2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
20 static const int cfq_quantum = 4; /* max queue in one round of service */
21 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 70;
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
34 #define CFQ_KEY_ASYNC (0)
36 static DEFINE_SPINLOCK(cfq_exit_lock);
39 * for the hash of cfqq inside the cfqd
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
46 * for the hash of crq inside the cfqq
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
58 #define RQ_DATA(rq) (rq)->elevator_private
63 #define RB_EMPTY(node) ((node)->rb_node == NULL)
64 #define RB_CLEAR(node) do { \
65 memset(node, 0, sizeof(*node)); \
67 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
68 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
69 #define rq_rb_key(rq) (rq)->sector
71 static kmem_cache_t *crq_pool;
72 static kmem_cache_t *cfq_pool;
73 static kmem_cache_t *cfq_ioc_pool;
75 static atomic_t ioc_count = ATOMIC_INIT(0);
76 static struct completion *ioc_gone;
78 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
79 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
80 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
81 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
86 #define cfq_cfqq_dispatched(cfqq) \
87 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
89 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
91 #define cfq_cfqq_sync(cfqq) \
92 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
94 #define sample_valid(samples) ((samples) > 80)
97 * Per block device queue structure
100 request_queue_t *queue;
103 * rr list of queues with requests and the count of them
105 struct list_head rr_list[CFQ_PRIO_LISTS];
106 struct list_head busy_rr;
107 struct list_head cur_rr;
108 struct list_head idle_rr;
109 unsigned int busy_queues;
112 * non-ordered list of empty cfqq's
114 struct list_head empty_list;
119 struct hlist_head *cfq_hash;
122 * global crq hash for all queues
124 struct hlist_head *crq_hash;
132 * schedule slice state info
135 * idle window management
137 struct timer_list idle_slice_timer;
138 struct work_struct unplug_work;
140 struct cfq_queue *active_queue;
141 struct cfq_io_context *active_cic;
142 int cur_prio, cur_end_prio;
143 unsigned int dispatch_slice;
145 struct timer_list idle_class_timer;
147 sector_t last_sector;
148 unsigned long last_end_request;
150 unsigned int rq_starved;
153 * tunables, see top of file
155 unsigned int cfq_quantum;
156 unsigned int cfq_queued;
157 unsigned int cfq_fifo_expire[2];
158 unsigned int cfq_back_penalty;
159 unsigned int cfq_back_max;
160 unsigned int cfq_slice[2];
161 unsigned int cfq_slice_async_rq;
162 unsigned int cfq_slice_idle;
164 struct list_head cic_list;
168 * Per process-grouping structure
171 /* reference count */
173 /* parent cfq_data */
174 struct cfq_data *cfqd;
175 /* cfqq lookup hash */
176 struct hlist_node cfq_hash;
179 /* on either rr or empty list of cfqd */
180 struct list_head cfq_list;
181 /* sorted list of pending requests */
182 struct rb_root sort_list;
183 /* if fifo isn't expired, next request to serve */
184 struct cfq_rq *next_crq;
185 /* requests queued in sort_list */
187 /* currently allocated requests */
189 /* fifo list of requests in sort_list */
190 struct list_head fifo;
192 unsigned long slice_start;
193 unsigned long slice_end;
194 unsigned long slice_left;
195 unsigned long service_last;
197 /* number of requests that are on the dispatch list */
200 /* io prio of this group */
201 unsigned short ioprio, org_ioprio;
202 unsigned short ioprio_class, org_ioprio_class;
204 /* various state flags, see below */
209 struct rb_node rb_node;
211 struct request *request;
212 struct hlist_node hash;
214 struct cfq_queue *cfq_queue;
215 struct cfq_io_context *io_context;
217 unsigned int crq_flags;
220 enum cfqq_state_flags {
221 CFQ_CFQQ_FLAG_on_rr = 0,
222 CFQ_CFQQ_FLAG_wait_request,
223 CFQ_CFQQ_FLAG_must_alloc,
224 CFQ_CFQQ_FLAG_must_alloc_slice,
225 CFQ_CFQQ_FLAG_must_dispatch,
226 CFQ_CFQQ_FLAG_fifo_expire,
227 CFQ_CFQQ_FLAG_idle_window,
228 CFQ_CFQQ_FLAG_prio_changed,
231 #define CFQ_CFQQ_FNS(name) \
