Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / net / wireless / util.c
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/bitops.h>
7 #include <linux/etherdevice.h>
8 #include <net/cfg80211.h>
9 #include <net/ip.h>
10 #include "core.h"
11
12 struct ieee80211_rate *
13 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
14                             u32 basic_rates, int bitrate)
15 {
16         struct ieee80211_rate *result = &sband->bitrates[0];
17         int i;
18
19         for (i = 0; i < sband->n_bitrates; i++) {
20                 if (!(basic_rates & BIT(i)))
21                         continue;
22                 if (sband->bitrates[i].bitrate > bitrate)
23                         continue;
24                 result = &sband->bitrates[i];
25         }
26
27         return result;
28 }
29 EXPORT_SYMBOL(ieee80211_get_response_rate);
30
31 int ieee80211_channel_to_frequency(int chan)
32 {
33         if (chan < 14)
34                 return 2407 + chan * 5;
35
36         if (chan == 14)
37                 return 2484;
38
39         /* FIXME: 802.11j 17.3.8.3.2 */
40         return (chan + 1000) * 5;
41 }
42 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
43
44 int ieee80211_frequency_to_channel(int freq)
45 {
46         if (freq == 2484)
47                 return 14;
48
49         if (freq < 2484)
50                 return (freq - 2407) / 5;
51
52         /* FIXME: 802.11j 17.3.8.3.2 */
53         return freq/5 - 1000;
54 }
55 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
56
57 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
58                                                   int freq)
59 {
60         enum ieee80211_band band;
61         struct ieee80211_supported_band *sband;
62         int i;
63
64         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
65                 sband = wiphy->bands[band];
66
67                 if (!sband)
68                         continue;
69
70                 for (i = 0; i < sband->n_channels; i++) {
71                         if (sband->channels[i].center_freq == freq)
72                                 return &sband->channels[i];
73                 }
74         }
75
76         return NULL;
77 }
78 EXPORT_SYMBOL(__ieee80211_get_channel);
79
80 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
81                                      enum ieee80211_band band)
82 {
83         int i, want;
84
85         switch (band) {
86         case IEEE80211_BAND_5GHZ:
87                 want = 3;
88                 for (i = 0; i < sband->n_bitrates; i++) {
89                         if (sband->bitrates[i].bitrate == 60 ||
90                             sband->bitrates[i].bitrate == 120 ||
91                             sband->bitrates[i].bitrate == 240) {
92                                 sband->bitrates[i].flags |=
93                                         IEEE80211_RATE_MANDATORY_A;
94                                 want--;
95                         }
96                 }
97                 WARN_ON(want);
98                 break;
99         case IEEE80211_BAND_2GHZ:
100                 want = 7;
101                 for (i = 0; i < sband->n_bitrates; i++) {
102                         if (sband->bitrates[i].bitrate == 10) {
103                                 sband->bitrates[i].flags |=
104                                         IEEE80211_RATE_MANDATORY_B |
105                                         IEEE80211_RATE_MANDATORY_G;
106                                 want--;
107                         }
108
109                         if (sband->bitrates[i].bitrate == 20 ||
110                             sband->bitrates[i].bitrate == 55 ||
111                             sband->bitrates[i].bitrate == 110 ||
112                             sband->bitrates[i].bitrate == 60 ||
113                             sband->bitrates[i].bitrate == 120 ||
114                             sband->bitrates[i].bitrate == 240) {
115                                 sband->bitrates[i].flags |=
116                                         IEEE80211_RATE_MANDATORY_G;
117                                 want--;
118                         }
119
120                         if (sband->bitrates[i].bitrate != 10 &&
121                             sband->bitrates[i].bitrate != 20 &&
122                             sband->bitrates[i].bitrate != 55 &&
123                             sband->bitrates[i].bitrate != 110)
124                                 sband->bitrates[i].flags |=
125                                         IEEE80211_RATE_ERP_G;
126                 }
127                 WARN_ON(want != 0 && want != 3 && want != 6);
128                 break;
129         case IEEE80211_NUM_BANDS:
130                 WARN_ON(1);
131                 break;
132         }
133 }
134
135 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
