto drop;
8232                 if (*last_frag + 1 != frag)
8233                         /* out-of-order fragment */
8234                         goto drop;
8235         } else
8236                 *last_seq = seq;
8237
8238         *last_frag = frag;
8239         *last_time = jiffies;
8240         return 0;
8241
8242       drop:
8243         /* Comment this line now since we observed the card receives
8244          * duplicate packets but the FCTL_RETRY bit is not set in the
8245          * IBSS mode with fragmentation enabled.
8246          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8247         return 1;
8248 }
8249
8250 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8251                                    struct ipw_rx_mem_buffer *rxb,
8252                                    struct ieee80211_rx_stats *stats)
8253 {
8254         struct sk_buff *skb = rxb->skb;
8255         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8256         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8257             (skb->data + IPW_RX_FRAME_SIZE);
8258
8259         ieee80211_rx_mgt(priv->ieee, header, stats);
8260
8261         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8262             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8263               IEEE80211_STYPE_PROBE_RESP) ||
8264              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8265               IEEE80211_STYPE_BEACON))) {
8266                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8267                         ipw_add_station(priv, header->addr2);
8268         }
8269
8270         if (priv->config & CFG_NET_STATS) {
8271                 IPW_DEBUG_HC("sending stat packet\n");
8272
8273                 /* Set the size of the skb to the size of the full
8274                  * ipw header and 802.11 frame */
8275                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8276                         IPW_RX_FRAME_SIZE);
8277
8278                 /* Advance past the ipw packet header to the 802.11 frame */
8279                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8280
8281                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8282                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8283
8284                 skb->dev = priv->ieee->dev;
8285
8286                 /* Point raw at the ieee80211_stats */
8287                 skb_reset_mac_header(skb);
8288
8289                 skb->pkt_type = PACKET_OTHERHOST;
8290                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8291                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8292                 netif_rx(skb);
8293                 rxb->skb = NULL;
8294         }
8295 }
8296
8297 /*
8298  * Main entry function for recieving a packet with 80211 headers.  This
8299  * should be called when ever the FW has notified us that there is a new
8300  * skb in the recieve queue.
8301  */
8302 static void ipw_rx(struct ipw_priv *priv)
8303 {
8304         struct ipw_rx_mem_buffer *rxb;
8305         struct ipw_rx_packet *pkt;
8306         struct ieee80211_hdr_4addr *header;
8307         u32 r, w, i;
8308         u8 network_packet;
8309         u8 fill_rx = 0;
8310
8311         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8312         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8313         i = priv->rxq->read;
8314
8315         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8316                 fill_rx = 1;
8317
8318         while (i != r) {
8319                 rxb = priv->rxq->queue[i];
8320                 if (unlikely(rxb == NULL)) {
8321                         printk(KERN_CRIT "Queue not allocated!\n");
8322                         break;
8323                 }
8324                 priv->rxq->queue[i] = NULL;
8325
8326                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8327                                             IPW_RX_BUF_SIZE,
8328                                             PCI_DMA_FROMDEVICE);
8329
8330                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8331                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8332                              pkt->header.message_type,
8333                              pkt->header.rx_seq_num, pkt->header.control_bits);
8334
8335                 switch (pkt->header.message_type) {
8336                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8337                                 struct ieee80211_rx_stats stats = {
8338                                         .rssi = pkt->u.frame.rssi_dbm -
8339                                             IPW_RSSI_TO_DBM,
8340                                         .signal =
8341                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8342                                             IPW_RSSI_TO_DBM + 0x100,
8343                                         .noise =
8344                                             le16_to_cpu(pkt->u.frame.noise),
8345                                         .rate = pkt->u.frame.rate,
8346                                         .mac_time = jiffies,
8347                                         .received_channel =
8348                                             pkt->u.frame.received_channel,
8349                                         .freq =
8350                                             (pkt->u.frame.
8351                                              control & (1 << 0)) ?
8352                                             IEEE80211_24GHZ_BAND :
8353                                             IEEE80211_52GHZ_BAND,
8354                                         .len = le16_to_cpu(pkt->u.frame.length),
8355                                 };
8356
8357                                 if (stats.rssi != 0)
8358                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8359                                 if (stats.signal != 0)
8360                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8361                                 if (stats.noise != 0)
8362                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8363                                 if (stats.rate != 0)
8364                                         stats.mask |= IEEE80211_STATMASK_RATE;
8365
8366                                 priv->rx_packets++;
8367
8368 #ifdef CONFIG_IPW2200_PROMISCUOUS
8369         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8370                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8371 #endif
8372
8373 #ifdef CONFIG_IPW2200_MONITOR
8374                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8375 #ifdef CONFIG_IPW2200_RADIOTAP
8376
8377                 ipw_handle_data_packet_monitor(priv,
8378                                                rxb,
8379                                                &stats);
8380 #else
8381                 ipw_handle_data_packet(priv, rxb,
8382                                        &stats);
8383 #endif
8384                                         break;
8385                                 }
8386 #endif
8387
8388                                 header =
8389                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8390                                                                    data +
8391                                                                    IPW_RX_FRAME_SIZE);
8392                                 /* TODO: Check Ad-Hoc dest/source and make sure
8393                                  * that we are actually parsing these packets
8394                                  * correctly -- we should probably use the
8395                                  * frame control of the packet and disregard
8396                                  * the current iw_mode */
8397
8398                                 network_packet =
8399                                     is_network_packet(priv, header);
8400                                 if (network_packet && priv->assoc_network) {
8401                                         priv->assoc_network->stats.rssi =
8402                                             stats.rssi;
8403                                         priv->exp_avg_rssi =
8404                                             exponential_average(priv->exp_avg_rssi,
8405                                             stats.rssi, DEPTH_RSSI);
8406                                 }
8407
8408                                 IPW_DEBUG_RX("Frame: len=%u\n",
8409                                              le16_to_cpu(pkt->u.frame.length));
8410
8411                                 if (le16_to_cpu(pkt->u.frame.length) <
8412                                     ieee80211_get_hdrlen(le16_to_cpu(
8413                                                     header->frame_ctl))) {
8414                                         IPW_DEBUG_DROP
8415                                             ("Received packet is too small. "
8416                                              "Dropping.\n");
8417                                         priv->net_dev->stats.rx_errors++;
8418                                         priv->wstats.discard.misc++;
8419                                         break;
8420                                 }
8421
8422                                 switch (WLAN_FC_GET_TYPE
8423                                         (le16_to_cpu(header->frame_ctl))) {
8424
8425                                 case IEEE80211_FTYPE_MGMT:
8426                                         ipw_handle_mgmt_packet(priv, rxb,
8427                                                                &stats);
8428                                         break;
8429
8430                                 case IEEE80211_FTYPE_CTL:
8431                                         break;
8432
8433                                 case IEEE80211_FTYPE_DATA:
8434                                         if (unlikely(!network_packet ||
8435                                                      is_duplicate_packet(priv,
8436                                                                          header)))
8437                                         {
8438                                                 IPW_DEBUG_DROP("Dropping: "
8439                                                                "%pM, "
8440                                                                "%pM, "
8441                                                                "%pM\n",
8442                                                                header->addr1,
8443                                                                header->addr2,
8444                                                                header->addr3);
8445                                                 break;
8446                                         }
8447
8448                                         ipw_handle_data_packet(priv, rxb,
8449                                                                &stats);
8450
8451                                         break;
8452                                 }
8453                                 break;
8454                         }
8455
8456                 case RX_HOST_NOTIFICATION_TYPE:{
8457                                 IPW_DEBUG_RX
8458                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8459                                      pkt->u.notification.subtype,
8460                                      pkt->u.notification.flags,
8461                                      le16_to_cpu(pkt->u.notification.size));
8462                                 ipw_rx_notification(priv, &pkt->u.notification);
8463                                 break;
8464                         }
8465
8466                 default:
8467                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8468                                      pkt->header.message_type);
8469                         break;
8470                 }
8471
8472                 /* For now we just don't re-use anything.  We can tweak this
8473                  * later to try and re-use notification packets and SKBs that
8474                  * fail to Rx correctly */
8475                 if (rxb->skb != NULL) {
8476                         dev_kfree_skb_any(rxb->skb);
8477                         rxb->skb = NULL;
8478                 }
8479
8480                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8481                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8482                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8483
8484                 i = (i + 1) % RX_QUEUE_SIZE;
8485
8486                 /* If there are a lot of unsued frames, restock the Rx queue
8487                  * so the ucode won't assert */
8488                 if (fill_rx) {
8489                         priv->rxq->read = i;
8490                         ipw_rx_queue_replenish(priv);
8491                 }
8492         }
8493
8494         /* Backtrack one entry */
8495         priv->rxq->read = i;
8496         ipw_rx_queue_restock(priv);
8497 }
8498
8499 #define DEFAULT_RTS_THRESHOLD     2304U
8500 #define MIN_RTS_THRESHOLD         1U
8501 #define MAX_RTS_THRESHOLD         2304U
8502 #define DEFAULT_BEACON_INTERVAL   100U
8503 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8504 #define DEFAULT_LONG_RETRY_LIMIT  4U
8505
8506 /**
8507  * ipw_sw_reset
8508  * @option: options to control different reset behaviour
8509  *          0 = reset everything except the 'disable' module_param
8510  *          1 = reset everything and print out driver info (for probe only)
8511  *          2 = reset everything
8512  */
8513 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8514 {
8515         int band, modulation;
8516         int old_mode = priv->ieee->iw_mode;
8517
8518         /* Initialize module parameter values here */
8519         priv->config = 0;
8520
8521         /* We default to disabling the LED code as right now it causes
8522          * too many systems to lock up... */
8523         if (!led)
8524                 priv->config |= CFG_NO_LED;
8525
8526         if (associate)
8527                 priv->config |= CFG_ASSOCIATE;
8528         else
8529                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8530
8531         if (auto_create)
8532                 priv->config |= CFG_ADHOC_CREATE;
8533         else
8534                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8535
8536         priv->config &= ~CFG_STATIC_ESSID;
8537         priv->essid_len = 0;
8538         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8539
8540         if (disable && option) {
8541                 priv->status |= STATUS_RF_KILL_SW;
8542                 IPW_DEBUG_INFO("Radio disabled.\n");
8543         }
8544
8545         if (channel != 0) {
8546                 priv->config |= CFG_STATIC_CHANNEL;
8547                 priv->channel = channel;
8548                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8549                 /* TODO: Validate that provided channel is in range */
8550         }
8551 #ifdef CONFIG_IPW2200_QOS
8552         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8553                      burst_duration_CCK, burst_duration_OFDM);
8554 #endif                          /* CONFIG_IPW2200_QOS */
8555
8556         switch (mode) {
8557         case 1:
8558                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8559                 priv->net_dev->type = ARPHRD_ETHER;
8560
8561                 break;
8562 #ifdef CONFIG_IPW2200_MONITOR
8563         case 2:
8564                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8565 #ifdef CONFIG_IPW2200_RADIOTAP
8566                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8567 #else
8568                 priv->net_dev->type = ARPHRD_IEEE80211;
8569 #endif
8570                 break;
8571 #endif
8572         default:
8573         case 0:
8574                 priv->net_dev->type = ARPHRD_ETHER;
8575                 priv->ieee->iw_mode = IW_MODE_INFRA;
8576                 break;
8577         }
8578
8579         if (hwcrypto) {
8580                 priv->ieee->host_encrypt = 0;
8581                 priv->ieee->host_encrypt_msdu = 0;
8582                 priv->ieee->host_decrypt = 0;
8583                 priv->ieee->host_mc_decrypt = 0;
8584         }
8585         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8586
8587         /* IPW2200/2915 is abled to do hardware fragmentation. */
8588         priv->ieee->host_open_frag = 0;
8589
8590         if ((priv->pci_dev->device == 0x4223) ||
8591             (priv->pci_dev->device == 0x4224)) {
8592                 if (option == 1)
8593                         printk(KERN_INFO DRV_NAME
8594                                ": Detected Intel PRO/Wireless 2915ABG Network "
8595                                "Connection\n");
8596                 priv->ieee->abg_true = 1;
8597                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8598                 modulation = IEEE80211_OFDM_MODULATION |
8599                     IEEE80211_CCK_MODULATION;
8600                 priv->adapter = IPW_2915ABG;
8601                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8602         } else {
8603                 if (option == 1)
8604                         printk(KERN_INFO DRV_NAME
8605                                ": Detected Intel PRO/Wireless 2200BG Network "
8606                                "Connection\n");
8607
8608                 priv->ieee->abg_true = 0;
8609                 band = IEEE80211_24GHZ_BAND;
8610                 modulation = IEEE80211_OFDM_MODULATION |
8611                     IEEE80211_CCK_MODULATION;
8612                 priv->adapter = IPW_2200BG;
8613                 priv->ieee->mode = IEEE_G | IEEE_B;
8614         }
8615
8616         priv->ieee->freq_band = band;
8617         priv->ieee->modulation = modulation;
8618
8619         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8620
8621         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8622         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8623
8624         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8625         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8626         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8627
8628         /* If power management is turned on, default to AC mode */
8629         priv->power_mode = IPW_POWER_AC;
8630         priv->tx_power = IPW_TX_POWER_DEFAULT;
8631
8632         return old_mode == priv->ieee->iw_mode;
8633 }
8634
8635 /*
8636  * This file defines the Wireless Extension handlers.  It does not
8637  * define any methods of hardware manipulation and relies on the
8638  * functions defined in ipw_main to provide the HW interaction.
8639  *
8640  * The exception to this is the use of the ipw_get_ordinal()
8641  * function used to poll the hardware vs. making unecessary calls.