232 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
234 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
236 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
238 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
240 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
242 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
246 CFQ_CFQQ_FNS(wait_request);
247 CFQ_CFQQ_FNS(must_alloc);
248 CFQ_CFQQ_FNS(must_alloc_slice);
249 CFQ_CFQQ_FNS(must_dispatch);
250 CFQ_CFQQ_FNS(fifo_expire);
251 CFQ_CFQQ_FNS(idle_window);
252 CFQ_CFQQ_FNS(prio_changed);
255 enum cfq_rq_state_flags {
256 CFQ_CRQ_FLAG_is_sync = 0,
259 #define CFQ_CRQ_FNS(name) \
260 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
262 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
264 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
266 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
268 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
270 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
273 CFQ_CRQ_FNS(is_sync);
276 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
277 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
278 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
281 * lots of deadline iosched dupes, can be abstracted later...
283 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
285 hlist_del_init(&crq->hash);
288 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
290 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
292 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
295 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
297 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
298 struct hlist_node *entry, *next;
300 hlist_for_each_safe(entry, next, hash_list) {
301 struct cfq_rq *crq = list_entry_hash(entry);
302 struct request *__rq = crq->request;
304 if (!rq_mergeable(__rq)) {
305 cfq_del_crq_hash(crq);
309 if (rq_hash_key(__rq) == offset)
317 * scheduler run of queue, if there are requests pending and no one in the
318 * driver that will restart queueing
320 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
322 if (cfqd->busy_queues)
323 kblockd_schedule_work(&cfqd->unplug_work);
326 static int cfq_queue_empty(request_queue_t *q)
328 struct cfq_data *cfqd = q->elevator->elevator_data;
330 return !cfqd->busy_queues;
333 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
335 if (rw == READ || rw == WRITE_SYNC)
338 return CFQ_KEY_ASYNC;
342 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
343 * We choose the request that is closest to the head right now. Distance
344 * behind the head is penalized and only allowed to a certain extent.
346 static struct cfq_rq *
347 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
349 sector_t last, s1, s2, d1 = 0, d2 = 0;
350 unsigned long back_max;
351 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
352 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
353 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
355 if (crq1 == NULL || crq1 == crq2)
360 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
362 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
365 s1 = crq1->request->sector;
366 s2 = crq2->request->sector;
368 last = cfqd->last_sector;
371 * by definition, 1KiB is 2 sectors
373 back_max = cfqd->cfq_back_max * 2;
376 * Strict one way elevator _except_ in the case where we allow
377 * short backward seeks which are biased as twice the cost of a
378 * similar forward seek.
382 else if (s1 + back_max >= last)
383 d1 = (last - s1) * cfqd->cfq_back_penalty;
385 wrap |= CFQ_RQ1_WRAP;
389 else if (s2 + back_max >= last)
390 d2 = (last - s2) * cfqd->cfq_back_penalty;
392 wrap |= CFQ_RQ2_WRAP;
394 /* Found required data */
397 * By doing switch() on the bit mask "wrap" we avoid having to
398 * check two variables for all permutations: --> faster!
401 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
417 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
420 * Since both rqs are wrapped,
421 * start with the one that's further behind head
422 * (--> only *one* back seek required),
423 * since back seek takes more time than forward.
