Merge branch 'upstream' into upstream-jgarzik
[linux-2.6] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/smp_lock.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/slab.h>
51 #include <linux/dma-mapping.h>
52
53 #include <linux/fcntl.h>        /* O_ACCMODE */
54 #include <linux/hdreg.h>  /* HDIO_GETGEO */
55
56 #include <linux/umem.h>
57
58 #include <asm/uaccess.h>
59 #include <asm/io.h>
60
61 #define MM_MAXCARDS 4
62 #define MM_RAHEAD 2      /* two sectors */
63 #define MM_BLKSIZE 1024  /* 1k blocks */
64 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
65 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
66
67 /*
68  * Version Information
69  */
70
71 #define DRIVER_VERSION "v2.3"
72 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER   0x01
80 #define DEBUG_BATTERY_POLLING   0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C;         /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101         int             card_number;
102         struct pci_dev  *dev;
103
104         int             irq;
105
106         unsigned long   csr_base;
107         unsigned char   __iomem *csr_remap;
108         unsigned long   csr_len;
109 #ifdef CONFIG_MM_MAP_MEMORY
110         unsigned long   mem_base;
111         unsigned char   __iomem *mem_remap;
112         unsigned long   mem_len;
113 #endif
114
115         unsigned int    win_size; /* PCI window size */
116         unsigned int    mm_size;  /* size in kbytes */
117
118         unsigned int    init_size; /* initial segment, in sectors,
119                                     * that we know to
120                                     * have been written
121                                     */
122         struct bio      *bio, *currentbio, **biotail;
123
124         request_queue_t *queue;
125
126         struct mm_page {
127                 dma_addr_t              page_dma;
128                 struct mm_dma_desc      *desc;
129                 int                     cnt, headcnt;
130                 struct bio              *bio, **biotail;
131         } mm_pages[2];
132 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
133
134         int  Active, Ready;
135
136         struct tasklet_struct   tasklet;
137         unsigned int dma_status;
138
139         struct {
140                 int             good;
141                 int             warned;
142                 unsigned long   last_change;
143         } battery[2];
144
145         spinlock_t      lock;
146         int             check_batteries;
147
148         int             flags;
149 };
150
151 static struct cardinfo cards[MM_MAXCARDS];
152 static struct block_device_operations mm_fops;
153 static struct timer_list battery_timer;
154
155 static int num_cards = 0;
156
157 static struct gendisk *mm_gendisk[MM_MAXCARDS];
158
159 static void check_batteries(struct cardinfo *card);
160
161 /*
162 -----------------------------------------------------------------------------------
163 --                           get_userbit
164 -----------------------------------------------------------------------------------
165 */
166 static int get_userbit(struct cardinfo *card, int bit)
167 {
168         unsigned char led;
169
170         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
171         return led & bit;
172 }
173 /*
174 -----------------------------------------------------------------------------------
175 --                            set_userbit
176 -----------------------------------------------------------------------------------
177 */
178 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
179 {
180         unsigned char led;
181
182         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
183         if (state)
184                 led |= bit;
185         else
186                 led &= ~bit;
187         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188
189         return 0;
190 }
191 /*
192 -----------------------------------------------------------------------------------
193 --                             set_led
194 -----------------------------------------------------------------------------------
195 */
196 /*
197  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
198  */
199 static void set_led(struct cardinfo *card, int shift, unsigned char state)
200 {
201         unsigned char led;
202
203         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
204         if (state == LED_FLIP)
205                 led ^= (1<<shift);
206         else {
207                 led &= ~(0x03 << shift);
208                 led |= (state << shift);
209         }
210         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
211
212 }
213
214 #ifdef MM_DIAG
215 /*
216 -----------------------------------------------------------------------------------
217 --                              dump_regs
218 -----------------------------------------------------------------------------------
219 */
220 static void dump_regs(struct cardinfo *card)
221 {
222         unsigned char *p;
223         int i, i1;
224
225         p = card->csr_remap;
226         for (i = 0; i < 8; i++) {
227                 printk(KERN_DEBUG "%p   ", p);
228
229                 for (i1 = 0; i1 < 16; i1++)
230                         printk("%02x ", *p++);
231
232                 printk("\n");
233         }
234 }
235 #endif
236 /*
237 -----------------------------------------------------------------------------------
238 --                            dump_dmastat