8642  *
8643  */
8644
8645 static int ipw_wx_get_name(struct net_device *dev,
8646                            struct iw_request_info *info,
8647                            union iwreq_data *wrqu, char *extra)
8648 {
8649         struct ipw_priv *priv = ieee80211_priv(dev);
8650         mutex_lock(&priv->mutex);
8651         if (priv->status & STATUS_RF_KILL_MASK)
8652                 strcpy(wrqu->name, "radio off");
8653         else if (!(priv->status & STATUS_ASSOCIATED))
8654                 strcpy(wrqu->name, "unassociated");
8655         else
8656                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8657                          ipw_modes[priv->assoc_request.ieee_mode]);
8658         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8659         mutex_unlock(&priv->mutex);
8660         return 0;
8661 }
8662
8663 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8664 {
8665         if (channel == 0) {
8666                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8667                 priv->config &= ~CFG_STATIC_CHANNEL;
8668                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8669                                 "parameters.\n");
8670                 ipw_associate(priv);
8671                 return 0;
8672         }
8673
8674         priv->config |= CFG_STATIC_CHANNEL;
8675
8676         if (priv->channel == channel) {
8677                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8678                                channel);
8679                 return 0;
8680         }
8681
8682         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8683         priv->channel = channel;
8684
8685 #ifdef CONFIG_IPW2200_MONITOR
8686         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8687                 int i;
8688                 if (priv->status & STATUS_SCANNING) {
8689                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8690                                        "channel change.\n");
8691                         ipw_abort_scan(priv);
8692                 }
8693
8694                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8695                         udelay(10);
8696
8697                 if (priv->status & STATUS_SCANNING)
8698                         IPW_DEBUG_SCAN("Still scanning...\n");
8699                 else
8700                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8701                                        1000 - i);
8702
8703                 return 0;
8704         }
8705 #endif                          /* CONFIG_IPW2200_MONITOR */
8706
8707         /* Network configuration changed -- force [re]association */
8708         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8709         if (!ipw_disassociate(priv))
8710                 ipw_associate(priv);
8711
8712         return 0;
8713 }
8714
8715 static int ipw_wx_set_freq(struct net_device *dev,
8716                            struct iw_request_info *info,
8717                            union iwreq_data *wrqu, char *extra)
8718 {
8719         struct ipw_priv *priv = ieee80211_priv(dev);
8720         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8721         struct iw_freq *fwrq = &wrqu->freq;
8722         int ret = 0, i;
8723         u8 channel, flags;
8724         int band;
8725
8726         if (fwrq->m == 0) {
8727                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8728                 mutex_lock(&priv->mutex);
8729                 ret = ipw_set_channel(priv, 0);
8730                 mutex_unlock(&priv->mutex);
8731                 return ret;
8732         }
8733         /* if setting by freq convert to channel */
8734         if (fwrq->e == 1) {
8735                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8736                 if (channel == 0)
8737                         return -EINVAL;
8738         } else
8739                 channel = fwrq->m;
8740
8741         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8742                 return -EINVAL;
8743
8744         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8745                 i = ieee80211_channel_to_index(priv->ieee, channel);
8746                 if (i == -1)
8747                         return -EINVAL;
8748
8749                 flags = (band == IEEE80211_24GHZ_BAND) ?
8750                     geo->bg[i].flags : geo->a[i].flags;
8751                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8752                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8753                         return -EINVAL;
8754                 }
8755         }
8756
8757         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8758         mutex_lock(&priv->mutex);
8759         ret = ipw_set_channel(priv, channel);
8760         mutex_unlock(&priv->mutex);
8761         return ret;
8762 }
8763
8764 static int ipw_wx_get_freq(struct net_device *dev,
8765                            struct iw_request_info *info,
8766                            union iwreq_data *wrqu, char *extra)
8767 {
8768         struct ipw_priv *priv = ieee80211_priv(dev);
8769
8770         wrqu->freq.e = 0;
8771
8772         /* If we are associated, trying to associate, or have a statically
8773          * configured CHANNEL then return that; otherwise return ANY */
8774         mutex_lock(&priv->mutex);
8775         if (priv->config & CFG_STATIC_CHANNEL ||
8776             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8777                 int i;
8778
8779                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8780                 BUG_ON(i == -1);
8781                 wrqu->freq.e = 1;
8782
8783                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8784                 case IEEE80211_52GHZ_BAND:
8785                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8786                         break;
8787
8788                 case IEEE80211_24GHZ_BAND:
8789                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8790                         break;
8791
8792                 default:
8793                         BUG();
8794                 }
8795         } else
8796                 wrqu->freq.m = 0;
8797
8798         mutex_unlock(&priv->mutex);
8799         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8800         return 0;
8801 }
8802
8803 static int ipw_wx_set_mode(struct net_device *dev,
8804                            struct iw_request_info *info,
8805                            union iwreq_data *wrqu, char *extra)
8806 {
8807         struct ipw_priv *priv = ieee80211_priv(dev);
8808         int err = 0;
8809
8810         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8811
8812         switch (wrqu->mode) {
8813 #ifdef CONFIG_IPW2200_MONITOR
8814         case IW_MODE_MONITOR:
8815 #endif
8816         case IW_MODE_ADHOC:
8817         case IW_MODE_INFRA:
8818                 break;
8819         case IW_MODE_AUTO:
8820                 wrqu->mode = IW_MODE_INFRA;
8821                 break;
8822         default:
8823                 return -EINVAL;
8824         }
8825         if (wrqu->mode == priv->ieee->iw_mode)
8826                 return 0;
8827
8828         mutex_lock(&priv->mutex);
8829
8830         ipw_sw_reset(priv, 0);
8831
8832 #ifdef CONFIG_IPW2200_MONITOR
8833         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8834                 priv->net_dev->type = ARPHRD_ETHER;
8835
8836         if (wrqu->mode == IW_MODE_MONITOR)
8837 #ifdef CONFIG_IPW2200_RADIOTAP
8838                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8839 #else
8840                 priv->net_dev->type = ARPHRD_IEEE80211;
8841 #endif
8842 #endif                          /* CONFIG_IPW2200_MONITOR */
8843
8844         /* Free the existing firmware and reset the fw_loaded
8845          * flag so ipw_load() will bring in the new firmware */
8846         free_firmware();
8847
8848         priv->ieee->iw_mode = wrqu->mode;
8849
8850         queue_work(priv->workqueue, &priv->adapter_restart);
8851         mutex_unlock(&priv->mutex);
8852         return err;
8853 }
8854
8855 static int ipw_wx_get_mode(struct net_device *dev,
8856                            struct iw_request_info *info,
8857                            union iwreq_data *wrqu, char *extra)
8858 {
8859         struct ipw_priv *priv = ieee80211_priv(dev);
8860         mutex_lock(&priv->mutex);
8861         wrqu->mode = priv->ieee->iw_mode;
8862         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8863         mutex_unlock(&priv->mutex);
8864         return 0;
8865 }
8866
8867 /* Values are in microsecond */
8868 static const s32 timeout_duration[] = {
8869         350000,
8870         250000,
8871         75000,
8872         37000,
8873         25000,
8874 };
8875
8876 static const s32 period_duration[] = {
8877         400000,
8878         700000,
8879         1000000,
8880         1000000,
8881         1000000
8882 };
8883
8884 static int ipw_wx_get_range(struct net_device *dev,
8885                             struct iw_request_info *info,
8886                             union iwreq_data *wrqu, char *extra)
8887 {
8888         struct ipw_priv *priv = ieee80211_priv(dev);
8889         struct iw_range *range = (struct iw_range *)extra;
8890         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8891         int i = 0, j;
8892
8893         wrqu->data.length = sizeof(*range);
8894         memset(range, 0, sizeof(*range));
8895
8896         /* 54Mbs == ~27 Mb/s real (802.11g) */
8897         range->throughput = 27 * 1000 * 1000;
8898
8899         range->max_qual.qual = 100;
8900         /* TODO: Find real max RSSI and stick here */
8901         range->max_qual.level = 0;
8902         range->max_qual.noise = 0;
8903         range->max_qual.updated = 7;    /* Updated all three */
8904
8905         range->avg_qual.qual = 70;
8906         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8907         range->avg_qual.level = 0;      /* FIXME to real average level */
8908         range->avg_qual.noise = 0;
8909         range->avg_qual.updated = 7;    /* Updated all three */
8910         mutex_lock(&priv->mutex);
8911         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8912
8913         for (i = 0; i < range->num_bitrates; i++)
8914                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8915                     500000;
8916
8917         range->max_rts = DEFAULT_RTS_THRESHOLD;
8918         range->min_frag = MIN_FRAG_THRESHOLD;
8919         range->max_frag = MAX_FRAG_THRESHOLD;
8920
8921         range->encoding_size[0] = 5;
8922         range->encoding_size[1] = 13;
8923         range->num_encoding_sizes = 2;
8924         range->max_encoding_tokens = WEP_KEYS;
8925
8926         /* Set the Wireless Extension versions */
8927         range->we_version_compiled = WIRELESS_EXT;
8928         range->we_version_source = 18;
8929
8930         i = 0;
8931         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8932                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8933                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8934                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8935                                 continue;
8936
8937                         range->freq[i].i = geo->bg[j].channel;
8938                         range->freq[i].m = geo->bg[j].freq * 100000;
8939                         range->freq[i].e = 1;
8940                         i++;
8941                 }
8942         }
8943
8944         if (priv->ieee->mode & IEEE_A) {
8945                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8946                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8947                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8948                                 continue;
8949
8950                         range->freq[i].i = geo->a[j].channel;
8951                         range->freq[i].m = geo->a[j].freq * 100000;
8952                         range->freq[i].e = 1;
8953                         i++;
8954                 }
8955         }
8956
8957         range->num_channels = i;
8958         range->num_frequency = i;
8959
8960         mutex_unlock(&priv->mutex);
8961
8962         /* Event capability (kernel + driver) */
8963         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8964                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8965                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8966                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8967         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8968
8969         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8970                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8971
8972         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8973
8974         IPW_DEBUG_WX("GET Range\n");
8975         return 0;
8976 }
8977
8978 static int ipw_wx_set_wap(struct net_device *dev,
8979                           struct iw_request_info *info,
8980                           union iwreq_data *wrqu, char *extra)
8981 {
8982         struct ipw_priv *priv = ieee80211_priv(dev);
8983
8984         static const unsigned char any[] = {
8985                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8986         };
8987         static const unsigned char off[] = {
8988                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8989         };
8990
8991         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8992                 return -EINVAL;
8993         mutex_lock(&priv->mutex);
8994         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8995             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8996                 /* we disable mandatory BSSID association */
8997                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8998                 priv->config &= ~CFG_STATIC_BSSID;
8999                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9000                                 "parameters.\n");
9001                 ipw_associate(priv);
9002                 mutex_unlock(&priv->mutex);
9003                 return 0;
9004         }
9005
9006         priv->config |= CFG_STATIC_BSSID;
9007         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9008                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9009                 mutex_unlock(&priv->mutex);
9010                 return 0;
9011         }
9012
9013         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9014                      wrqu->ap_addr.sa_data);
9015
9016         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9017
9018         /* Network configuration changed -- force [re]association */
9019         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9020         if (!ipw_disassociate(priv))
9021                 ipw_associate(priv);
9022
9023         mutex_unlock(&priv->mutex);
9024         return 0;
9025 }
9026
9027 static int ipw_wx_get_wap(struct net_device *dev,
9028                           struct iw_request_info *info,
9029                           union iwreq_data *wrqu, char *extra)
9030 {
9031         struct ipw_priv *priv = ieee80211_priv(dev);
9032
9033         /* If we are associated, trying to associate, or have a statically
9034          * configured BSSID then return that; otherwise return ANY */
9035         mutex_lock(&priv->mutex);
9036         if (priv->config & CFG_STATIC_BSSID ||
9037             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9038                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9039                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9040         } else
9041                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9042
9043         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9044                      wrqu->ap_addr.sa_data);
9045         mutex_unlock(&priv->mutex);
9046         return 0;
9047 }
9048
9049 static int ipw_wx_set_essid(struct net_device *dev,
9050                             struct iw_request_info *info,
9051                             union iwreq_data *wrqu, char *extra)
9052 {
9053         struct ipw_priv *priv = ieee80211_priv(dev);
9054         int length;
9055         DECLARE_SSID_BUF(ssid);
9056
9057         mutex_lock(&priv->mutex);
9058
9059         if (!wrqu->essid.flags)
9060         {
9061                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9062                 ipw_disassociate(priv);
9063                 priv->config &= ~CFG_STATIC_ESSID;
9064                 ipw_associate(priv);
9065                 mutex_unlock(&priv->mutex);
9066                 return 0;
9067         }
9068
9069         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9070
9071         priv->config |= CFG_STATIC_ESSID;
9072
9073         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9074             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9075                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9076                 mutex_unlock(&priv->mutex);
9077                 return 0;
9078         }
9079
9080         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9081                      print_ssid(ssid, extra, length), length);
9082
9083         priv->essid_len = length;
9084         memcpy(priv->essid, extra, priv->essid_len);
9085
9086         /* Network configuration changed -- force [re]association */
9087         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9088         if (!ipw_disassociate(priv))
9089                 ipw_associate(priv);
9090
9091         mutex_unlock(&priv->mutex);
9092         return 0;
9093 }
9094
9095 static int ipw_wx_get_essid(struct net_device *dev,
9096                             struct iw_request_info *info,
9097                             union iwreq_data *wrqu, char *extra)
9098 {
9099         struct ipw_priv *priv = ieee80211_priv(dev);
9100         DECLARE_SSID_BUF(ssid);
9101
9102         /* If we are associated, trying to associate, or have a statically
9103          * configured ESSID then return that; otherwise return ANY */
9104         mutex_lock(&priv->mutex);
9105         if (priv->config & CFG_STATIC_ESSID ||
9106             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9107                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9108                              print_ssid(ssid, priv->essid, priv->essid_len));
9109                 memcpy(extra, priv->essid, priv->essid_len);
9110                 wrqu->essid.length = priv->essid_len;
9111                 wrqu->essid.flags = 1;  /* active */
9112         } else {
9113                 IPW_DEBUG_WX("Getting essid: ANY\n");
9114                 wrqu->essid.length = 0;
9115                 wrqu->essid.flags = 0;  /* active */
9116         }
9117         mutex_unlock(&priv->mutex);
9118         return 0;
9119 }
9120
9121 static int ipw_wx_set_nick(struct net_device *dev,
9122                            struct iw_request_info *info,
9123                            union iwreq_data *wrqu, char *extra)
9124 {
9125         struct ipw_priv *priv = ieee80211_priv(dev);
9126
9127         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9128         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9129                 return -E2BIG;
9130         mutex_lock(&priv->mutex);