433 * would be nice to take fifo expire time into account as well
435 static struct cfq_rq *
436 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
439 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
440 struct rb_node *rbnext, *rbprev;
442 if (!(rbnext = rb_next(&last->rb_node))) {
443 rbnext = rb_first(&cfqq->sort_list);
444 if (rbnext == &last->rb_node)
448 rbprev = rb_prev(&last->rb_node);
451 crq_prev = rb_entry_crq(rbprev);
453 crq_next = rb_entry_crq(rbnext);
455 return cfq_choose_req(cfqd, crq_next, crq_prev);
458 static void cfq_update_next_crq(struct cfq_rq *crq)
460 struct cfq_queue *cfqq = crq->cfq_queue;
462 if (cfqq->next_crq == crq)
463 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
466 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
468 struct cfq_data *cfqd = cfqq->cfqd;
469 struct list_head *list, *entry;
471 BUG_ON(!cfq_cfqq_on_rr(cfqq));
473 list_del(&cfqq->cfq_list);
475 if (cfq_class_rt(cfqq))
476 list = &cfqd->cur_rr;
477 else if (cfq_class_idle(cfqq))
478 list = &cfqd->idle_rr;
481 * if cfqq has requests in flight, don't allow it to be
482 * found in cfq_set_active_queue before it has finished them.
483 * this is done to increase fairness between a process that
484 * has lots of io pending vs one that only generates one
485 * sporadically or synchronously
487 if (cfq_cfqq_dispatched(cfqq))
488 list = &cfqd->busy_rr;
490 list = &cfqd->rr_list[cfqq->ioprio];
494 * if queue was preempted, just add to front to be fair. busy_rr
495 * isn't sorted, but insert at the back for fairness.
497 if (preempted || list == &cfqd->busy_rr) {
501 list_add_tail(&cfqq->cfq_list, list);
506 * sort by when queue was last serviced
509 while ((entry = entry->prev) != list) {
510 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
512 if (!__cfqq->service_last)
514 if (time_before(__cfqq->service_last, cfqq->service_last))
518 list_add(&cfqq->cfq_list, entry);
522 * add to busy list of queues for service, trying to be fair in ordering
523 * the pending list according to last request service
526 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528 BUG_ON(cfq_cfqq_on_rr(cfqq));
529 cfq_mark_cfqq_on_rr(cfqq);
532 cfq_resort_rr_list(cfqq, 0);
536 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
538 BUG_ON(!cfq_cfqq_on_rr(cfqq));
539 cfq_clear_cfqq_on_rr(cfqq);
540 list_move(&cfqq->cfq_list, &cfqd->empty_list);
542 BUG_ON(!cfqd->busy_queues);
547 * rb tree support functions
549 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
551 struct cfq_queue *cfqq = crq->cfq_queue;
552 struct cfq_data *cfqd = cfqq->cfqd;
553 const int sync = cfq_crq_is_sync(crq);
555 BUG_ON(!cfqq->queued[sync]);
556 cfqq->queued[sync]--;
558 cfq_update_next_crq(crq);
560 rb_erase(&crq->rb_node, &cfqq->sort_list);
562 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
563 cfq_del_cfqq_rr(cfqd, cfqq);
566 static struct cfq_rq *
567 __cfq_add_crq_rb(struct cfq_rq *crq)
569 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
570 struct rb_node *parent = NULL;
571 struct cfq_rq *__crq;
575 __crq = rb_entry_crq(parent);
577 if (crq->rb_key < __crq->rb_key)
579 else if (crq->rb_key > __crq->rb_key)
585 rb_link_node(&crq->rb_node, parent, p);
589 static void cfq_add_crq_rb(struct cfq_rq *crq)
591 struct cfq_queue *cfqq = crq->cfq_queue;
592 struct cfq_data *cfqd = cfqq->cfqd;
593 struct request *rq = crq->request;
594 struct cfq_rq *__alias;
596 crq->rb_key = rq_rb_key(rq);
597 cfqq->queued[cfq_crq_is_sync(crq)]++;
600 * looks a little odd, but the first insert might return an alias.