239 -----------------------------------------------------------------------------------
240 */
241 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
242 {
243         printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
244         if (dmastat & DMASCR_ANY_ERR)
245                 printk("ANY_ERR ");
246         if (dmastat & DMASCR_MBE_ERR)
247                 printk("MBE_ERR ");
248         if (dmastat & DMASCR_PARITY_ERR_REP)
249                 printk("PARITY_ERR_REP ");
250         if (dmastat & DMASCR_PARITY_ERR_DET)
251                 printk("PARITY_ERR_DET ");
252         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
253                 printk("SYSTEM_ERR_SIG ");
254         if (dmastat & DMASCR_TARGET_ABT)
255                 printk("TARGET_ABT ");
256         if (dmastat & DMASCR_MASTER_ABT)
257                 printk("MASTER_ABT ");
258         if (dmastat & DMASCR_CHAIN_COMPLETE)
259                 printk("CHAIN_COMPLETE ");
260         if (dmastat & DMASCR_DMA_COMPLETE)
261                 printk("DMA_COMPLETE ");
262         printk("\n");
263 }
264
265 /*
266  * Theory of request handling
267  *
268  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
269  * We have two pages of mm_dma_desc, holding about 64 descriptors
270  * each.  These are allocated at init time.
271  * One page is "Ready" and is either full, or can have request added.
272  * The other page might be "Active", which DMA is happening on it.
273  *
274  * Whenever IO on the active page completes, the Ready page is activated
275  * and the ex-Active page is clean out and made Ready.
276  * Otherwise the Ready page is only activated when it becomes full, or
277  * when mm_unplug_device is called via the unplug_io_fn.
278  *
279  * If a request arrives while both pages a full, it is queued, and b_rdev is
280  * overloaded to record whether it was a read or a write.
281  *
282  * The interrupt handler only polls the device to clear the interrupt.
283  * The processing of the result is done in a tasklet.
284  */
285
286 static void mm_start_io(struct cardinfo *card)
287 {
288         /* we have the lock, we know there is
289          * no IO active, and we know that card->Active
290          * is set
291          */
292         struct mm_dma_desc *desc;
293         struct mm_page *page;
294         int offset;
295
296         /* make the last descriptor end the chain */
297         page = &card->mm_pages[card->Active];
298         pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
299         desc = &page->desc[page->cnt-1];
300
301         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
302         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
303         desc->sem_control_bits = desc->control_bits;
304
305                                
306         if (debug & DEBUG_LED_ON_TRANSFER)
307                 set_led(card, LED_REMOVE, LED_ON);
308
309         desc = &page->desc[page->headcnt];
310         writel(0, card->csr_remap + DMA_PCI_ADDR);
311         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
312
313         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
314         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
315
316         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
317         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
318
319         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
320         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
321
322         offset = ((char*)desc) - ((char*)page->desc);
323         writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
324                card->csr_remap + DMA_DESCRIPTOR_ADDR);
325         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
326          * and on some ports will do nothing ! */
327         writel(cpu_to_le32(((u64)page->page_dma)>>32),
328                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
329
330         /* Go, go, go */
331         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
332                card->csr_remap + DMA_STATUS_CTRL);
333 }
334
335 static int add_bio(struct cardinfo *card);
336
337 static void activate(struct cardinfo *card)
338 {
339         /* if No page is Active, and Ready is 
340          * not empty, then switch Ready page
341          * to active and start IO.
342          * Then add any bh's that are available to Ready
343          */
344
345         do {
346                 while (add_bio(card))
347                         ;
348
349                 if (card->Active == -1 &&
350                     card->mm_pages[card->Ready].cnt > 0) {
351                         card->Active = card->Ready;
352                         card->Ready = 1-card->Ready;
353                         mm_start_io(card);
354                 }
355
356         } while (card->Active == -1 && add_bio(card));
357 }
358
359 static inline void reset_page(struct mm_page *page)
360 {
361         page->cnt = 0;
362         page->headcnt = 0;
363         page->bio = NULL;
364         page->biotail = & page->bio;
365 }
366
367 static void mm_unplug_device(request_queue_t *q)
368 {
369         struct cardinfo *card = q->queuedata;
370         unsigned long flags;
371
372         spin_lock_irqsave(&card->lock, flags);
373         if (blk_remove_plug(q))
374                 activate(card);
375         spin_unlock_irqrestore(&card->lock, flags);
376 }
377
378 /* 
379  * If there is room on Ready page, take
380  * one bh off list and add it.