9131         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9132         memset(priv->nick, 0, sizeof(priv->nick));
9133         memcpy(priv->nick, extra, wrqu->data.length);
9134         IPW_DEBUG_TRACE("<<\n");
9135         mutex_unlock(&priv->mutex);
9136         return 0;
9137
9138 }
9139
9140 static int ipw_wx_get_nick(struct net_device *dev,
9141                            struct iw_request_info *info,
9142                            union iwreq_data *wrqu, char *extra)
9143 {
9144         struct ipw_priv *priv = ieee80211_priv(dev);
9145         IPW_DEBUG_WX("Getting nick\n");
9146         mutex_lock(&priv->mutex);
9147         wrqu->data.length = strlen(priv->nick);
9148         memcpy(extra, priv->nick, wrqu->data.length);
9149         wrqu->data.flags = 1;   /* active */
9150         mutex_unlock(&priv->mutex);
9151         return 0;
9152 }
9153
9154 static int ipw_wx_set_sens(struct net_device *dev,
9155                             struct iw_request_info *info,
9156                             union iwreq_data *wrqu, char *extra)
9157 {
9158         struct ipw_priv *priv = ieee80211_priv(dev);
9159         int err = 0;
9160
9161         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9162         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9163         mutex_lock(&priv->mutex);
9164
9165         if (wrqu->sens.fixed == 0)
9166         {
9167                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9168                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9169                 goto out;
9170         }
9171         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9172             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9173                 err = -EINVAL;
9174                 goto out;
9175         }
9176
9177         priv->roaming_threshold = wrqu->sens.value;
9178         priv->disassociate_threshold = 3*wrqu->sens.value;
9179       out:
9180         mutex_unlock(&priv->mutex);
9181         return err;
9182 }
9183
9184 static int ipw_wx_get_sens(struct net_device *dev,
9185                             struct iw_request_info *info,
9186                             union iwreq_data *wrqu, char *extra)
9187 {
9188         struct ipw_priv *priv = ieee80211_priv(dev);
9189         mutex_lock(&priv->mutex);
9190         wrqu->sens.fixed = 1;
9191         wrqu->sens.value = priv->roaming_threshold;
9192         mutex_unlock(&priv->mutex);
9193
9194         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9195                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9196
9197         return 0;
9198 }
9199
9200 static int ipw_wx_set_rate(struct net_device *dev,
9201                            struct iw_request_info *info,
9202                            union iwreq_data *wrqu, char *extra)
9203 {
9204         /* TODO: We should use semaphores or locks for access to priv */
9205         struct ipw_priv *priv = ieee80211_priv(dev);
9206         u32 target_rate = wrqu->bitrate.value;
9207         u32 fixed, mask;
9208
9209         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9210         /* value = X, fixed = 1 means only rate X */
9211         /* value = X, fixed = 0 means all rates lower equal X */
9212
9213         if (target_rate == -1) {
9214                 fixed = 0;
9215                 mask = IEEE80211_DEFAULT_RATES_MASK;
9216                 /* Now we should reassociate */
9217                 goto apply;
9218         }
9219
9220         mask = 0;
9221         fixed = wrqu->bitrate.fixed;
9222
9223         if (target_rate == 1000000 || !fixed)
9224                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9225         if (target_rate == 1000000)
9226                 goto apply;
9227
9228         if (target_rate == 2000000 || !fixed)
9229                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9230         if (target_rate == 2000000)
9231                 goto apply;
9232
9233         if (target_rate == 5500000 || !fixed)
9234                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9235         if (target_rate == 5500000)
9236                 goto apply;
9237
9238         if (target_rate == 6000000 || !fixed)
9239                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9240         if (target_rate == 6000000)
9241                 goto apply;
9242
9243         if (target_rate == 9000000 || !fixed)
9244                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9245         if (target_rate == 9000000)
9246                 goto apply;
9247
9248         if (target_rate == 11000000 || !fixed)
9249                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9250         if (target_rate == 11000000)
9251                 goto apply;
9252
9253         if (target_rate == 12000000 || !fixed)
9254                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9255         if (target_rate == 12000000)
9256                 goto apply;
9257
9258         if (target_rate == 18000000 || !fixed)
9259                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9260         if (target_rate == 18000000)
9261                 goto apply;
9262
9263         if (target_rate == 24000000 || !fixed)
9264                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9265         if (target_rate == 24000000)
9266                 goto apply;
9267
9268         if (target_rate == 36000000 || !fixed)
9269                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9270         if (target_rate == 36000000)
9271                 goto apply;
9272
9273         if (target_rate == 48000000 || !fixed)
9274                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9275         if (target_rate == 48000000)
9276                 goto apply;
9277
9278         if (target_rate == 54000000 || !fixed)
9279                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9280         if (target_rate == 54000000)
9281                 goto apply;
9282
9283         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9284         return -EINVAL;
9285
9286       apply:
9287         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9288                      mask, fixed ? "fixed" : "sub-rates");
9289         mutex_lock(&priv->mutex);
9290         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9291                 priv->config &= ~CFG_FIXED_RATE;
9292                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9293         } else
9294                 priv->config |= CFG_FIXED_RATE;
9295
9296         if (priv->rates_mask == mask) {
9297                 IPW_DEBUG_WX("Mask set to current mask.\n");
9298                 mutex_unlock(&priv->mutex);
9299                 return 0;
9300         }
9301
9302         priv->rates_mask = mask;
9303
9304         /* Network configuration changed -- force [re]association */
9305         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9306         if (!ipw_disassociate(priv))
9307                 ipw_associate(priv);
9308
9309         mutex_unlock(&priv->mutex);
9310         return 0;
9311 }
9312
9313 static int ipw_wx_get_rate(struct net_device *dev,
9314                            struct iw_request_info *info,
9315                            union iwreq_data *wrqu, char *extra)
9316 {
9317         struct ipw_priv *priv = ieee80211_priv(dev);
9318         mutex_lock(&priv->mutex);
9319         wrqu->bitrate.value = priv->last_rate;
9320         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9321         mutex_unlock(&priv->mutex);
9322         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9323         return 0;
9324 }
9325
9326 static int ipw_wx_set_rts(struct net_device *dev,
9327                           struct iw_request_info *info,
9328                           union iwreq_data *wrqu, char *extra)
9329 {
9330         struct ipw_priv *priv = ieee80211_priv(dev);
9331         mutex_lock(&priv->mutex);
9332         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9333                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9334         else {
9335                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9336                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9337                         mutex_unlock(&priv->mutex);
9338                         return -EINVAL;
9339                 }
9340                 priv->rts_threshold = wrqu->rts.value;
9341         }
9342
9343         ipw_send_rts_threshold(priv, priv->rts_threshold);
9344         mutex_unlock(&priv->mutex);
9345         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9346         return 0;
9347 }
9348
9349 static int ipw_wx_get_rts(struct net_device *dev,
9350                           struct iw_request_info *info,
9351                           union iwreq_data *wrqu, char *extra)
9352 {
9353         struct ipw_priv *priv = ieee80211_priv(dev);
9354         mutex_lock(&priv->mutex);
9355         wrqu->rts.value = priv->rts_threshold;
9356         wrqu->rts.fixed = 0;    /* no auto select */
9357         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9358         mutex_unlock(&priv->mutex);
9359         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9360         return 0;
9361 }
9362
9363 static int ipw_wx_set_txpow(struct net_device *dev,
9364                             struct iw_request_info *info,
9365                             union iwreq_data *wrqu, char *extra)
9366 {
9367         struct ipw_priv *priv = ieee80211_priv(dev);
9368         int err = 0;
9369
9370         mutex_lock(&priv->mutex);
9371         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9372                 err = -EINPROGRESS;
9373                 goto out;
9374         }
9375
9376         if (!wrqu->power.fixed)
9377                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9378
9379         if (wrqu->power.flags != IW_TXPOW_DBM) {
9380                 err = -EINVAL;
9381                 goto out;
9382         }
9383
9384         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9385             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9386                 err = -EINVAL;
9387                 goto out;
9388         }
9389
9390         priv->tx_power = wrqu->power.value;
9391         err = ipw_set_tx_power(priv);
9392       out:
9393         mutex_unlock(&priv->mutex);
9394         return err;
9395 }
9396
9397 static int ipw_wx_get_txpow(struct net_device *dev,
9398                             struct iw_request_info *info,
9399                             union iwreq_data *wrqu, char *extra)
9400 {
9401         struct ipw_priv *priv = ieee80211_priv(dev);
9402         mutex_lock(&priv->mutex);
9403         wrqu->power.value = priv->tx_power;
9404         wrqu->power.fixed = 1;
9405         wrqu->power.flags = IW_TXPOW_DBM;
9406         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9407         mutex_unlock(&priv->mutex);
9408
9409         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9410                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9411
9412         return 0;
9413 }
9414
9415 static int ipw_wx_set_frag(struct net_device *dev,
9416                            struct iw_request_info *info,
9417                            union iwreq_data *wrqu, char *extra)
9418 {
9419         struct ipw_priv *priv = ieee80211_priv(dev);
9420         mutex_lock(&priv->mutex);
9421         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9422                 priv->ieee->fts = DEFAULT_FTS;
9423         else {
9424                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9425                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9426                         mutex_unlock(&priv->mutex);
9427                         return -EINVAL;
9428                 }
9429
9430                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9431         }
9432
9433         ipw_send_frag_threshold(priv, wrqu->frag.value);
9434         mutex_unlock(&priv->mutex);
9435         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9436         return 0;
9437 }
9438
9439 static int ipw_wx_get_frag(struct net_device *dev,
9440                            struct iw_request_info *info,
9441                            union iwreq_data *wrqu, char *extra)
9442 {
9443         struct ipw_priv *priv = ieee80211_priv(dev);
9444         mutex_lock(&priv->mutex);
9445         wrqu->frag.value = priv->ieee->fts;
9446         wrqu->frag.fixed = 0;   /* no auto select */
9447         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9448         mutex_unlock(&priv->mutex);
9449         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9450
9451         return 0;
9452 }
9453
9454 static int ipw_wx_set_retry(struct net_device *dev,
9455                             struct iw_request_info *info,
9456                             union iwreq_data *wrqu, char *extra)
9457 {
9458         struct ipw_priv *priv = ieee80211_priv(dev);
9459
9460         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9461                 return -EINVAL;
9462
9463         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9464                 return 0;
9465
9466         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9467                 return -EINVAL;
9468
9469         mutex_lock(&priv->mutex);
9470         if (wrqu->retry.flags & IW_RETRY_SHORT)
9471                 priv->short_retry_limit = (u8) wrqu->retry.value;
9472         else if (wrqu->retry.flags & IW_RETRY_LONG)
9473                 priv->long_retry_limit = (u8) wrqu->retry.value;
9474         else {
9475                 priv->short_retry_limit = (u8) wrqu->retry.value;
9476                 priv->long_retry_limit = (u8) wrqu->retry.value;
9477         }
9478
9479         ipw_send_retry_limit(priv, priv->short_retry_limit,
9480                              priv->long_retry_limit);
9481         mutex_unlock(&priv->mutex);
9482         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9483                      priv->short_retry_limit, priv->long_retry_limit);
9484         return 0;
9485 }
9486
9487 static int ipw_wx_get_retry(struct net_device *dev,
9488                             struct iw_request_info *info,
9489                             union iwreq_data *wrqu, char *extra)
9490 {
9491         struct ipw_priv *priv = ieee80211_priv(dev);
9492
9493         mutex_lock(&priv->mutex);
9494         wrqu->retry.disabled = 0;
9495
9496         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9497                 mutex_unlock(&priv->mutex);
9498                 return -EINVAL;
9499         }
9500
9501         if (wrqu->retry.flags & IW_RETRY_LONG) {
9502                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9503                 wrqu->retry.value = priv->long_retry_limit;
9504         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9505                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9506                 wrqu->retry.value = priv->short_retry_limit;
9507         } else {
9508                 wrqu->retry.flags = IW_RETRY_LIMIT;
9509                 wrqu->retry.value = priv->short_retry_limit;
9510         }
9511         mutex_unlock(&priv->mutex);
9512
9513         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9514
9515         return 0;
9516 }
9517
9518 static int ipw_wx_set_scan(struct net_device *dev,
9519                            struct iw_request_info *info,
9520                            union iwreq_data *wrqu, char *extra)
9521 {
9522         struct ipw_priv *priv = ieee80211_priv(dev);
9523         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9524         struct delayed_work *work = NULL;
9525
9526         mutex_lock(&priv->mutex);
9527
9528         priv->user_requested_scan = 1;
9529
9530         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9531                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9532                         int len = min((int)req->essid_len,
9533                                       (int)sizeof(priv->direct_scan_ssid));
9534                         memcpy(priv->direct_scan_ssid, req->essid, len);
9535                         priv->direct_scan_ssid_len = len;
9536                         work = &priv->request_direct_scan;
9537                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9538                         work = &priv->request_passive_scan;
9539                 }
9540         } else {
9541                 /* Normal active broadcast scan */
9542                 work = &priv->request_scan;
9543         }
9544
9545         mutex_unlock(&priv->mutex);
9546
9547         IPW_DEBUG_WX("Start scan\n");
9548
9549         queue_delayed_work(priv->workqueue, work, 0);
9550
9551         return 0;
9552 }
9553
9554 static int ipw_wx_get_scan(struct net_device *dev,
9555                            struct iw_request_info *info,
9556                            union iwreq_data *wrqu, char *extra)
9557 {
9558         struct ipw_priv *priv = ieee80211_priv(dev);
9559         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9560 }
9561
9562 static int ipw_wx_set_encode(struct net_device *dev,
9563                              struct iw_request_info *info,
9564                              union iwreq_data *wrqu, char *key)
9565 {
9566         struct ipw_priv *priv = ieee80211_priv(dev);
9567         int ret;
9568         u32 cap = priv->capability;
9569
9570         mutex_lock(&priv->mutex);
9571         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9572
9573         /* In IBSS mode, we need to notify the firmware to update
9574          * the beacon info after we changed the capability. */
9575         if (cap != priv->capability &&
9576             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9577             priv->status & STATUS_ASSOCIATED)
9578                 ipw_disassociate(priv);
9579
9580         mutex_unlock(&priv->mutex);
9581         return ret;
9582 }
9583
9584 static int ipw_wx_get_encode(struct net_device *dev,
9585                              struct iw_request_info *info,
9586                              union iwreq_data *wrqu, char *key)
9587 {
9588         struct ipw_priv *priv = ieee80211_priv(dev);
9589         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9590 }
9591
9592 static int ipw_wx_set_power(struct net_device *dev,
9593                             struct iw_request_info *info,
9594                             union iwreq_data *wrqu, char *extra)
9595 {
9596         struct ipw_priv *priv = ieee80211_priv(dev);
9597         int err;
9598         mutex_lock(&priv->mutex);
9599         if (wrqu->power.disabled) {
9600                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9601                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9602                 if (err) {
9603                         IPW_DEBUG_WX("failed setting power mode.\n");
9604                         mutex_unlock(&priv->mutex);
9605                         return err;
9606                 }
9607                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9608                 mutex_unlock(&priv->mutex);
9609                 return 0;
9610         }
9611
9612         switch (wrqu->power.flags & IW_POWER_MODE) {
9613         case IW_POWER_ON:       /* If not specified */