601 * if that happens, put the alias on the dispatch list
603 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
604 cfq_dispatch_insert(cfqd->queue, __alias);
606 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
608 if (!cfq_cfqq_on_rr(cfqq))
609 cfq_add_cfqq_rr(cfqd, cfqq);
612 * check if this request is a better next-serve candidate
614 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
618 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
620 rb_erase(&crq->rb_node, &cfqq->sort_list);
621 cfqq->queued[cfq_crq_is_sync(crq)]--;
626 static struct request *
627 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
629 struct task_struct *tsk = current;
630 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
631 struct cfq_queue *cfqq;
635 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
639 sector = bio->bi_sector + bio_sectors(bio);
640 n = cfqq->sort_list.rb_node;
642 struct cfq_rq *crq = rb_entry_crq(n);
644 if (sector < crq->rb_key)
646 else if (sector > crq->rb_key)
656 static void cfq_activate_request(request_queue_t *q, struct request *rq)
658 struct cfq_data *cfqd = q->elevator->elevator_data;
660 cfqd->rq_in_driver++;
663 * If the depth is larger 1, it really could be queueing. But lets
664 * make the mark a little higher - idling could still be good for
665 * low queueing, and a low queueing number could also just indicate
666 * a SCSI mid layer like behaviour where limit+1 is often seen.
668 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
672 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
674 struct cfq_data *cfqd = q->elevator->elevator_data;
676 WARN_ON(!cfqd->rq_in_driver);
677 cfqd->rq_in_driver--;
680 static void cfq_remove_request(struct request *rq)
682 struct cfq_rq *crq = RQ_DATA(rq);
684 list_del_init(&rq->queuelist);
686 cfq_del_crq_hash(crq);
690 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
692 struct cfq_data *cfqd = q->elevator->elevator_data;
693 struct request *__rq;
696 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
697 if (__rq && elv_rq_merge_ok(__rq, bio)) {
698 ret = ELEVATOR_BACK_MERGE;
702 __rq = cfq_find_rq_fmerge(cfqd, bio);
703 if (__rq && elv_rq_merge_ok(__rq, bio)) {
704 ret = ELEVATOR_FRONT_MERGE;
708 return ELEVATOR_NO_MERGE;
714 static void cfq_merged_request(request_queue_t *q, struct request *req)
716 struct cfq_data *cfqd = q->elevator->elevator_data;
717 struct cfq_rq *crq = RQ_DATA(req);
719 cfq_del_crq_hash(crq);
720 cfq_add_crq_hash(cfqd, crq);
722 if (rq_rb_key(req) != crq->rb_key) {
723 struct cfq_queue *cfqq = crq->cfq_queue;
725 cfq_update_next_crq(crq);
726 cfq_reposition_crq_rb(cfqq, crq);
731 cfq_merged_requests(request_queue_t *q, struct request *rq,
732 struct request *next)
734 cfq_merged_request(q, rq);
737 * reposition in fifo if next is older than rq
739 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
740 time_before(next->start_time, rq->start_time))
741 list_move(&rq->queuelist, &next->queuelist);
743 cfq_remove_request(next);
747 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
751 * stop potential idle class queues waiting service
753 del_timer(&cfqd->idle_class_timer);
755 cfqq->slice_start = jiffies;
757 cfqq->slice_left = 0;
758 cfq_clear_cfqq_must_alloc_slice(cfqq);
759 cfq_clear_cfqq_fifo_expire(cfqq);
762 cfqd->active_queue = cfqq;
766 * current cfqq expired its slice (or was too idle), select new one
769 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
772 unsigned long now = jiffies;
774 if (cfq_cfqq_wait_request(cfqq))
775 del_timer(&cfqd->idle_slice_timer);
777 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
778 cfqq->service_last = now;
779 cfq_schedule_dispatch(cfqd);
782 cfq_clear_cfqq_must_dispatch(cfqq);
783 cfq_clear_cfqq_wait_request(cfqq);
786 * store what was left of this slice, if the queue idled out
789 if (time_after(cfqq->slice_end, now))
790 cfqq->slice_left = cfqq->slice_end - now;
792 cfqq->slice_left = 0;