381  * return 1 if there was room, else 0.
382  */
383 static int add_bio(struct cardinfo *card)
384 {
385         struct mm_page *p;
386         struct mm_dma_desc *desc;
387         dma_addr_t dma_handle;
388         int offset;
389         struct bio *bio;
390         int rw;
391         int len;
392
393         bio = card->currentbio;
394         if (!bio && card->bio) {
395                 card->currentbio = card->bio;
396                 card->bio = card->bio->bi_next;
397                 if (card->bio == NULL)
398                         card->biotail = &card->bio;
399                 card->currentbio->bi_next = NULL;
400                 return 1;
401         }
402         if (!bio)
403                 return 0;
404
405         rw = bio_rw(bio);
406         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
407                 return 0;
408
409         len = bio_iovec(bio)->bv_len;
410         dma_handle = pci_map_page(card->dev, 
411                                   bio_page(bio),
412                                   bio_offset(bio),
413                                   len,
414                                   (rw==READ) ?
415                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
416
417         p = &card->mm_pages[card->Ready];
418         desc = &p->desc[p->cnt];
419         p->cnt++;
420         if ((p->biotail) != &bio->bi_next) {
421                 *(p->biotail) = bio;
422                 p->biotail = &(bio->bi_next);
423                 bio->bi_next = NULL;
424         }
425
426         desc->data_dma_handle = dma_handle;
427
428         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
429         desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
430         desc->transfer_size = cpu_to_le32(len);
431         offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
432         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
433         desc->zero1 = desc->zero2 = 0;
434         offset = ( ((char*)(desc+1)) - ((char*)p->desc));
435         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
436         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
437                                          DMASCR_PARITY_INT_EN|
438                                          DMASCR_CHAIN_EN |
439                                          DMASCR_SEM_EN |
440                                          pci_cmds);
441         if (rw == WRITE)
442                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
443         desc->sem_control_bits = desc->control_bits;
444
445         bio->bi_sector += (len>>9);
446         bio->bi_size -= len;
447         bio->bi_idx++;
448         if (bio->bi_idx >= bio->bi_vcnt) 
449                 card->currentbio = NULL;
450
451         return 1;
452 }
453
454 static void process_page(unsigned long data)
455 {
456         /* check if any of the requests in the page are DMA_COMPLETE,
457          * and deal with them appropriately.
458          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
459          * dma must have hit an error on that descriptor, so use dma_status instead
460          * and assume that all following descriptors must be re-tried.
461          */
462         struct mm_page *page;
463         struct bio *return_bio=NULL;
464         struct cardinfo *card = (struct cardinfo *)data;
465         unsigned int dma_status = card->dma_status;
466
467         spin_lock_bh(&card->lock);
468         if (card->Active < 0)
469                 goto out_unlock;
470         page = &card->mm_pages[card->Active];
471         
472         while (page->headcnt < page->cnt) {
473                 struct bio *bio = page->bio;
474                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
475                 int control = le32_to_cpu(desc->sem_control_bits);
476                 int last=0;
477                 int idx;
478
479                 if (!(control & DMASCR_DMA_COMPLETE)) {
480                         control = dma_status;
481                         last=1; 
482                 }
483                 page->headcnt++;
484                 idx = bio->bi_phys_segments;
485                 bio->bi_phys_segments++;
486                 if (bio->bi_phys_segments >= bio->bi_vcnt)
487                         page->bio = bio->bi_next;
488
489                 pci_unmap_page(card->dev, desc->data_dma_handle, 
490                                bio_iovec_idx(bio,idx)->bv_len,
491                                  (control& DMASCR_TRANSFER_READ) ?