9614         case IW_POWER_MODE:     /* If set all mask */
9615         case IW_POWER_ALL_R:    /* If explicitly state all */
9616                 break;
9617         default:                /* Otherwise we don't support it */
9618                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9619                              wrqu->power.flags);
9620                 mutex_unlock(&priv->mutex);
9621                 return -EOPNOTSUPP;
9622         }
9623
9624         /* If the user hasn't specified a power management mode yet, default
9625          * to BATTERY */
9626         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9627                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9628         else
9629                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9630
9631         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9632         if (err) {
9633                 IPW_DEBUG_WX("failed setting power mode.\n");
9634                 mutex_unlock(&priv->mutex);
9635                 return err;
9636         }
9637
9638         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9639         mutex_unlock(&priv->mutex);
9640         return 0;
9641 }
9642
9643 static int ipw_wx_get_power(struct net_device *dev,
9644                             struct iw_request_info *info,
9645                             union iwreq_data *wrqu, char *extra)
9646 {
9647         struct ipw_priv *priv = ieee80211_priv(dev);
9648         mutex_lock(&priv->mutex);
9649         if (!(priv->power_mode & IPW_POWER_ENABLED))
9650                 wrqu->power.disabled = 1;
9651         else
9652                 wrqu->power.disabled = 0;
9653
9654         mutex_unlock(&priv->mutex);
9655         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9656
9657         return 0;
9658 }
9659
9660 static int ipw_wx_set_powermode(struct net_device *dev,
9661                                 struct iw_request_info *info,
9662                                 union iwreq_data *wrqu, char *extra)
9663 {
9664         struct ipw_priv *priv = ieee80211_priv(dev);
9665         int mode = *(int *)extra;
9666         int err;
9667
9668         mutex_lock(&priv->mutex);
9669         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9670                 mode = IPW_POWER_AC;
9671
9672         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9673                 err = ipw_send_power_mode(priv, mode);
9674                 if (err) {
9675                         IPW_DEBUG_WX("failed setting power mode.\n");
9676                         mutex_unlock(&priv->mutex);
9677                         return err;
9678                 }
9679                 priv->power_mode = IPW_POWER_ENABLED | mode;
9680         }
9681         mutex_unlock(&priv->mutex);
9682         return 0;
9683 }
9684
9685 #define MAX_WX_STRING 80
9686 static int ipw_wx_get_powermode(struct net_device *dev,
9687                                 struct iw_request_info *info,
9688                                 union iwreq_data *wrqu, char *extra)
9689 {
9690         struct ipw_priv *priv = ieee80211_priv(dev);
9691         int level = IPW_POWER_LEVEL(priv->power_mode);
9692         char *p = extra;
9693
9694         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9695
9696         switch (level) {
9697         case IPW_POWER_AC:
9698                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9699                 break;
9700         case IPW_POWER_BATTERY:
9701                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9702                 break;
9703         default:
9704                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9705                               "(Timeout %dms, Period %dms)",
9706                               timeout_duration[level - 1] / 1000,
9707                               period_duration[level - 1] / 1000);
9708         }
9709
9710         if (!(priv->power_mode & IPW_POWER_ENABLED))
9711                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9712
9713         wrqu->data.length = p - extra + 1;
9714
9715         return 0;
9716 }
9717
9718 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9719                                     struct iw_request_info *info,
9720                                     union iwreq_data *wrqu, char *extra)
9721 {
9722         struct ipw_priv *priv = ieee80211_priv(dev);
9723         int mode = *(int *)extra;
9724         u8 band = 0, modulation = 0;
9725
9726         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9727                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9728                 return -EINVAL;
9729         }
9730         mutex_lock(&priv->mutex);
9731         if (priv->adapter == IPW_2915ABG) {
9732                 priv->ieee->abg_true = 1;
9733                 if (mode & IEEE_A) {
9734                         band |= IEEE80211_52GHZ_BAND;
9735                         modulation |= IEEE80211_OFDM_MODULATION;
9736                 } else
9737                         priv->ieee->abg_true = 0;
9738         } else {
9739                 if (mode & IEEE_A) {
9740                         IPW_WARNING("Attempt to set 2200BG into "
9741                                     "802.11a mode\n");
9742                         mutex_unlock(&priv->mutex);
9743                         return -EINVAL;
9744                 }
9745
9746                 priv->ieee->abg_true = 0;
9747         }
9748
9749         if (mode & IEEE_B) {
9750                 band |= IEEE80211_24GHZ_BAND;
9751                 modulation |= IEEE80211_CCK_MODULATION;
9752         } else
9753                 priv->ieee->abg_true = 0;
9754
9755         if (mode & IEEE_G) {
9756                 band |= IEEE80211_24GHZ_BAND;
9757                 modulation |= IEEE80211_OFDM_MODULATION;
9758         } else
9759                 priv->ieee->abg_true = 0;
9760
9761         priv->ieee->mode = mode;
9762         priv->ieee->freq_band = band;
9763         priv->ieee->modulation = modulation;
9764         init_supported_rates(priv, &priv->rates);
9765
9766         /* Network configuration changed -- force [re]association */
9767         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9768         if (!ipw_disassociate(priv)) {
9769                 ipw_send_supported_rates(priv, &priv->rates);
9770                 ipw_associate(priv);
9771         }
9772
9773         /* Update the band LEDs */
9774         ipw_led_band_on(priv);
9775
9776         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9777                      mode & IEEE_A ? 'a' : '.',
9778                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9779         mutex_unlock(&priv->mutex);
9780         return 0;
9781 }
9782
9783 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9784                                     struct iw_request_info *info,
9785                                     union iwreq_data *wrqu, char *extra)
9786 {
9787         struct ipw_priv *priv = ieee80211_priv(dev);
9788         mutex_lock(&priv->mutex);
9789         switch (priv->ieee->mode) {
9790         case IEEE_A:
9791                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9792                 break;
9793         case IEEE_B:
9794                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9795                 break;
9796         case IEEE_A | IEEE_B:
9797                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9798                 break;
9799         case IEEE_G:
9800                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9801                 break;
9802         case IEEE_A | IEEE_G:
9803                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9804                 break;
9805         case IEEE_B | IEEE_G:
9806                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9807                 break;
9808         case IEEE_A | IEEE_B | IEEE_G:
9809                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9810                 break;
9811         default:
9812                 strncpy(extra, "unknown", MAX_WX_STRING);
9813                 break;
9814         }
9815
9816         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9817
9818         wrqu->data.length = strlen(extra) + 1;
9819         mutex_unlock(&priv->mutex);
9820
9821         return 0;
9822 }
9823
9824 static int ipw_wx_set_preamble(struct net_device *dev,
9825                                struct iw_request_info *info,
9826                                union iwreq_data *wrqu, char *extra)
9827 {
9828         struct ipw_priv *priv = ieee80211_priv(dev);
9829         int mode = *(int *)extra;
9830         mutex_lock(&priv->mutex);
9831         /* Switching from SHORT -> LONG requires a disassociation */
9832         if (mode == 1) {
9833                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9834                         priv->config |= CFG_PREAMBLE_LONG;
9835
9836                         /* Network configuration changed -- force [re]association */
9837                         IPW_DEBUG_ASSOC
9838                             ("[re]association triggered due to preamble change.\n");
9839                         if (!ipw_disassociate(priv))
9840                                 ipw_associate(priv);
9841                 }
9842                 goto done;
9843         }
9844
9845         if (mode == 0) {
9846                 priv->config &= ~CFG_PREAMBLE_LONG;
9847                 goto done;
9848         }
9849         mutex_unlock(&priv->mutex);
9850         return -EINVAL;
9851
9852       done:
9853         mutex_unlock(&priv->mutex);
9854         return 0;
9855 }
9856
9857 static int ipw_wx_get_preamble(struct net_device *dev,
9858                                struct iw_request_info *info,
9859                                union iwreq_data *wrqu, char *extra)
9860 {
9861         struct ipw_priv *priv = ieee80211_priv(dev);
9862         mutex_lock(&priv->mutex);
9863         if (priv->config & CFG_PREAMBLE_LONG)
9864                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9865         else
9866                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9867         mutex_unlock(&priv->mutex);
9868         return 0;
9869 }
9870
9871 #ifdef CONFIG_IPW2200_MONITOR
9872 static int ipw_wx_set_monitor(struct net_device *dev,
9873                               struct iw_request_info *info,
9874                               union iwreq_data *wrqu, char *extra)
9875 {
9876         struct ipw_priv *priv = ieee80211_priv(dev);
9877         int *parms = (int *)extra;
9878         int enable = (parms[0] > 0);
9879         mutex_lock(&priv->mutex);
9880         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9881         if (enable) {
9882                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9883 #ifdef CONFIG_IPW2200_RADIOTAP
9884                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9885 #else
9886                         priv->net_dev->type = ARPHRD_IEEE80211;
9887 #endif
9888                         queue_work(priv->workqueue, &priv->adapter_restart);
9889                 }
9890
9891                 ipw_set_channel(priv, parms[1]);
9892         } else {
9893                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9894                         mutex_unlock(&priv->mutex);
9895                         return 0;
9896                 }
9897                 priv->net_dev->type = ARPHRD_ETHER;
9898                 queue_work(priv->workqueue, &priv->adapter_restart);
9899         }
9900         mutex_unlock(&priv->mutex);
9901         return 0;
9902 }
9903
9904 #endif                          /* CONFIG_IPW2200_MONITOR */
9905
9906 static int ipw_wx_reset(struct net_device *dev,
9907                         struct iw_request_info *info,
9908                         union iwreq_data *wrqu, char *extra)
9909 {
9910         struct ipw_priv *priv = ieee80211_priv(dev);
9911         IPW_DEBUG_WX("RESET\n");
9912         queue_work(priv->workqueue, &priv->adapter_restart);
9913         return 0;
9914 }
9915
9916 static int ipw_wx_sw_reset(struct net_device *dev,
9917                            struct iw_request_info *info,
9918                            union iwreq_data *wrqu, char *extra)
9919 {
9920         struct ipw_priv *priv = ieee80211_priv(dev);
9921         union iwreq_data wrqu_sec = {
9922                 .encoding = {
9923                              .flags = IW_ENCODE_DISABLED,
9924                              },
9925         };
9926         int ret;
9927
9928         IPW_DEBUG_WX("SW_RESET\n");
9929
9930         mutex_lock(&priv->mutex);
9931
9932         ret = ipw_sw_reset(priv, 2);
9933         if (!ret) {
9934                 free_firmware();
9935                 ipw_adapter_restart(priv);
9936         }
9937
9938         /* The SW reset bit might have been toggled on by the 'disable'
9939          * module parameter, so take appropriate action */
9940         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9941
9942         mutex_unlock(&priv->mutex);
9943         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9944         mutex_lock(&priv->mutex);
9945
9946         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9947                 /* Configuration likely changed -- force [re]association */
9948                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9949                                 "reset.\n");
9950                 if (!ipw_disassociate(priv))
9951                         ipw_associate(priv);
9952         }
9953
9954         mutex_unlock(&priv->mutex);
9955
9956         return 0;
9957 }
9958
9959 /* Rebase the WE IOCTLs to zero for the handler array */
9960 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9961 static iw_handler ipw_wx_handlers[] = {
9962         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9963         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9964         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9965         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9966         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9967         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9968         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9969         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9970         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9971         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9972         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9973         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9974         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9975         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9976         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9977         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9978         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9979         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9980         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9981         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9982         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9983         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9984         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9985         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9986         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9987         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9988         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9989         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9990         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9991         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9992         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9993         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9994         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9995         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9996         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9997         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9998         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9999         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10000         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10001         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10002         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10003 };
10004
10005 enum {
10006         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10007         IPW_PRIV_GET_POWER,
10008         IPW_PRIV_SET_MODE,
10009         IPW_PRIV_GET_MODE,
10010         IPW_PRIV_SET_PREAMBLE,
10011         IPW_PRIV_GET_PREAMBLE,
10012         IPW_PRIV_RESET,
10013         IPW_PRIV_SW_RESET,
10014 #ifdef CONFIG_IPW2200_MONITOR
10015         IPW_PRIV_SET_MONITOR,
10016 #endif
10017 };
10018
10019 static struct iw_priv_args ipw_priv_args[] = {
10020         {
10021          .cmd = IPW_PRIV_SET_POWER,
10022          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10023          .name = "set_power"},
10024         {
10025          .cmd = IPW_PRIV_GET_POWER,
10026          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10027          .name = "get_power"},
10028         {
10029          .cmd = IPW_PRIV_SET_MODE,
10030          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10031          .name = "set_mode"},
10032         {
10033          .cmd = IPW_PRIV_GET_MODE,
10034          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10035          .name = "get_mode"},
10036         {
10037          .cmd = IPW_PRIV_SET_PREAMBLE,
10038          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10039          .name = "set_preamble"},
10040         {
10041          .cmd = IPW_PRIV_GET_PREAMBLE,
10042          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10043          .name = "get_preamble"},
10044         {
10045          IPW_PRIV_RESET,
10046          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10047         {
10048          IPW_PRIV_SW_RESET,
10049          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10050 #ifdef CONFIG_IPW2200_MONITOR
10051         {
10052          IPW_PRIV_SET_MONITOR,
10053          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10054 #endif                          /* CONFIG_IPW2200_MONITOR */
10055 };
10056
10057 static iw_handler ipw_priv_handler[] = {
10058         ipw_wx_set_powermode,
10059         ipw_wx_get_powermode,
10060         ipw_wx_set_wireless_mode,
10061         ipw_wx_get_wireless_mode,
10062         ipw_wx_set_preamble,
10063         ipw_wx_get_preamble,
10064         ipw_wx_reset,
10065         ipw_wx_sw_reset,
10066 #ifdef CONFIG_IPW2200_MONITOR
10067         ipw_wx_set_monitor,
10068 #endif
10069 };
10070
10071 static struct iw_handler_def ipw_wx_handler_def = {
10072         .standard = ipw_wx_handlers,
10073         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10074         .num_private = ARRAY_SIZE(ipw_priv_handler),
10075         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10076         .private = ipw_priv_handler,
10077         .private_args = ipw_priv_args,
10078         .get_wireless_stats = ipw_get_wireless_stats,
10079 };
10080
10081 /*
10082  * Get wireless statistics.