136 {
137         enum ieee80211_band band;
138
139         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
140                 if (wiphy->bands[band])
141                         set_mandatory_flags_band(wiphy->bands[band], band);
142 }
143
144 int cfg80211_validate_key_settings(struct key_params *params, int key_idx,
145                                    const u8 *mac_addr)
146 {
147         if (key_idx > 5)
148                 return -EINVAL;
149
150         /*
151          * Disallow pairwise keys with non-zero index unless it's WEP
152          * (because current deployments use pairwise WEP keys with
153          * non-zero indizes but 802.11i clearly specifies to use zero)
154          */
155         if (mac_addr && key_idx &&
156             params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
157             params->cipher != WLAN_CIPHER_SUITE_WEP104)
158                 return -EINVAL;
159
160         /* TODO: add definitions for the lengths to linux/ieee80211.h */
161         switch (params->cipher) {
162         case WLAN_CIPHER_SUITE_WEP40:
163                 if (params->key_len != 5)
164                         return -EINVAL;
165                 break;
166         case WLAN_CIPHER_SUITE_TKIP:
167                 if (params->key_len != 32)
168                         return -EINVAL;
169                 break;
170         case WLAN_CIPHER_SUITE_CCMP:
171                 if (params->key_len != 16)
172                         return -EINVAL;
173                 break;
174         case WLAN_CIPHER_SUITE_WEP104:
175                 if (params->key_len != 13)
176                         return -EINVAL;
177                 break;
178         case WLAN_CIPHER_SUITE_AES_CMAC:
179                 if (params->key_len != 16)
180                         return -EINVAL;
181                 break;
182         default:
183                 return -EINVAL;
184         }
185
186         if (params->seq) {
187                 switch (params->cipher) {
188                 case WLAN_CIPHER_SUITE_WEP40:
189                 case WLAN_CIPHER_SUITE_WEP104:
190                         /* These ciphers do not use key sequence */
191                         return -EINVAL;
192                 case WLAN_CIPHER_SUITE_TKIP:
193                 case WLAN_CIPHER_SUITE_CCMP:
194                 case WLAN_CIPHER_SUITE_AES_CMAC:
195                         if (params->seq_len != 6)
196                                 return -EINVAL;
197                         break;
198                 }
199         }
200
201         return 0;
202 }
203
204 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
205 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
206 const unsigned char rfc1042_header[] __aligned(2) =
207         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
208 EXPORT_SYMBOL(rfc1042_header);
209
210 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
211 const unsigned char bridge_tunnel_header[] __aligned(2) =
212         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
213 EXPORT_SYMBOL(bridge_tunnel_header);
214
215 unsigned int ieee80211_hdrlen(__le16 fc)
216 {
217         unsigned int hdrlen = 24;
218
219         if (ieee80211_is_data(fc)) {
220                 if (ieee80211_has_a4(fc))
221                         hdrlen = 30;
222                 if (ieee80211_is_data_qos(fc))
223                         hdrlen += IEEE80211_QOS_CTL_LEN;
224                 goto out;
225         }
226
227         if (ieee80211_is_ctl(fc)) {
228                 /*
229                  * ACK and CTS are 10 bytes, all others 16. To see how
230                  * to get this condition consider
231                  *   subtype mask:   0b0000000011110000 (0x00F0)
232                  *   ACK subtype:    0b0000000011010000 (0x00D0)
233                  *   CTS subtype:    0b0000000011000000 (0x00C0)
234                  *   bits that matter:         ^^^      (0x00E0)
235                  *   value of those: 0b0000000011000000 (0x00C0)
236                  */
237                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
238                         hdrlen = 10;
239                 else
240                         hdrlen = 16;
241         }
242 out:
243         return hdrlen;
244 }
245 EXPORT_SYMBOL(ieee80211_hdrlen);
246
247 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
248 {
249         const struct ieee80211_hdr *hdr =
250                         (const struct ieee80211_hdr *)skb->data;
251         unsigned int hdrlen;
252
253         if (unlikely(skb->len < 10))
254                 return 0;
255         hdrlen = ieee80211_hdrlen(hdr->frame_control);
256         if (unlikely(hdrlen > skb->len))
257                 return 0;
258         return hdrlen;
259 }
260 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
261