492                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
493                 if (control & DMASCR_HARD_ERROR) {
494                         /* error */
495                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
496                         printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
497                                card->card_number, 
498                                le32_to_cpu(desc->local_addr)>>9,
499                                le32_to_cpu(desc->transfer_size));
500                         dump_dmastat(card, control);
501                 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
502                            le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
503                         card->init_size += le32_to_cpu(desc->transfer_size)>>9;
504                         if (card->init_size>>1 >= card->mm_size) {
505                                 printk(KERN_INFO "MM%d: memory now initialised\n",
506                                        card->card_number);
507                                 set_userbit(card, MEMORY_INITIALIZED, 1);
508                         }
509                 }
510                 if (bio != page->bio) {
511                         bio->bi_next = return_bio;
512                         return_bio = bio;
513                 }
514
515                 if (last) break;
516         }
517
518         if (debug & DEBUG_LED_ON_TRANSFER)
519                 set_led(card, LED_REMOVE, LED_OFF);
520
521         if (card->check_batteries) {
522                 card->check_batteries = 0;
523                 check_batteries(card);
524         }
525         if (page->headcnt >= page->cnt) {
526                 reset_page(page);
527                 card->Active = -1;
528                 activate(card);
529         } else {
530                 /* haven't finished with this one yet */
531                 pr_debug("do some more\n");
532                 mm_start_io(card);
533         }
534  out_unlock:
535         spin_unlock_bh(&card->lock);
536
537         while(return_bio) {
538                 struct bio *bio = return_bio;
539
540                 return_bio = bio->bi_next;
541                 bio->bi_next = NULL;
542                 bio_endio(bio, bio->bi_size, 0);
543         }
544 }
545
546 /*
547 -----------------------------------------------------------------------------------
548 --                              mm_make_request
549 -----------------------------------------------------------------------------------
550 */
551 static int mm_make_request(request_queue_t *q, struct bio *bio)
552 {
553         struct cardinfo *card = q->queuedata;
554         pr_debug("mm_make_request %llu %u\n",
555                  (unsigned long long)bio->bi_sector, bio->bi_size);
556
557         bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
558         spin_lock_irq(&card->lock);
559         *card->biotail = bio;
560         bio->bi_next = NULL;
561         card->biotail = &bio->bi_next;
562         blk_plug_device(q);
563         spin_unlock_irq(&card->lock);
564
565         return 0;
566 }
567
568 /*
569 -----------------------------------------------------------------------------------
570 --                              mm_interrupt
571 -----------------------------------------------------------------------------------
572 */
573 static irqreturn_t mm_interrupt(int irq, void *__card)
574 {
575         struct cardinfo *card = (struct cardinfo *) __card;
576         unsigned int dma_status;
577         unsigned short cfg_status;
578
579 HW_TRACE(0x30);
580
581         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
582
583         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
584                 /* interrupt wasn't for me ... */
585                 return IRQ_NONE;
586         }
587
588         /* clear COMPLETION interrupts */
589         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
590                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
591                        card->csr_remap+ DMA_STATUS_CTRL);
592         else
593                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
594                        card->csr_remap+ DMA_STATUS_CTRL + 2);
595         
596         /* log errors and clear interrupt status */
597         if (dma_status & DMASCR_ANY_ERR) {
598                 unsigned int    data_log1, data_log2;
599                 unsigned int    addr_log1, addr_log2;
600                 unsigned char   stat, count, syndrome, check;
601
602                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
603
604                 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
605                 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
606                 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
607                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
608
609                 count = readb(card->csr_remap + ERROR_COUNT);
610                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
611                 check = readb(card->csr_remap + ERROR_CHECK);
612
613                 dump_dmastat(card, dma_status);
614
615                 if (stat & 0x01)
616                         printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
617                                 card->card_number, count);
618                 if (stat & 0x02)
619                         printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
620                                 card->card_number);
621
622                 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
623                         card->card_number, addr_log2, addr_log1, data_log2, data_log1);
624                 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
625                         card->card_number, check, syndrome);
626
627                 writeb(0, card->csr_remap + ERROR_COUNT);
628         }
629
630         if (dma_status & DMASCR_PARITY_ERR_REP) {
631                 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
632                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
633                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
634         }
635
636         if (dma_status & DMASCR_PARITY_ERR_DET) {
637                 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number); 
638                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
639                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
640         }
641
642         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
643                 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number); 