10083  * Called by /proc/net/wireless
10084  * Also called by SIOCGIWSTATS
10085  */
10086 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10087 {
10088         struct ipw_priv *priv = ieee80211_priv(dev);
10089         struct iw_statistics *wstats;
10090
10091         wstats = &priv->wstats;
10092
10093         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10094          * netdev->get_wireless_stats seems to be called before fw is
10095          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10096          * and associated; if not associcated, the values are all meaningless
10097          * anyway, so set them all to NULL and INVALID */
10098         if (!(priv->status & STATUS_ASSOCIATED)) {
10099                 wstats->miss.beacon = 0;
10100                 wstats->discard.retries = 0;
10101                 wstats->qual.qual = 0;
10102                 wstats->qual.level = 0;
10103                 wstats->qual.noise = 0;
10104                 wstats->qual.updated = 7;
10105                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10106                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10107                 return wstats;
10108         }
10109
10110         wstats->qual.qual = priv->quality;
10111         wstats->qual.level = priv->exp_avg_rssi;
10112         wstats->qual.noise = priv->exp_avg_noise;
10113         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10114             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10115
10116         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10117         wstats->discard.retries = priv->last_tx_failures;
10118         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10119
10120 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10121         goto fail_get_ordinal;
10122         wstats->discard.retries += tx_retry; */
10123
10124         return wstats;
10125 }
10126
10127 /* net device stuff */
10128
10129 static  void init_sys_config(struct ipw_sys_config *sys_config)
10130 {
10131         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10132         sys_config->bt_coexistence = 0;
10133         sys_config->answer_broadcast_ssid_probe = 0;
10134         sys_config->accept_all_data_frames = 0;
10135         sys_config->accept_non_directed_frames = 1;
10136         sys_config->exclude_unicast_unencrypted = 0;
10137         sys_config->disable_unicast_decryption = 1;
10138         sys_config->exclude_multicast_unencrypted = 0;
10139         sys_config->disable_multicast_decryption = 1;
10140         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10141                 antenna = CFG_SYS_ANTENNA_BOTH;
10142         sys_config->antenna_diversity = antenna;
10143         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10144         sys_config->dot11g_auto_detection = 0;
10145         sys_config->enable_cts_to_self = 0;
10146         sys_config->bt_coexist_collision_thr = 0;
10147         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10148         sys_config->silence_threshold = 0x1e;
10149 }
10150
10151 static int ipw_net_open(struct net_device *dev)
10152 {
10153         IPW_DEBUG_INFO("dev->open\n");
10154         netif_start_queue(dev);
10155         return 0;
10156 }
10157
10158 static int ipw_net_stop(struct net_device *dev)
10159 {
10160         IPW_DEBUG_INFO("dev->close\n");
10161         netif_stop_queue(dev);
10162         return 0;
10163 }
10164
10165 /*
10166 todo:
10167
10168 modify to send one tfd per fragment instead of using chunking.  otherwise
10169 we need to heavily modify the ieee80211_skb_to_txb.
10170 */
10171
10172 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10173                              int pri)
10174 {
10175         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10176             txb->fragments[0]->data;
10177         int i = 0;
10178         struct tfd_frame *tfd;
10179 #ifdef CONFIG_IPW2200_QOS
10180         int tx_id = ipw_get_tx_queue_number(priv, pri);
10181         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10182 #else
10183         struct clx2_tx_queue *txq = &priv->txq[0];
10184 #endif
10185         struct clx2_queue *q = &txq->q;
10186         u8 id, hdr_len, unicast;
10187         u16 remaining_bytes;
10188         int fc;
10189
10190         if (!(priv->status & STATUS_ASSOCIATED))
10191                 goto drop;
10192
10193         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10194         switch (priv->ieee->iw_mode) {
10195         case IW_MODE_ADHOC:
10196                 unicast = !is_multicast_ether_addr(hdr->addr1);
10197                 id = ipw_find_station(priv, hdr->addr1);
10198                 if (id == IPW_INVALID_STATION) {
10199                         id = ipw_add_station(priv, hdr->addr1);
10200                         if (id == IPW_INVALID_STATION) {
10201                                 IPW_WARNING("Attempt to send data to "
10202                                             "invalid cell: %pM\n",
10203                                             hdr->addr1);
10204                                 goto drop;
10205                         }
10206                 }
10207                 break;
10208
10209         case IW_MODE_INFRA:
10210         default:
10211                 unicast = !is_multicast_ether_addr(hdr->addr3);
10212                 id = 0;
10213                 break;
10214         }
10215
10216         tfd = &txq->bd[q->first_empty];
10217         txq->txb[q->first_empty] = txb;
10218         memset(tfd, 0, sizeof(*tfd));
10219         tfd->u.data.station_number = id;
10220
10221         tfd->control_flags.message_type = TX_FRAME_TYPE;
10222         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10223
10224         tfd->u.data.cmd_id = DINO_CMD_TX;
10225         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10226         remaining_bytes = txb->payload_size;
10227
10228         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10229                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10230         else
10231                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10232
10233         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10234                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10235
10236         fc = le16_to_cpu(hdr->frame_ctl);
10237         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10238
10239         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10240
10241         if (likely(unicast))
10242                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10243
10244         if (txb->encrypted && !priv->ieee->host_encrypt) {
10245                 switch (priv->ieee->sec.level) {
10246                 case SEC_LEVEL_3:
10247                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10248                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10249                         /* XXX: ACK flag must be set for CCMP even if it
10250                          * is a multicast/broadcast packet, because CCMP
10251                          * group communication encrypted by GTK is
10252                          * actually done by the AP. */
10253                         if (!unicast)
10254                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10255
10256                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10257                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10258                         tfd->u.data.key_index = 0;
10259                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10260                         break;
10261                 case SEC_LEVEL_2:
10262                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10263                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10264                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10265                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10266                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10267                         break;
10268                 case SEC_LEVEL_1:
10269                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10270                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10271                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10272                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10273                             40)
10274                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10275                         else
10276                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10277                         break;
10278                 case SEC_LEVEL_0:
10279                         break;
10280                 default:
10281                         printk(KERN_ERR "Unknow security level %d\n",
10282                                priv->ieee->sec.level);
10283                         break;
10284                 }
10285         } else
10286                 /* No hardware encryption */
10287                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10288
10289 #ifdef CONFIG_IPW2200_QOS
10290         if (fc & IEEE80211_STYPE_QOS_DATA)
10291                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10292 #endif                          /* CONFIG_IPW2200_QOS */
10293
10294         /* payload */
10295         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10296                                                  txb->nr_frags));
10297         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10298                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10299         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10300                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10301                                i, le32_to_cpu(tfd->u.data.num_chunks),
10302                                txb->fragments[i]->len - hdr_len);
10303                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10304                              i, tfd->u.data.num_chunks,
10305                              txb->fragments[i]->len - hdr_len);
10306                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10307                            txb->fragments[i]->len - hdr_len);
10308
10309                 tfd->u.data.chunk_ptr[i] =
10310                     cpu_to_le32(pci_map_single
10311                                 (priv->pci_dev,
10312                                  txb->fragments[i]->data + hdr_len,
10313                                  txb->fragments[i]->len - hdr_len,
10314                                  PCI_DMA_TODEVICE));
10315                 tfd->u.data.chunk_len[i] =
10316                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10317         }
10318
10319         if (i != txb->nr_frags) {
10320                 struct sk_buff *skb;
10321                 u16 remaining_bytes = 0;
10322                 int j;
10323
10324                 for (j = i; j < txb->nr_frags; j++)
10325                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10326
10327                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10328                        remaining_bytes);
10329                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10330                 if (skb != NULL) {
10331                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10332                         for (j = i; j < txb->nr_frags; j++) {
10333                                 int size = txb->fragments[j]->len - hdr_len;
10334
10335                                 printk(KERN_INFO "Adding frag %d %d...\n",
10336                                        j, size);
10337                                 memcpy(skb_put(skb, size),
10338                                        txb->fragments[j]->data + hdr_len, size);
10339                         }
10340                         dev_kfree_skb_any(txb->fragments[i]);
10341                         txb->fragments[i] = skb;
10342                         tfd->u.data.chunk_ptr[i] =
10343                             cpu_to_le32(pci_map_single
10344                                         (priv->pci_dev, skb->data,
10345                                          remaining_bytes,
10346                                          PCI_DMA_TODEVICE));
10347
10348                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10349                 }
10350         }
10351
10352         /* kick DMA */
10353         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10354         ipw_write32(priv, q->reg_w, q->first_empty);
10355
10356         if (ipw_tx_queue_space(q) < q->high_mark)
10357                 netif_stop_queue(priv->net_dev);
10358
10359         return NETDEV_TX_OK;
10360
10361       drop:
10362         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10363         ieee80211_txb_free(txb);
10364         return NETDEV_TX_OK;
10365 }
10366
10367 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10368 {
10369         struct ipw_priv *priv = ieee80211_priv(dev);
10370 #ifdef CONFIG_IPW2200_QOS
10371         int tx_id = ipw_get_tx_queue_number(priv, pri);
10372         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10373 #else
10374         struct clx2_tx_queue *txq = &priv->txq[0];
10375 #endif                          /* CONFIG_IPW2200_QOS */
10376
10377         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10378                 return 1;
10379
10380         return 0;
10381 }
10382
10383 #ifdef CONFIG_IPW2200_PROMISCUOUS
10384 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10385                                       struct ieee80211_txb *txb)
10386 {
10387         struct ieee80211_rx_stats dummystats;
10388         struct ieee80211_hdr *hdr;
10389         u8 n;
10390         u16 filter = priv->prom_priv->filter;
10391         int hdr_only = 0;
10392
10393         if (filter & IPW_PROM_NO_TX)
10394                 return;
10395
10396         memset(&dummystats, 0, sizeof(dummystats));
10397
10398         /* Filtering of fragment chains is done agains the first fragment */
10399         hdr = (void *)txb->fragments[0]->data;
10400         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10401                 if (filter & IPW_PROM_NO_MGMT)
10402                         return;
10403                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10404                         hdr_only = 1;
10405         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10406                 if (filter & IPW_PROM_NO_CTL)
10407                         return;
10408                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10409                         hdr_only = 1;
10410         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10411                 if (filter & IPW_PROM_NO_DATA)
10412                         return;
10413                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10414                         hdr_only = 1;
10415         }
10416
10417         for(n=0; n<txb->nr_frags; ++n) {
10418                 struct sk_buff *src = txb->fragments[n];
10419                 struct sk_buff *dst;
10420                 struct ieee80211_radiotap_header *rt_hdr;
10421                 int len;
10422
10423                 if (hdr_only) {
10424                         hdr = (void *)src->data;
10425                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10426                 } else
10427                         len = src->len;
10428
10429                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10430                 if (!dst)
10431                         continue;
10432
10433                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10434
10435                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10436                 rt_hdr->it_pad = 0;
10437                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10438                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10439
10440                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10441                         ieee80211chan2mhz(priv->channel));
10442                 if (priv->channel > 14)         /* 802.11a */
10443                         *(__le16*)skb_put(dst, sizeof(u16)) =
10444                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10445                                              IEEE80211_CHAN_5GHZ);
10446                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10447                         *(__le16*)skb_put(dst, sizeof(u16)) =
10448                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10449                                              IEEE80211_CHAN_2GHZ);
10450                 else            /* 802.11g */
10451                         *(__le16*)skb_put(dst, sizeof(u16)) =
10452                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10453                                  IEEE80211_CHAN_2GHZ);
10454
10455                 rt_hdr->it_len = cpu_to_le16(dst->len);
10456
10457                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10458
10459                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10460                         dev_kfree_skb_any(dst);
10461         }
10462 }
10463 #endif
10464
10465 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10466                                    struct net_device *dev, int pri)
10467 {
10468         struct ipw_priv *priv = ieee80211_priv(dev);
10469         unsigned long flags;
10470         int ret;
10471
10472         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10473         spin_lock_irqsave(&priv->lock, flags);
10474
10475 #ifdef CONFIG_IPW2200_PROMISCUOUS
10476         if (rtap_iface && netif_running(priv->prom_net_dev))
10477                 ipw_handle_promiscuous_tx(priv, txb);
10478 #endif
10479
10480         ret = ipw_tx_skb(priv, txb, pri);
10481         if (ret == NETDEV_TX_OK)
10482                 __ipw_led_activity_on(priv);
10483         spin_unlock_irqrestore(&priv->lock, flags);
10484
10485         return ret;
10486 }
10487
10488 static void ipw_net_set_multicast_list(struct net_device *dev)
10489 {
10490
10491 }
10492
10493 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10494 {
10495         struct ipw_priv *priv = ieee80211_priv(dev);
10496         struct sockaddr *addr = p;
10497
10498         if (!is_valid_ether_addr(addr->sa_data))
10499                 return -EADDRNOTAVAIL;
10500         mutex_lock(&priv->mutex);
10501         priv->config |= CFG_CUSTOM_MAC;
10502         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10503         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10504                priv->net_dev->name, priv->mac_addr);
10505         queue_work(priv->workqueue, &priv->adapter_restart);
10506         mutex_unlock(&priv->mutex);
10507         return 0;
10508 }
10509
10510 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10511                                     struct ethtool_drvinfo *info)
10512 {
10513         struct ipw_priv *p = ieee80211_priv(dev);
10514         char vers[64];