794 if (cfq_cfqq_on_rr(cfqq))
795 cfq_resort_rr_list(cfqq, preempted);
797 if (cfqq == cfqd->active_queue)
798 cfqd->active_queue = NULL;
800 if (cfqd->active_cic) {
801 put_io_context(cfqd->active_cic->ioc);
802 cfqd->active_cic = NULL;
805 cfqd->dispatch_slice = 0;
808 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
810 struct cfq_queue *cfqq = cfqd->active_queue;
813 __cfq_slice_expired(cfqd, cfqq, preempted);
826 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
835 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
836 if (!list_empty(&cfqd->rr_list[p])) {
845 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
846 cfqd->cur_end_prio = 0;
853 if (unlikely(prio == -1))
856 BUG_ON(prio >= CFQ_PRIO_LISTS);
858 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
860 cfqd->cur_prio = prio + 1;
861 if (cfqd->cur_prio > cfqd->cur_end_prio) {
862 cfqd->cur_end_prio = cfqd->cur_prio;
865 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
867 cfqd->cur_end_prio = 0;
873 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
875 struct cfq_queue *cfqq = NULL;
878 * if current list is non-empty, grab first entry. if it is empty,
879 * get next prio level and grab first entry then if any are spliced
881 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
882 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
885 * If no new queues are available, check if the busy list has some
886 * before falling back to idle io.
888 if (!cfqq && !list_empty(&cfqd->busy_rr))
889 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
892 * if we have idle queues and no rt or be queues had pending
893 * requests, either allow immediate service if the grace period
894 * has passed or arm the idle grace timer
896 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
897 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
899 if (time_after_eq(jiffies, end))
900 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
902 mod_timer(&cfqd->idle_class_timer, end);
905 __cfq_set_active_queue(cfqd, cfqq);
909 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
912 struct cfq_io_context *cic;
915 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
916 WARN_ON(cfqq != cfqd->active_queue);
919 * idle is disabled, either manually or by past process history
921 if (!cfqd->cfq_slice_idle)
923 if (!cfq_cfqq_idle_window(cfqq))
926 * task has exited, don't wait
928 cic = cfqd->active_cic;
929 if (!cic || !cic->ioc->task)
932 cfq_mark_cfqq_must_dispatch(cfqq);
933 cfq_mark_cfqq_wait_request(cfqq);
935 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
938 * we don't want to idle for seeks, but we do want to allow
939 * fair distribution of slice time for a process doing back-to-back
940 * seeks. so allow a little bit of time for him to submit a new rq
942 if (sample_valid(cic->seek_samples) && cic->seek_mean > 131072)
945 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
949 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
951 struct cfq_data *cfqd = q->elevator->elevator_data;
952 struct cfq_queue *cfqq = crq->cfq_queue;
954 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
955 cfq_remove_request(crq->request);
956 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
957 elv_dispatch_sort(q, crq->request);
961 * return expired entry, or NULL to just start from scratch in rbtree
963 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
965 struct cfq_data *cfqd = cfqq->cfqd;
969 if (cfq_cfqq_fifo_expire(cfqq))
972 if (!list_empty(&cfqq->fifo)) {
973 int fifo = cfq_cfqq_class_sync(cfqq);
975 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
977 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
978 cfq_mark_cfqq_fifo_expire(cfqq);
987 * Scale schedule slice based on io priority. Use the sync time slice only
988 * if a queue is marked sync and has sync io queued. A sync queue with async
989 * io only, should not get full sync slice length.