644                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
645                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
646         }
647
648         if (dma_status & DMASCR_TARGET_ABT) {
649                 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number); 
650                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
651                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
652         }
653
654         if (dma_status & DMASCR_MASTER_ABT) {
655                 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number); 
656                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
657                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
658         }
659
660         /* and process the DMA descriptors */
661         card->dma_status = dma_status;
662         tasklet_schedule(&card->tasklet);
663
664 HW_TRACE(0x36);
665
666         return IRQ_HANDLED; 
667 }
668 /*
669 -----------------------------------------------------------------------------------
670 --                         set_fault_to_battery_status
671 -----------------------------------------------------------------------------------
672 */
673 /*
674  * If both batteries are good, no LED
675  * If either battery has been warned, solid LED
676  * If both batteries are bad, flash the LED quickly
677  * If either battery is bad, flash the LED semi quickly
678  */
679 static void set_fault_to_battery_status(struct cardinfo *card)
680 {
681         if (card->battery[0].good && card->battery[1].good)
682                 set_led(card, LED_FAULT, LED_OFF);
683         else if (card->battery[0].warned || card->battery[1].warned)
684                 set_led(card, LED_FAULT, LED_ON);
685         else if (!card->battery[0].good && !card->battery[1].good)
686                 set_led(card, LED_FAULT, LED_FLASH_7_0);
687         else
688                 set_led(card, LED_FAULT, LED_FLASH_3_5);
689 }
690
691 static void init_battery_timer(void);
692
693
694 /*
695 -----------------------------------------------------------------------------------
696 --                            check_battery
697 -----------------------------------------------------------------------------------
698 */
699 static int check_battery(struct cardinfo *card, int battery, int status)
700 {
701         if (status != card->battery[battery].good) {
702                 card->battery[battery].good = !card->battery[battery].good;
703                 card->battery[battery].last_change = jiffies;
704
705                 if (card->battery[battery].good) {
706                         printk(KERN_ERR "MM%d: Battery %d now good\n",
707                                 card->card_number, battery + 1);
708                         card->battery[battery].warned = 0;
709                 } else
710                         printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
711                                 card->card_number, battery + 1);
712
713                 return 1;
714         } else if (!card->battery[battery].good &&
715                    !card->battery[battery].warned &&
716                    time_after_eq(jiffies, card->battery[battery].last_change +
717                                  (HZ * 60 * 60 * 5))) {
718                 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
719                         card->card_number, battery + 1);
720                 card->battery[battery].warned = 1;
721
722                 return 1;
723         }
724
725         return 0;
726 }
727 /*
728 -----------------------------------------------------------------------------------
729 --                              check_batteries
730 -----------------------------------------------------------------------------------
731 */
732 static void check_batteries(struct cardinfo *card)
733 {
734         /* NOTE: this must *never* be called while the card
735          * is doing (bus-to-card) DMA, or you will need the
736          * reset switch
737          */
738         unsigned char status;
739         int ret1, ret2;
740
741         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
742         if (debug & DEBUG_BATTERY_POLLING)
743                 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
744                        card->card_number,
745                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
746                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
747
748         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
749         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
750
751         if (ret1 || ret2)
752                 set_fault_to_battery_status(card);
753 }
754
755 static void check_all_batteries(unsigned long ptr)
756 {
757         int i;
758
759         for (i = 0; i < num_cards; i++) 
760                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
761                         struct cardinfo *card = &cards[i];
762                         spin_lock_bh(&card->lock);
763                         if (card->Active >= 0)
764                                 card->check_batteries = 1;
765                         else
766                                 check_batteries(card);
767                         spin_unlock_bh(&card->lock);
768                 }
769
770         init_battery_timer();
771 }
772 /*
773 -----------------------------------------------------------------------------------
774 --                            init_battery_timer
775 -----------------------------------------------------------------------------------
776 */
777 static void init_battery_timer(void)
778 {
779         init_timer(&battery_timer);
780         battery_timer.function = check_all_batteries;
781         battery_timer.expires = jiffies + (HZ * 60);
782         add_timer(&battery_timer);
783 }
784 /*
785 -----------------------------------------------------------------------------------
786 --                              del_battery_timer
787 -----------------------------------------------------------------------------------
788 */
789 static void del_battery_timer(void)
790 {
791         del_timer(&battery_timer);
792 }
793 /*
794 -----------------------------------------------------------------------------------
795 --                                mm_revalidate
796 -----------------------------------------------------------------------------------
797 */
798 /*
799  * Note no locks taken out here.  In a worst case scenario, we could drop
800  * a chunk of system memory.  But that should never happen, since validation
801  * happens at open or mount time, when locks are held.