10515         char date[32];
10516         u32 len;
10517
10518         strcpy(info->driver, DRV_NAME);
10519         strcpy(info->version, DRV_VERSION);
10520
10521         len = sizeof(vers);
10522         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10523         len = sizeof(date);
10524         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10525
10526         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10527                  vers, date);
10528         strcpy(info->bus_info, pci_name(p->pci_dev));
10529         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10530 }
10531
10532 static u32 ipw_ethtool_get_link(struct net_device *dev)
10533 {
10534         struct ipw_priv *priv = ieee80211_priv(dev);
10535         return (priv->status & STATUS_ASSOCIATED) != 0;
10536 }
10537
10538 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10539 {
10540         return IPW_EEPROM_IMAGE_SIZE;
10541 }
10542
10543 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10544                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10545 {
10546         struct ipw_priv *p = ieee80211_priv(dev);
10547
10548         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10549                 return -EINVAL;
10550         mutex_lock(&p->mutex);
10551         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10552         mutex_unlock(&p->mutex);
10553         return 0;
10554 }
10555
10556 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10557                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10558 {
10559         struct ipw_priv *p = ieee80211_priv(dev);
10560         int i;
10561
10562         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10563                 return -EINVAL;
10564         mutex_lock(&p->mutex);
10565         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10566         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10567                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10568         mutex_unlock(&p->mutex);
10569         return 0;
10570 }
10571
10572 static const struct ethtool_ops ipw_ethtool_ops = {
10573         .get_link = ipw_ethtool_get_link,
10574         .get_drvinfo = ipw_ethtool_get_drvinfo,
10575         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10576         .get_eeprom = ipw_ethtool_get_eeprom,
10577         .set_eeprom = ipw_ethtool_set_eeprom,
10578 };
10579
10580 static irqreturn_t ipw_isr(int irq, void *data)
10581 {
10582         struct ipw_priv *priv = data;
10583         u32 inta, inta_mask;
10584
10585         if (!priv)
10586                 return IRQ_NONE;
10587
10588         spin_lock(&priv->irq_lock);
10589
10590         if (!(priv->status & STATUS_INT_ENABLED)) {
10591                 /* IRQ is disabled */
10592                 goto none;
10593         }
10594
10595         inta = ipw_read32(priv, IPW_INTA_RW);
10596         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10597
10598         if (inta == 0xFFFFFFFF) {
10599                 /* Hardware disappeared */
10600                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10601                 goto none;
10602         }
10603
10604         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10605                 /* Shared interrupt */
10606                 goto none;
10607         }
10608
10609         /* tell the device to stop sending interrupts */
10610         __ipw_disable_interrupts(priv);
10611
10612         /* ack current interrupts */
10613         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10614         ipw_write32(priv, IPW_INTA_RW, inta);
10615
10616         /* Cache INTA value for our tasklet */
10617         priv->isr_inta = inta;
10618
10619         tasklet_schedule(&priv->irq_tasklet);
10620
10621         spin_unlock(&priv->irq_lock);
10622
10623         return IRQ_HANDLED;
10624       none:
10625         spin_unlock(&priv->irq_lock);
10626         return IRQ_NONE;
10627 }
10628
10629 static void ipw_rf_kill(void *adapter)
10630 {
10631         struct ipw_priv *priv = adapter;
10632         unsigned long flags;
10633
10634         spin_lock_irqsave(&priv->lock, flags);
10635
10636         if (rf_kill_active(priv)) {
10637                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10638                 if (priv->workqueue)
10639                         queue_delayed_work(priv->workqueue,
10640                                            &priv->rf_kill, 2 * HZ);
10641                 goto exit_unlock;
10642         }
10643
10644         /* RF Kill is now disabled, so bring the device back up */
10645
10646         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10647                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10648                                   "device\n");
10649
10650                 /* we can not do an adapter restart while inside an irq lock */
10651                 queue_work(priv->workqueue, &priv->adapter_restart);
10652         } else
10653                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10654                                   "enabled\n");
10655
10656       exit_unlock:
10657         spin_unlock_irqrestore(&priv->lock, flags);
10658 }
10659
10660 static void ipw_bg_rf_kill(struct work_struct *work)
10661 {
10662         struct ipw_priv *priv =
10663                 container_of(work, struct ipw_priv, rf_kill.work);
10664         mutex_lock(&priv->mutex);
10665         ipw_rf_kill(priv);
10666         mutex_unlock(&priv->mutex);
10667 }
10668
10669 static void ipw_link_up(struct ipw_priv *priv)
10670 {
10671         priv->last_seq_num = -1;
10672         priv->last_frag_num = -1;
10673         priv->last_packet_time = 0;
10674
10675         netif_carrier_on(priv->net_dev);
10676
10677         cancel_delayed_work(&priv->request_scan);
10678         cancel_delayed_work(&priv->request_direct_scan);
10679         cancel_delayed_work(&priv->request_passive_scan);
10680         cancel_delayed_work(&priv->scan_event);
10681         ipw_reset_stats(priv);
10682         /* Ensure the rate is updated immediately */
10683         priv->last_rate = ipw_get_current_rate(priv);
10684         ipw_gather_stats(priv);
10685         ipw_led_link_up(priv);
10686         notify_wx_assoc_event(priv);
10687
10688         if (priv->config & CFG_BACKGROUND_SCAN)
10689                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10690 }
10691
10692 static void ipw_bg_link_up(struct work_struct *work)
10693 {
10694         struct ipw_priv *priv =
10695                 container_of(work, struct ipw_priv, link_up);
10696         mutex_lock(&priv->mutex);
10697         ipw_link_up(priv);
10698         mutex_unlock(&priv->mutex);
10699 }
10700
10701 static void ipw_link_down(struct ipw_priv *priv)
10702 {
10703         ipw_led_link_down(priv);
10704         netif_carrier_off(priv->net_dev);
10705         notify_wx_assoc_event(priv);
10706
10707         /* Cancel any queued work ... */
10708         cancel_delayed_work(&priv->request_scan);
10709         cancel_delayed_work(&priv->request_direct_scan);
10710         cancel_delayed_work(&priv->request_passive_scan);
10711         cancel_delayed_work(&priv->adhoc_check);
10712         cancel_delayed_work(&priv->gather_stats);
10713
10714         ipw_reset_stats(priv);
10715
10716         if (!(priv->status & STATUS_EXIT_PENDING)) {
10717                 /* Queue up another scan... */
10718                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10719         } else
10720                 cancel_delayed_work(&priv->scan_event);
10721 }
10722
10723 static void ipw_bg_link_down(struct work_struct *work)
10724 {
10725         struct ipw_priv *priv =
10726                 container_of(work, struct ipw_priv, link_down);
10727         mutex_lock(&priv->mutex);
10728         ipw_link_down(priv);
10729         mutex_unlock(&priv->mutex);
10730 }
10731
10732 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10733 {
10734         int ret = 0;
10735
10736         priv->workqueue = create_workqueue(DRV_NAME);
10737         init_waitqueue_head(&priv->wait_command_queue);
10738         init_waitqueue_head(&priv->wait_state);
10739
10740         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10741         INIT_WORK(&priv->associate, ipw_bg_associate);
10742         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10743         INIT_WORK(&priv->system_config, ipw_system_config);
10744         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10745         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10746         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10747         INIT_WORK(&priv->up, ipw_bg_up);
10748         INIT_WORK(&priv->down, ipw_bg_down);
10749         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10750         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10751         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10752         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10753         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10754         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10755         INIT_WORK(&priv->roam, ipw_bg_roam);
10756         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10757         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10758         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10759         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10760         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10761         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10762         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10763
10764 #ifdef CONFIG_IPW2200_QOS
10765         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10766 #endif                          /* CONFIG_IPW2200_QOS */
10767
10768         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10769                      ipw_irq_tasklet, (unsigned long)priv);
10770
10771         return ret;
10772 }
10773
10774 static void shim__set_security(struct net_device *dev,
10775                                struct ieee80211_security *sec)
10776 {
10777         struct ipw_priv *priv = ieee80211_priv(dev);
10778         int i;
10779         for (i = 0; i < 4; i++) {
10780                 if (sec->flags & (1 << i)) {
10781                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10782                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10783                         if (sec->key_sizes[i] == 0)
10784                                 priv->ieee->sec.flags &= ~(1 << i);
10785                         else {
10786                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10787                                        sec->key_sizes[i]);
10788                                 priv->ieee->sec.flags |= (1 << i);
10789                         }
10790                         priv->status |= STATUS_SECURITY_UPDATED;
10791                 } else if (sec->level != SEC_LEVEL_1)
10792                         priv->ieee->sec.flags &= ~(1 << i);
10793         }
10794
10795         if (sec->flags & SEC_ACTIVE_KEY) {
10796                 if (sec->active_key <= 3) {
10797                         priv->ieee->sec.active_key = sec->active_key;
10798                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10799                 } else
10800                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10801                 priv->status |= STATUS_SECURITY_UPDATED;
10802         } else
10803                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10804
10805         if ((sec->flags & SEC_AUTH_MODE) &&
10806             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10807                 priv->ieee->sec.auth_mode = sec->auth_mode;
10808                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10809                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10810                         priv->capability |= CAP_SHARED_KEY;
10811                 else
10812                         priv->capability &= ~CAP_SHARED_KEY;
10813                 priv->status |= STATUS_SECURITY_UPDATED;
10814         }
10815
10816         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10817                 priv->ieee->sec.flags |= SEC_ENABLED;
10818                 priv->ieee->sec.enabled = sec->enabled;
10819                 priv->status |= STATUS_SECURITY_UPDATED;
10820                 if (sec->enabled)
10821                         priv->capability |= CAP_PRIVACY_ON;
10822                 else
10823                         priv->capability &= ~CAP_PRIVACY_ON;
10824         }
10825
10826         if (sec->flags & SEC_ENCRYPT)
10827                 priv->ieee->sec.encrypt = sec->encrypt;
10828
10829         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10830                 priv->ieee->sec.level = sec->level;
10831                 priv->ieee->sec.flags |= SEC_LEVEL;
10832                 priv->status |= STATUS_SECURITY_UPDATED;
10833         }
10834
10835         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10836                 ipw_set_hwcrypto_keys(priv);
10837
10838         /* To match current functionality of ipw2100 (which works well w/
10839          * various supplicants, we don't force a disassociate if the
10840          * privacy capability changes ... */
10841 #if 0
10842         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10843             (((priv->assoc_request.capability &
10844                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10845              (!(priv->assoc_request.capability &
10846                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10847                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10848                                 "change.\n");
10849                 ipw_disassociate(priv);
10850         }
10851 #endif
10852 }
10853
10854 static int init_supported_rates(struct ipw_priv *priv,
10855                                 struct ipw_supported_rates *rates)
10856 {
10857         /* TODO: Mask out rates based on priv->rates_mask */
10858
10859         memset(rates, 0, sizeof(*rates));
10860         /* configure supported rates */
10861         switch (priv->ieee->freq_band) {
10862         case IEEE80211_52GHZ_BAND:
10863                 rates->ieee_mode = IPW_A_MODE;
10864                 rates->purpose = IPW_RATE_CAPABILITIES;
10865                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10866                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10867                 break;
10868
10869         default:                /* Mixed or 2.4Ghz */
10870                 rates->ieee_mode = IPW_G_MODE;
10871                 rates->purpose = IPW_RATE_CAPABILITIES;
10872                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10873                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10874                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10875                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10876                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10877                 }
10878                 break;
10879         }
10880
10881         return 0;
10882 }
10883
10884 static int ipw_config(struct ipw_priv *priv)
10885 {
10886         /* This is only called from ipw_up, which resets/reloads the firmware
10887            so, we don't need to first disable the card before we configure
10888            it */
10889         if (ipw_set_tx_power(priv))
10890                 goto error;
10891
10892         /* initialize adapter address */
10893         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10894                 goto error;
10895
10896         /* set basic system config settings */
10897         init_sys_config(&priv->sys_config);
10898
10899         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10900          * Does not support BT priority yet (don't abort or defer our Tx) */
10901         if (bt_coexist) {
10902                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10903
10904                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10905                         priv->sys_config.bt_coexistence
10906                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10907                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10908                         priv->sys_config.bt_coexistence
10909                             |= CFG_BT_COEXISTENCE_OOB;
10910         }
10911
10912 #ifdef CONFIG_IPW2200_PROMISCUOUS
10913         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10914                 priv->sys_config.accept_all_data_frames = 1;
10915                 priv->sys_config.accept_non_directed_frames = 1;
10916                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10917                 priv->sys_config.accept_all_mgmt_frames = 1;
10918         }
10919 #endif
10920
10921         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10922                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10923         else
10924                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10925
10926         if (ipw_send_system_config(priv))
10927                 goto error;
10928
10929         init_supported_rates(priv, &priv->rates);
10930         if (ipw_send_supported_rates(priv, &priv->rates))
10931                 goto error;
10932
10933         /* Set request-to-send threshold */
10934         if (priv->rts_threshold) {
10935                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10936                         goto error;
10937         }
10938 #ifdef CONFIG_IPW2200_QOS
10939         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10940         ipw_qos_activate(priv, NULL);
10941 #endif                          /* CONFIG_IPW2200_QOS */
10942
10943         if (ipw_set_random_seed(priv))
10944                 goto error;
10945
10946         /* final state transition to the RUN state */
10947         if (ipw_send_host_complete(priv))
10948                 goto error;
10949
10950         priv->status |= STATUS_INIT;
10951
10952         ipw_led_init(priv);
10953         ipw_led_radio_on(priv);
10954         priv->notif_missed_beacons = 0;
10955
10956         /* Set hardware WEP key if it is configured. */
10957         if ((priv->capability & CAP_PRIVACY_ON) &&
10958             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10959             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10960                 ipw_set_hwcrypto_keys(priv);
10961
10962         return 0;
10963
10964       error:
10965         return -EIO;
10966 }
10967
10968 /*
10969  * NOTE:
10970  *
10971  * These tables have been tested in conjunction with the
10972  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10973  *
10974  * Altering this values, using it on other hardware, or in geographies
10975  * not intended for resale of the above mentioned Intel adapters has
10976  * not been tested.
10977  *
10978  * Remember to update the table in README.ipw2200 when changing this
10979  * table.