992 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
994 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
996 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
998 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
1002 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1004 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1008 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1010 const int base_rq = cfqd->cfq_slice_async_rq;
1012 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1014 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1018 * get next queue for service
1020 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1022 unsigned long now = jiffies;
1023 struct cfq_queue *cfqq;
1025 cfqq = cfqd->active_queue;
1032 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1036 * if queue has requests, dispatch one. if not, check if
1037 * enough slice is left to wait for one
1039 if (!RB_EMPTY(&cfqq->sort_list))
1041 else if (cfq_cfqq_class_sync(cfqq) &&
1042 time_before(now, cfqq->slice_end)) {
1043 if (cfq_arm_slice_timer(cfqd, cfqq))
1048 cfq_slice_expired(cfqd, 0);
1050 cfqq = cfq_set_active_queue(cfqd);
1056 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1061 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1067 * follow expired path, else get first next available
1069 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1070 crq = cfqq->next_crq;
1073 * finally, insert request into driver dispatch list
1075 cfq_dispatch_insert(cfqd->queue, crq);
1077 cfqd->dispatch_slice++;
1080 if (!cfqd->active_cic) {
1081 atomic_inc(&crq->io_context->ioc->refcount);
1082 cfqd->active_cic = crq->io_context;
1085 if (RB_EMPTY(&cfqq->sort_list))
1088 } while (dispatched < max_dispatch);
1091 * if slice end isn't set yet, set it. if at least one request was
1092 * sync, use the sync time slice value
1094 if (!cfqq->slice_end)
1095 cfq_set_prio_slice(cfqd, cfqq);
1098 * expire an async queue immediately if it has used up its slice. idle
1099 * queue always expire after 1 dispatch round.
1101 if ((!cfq_cfqq_sync(cfqq) &&
1102 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1103 cfq_class_idle(cfqq))
1104 cfq_slice_expired(cfqd, 0);
1110 cfq_forced_dispatch_cfqqs(struct list_head *list)
1113 struct cfq_queue *cfqq, *next;
1116 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1117 while ((crq = cfqq->next_crq)) {
1118 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1121 BUG_ON(!list_empty(&cfqq->fifo));
1127 cfq_forced_dispatch(struct cfq_data *cfqd)
1129 int i, dispatched = 0;
1131 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1132 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1134 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1135 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1136 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1138 cfq_slice_expired(cfqd, 0);
1140 BUG_ON(cfqd->busy_queues);
1146 cfq_dispatch_requests(request_queue_t *q, int force)
1148 struct cfq_data *cfqd = q->elevator->elevator_data;
1149 struct cfq_queue *cfqq;
1151 if (!cfqd->busy_queues)
1154 if (unlikely(force))
1155 return cfq_forced_dispatch(cfqd);
1157 cfqq = cfq_select_queue(cfqd);
1161 cfq_clear_cfqq_must_dispatch(cfqq);
1162 cfq_clear_cfqq_wait_request(cfqq);
1163 del_timer(&cfqd->idle_slice_timer);
1165 max_dispatch = cfqd->cfq_quantum;
1166 if (cfq_class_idle(cfqq))
1169 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1176 * task holds one reference to the queue, dropped when task exits. each crq
1177 * in-flight on this queue also holds a reference, dropped when crq is freed.
1179 * queue lock must be held here.