802  *
803  *      That's crap, since doing that while some partitions are opened
804  * or mounted will give you really nasty results.
805  */
806 static int mm_revalidate(struct gendisk *disk)
807 {
808         struct cardinfo *card = disk->private_data;
809         set_capacity(disk, card->mm_size << 1);
810         return 0;
811 }
812
813 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
814 {
815         struct cardinfo *card = bdev->bd_disk->private_data;
816         int size = card->mm_size * (1024 / MM_HARDSECT);
817
818         /*
819          * get geometry: we have to fake one...  trim the size to a
820          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
821          * whatever cylinders.
822          */
823         geo->heads     = 64;
824         geo->sectors   = 32;
825         geo->cylinders = size / (geo->heads * geo->sectors);
826         return 0;
827 }
828
829 /*
830 -----------------------------------------------------------------------------------
831 --                                mm_check_change
832 -----------------------------------------------------------------------------------
833   Future support for removable devices
834 */
835 static int mm_check_change(struct gendisk *disk)
836 {
837 /*  struct cardinfo *dev = disk->private_data; */
838         return 0;
839 }
840 /*
841 -----------------------------------------------------------------------------------
842 --                             mm_fops
843 -----------------------------------------------------------------------------------
844 */
845 static struct block_device_operations mm_fops = {
846         .owner          = THIS_MODULE,
847         .getgeo         = mm_getgeo,
848         .revalidate_disk= mm_revalidate,
849         .media_changed  = mm_check_change,
850 };
851 /*
852 -----------------------------------------------------------------------------------
853 --                                mm_pci_probe
854 -----------------------------------------------------------------------------------
855 */
856 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
857 {
858         int ret = -ENODEV;
859         struct cardinfo *card = &cards[num_cards];
860         unsigned char   mem_present;
861         unsigned char   batt_status;
862         unsigned int    saved_bar, data;
863         int             magic_number;
864
865         if (pci_enable_device(dev) < 0)
866                 return -ENODEV;
867
868         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
869         pci_set_master(dev);
870
871         card->dev         = dev;
872         card->card_number = num_cards;
873
874         card->csr_base = pci_resource_start(dev, 0);
875         card->csr_len  = pci_resource_len(dev, 0);
876 #ifdef CONFIG_MM_MAP_MEMORY
877         card->mem_base = pci_resource_start(dev, 1);
878         card->mem_len  = pci_resource_len(dev, 1);
879 #endif
880
881         printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
882                card->card_number, dev->bus->number, dev->devfn);
883
884         if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
885             pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
886                 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
887                 return  -ENOMEM;
888         }
889         if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
890                 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
891                 ret = -ENOMEM;
892
893                 goto failed_req_csr;
894         }
895
896         card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
897         if (!card->csr_remap) {
898                 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
899                 ret = -ENOMEM;
900
901                 goto failed_remap_csr;
902         }
903
904         printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
905                card->csr_base, card->csr_remap, card->csr_len);
906
907 #ifdef CONFIG_MM_MAP_MEMORY
908         if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
909                 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
910                 ret = -ENOMEM;
911
912                 goto failed_req_mem;
913         }
914
915         if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
916                 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
917                 ret = -ENOMEM;
918
919                 goto failed_remap_mem;
920         }
921
922         printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
923                card->mem_base, card->mem_remap, card->mem_len);
924 #else
925         printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
926                card->card_number);
927 #endif
928         switch(card->dev->device) {
929         case 0x5415:
930                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
931                 magic_number = 0x59;
932                 break;
933
934         case 0x5425:
935                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
936                 magic_number = 0x5C;
937                 break;
938
939         case 0x6155:
940                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
941                 magic_number = 0x99;
942                 break;
943
944         default:
945                 magic_number = 0x100;
946                 break;
947         }
948
949         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
950                 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
951                 ret = -ENOMEM;
952                 goto failed_magic;