10980  *
10981  */
10982 static const struct ieee80211_geo ipw_geos[] = {
10983         {                       /* Restricted */
10984          "---",
10985          .bg_channels = 11,
10986          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10987                 {2427, 4}, {2432, 5}, {2437, 6},
10988                 {2442, 7}, {2447, 8}, {2452, 9},
10989                 {2457, 10}, {2462, 11}},
10990          },
10991
10992         {                       /* Custom US/Canada */
10993          "ZZF",
10994          .bg_channels = 11,
10995          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10996                 {2427, 4}, {2432, 5}, {2437, 6},
10997                 {2442, 7}, {2447, 8}, {2452, 9},
10998                 {2457, 10}, {2462, 11}},
10999          .a_channels = 8,
11000          .a = {{5180, 36},
11001                {5200, 40},
11002                {5220, 44},
11003                {5240, 48},
11004                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11005                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11006                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11007                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11008          },
11009
11010         {                       /* Rest of World */
11011          "ZZD",
11012          .bg_channels = 13,
11013          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11014                 {2427, 4}, {2432, 5}, {2437, 6},
11015                 {2442, 7}, {2447, 8}, {2452, 9},
11016                 {2457, 10}, {2462, 11}, {2467, 12},
11017                 {2472, 13}},
11018          },
11019
11020         {                       /* Custom USA & Europe & High */
11021          "ZZA",
11022          .bg_channels = 11,
11023          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11024                 {2427, 4}, {2432, 5}, {2437, 6},
11025                 {2442, 7}, {2447, 8}, {2452, 9},
11026                 {2457, 10}, {2462, 11}},
11027          .a_channels = 13,
11028          .a = {{5180, 36},
11029                {5200, 40},
11030                {5220, 44},
11031                {5240, 48},
11032                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11033                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11034                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11035                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11036                {5745, 149},
11037                {5765, 153},
11038                {5785, 157},
11039                {5805, 161},
11040                {5825, 165}},
11041          },
11042
11043         {                       /* Custom NA & Europe */
11044          "ZZB",
11045          .bg_channels = 11,
11046          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11047                 {2427, 4}, {2432, 5}, {2437, 6},
11048                 {2442, 7}, {2447, 8}, {2452, 9},
11049                 {2457, 10}, {2462, 11}},
11050          .a_channels = 13,
11051          .a = {{5180, 36},
11052                {5200, 40},
11053                {5220, 44},
11054                {5240, 48},
11055                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11056                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11057                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11058                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11059                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11060                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11061                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11062                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11063                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11064          },
11065
11066         {                       /* Custom Japan */
11067          "ZZC",
11068          .bg_channels = 11,
11069          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11070                 {2427, 4}, {2432, 5}, {2437, 6},
11071                 {2442, 7}, {2447, 8}, {2452, 9},
11072                 {2457, 10}, {2462, 11}},
11073          .a_channels = 4,
11074          .a = {{5170, 34}, {5190, 38},
11075                {5210, 42}, {5230, 46}},
11076          },
11077
11078         {                       /* Custom */
11079          "ZZM",
11080          .bg_channels = 11,
11081          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082                 {2427, 4}, {2432, 5}, {2437, 6},
11083                 {2442, 7}, {2447, 8}, {2452, 9},
11084                 {2457, 10}, {2462, 11}},
11085          },
11086
11087         {                       /* Europe */
11088          "ZZE",
11089          .bg_channels = 13,
11090          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11091                 {2427, 4}, {2432, 5}, {2437, 6},
11092                 {2442, 7}, {2447, 8}, {2452, 9},
11093                 {2457, 10}, {2462, 11}, {2467, 12},
11094                 {2472, 13}},
11095          .a_channels = 19,
11096          .a = {{5180, 36},
11097                {5200, 40},
11098                {5220, 44},
11099                {5240, 48},
11100                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11101                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11102                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11103                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11104                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11105                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11106                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11107                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11108                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11109                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11110                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11111                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11112                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11113                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11114                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11115          },
11116
11117         {                       /* Custom Japan */
11118          "ZZJ",
11119          .bg_channels = 14,
11120          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11121                 {2427, 4}, {2432, 5}, {2437, 6},
11122                 {2442, 7}, {2447, 8}, {2452, 9},
11123                 {2457, 10}, {2462, 11}, {2467, 12},
11124                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11125          .a_channels = 4,
11126          .a = {{5170, 34}, {5190, 38},
11127                {5210, 42}, {5230, 46}},
11128          },
11129
11130         {                       /* Rest of World */
11131          "ZZR",
11132          .bg_channels = 14,
11133          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11134                 {2427, 4}, {2432, 5}, {2437, 6},
11135                 {2442, 7}, {2447, 8}, {2452, 9},
11136                 {2457, 10}, {2462, 11}, {2467, 12},
11137                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11138                              IEEE80211_CH_PASSIVE_ONLY}},
11139          },
11140
11141         {                       /* High Band */
11142          "ZZH",
11143          .bg_channels = 13,
11144          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11145                 {2427, 4}, {2432, 5}, {2437, 6},
11146                 {2442, 7}, {2447, 8}, {2452, 9},
11147                 {2457, 10}, {2462, 11},
11148                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11149                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11150          .a_channels = 4,
11151          .a = {{5745, 149}, {5765, 153},
11152                {5785, 157}, {5805, 161}},
11153          },
11154
11155         {                       /* Custom Europe */
11156          "ZZG",
11157          .bg_channels = 13,
11158          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11159                 {2427, 4}, {2432, 5}, {2437, 6},
11160                 {2442, 7}, {2447, 8}, {2452, 9},
11161                 {2457, 10}, {2462, 11},
11162                 {2467, 12}, {2472, 13}},
11163          .a_channels = 4,
11164          .a = {{5180, 36}, {5200, 40},
11165                {5220, 44}, {5240, 48}},
11166          },
11167
11168         {                       /* Europe */
11169          "ZZK",
11170          .bg_channels = 13,
11171          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11172                 {2427, 4}, {2432, 5}, {2437, 6},
11173                 {2442, 7}, {2447, 8}, {2452, 9},
11174                 {2457, 10}, {2462, 11},
11175                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11176                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11177          .a_channels = 24,
11178          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11179                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11180                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11181                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11182                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11183                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11184                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11185                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11186                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11187                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11188                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11189                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11190                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11191                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11192                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11193                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11194                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11195                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11196                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11197                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11198                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11199                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11200                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11201                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11202          },
11203
11204         {                       /* Europe */
11205          "ZZL",
11206          .bg_channels = 11,
11207          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11208                 {2427, 4}, {2432, 5}, {2437, 6},
11209                 {2442, 7}, {2447, 8}, {2452, 9},
11210                 {2457, 10}, {2462, 11}},
11211          .a_channels = 13,
11212          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11213                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11214                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11215                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11216                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11217                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11218                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11219                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11220                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11221                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11222                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11223                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11224                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11225          }
11226 };
11227
11228 #define MAX_HW_RESTARTS 5
11229 static int ipw_up(struct ipw_priv *priv)
11230 {
11231         int rc, i, j;
11232
11233         /* Age scan list entries found before suspend */
11234         if (priv->suspend_time) {
11235                 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11236                 priv->suspend_time = 0;
11237         }
11238
11239         if (priv->status & STATUS_EXIT_PENDING)
11240                 return -EIO;
11241
11242         if (cmdlog && !priv->cmdlog) {
11243                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11244                                        GFP_KERNEL);
11245                 if (priv->cmdlog == NULL) {
11246                         IPW_ERROR("Error allocating %d command log entries.\n",
11247                                   cmdlog);
11248                         return -ENOMEM;
11249                 } else {
11250                         priv->cmdlog_len = cmdlog;
11251                 }
11252         }
11253
11254         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11255                 /* Load the microcode, firmware, and eeprom.
11256                  * Also start the clocks. */
11257                 rc = ipw_load(priv);
11258                 if (rc) {
11259                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11260                         return rc;
11261                 }
11262
11263                 ipw_init_ordinals(priv);
11264                 if (!(priv->config & CFG_CUSTOM_MAC))
11265                         eeprom_parse_mac(priv, priv->mac_addr);
11266                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11267
11268                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11269                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11270                                     ipw_geos[j].name, 3))
11271                                 break;
11272                 }
11273                 if (j == ARRAY_SIZE(ipw_geos)) {
11274                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11275                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11276                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11277                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11278                         j = 0;
11279                 }
11280                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11281                         IPW_WARNING("Could not set geography.");
11282                         return 0;
11283                 }
11284
11285                 if (priv->status & STATUS_RF_KILL_SW) {
11286                         IPW_WARNING("Radio disabled by module parameter.\n");
11287                         return 0;
11288                 } else if (rf_kill_active(priv)) {
11289                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11290                                     "Kill switch must be turned off for "
11291                                     "wireless networking to work.\n");
11292                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11293                                            2 * HZ);
11294                         return 0;
11295                 }
11296
11297                 rc = ipw_config(priv);
11298                 if (!rc) {
11299                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11300
11301                         /* If configure to try and auto-associate, kick
11302                          * off a scan. */
11303                         queue_delayed_work(priv->workqueue,
11304                                            &priv->request_scan, 0);
11305
11306                         return 0;
11307                 }
11308
11309                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11310                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11311                                i, MAX_HW_RESTARTS);
11312
11313                 /* We had an error bringing up the hardware, so take it
11314                  * all the way back down so we can try again */
11315                 ipw_down(priv);
11316         }
11317
11318         /* tried to restart and config the device for as long as our
11319          * patience could withstand */
11320         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11321
11322         return -EIO;
11323 }
11324
11325 static void ipw_bg_up(struct work_struct *work)
11326 {
11327         struct ipw_priv *priv =
11328                 container_of(work, struct ipw_priv, up);
11329         mutex_lock(&priv->mutex);
11330         ipw_up(priv);
11331         mutex_unlock(&priv->mutex);
11332 }
11333
11334 static void ipw_deinit(struct ipw_priv *priv)
11335 {
11336         int i;
11337
11338         if (priv->status & STATUS_SCANNING) {
11339                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11340                 ipw_abort_scan(priv);
11341         }
11342
11343         if (priv->status & STATUS_ASSOCIATED) {
11344                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11345                 ipw_disassociate(priv);
11346         }
11347
11348         ipw_led_shutdown(priv);
11349
11350         /* Wait up to 1s for status to change to not scanning and not
11351          * associated (disassociation can take a while for a ful 802.11
11352          * exchange */
11353         for (i = 1000; i && (priv->status &
11354                              (STATUS_DISASSOCIATING |
11355                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11356                 udelay(10);
11357
11358         if (priv->status & (STATUS_DISASSOCIATING |
11359                             STATUS_ASSOCIATED | STATUS_SCANNING))
11360                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11361         else
11362                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11363
11364         /* Attempt to disable the card */
11365         ipw_send_card_disable(priv, 0);
11366
11367         priv->status &= ~STATUS_INIT;
11368 }
11369
11370 static void ipw_down(struct ipw_priv *priv)
11371 {
11372         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11373
11374         priv->status |= STATUS_EXIT_PENDING;
11375
11376         if (ipw_is_init(priv))
11377                 ipw_deinit(priv);
11378
11379         /* Wipe out the EXIT_PENDING status bit if we are not actually
11380          * exiting the module */
11381         if (!exit_pending)
11382                 priv->status &= ~STATUS_EXIT_PENDING;
11383
11384         /* tell the device to stop sending interrupts */
11385         ipw_disable_interrupts(priv);
11386
11387         /* Clear all bits but the RF Kill */
11388         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11389         netif_carrier_off(priv->net_dev);
11390
11391         ipw_stop_nic(priv);
11392
11393         ipw_led_radio_off(priv);
11394 }
11395
11396 static void ipw_bg_down(struct work_struct *work)
11397 {
11398         struct ipw_priv *priv =
11399                 container_of(work, struct ipw_priv, down);
11400         mutex_lock(&priv->mutex);
11401         ipw_down(priv);
11402         mutex_unlock(&priv->mutex);
11403 }
11404
11405 /* Called by register_netdev() */
11406 static int ipw_net_init(struct net_device *dev)
11407 {
11408         struct ipw_priv *priv = ieee80211_priv(dev);
11409         mutex_lock(&priv->mutex);
11410
11411         if (ipw_up(priv)) {
11412                 mutex_unlock(&priv->mutex);
11413                 return -EIO;
11414         }
11415
11416         mutex_unlock(&priv->mutex);
11417         return 0;
11418 }
11419
11420 /* PCI driver stuff */
11421 static struct pci_device_id card_ids[] = {
11422         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11423         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11424         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11425         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11426         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11427         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11428         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11429         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11430         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11431         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11432         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11433         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11434         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11435         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11436         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11437         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11438         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11439         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11440         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11441         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11442         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11443         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11444