262 int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
263 {
264         int ae = meshhdr->flags & MESH_FLAGS_AE;
265         /* 7.1.3.5a.2 */
266         switch (ae) {
267         case 0:
268                 return 6;
269         case 1:
270                 return 12;
271         case 2:
272                 return 18;
273         case 3:
274                 return 24;
275         default:
276                 return 6;
277         }
278 }
279
280 int ieee80211_data_to_8023(struct sk_buff *skb, u8 *addr,
281                            enum nl80211_iftype iftype)
282 {
283         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
284         u16 hdrlen, ethertype;
285         u8 *payload;
286         u8 dst[ETH_ALEN];
287         u8 src[ETH_ALEN] __aligned(2);
288
289         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
290                 return -1;
291
292         hdrlen = ieee80211_hdrlen(hdr->frame_control);
293
294         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
295          * header
296          * IEEE 802.11 address fields:
297          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
298          *   0     0   DA    SA    BSSID n/a
299          *   0     1   DA    BSSID SA    n/a
300          *   1     0   BSSID SA    DA    n/a
301          *   1     1   RA    TA    DA    SA
302          */
303         memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
304         memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
305
306         switch (hdr->frame_control &
307                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
308         case cpu_to_le16(IEEE80211_FCTL_TODS):
309                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
310                              iftype != NL80211_IFTYPE_AP_VLAN))
311                         return -1;
312                 break;
313         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
314                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
315                              iftype != NL80211_IFTYPE_MESH_POINT))
316                         return -1;
317                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
318                         struct ieee80211s_hdr *meshdr =
319                                 (struct ieee80211s_hdr *) (skb->data + hdrlen);
320                         hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
321                         if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
322                                 memcpy(dst, meshdr->eaddr1, ETH_ALEN);
323                                 memcpy(src, meshdr->eaddr2, ETH_ALEN);
324                         }
325                 }
326                 break;
327         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
328                 if (iftype != NL80211_IFTYPE_STATION ||
329                     (is_multicast_ether_addr(dst) &&
330                      !compare_ether_addr(src, addr)))
331                         return -1;
332                 break;
333         case cpu_to_le16(0):
334                 if (iftype != NL80211_IFTYPE_ADHOC)
335                         return -1;
336                 break;
337         }
338
339         if (unlikely(skb->len - hdrlen < 8))
340                 return -1;
341
342         payload = skb->data + hdrlen;
343         ethertype = (payload[6] << 8) | payload[7];
344
345         if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
346                     ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
347                    compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
348                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
349                  * replace EtherType */
350                 skb_pull(skb, hdrlen + 6);
351                 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
352                 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
353         } else {
354                 struct ethhdr *ehdr;
355                 __be16 len;
356
357                 skb_pull(skb, hdrlen);
358                 len = htons(skb->len);
359                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
360                 memcpy(ehdr->h_dest, dst, ETH_ALEN);
361                 memcpy(ehdr->h_source, src, ETH_ALEN);
362                 ehdr->h_proto = len;
363         }
364         return 0;
365 }
366 EXPORT_SYMBOL(ieee80211_data_to_8023);
367
368 int ieee80211_data_from_8023(struct sk_buff *skb, u8 *addr,
369                              enum nl80211_iftype iftype, u8 *bssid, bool qos)
370 {
371         struct ieee80211_hdr hdr;
372         u16 hdrlen, ethertype;
373         __le16 fc;
374         const u8 *encaps_data;
375         int encaps_len, skip_header_bytes;
376         int nh_pos, h_pos;
377         int head_need;
378
379         if (unlikely(skb->len < ETH_HLEN))