953         }
954
955         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
956                                                       PAGE_SIZE*2,
957                                                       &card->mm_pages[0].page_dma);
958         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
959                                                       PAGE_SIZE*2,
960                                                       &card->mm_pages[1].page_dma);
961         if (card->mm_pages[0].desc == NULL ||
962             card->mm_pages[1].desc == NULL) {
963                 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
964                 goto failed_alloc;
965         }
966         reset_page(&card->mm_pages[0]);
967         reset_page(&card->mm_pages[1]);
968         card->Ready = 0;        /* page 0 is ready */
969         card->Active = -1;      /* no page is active */
970         card->bio = NULL;
971         card->biotail = &card->bio;
972
973         card->queue = blk_alloc_queue(GFP_KERNEL);
974         if (!card->queue)
975                 goto failed_alloc;
976
977         blk_queue_make_request(card->queue, mm_make_request);
978         card->queue->queuedata = card;
979         card->queue->unplug_fn = mm_unplug_device;
980
981         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
982
983         card->check_batteries = 0;
984         
985         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
986         switch (mem_present) {
987         case MEM_128_MB:
988                 card->mm_size = 1024 * 128;
989                 break;
990         case MEM_256_MB:
991                 card->mm_size = 1024 * 256;
992                 break;
993         case MEM_512_MB:
994                 card->mm_size = 1024 * 512;
995                 break;
996         case MEM_1_GB:
997                 card->mm_size = 1024 * 1024;
998                 break;
999         case MEM_2_GB:
1000                 card->mm_size = 1024 * 2048;
1001                 break;
1002         default:
1003                 card->mm_size = 0;
1004                 break;
1005         }
1006
1007         /* Clear the LED's we control */
1008         set_led(card, LED_REMOVE, LED_OFF);
1009         set_led(card, LED_FAULT, LED_OFF);
1010
1011         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1012
1013         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1014         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1015         card->battery[0].last_change = card->battery[1].last_change = jiffies;
1016
1017         if (card->flags & UM_FLAG_NO_BATT) 
1018                 printk(KERN_INFO "MM%d: Size %d KB\n",
1019                        card->card_number, card->mm_size);
1020         else {
1021                 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1022                        card->card_number, card->mm_size,
1023                        (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1024                        card->battery[0].good ? "OK" : "FAILURE",
1025                        (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1026                        card->battery[1].good ? "OK" : "FAILURE");
1027
1028                 set_fault_to_battery_status(card);
1029         }
1030
1031         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1032         data = 0xffffffff;
1033         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1034         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1035         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1036         data &= 0xfffffff0;
1037         data = ~data;
1038         data += 1;
1039
1040         card->win_size = data;
1041
1042
1043         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
1044                 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1045                 ret = -ENODEV;
1046
1047                 goto failed_req_irq;
1048         }
1049
1050         card->irq = dev->irq;
1051         printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1052                card->win_size, card->irq);
1053
1054         spin_lock_init(&card->lock);
1055
1056         pci_set_drvdata(dev, card);
1057
1058         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
1059                 pci_write_cmd = 0x07;   /* then Memory Write command */
1060
1061         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1062                 unsigned short cfg_command;
1063                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1064                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1065                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1066         }
1067         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1068
1069         num_cards++;
1070
1071         if (!get_userbit(card, MEMORY_INITIALIZED)) {
1072                 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1073                 card->init_size = 0;
1074         } else {
1075                 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1076                 card->init_size = card->mm_size;
1077         }
1078
1079         /* Enable ECC */
1080         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1081
1082         return 0;
1083
1084  failed_req_irq:
1085  failed_alloc:
1086         if (card->mm_pages[0].desc)
1087                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1088                                     card->mm_pages[0].desc,
1089                                     card->mm_pages[0].page_dma);
1090         if (card->mm_pages[1].desc)