11445         /* required last entry */
11446         {0,}
11447 };
11448
11449 MODULE_DEVICE_TABLE(pci, card_ids);
11450
11451 static struct attribute *ipw_sysfs_entries[] = {
11452         &dev_attr_rf_kill.attr,
11453         &dev_attr_direct_dword.attr,
11454         &dev_attr_indirect_byte.attr,
11455         &dev_attr_indirect_dword.attr,
11456         &dev_attr_mem_gpio_reg.attr,
11457         &dev_attr_command_event_reg.attr,
11458         &dev_attr_nic_type.attr,
11459         &dev_attr_status.attr,
11460         &dev_attr_cfg.attr,
11461         &dev_attr_error.attr,
11462         &dev_attr_event_log.attr,
11463         &dev_attr_cmd_log.attr,
11464         &dev_attr_eeprom_delay.attr,
11465         &dev_attr_ucode_version.attr,
11466         &dev_attr_rtc.attr,
11467         &dev_attr_scan_age.attr,
11468         &dev_attr_led.attr,
11469         &dev_attr_speed_scan.attr,
11470         &dev_attr_net_stats.attr,
11471         &dev_attr_channels.attr,
11472 #ifdef CONFIG_IPW2200_PROMISCUOUS
11473         &dev_attr_rtap_iface.attr,
11474         &dev_attr_rtap_filter.attr,
11475 #endif
11476         NULL
11477 };
11478
11479 static struct attribute_group ipw_attribute_group = {
11480         .name = NULL,           /* put in device directory */
11481         .attrs = ipw_sysfs_entries,
11482 };
11483
11484 #ifdef CONFIG_IPW2200_PROMISCUOUS
11485 static int ipw_prom_open(struct net_device *dev)
11486 {
11487         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11488         struct ipw_priv *priv = prom_priv->priv;
11489
11490         IPW_DEBUG_INFO("prom dev->open\n");
11491         netif_carrier_off(dev);
11492
11493         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11494                 priv->sys_config.accept_all_data_frames = 1;
11495                 priv->sys_config.accept_non_directed_frames = 1;
11496                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11497                 priv->sys_config.accept_all_mgmt_frames = 1;
11498
11499                 ipw_send_system_config(priv);
11500         }
11501
11502         return 0;
11503 }
11504
11505 static int ipw_prom_stop(struct net_device *dev)
11506 {
11507         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11508         struct ipw_priv *priv = prom_priv->priv;
11509
11510         IPW_DEBUG_INFO("prom dev->stop\n");
11511
11512         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11513                 priv->sys_config.accept_all_data_frames = 0;
11514                 priv->sys_config.accept_non_directed_frames = 0;
11515                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11516                 priv->sys_config.accept_all_mgmt_frames = 0;
11517
11518                 ipw_send_system_config(priv);
11519         }
11520
11521         return 0;
11522 }
11523
11524 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11525 {
11526         IPW_DEBUG_INFO("prom dev->xmit\n");
11527         return -EOPNOTSUPP;
11528 }
11529
11530 static const struct net_device_ops ipw_prom_netdev_ops = {
11531         .ndo_open               = ipw_prom_open,
11532         .ndo_stop               = ipw_prom_stop,
11533         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11534         .ndo_change_mtu         = ieee80211_change_mtu,
11535         .ndo_set_mac_address    = eth_mac_addr,
11536         .ndo_validate_addr      = eth_validate_addr,
11537 };
11538
11539 static int ipw_prom_alloc(struct ipw_priv *priv)
11540 {
11541         int rc = 0;
11542
11543         if (priv->prom_net_dev)
11544                 return -EPERM;
11545
11546         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11547         if (priv->prom_net_dev == NULL)
11548                 return -ENOMEM;
11549
11550         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11551         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11552         priv->prom_priv->priv = priv;
11553
11554         strcpy(priv->prom_net_dev->name, "rtap%d");
11555         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11556
11557         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11558         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11559
11560         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11561         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11562
11563         rc = register_netdev(priv->prom_net_dev);
11564         if (rc) {
11565                 free_ieee80211(priv->prom_net_dev);
11566                 priv->prom_net_dev = NULL;
11567                 return rc;
11568         }
11569
11570         return 0;
11571 }
11572
11573 static void ipw_prom_free(struct ipw_priv *priv)
11574 {
11575         if (!priv->prom_net_dev)
11576                 return;
11577
11578         unregister_netdev(priv->prom_net_dev);
11579         free_ieee80211(priv->prom_net_dev);
11580
11581         priv->prom_net_dev = NULL;
11582 }
11583
11584 #endif
11585
11586 static const struct net_device_ops ipw_netdev_ops = {
11587         .ndo_init               = ipw_net_init,
11588         .ndo_open               = ipw_net_open,
11589         .ndo_stop               = ipw_net_stop,
11590         .ndo_set_multicast_list = ipw_net_set_multicast_list,
11591         .ndo_set_mac_address    = ipw_net_set_mac_address,
11592         .ndo_start_xmit         = ieee80211_xmit,
11593         .ndo_change_mtu         = ieee80211_change_mtu,
11594         .ndo_validate_addr      = eth_validate_addr,
11595 };
11596
11597 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11598                                    const struct pci_device_id *ent)
11599 {
11600         int err = 0;
11601         struct net_device *net_dev;
11602         void __iomem *base;
11603         u32 length, val;
11604         struct ipw_priv *priv;
11605         int i;
11606
11607         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11608         if (net_dev == NULL) {
11609                 err = -ENOMEM;
11610                 goto out;
11611         }
11612
11613         priv = ieee80211_priv(net_dev);
11614         priv->ieee = netdev_priv(net_dev);
11615
11616         priv->net_dev = net_dev;
11617         priv->pci_dev = pdev;
11618         ipw_debug_level = debug;
11619         spin_lock_init(&priv->irq_lock);
11620         spin_lock_init(&priv->lock);
11621         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11622                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11623
11624         mutex_init(&priv->mutex);
11625         if (pci_enable_device(pdev)) {
11626                 err = -ENODEV;
11627                 goto out_free_ieee80211;
11628         }
11629
11630         pci_set_master(pdev);
11631
11632         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11633         if (!err)
11634                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11635         if (err) {
11636                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11637                 goto out_pci_disable_device;
11638         }
11639
11640         pci_set_drvdata(pdev, priv);
11641
11642         err = pci_request_regions(pdev, DRV_NAME);
11643         if (err)
11644                 goto out_pci_disable_device;
11645
11646         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11647          * PCI Tx retries from interfering with C3 CPU state */
11648         pci_read_config_dword(pdev, 0x40, &val);
11649         if ((val & 0x0000ff00) != 0)
11650                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11651
11652         length = pci_resource_len(pdev, 0);
11653         priv->hw_len = length;
11654
11655         base = pci_ioremap_bar(pdev, 0);
11656         if (!base) {
11657                 err = -ENODEV;
11658                 goto out_pci_release_regions;
11659         }
11660
11661         priv->hw_base = base;
11662         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11663         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11664
11665         err = ipw_setup_deferred_work(priv);
11666         if (err) {
11667                 IPW_ERROR("Unable to setup deferred work\n");
11668                 goto out_iounmap;
11669         }
11670
11671         ipw_sw_reset(priv, 1);
11672
11673         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11674         if (err) {
11675                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11676                 goto out_destroy_workqueue;
11677         }
11678
11679         SET_NETDEV_DEV(net_dev, &pdev->dev);
11680
11681         mutex_lock(&priv->mutex);
11682
11683         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11684         priv->ieee->set_security = shim__set_security;
11685         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11686
11687 #ifdef CONFIG_IPW2200_QOS
11688         priv->ieee->is_qos_active = ipw_is_qos_active;
11689         priv->ieee->handle_probe_response = ipw_handle_beacon;
11690         priv->ieee->handle_beacon = ipw_handle_probe_response;
11691         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11692 #endif                          /* CONFIG_IPW2200_QOS */
11693
11694         priv->ieee->perfect_rssi = -20;
11695         priv->ieee->worst_rssi = -85;
11696
11697         net_dev->netdev_ops = &ipw_netdev_ops;
11698         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11699         net_dev->wireless_data = &priv->wireless_data;
11700         net_dev->wireless_handlers = &ipw_wx_handler_def;
11701         net_dev->ethtool_ops = &ipw_ethtool_ops;
11702         net_dev->irq = pdev->irq;
11703         net_dev->base_addr = (unsigned long)priv->hw_base;
11704         net_dev->mem_start = pci_resource_start(pdev, 0);
11705         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11706
11707         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11708         if (err) {
11709                 IPW_ERROR("failed to create sysfs device attributes\n");
11710                 mutex_unlock(&priv->mutex);
11711                 goto out_release_irq;
11712         }
11713
11714         mutex_unlock(&priv->mutex);
11715         err = register_netdev(net_dev);
11716         if (err) {
11717                 IPW_ERROR("failed to register network device\n");
11718                 goto out_remove_sysfs;
11719         }
11720
11721 #ifdef CONFIG_IPW2200_PROMISCUOUS
11722         if (rtap_iface) {
11723                 err = ipw_prom_alloc(priv);
11724                 if (err) {
11725                         IPW_ERROR("Failed to register promiscuous network "
11726                                   "device (error %d).\n", err);
11727                         unregister_netdev(priv->net_dev);
11728                         goto out_remove_sysfs;
11729                 }
11730         }
11731 #endif
11732
11733         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11734                "channels, %d 802.11a channels)\n",
11735                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11736                priv->ieee->geo.a_channels);
11737
11738         return 0;
11739
11740       out_remove_sysfs:
11741         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11742       out_release_irq:
11743         free_irq(pdev->irq, priv);
11744       out_destroy_workqueue:
11745         destroy_workqueue(priv->workqueue);
11746         priv->workqueue = NULL;
11747       out_iounmap:
11748         iounmap(priv->hw_base);
11749       out_pci_release_regions:
11750         pci_release_regions(pdev);
11751       out_pci_disable_device:
11752         pci_disable_device(pdev);
11753         pci_set_drvdata(pdev, NULL);
11754       out_free_ieee80211:
11755         free_ieee80211(priv->net_dev);
11756       out:
11757         return err;
11758 }
11759
11760 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11761 {
11762         struct ipw_priv *priv = pci_get_drvdata(pdev);
11763         struct list_head *p, *q;
11764         int i;
11765
11766         if (!priv)
11767                 return;
11768
11769         mutex_lock(&priv->mutex);
11770
11771         priv->status |= STATUS_EXIT_PENDING;
11772         ipw_down(priv);
11773         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11774
11775         mutex_unlock(&priv->mutex);
11776
11777         unregister_netdev(priv->net_dev);
11778
11779         if (priv->rxq) {
11780                 ipw_rx_queue_free(priv, priv->rxq);
11781                 priv->rxq = NULL;
11782         }
11783         ipw_tx_queue_free(priv);
11784
11785         if (priv->cmdlog) {
11786                 kfree(priv->cmdlog);
11787                 priv->cmdlog = NULL;
11788         }
11789         /* ipw_down will ensure that there is no more pending work
11790          * in the workqueue's, so we can safely remove them now. */
11791         cancel_delayed_work(&priv->adhoc_check);
11792         cancel_delayed_work(&priv->gather_stats);
11793         cancel_delayed_work(&priv->request_scan);
11794         cancel_delayed_work(&priv->request_direct_scan);
11795         cancel_delayed_work(&priv->request_passive_scan);
11796         cancel_delayed_work(&priv->scan_event);
11797         cancel_delayed_work(&priv->rf_kill);
11798         cancel_delayed_work(&priv->scan_check);
11799         destroy_workqueue(priv->workqueue);
11800         priv->workqueue = NULL;
11801
11802         /* Free MAC hash list for ADHOC */
11803         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11804                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11805                         list_del(p);
11806                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11807                 }
11808         }
11809
11810         kfree(priv->error);
11811         priv->error = NULL;
11812
11813 #ifdef CONFIG_IPW2200_PROMISCUOUS
11814         ipw_prom_free(priv);
11815 #endif
11816
11817         free_irq(pdev->irq, priv);
11818         iounmap(priv->hw_base);
11819         pci_release_regions(pdev);
11820         pci_disable_device(pdev);
11821         pci_set_drvdata(pdev, NULL);
11822         free_ieee80211(priv->net_dev);
11823         free_firmware();
11824 }
11825
11826 #ifdef CONFIG_PM
11827 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11828 {
11829         struct ipw_priv *priv = pci_get_drvdata(pdev);
11830         struct net_device *dev = priv->net_dev;
11831
11832         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11833
11834         /* Take down the device; powers it off, etc. */
11835         ipw_down(priv);
11836
11837         /* Remove the PRESENT state of the device */
11838         netif_device_detach(dev);
11839
11840         pci_save_state(pdev);
11841         pci_disable_device(pdev);
11842         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11843
11844         priv->suspend_at = get_seconds();
11845
11846         return 0;
11847 }
11848
11849 static int ipw_pci_resume(struct pci_dev *pdev)
11850 {
11851         struct ipw_priv *priv = pci_get_drvdata(pdev);
11852         struct net_device *dev = priv->net_dev;
11853         int err;
11854         u32 val;
11855
11856         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11857
11858         pci_set_power_state(pdev, PCI_D0);
11859         err = pci_enable_device(pdev);
11860         if (err) {
11861                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11862                        dev->name);
11863                 return err;
11864         }
11865         pci_restore_state(pdev);
11866
11867         /*
11868          * Suspend/Resume resets the PCI configuration space, so we have to
11869          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11870          * from interfering with C3 CPU state. pci_restore_state won't help
11871          * here since it only restores the first 64 bytes pci config header.
11872          */
11873         pci_read_config_dword(pdev, 0x40, &val);
11874         if ((val & 0x0000ff00) != 0)
11875                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11876
11877         /* Set the device back into the PRESENT state; this will also wake
11878          * the queue of needed */
11879         netif_device_attach(dev);
11880
11881         priv->suspend_time = get_seconds() - priv->suspend_at;
11882
11883         /* Bring the device back up */
11884         queue_work(priv->workqueue, &priv->up);
11885
11886         return 0;
11887 }
11888 #endif
11889
11890 static void ipw_pci_shutdown(struct pci_dev *pdev)
11891 {
11892         struct ipw_priv *priv = pci_get_drvdata(pdev);
11893
11894         /* Take down the device; powers it off, etc. */
11895         ipw_down(priv);
11896
11897         pci_disable_device(pdev);
11898 }
11899
11900 /* driver initialization stuff */
11901 static struct pci_driver ipw_driver = {
11902         .name = DRV_NAME,
11903         .id_table = card_ids,
11904         .probe = ipw_pci_probe,
11905         .remove = __devexit_p(ipw_pci_remove),
11906 #ifdef CONFIG_PM
11907         .suspend = ipw_pci_suspend,
11908         .resume = ipw_pci_resume,
11909 #endif
11910         .shutdown = ipw_pci_shutdown,
11911 };
11912
11913 static int __init ipw_init(void)
11914 {
11915         int ret;
11916
11917         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11918         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11919
11920         ret = pci_register_driver(&ipw_driver);
11921         if (ret) {
11922                 IPW_ERROR("Unable to initialize PCI module\n");
11923                 return ret;
11924         }
11925
11926         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11927         if (ret) {
11928                 IPW_ERROR("Unable to create driver sysfs file\n");
11929                 pci_unregister_driver(&ipw_driver);
11930                 return ret;
11931         }
11932
11933         return ret;
11934 }
11935
11936 static void __exit ipw_exit(void)
11937 {
11938         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11939         pci_unregister_driver(&ipw_driver);
11940 }
11941
11942 module_param(disable, int, 0444);
11943 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11944
11945 module_param(associate, int, 0444);
11946 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11947
11948 module_param(auto_create, int, 0444);
11949 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11950
11951 module_param(led, int, 0444);
11952 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11953
11954 module_param(debug, int, 0444);
11955 MODULE_PARM_DESC(debug, "debug output mask");
11956
11957 module_param(channel, int, 0444);
11958 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11959
11960 #ifdef CONFIG_IPW2200_PROMISCUOUS
11961 module_param(rtap_iface, int, 0444);
11962 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11963 #endif
11964
11965 #ifdef CONFIG_IPW2200_QOS
11966 module_param(qos_enable, int, 0444);
11967 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11968
11969 module_param(qos_burst_enable, int, 0444);
11970 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11971
11972 module_param(qos_no_ack_mask, int, 0444);
11973 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11974
11975 module_param(burst_duration_CCK, int, 0444);
11976 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11977
11978 module_param(burst_duration_OFDM, int, 0444);
11979 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11980 #endif                          /* CONFIG_IPW2200_QOS */
11981
11982 #ifdef CONFIG_IPW2200_MONITOR
11983 module_param(mode, int, 0444);
11984 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11985 #else
11986 module_param(mode, int, 0444);
11987 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11988 #endif
11989
11990 module_param(bt_coexist, int, 0444);
11991 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11992
11993 module_param(hwcrypto, int, 0444);
11994 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11995
11996 module_param(cmdlog, int, 0444);
11997 MODULE_PARM_DESC(cmdlog,
11998                  "allocate a ring buffer for logging firmware commands");
11999
12000 module_param(roaming, int, 0444);
12001 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12002
12003 module_param(antenna, int, 0444);
12004 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12005
12006 module_exit(ipw_exit);
12007 module_init(ipw_init);