380                 return -EINVAL;
381
382         nh_pos = skb_network_header(skb) - skb->data;
383         h_pos = skb_transport_header(skb) - skb->data;
384
385         /* convert Ethernet header to proper 802.11 header (based on
386          * operation mode) */
387         ethertype = (skb->data[12] << 8) | skb->data[13];
388         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
389
390         switch (iftype) {
391         case NL80211_IFTYPE_AP:
392         case NL80211_IFTYPE_AP_VLAN:
393                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
394                 /* DA BSSID SA */
395                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
396                 memcpy(hdr.addr2, addr, ETH_ALEN);
397                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
398                 hdrlen = 24;
399                 break;
400         case NL80211_IFTYPE_STATION:
401                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
402                 /* BSSID SA DA */
403                 memcpy(hdr.addr1, bssid, ETH_ALEN);
404                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
405                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
406                 hdrlen = 24;
407                 break;
408         case NL80211_IFTYPE_ADHOC:
409                 /* DA SA BSSID */
410                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
411                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
412                 memcpy(hdr.addr3, bssid, ETH_ALEN);
413                 hdrlen = 24;
414                 break;
415         default:
416                 return -EOPNOTSUPP;
417         }
418
419         if (qos) {
420                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
421                 hdrlen += 2;
422         }
423
424         hdr.frame_control = fc;
425         hdr.duration_id = 0;
426         hdr.seq_ctrl = 0;
427
428         skip_header_bytes = ETH_HLEN;
429         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
430                 encaps_data = bridge_tunnel_header;
431                 encaps_len = sizeof(bridge_tunnel_header);
432                 skip_header_bytes -= 2;
433         } else if (ethertype > 0x600) {
434                 encaps_data = rfc1042_header;
435                 encaps_len = sizeof(rfc1042_header);
436                 skip_header_bytes -= 2;
437         } else {
438                 encaps_data = NULL;
439                 encaps_len = 0;
440         }
441
442         skb_pull(skb, skip_header_bytes);
443         nh_pos -= skip_header_bytes;
444         h_pos -= skip_header_bytes;
445
446         head_need = hdrlen + encaps_len - skb_headroom(skb);
447
448         if (head_need > 0 || skb_cloned(skb)) {
449                 head_need = max(head_need, 0);
450                 if (head_need)
451                         skb_orphan(skb);
452
453                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
454                         printk(KERN_ERR "failed to reallocate Tx buffer\n");
455                         return -ENOMEM;
456                 }
457                 skb->truesize += head_need;
458         }
459
460         if (encaps_data) {
461                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
462                 nh_pos += encaps_len;
463                 h_pos += encaps_len;
464         }
465
466         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
467
468         nh_pos += hdrlen;
469         h_pos += hdrlen;
470
471         /* Update skb pointers to various headers since this modified frame
472          * is going to go through Linux networking code that may potentially
473          * need things like pointer to IP header. */
474         skb_set_mac_header(skb, 0);
475         skb_set_network_header(skb, nh_pos);
476         skb_set_transport_header(skb, h_pos);
477
478         return 0;
479 }
480 EXPORT_SYMBOL(ieee80211_data_from_8023);
481
482 /* Given a data frame determine the 802.1p/1d tag to use. */
483 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
484 {
485         unsigned int dscp;
486
487         /* skb->priority values from 256->263 are magic values to
488          * directly indicate a specific 802.1d priority.  This is used
489          * to allow 802.1d priority to be passed directly in from VLAN
490          * tags, etc.
491          */
492         if (skb->priority >= 256 && skb->priority <= 263)
493                 return skb->priority - 256;
494
495         switch (skb->protocol) {
496         case htons(ETH_P_IP):
497                 dscp = ip_hdr(skb)->tos & 0xfc;
498                 break;
499         default:
500                 return 0;
501         }
502
503         return dscp >> 5;
504 }
505 EXPORT_SYMBOL(cfg80211_classify8021d);