1091                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1092                                     card->mm_pages[1].desc,
1093                                     card->mm_pages[1].page_dma);
1094  failed_magic:
1095 #ifdef CONFIG_MM_MAP_MEMORY
1096         iounmap(card->mem_remap);
1097  failed_remap_mem:
1098         release_mem_region(card->mem_base, card->mem_len);
1099  failed_req_mem:
1100 #endif
1101         iounmap(card->csr_remap);
1102  failed_remap_csr:
1103         release_mem_region(card->csr_base, card->csr_len);
1104  failed_req_csr:
1105
1106         return ret;
1107 }
1108 /*
1109 -----------------------------------------------------------------------------------
1110 --                              mm_pci_remove
1111 -----------------------------------------------------------------------------------
1112 */
1113 static void mm_pci_remove(struct pci_dev *dev)
1114 {
1115         struct cardinfo *card = pci_get_drvdata(dev);
1116
1117         tasklet_kill(&card->tasklet);
1118         iounmap(card->csr_remap);
1119         release_mem_region(card->csr_base, card->csr_len);
1120 #ifdef CONFIG_MM_MAP_MEMORY
1121         iounmap(card->mem_remap);
1122         release_mem_region(card->mem_base, card->mem_len);
1123 #endif
1124         free_irq(card->irq, card);
1125
1126         if (card->mm_pages[0].desc)
1127                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1128                                     card->mm_pages[0].desc,
1129                                     card->mm_pages[0].page_dma);
1130         if (card->mm_pages[1].desc)
1131                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1132                                     card->mm_pages[1].desc,
1133                                     card->mm_pages[1].page_dma);
1134         blk_cleanup_queue(card->queue);
1135 }
1136
1137 static const struct pci_device_id mm_pci_ids[] = { {
1138         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1139         .device =       PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
1140         }, {
1141         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1142         .device =       PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
1143         }, {
1144         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1145         .device =       PCI_DEVICE_ID_MICRO_MEMORY_6155,
1146         }, {
1147         .vendor =       0x8086,
1148         .device =       0xB555,
1149         .subvendor=     0x1332,
1150         .subdevice=     0x5460,
1151         .class  =       0x050000,
1152         .class_mask=    0,
1153         }, { /* end: all zeroes */ }
1154 };
1155
1156 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1157
1158 static struct pci_driver mm_pci_driver = {
1159         .name =         "umem",
1160         .id_table =     mm_pci_ids,
1161         .probe =        mm_pci_probe,
1162         .remove =       mm_pci_remove,
1163 };
1164 /*
1165 -----------------------------------------------------------------------------------
1166 --                               mm_init
1167 -----------------------------------------------------------------------------------
1168 */
1169
1170 static int __init mm_init(void)
1171 {
1172         int retval, i;
1173         int err;
1174
1175         printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1176
1177         retval = pci_register_driver(&mm_pci_driver);
1178         if (retval)
1179                 return -ENOMEM;
1180
1181         err = major_nr = register_blkdev(0, "umem");
1182         if (err < 0)
1183                 return -EIO;
1184
1185         for (i = 0; i < num_cards; i++) {
1186                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1187                 if (!mm_gendisk[i])
1188                         goto out;
1189         }
1190
1191         for (i = 0; i < num_cards; i++) {
1192                 struct gendisk *disk = mm_gendisk[i];
1193                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1194                 spin_lock_init(&cards[i].lock);
1195                 disk->major = major_nr;
1196                 disk->first_minor  = i << MM_SHIFT;
1197                 disk->fops = &mm_fops;
1198                 disk->private_data = &cards[i];
1199                 disk->queue = cards[i].queue;
1200                 set_capacity(disk, cards[i].mm_size << 1);
1201                 add_disk(disk);
1202         }
1203
1204         init_battery_timer();
1205         printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1206 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1207         return 0;
1208
1209 out:
1210         unregister_blkdev(major_nr, "umem");
1211         while (i--)
1212                 put_disk(mm_gendisk[i]);
1213         return -ENOMEM;
1214 }
1215 /*
1216 -----------------------------------------------------------------------------------
1217 --                             mm_cleanup
1218 -----------------------------------------------------------------------------------
1219 */
1220 static void __exit mm_cleanup(void)
1221 {
1222         int i;
1223
1224         del_battery_timer();
1225
1226         for (i=0; i < num_cards ; i++) {
1227                 del_gendisk(mm_gendisk[i]);
1228                 put_disk(mm_gendisk[i]);
1229         }
1230
1231         pci_unregister_driver(&mm_pci_driver);
1232
1233         unregister_blkdev(major_nr, "umem");
1234 }
1235
1236 module_init(mm_init);
1237 module_exit(mm_cleanup);
1238
1239 MODULE_AUTHOR(DRIVER_AUTHOR);
1240 MODULE_DESCRIPTION(DRIVER_DESC);
1241 MODULE_LICENSE("GPL");