1181 static void cfq_put_queue(struct cfq_queue *cfqq)
1183 struct cfq_data *cfqd = cfqq->cfqd;
1185 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1187 if (!atomic_dec_and_test(&cfqq->ref))
1190 BUG_ON(rb_first(&cfqq->sort_list));
1191 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1192 BUG_ON(cfq_cfqq_on_rr(cfqq));
1194 if (unlikely(cfqd->active_queue == cfqq))
1195 __cfq_slice_expired(cfqd, cfqq, 0);
1198 * it's on the empty list and still hashed
1200 list_del(&cfqq->cfq_list);
1201 hlist_del(&cfqq->cfq_hash);
1202 kmem_cache_free(cfq_pool, cfqq);
1205 static inline struct cfq_queue *
1206 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1209 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1210 struct hlist_node *entry;
1211 struct cfq_queue *__cfqq;
1213 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1214 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1216 if (__cfqq->key == key && (__p == prio || !prio))
1223 static struct cfq_queue *
1224 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1226 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1229 static void cfq_free_io_context(struct io_context *ioc)
1231 struct cfq_io_context *__cic;
1235 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1236 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1237 rb_erase(&__cic->rb_node, &ioc->cic_root);
1238 kmem_cache_free(cfq_ioc_pool, __cic);
1242 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1246 static void cfq_trim(struct io_context *ioc)
1248 ioc->set_ioprio = NULL;
1249 cfq_free_io_context(ioc);
1253 * Called with interrupts disabled
1255 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1257 struct cfq_data *cfqd = cic->key;
1265 WARN_ON(!irqs_disabled());
1267 spin_lock(q->queue_lock);
1269 if (cic->cfqq[ASYNC]) {
1270 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1271 __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1272 cfq_put_queue(cic->cfqq[ASYNC]);
1273 cic->cfqq[ASYNC] = NULL;
1276 if (cic->cfqq[SYNC]) {
1277 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1278 __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1279 cfq_put_queue(cic->cfqq[SYNC]);
1280 cic->cfqq[SYNC] = NULL;
1284 list_del_init(&cic->queue_list);
1285 spin_unlock(q->queue_lock);
1288 static void cfq_exit_io_context(struct io_context *ioc)
1290 struct cfq_io_context *__cic;
1291 unsigned long flags;
1295 * put the reference this task is holding to the various queues
1297 spin_lock_irqsave(&cfq_exit_lock, flags);
1299 n = rb_first(&ioc->cic_root);
1301 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1303 cfq_exit_single_io_context(__cic);
1307 spin_unlock_irqrestore(&cfq_exit_lock, flags);
1310 static struct cfq_io_context *
1311 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1313 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1316 memset(cic, 0, sizeof(*cic));
1317 cic->last_end_request = jiffies;
1318 INIT_LIST_HEAD(&cic->queue_list);
1319 cic->dtor = cfq_free_io_context;
1320 cic->exit = cfq_exit_io_context;
1321 atomic_inc(&ioc_count);
1327 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1329 struct task_struct *tsk = current;
1332 if (!cfq_cfqq_prio_changed(cfqq))
1335 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1336 switch (ioprio_class) {
1338 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1339 case IOPRIO_CLASS_NONE:
1341 * no prio set, place us in the middle of the BE classes
1343 cfqq->ioprio = task_nice_ioprio(tsk);
1344 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1346 case IOPRIO_CLASS_RT:
1347 cfqq->ioprio = task_ioprio(tsk);
1348 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1350 case IOPRIO_CLASS_BE:
1351 cfqq->ioprio = task_ioprio(tsk);
1352 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1354 case IOPRIO_CLASS_IDLE:
1355 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1357 cfq_clear_cfqq_idle_window(cfqq);
1362 * keep track of original prio settings in case we have to temporarily
1363 * elevate the priority of this queue
1365 cfqq->org_ioprio = cfqq->ioprio;
1366 cfqq->org_ioprio_class = cfqq->ioprio_class;
1368 if (cfq_cfqq_on_rr(cfqq))
1369 cfq_resort_rr_list(cfqq, 0);
1371 cfq_clear_cfqq_prio_changed(cfqq);
1374 static inline void changed_ioprio(struct cfq_io_context *cic)
1376 struct cfq_data *cfqd = cic->key;
1377 struct cfq_queue *cfqq;
1379 spin_lock(cfqd->queue->queue_lock);
1380 cfqq = cic->cfqq[ASYNC];
1382 struct cfq_queue *new_cfqq;
1383 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1384 cic->ioc->task, GFP_ATOMIC);
1386 cic->cfqq[ASYNC] = new_cfqq;
1387 cfq_put_queue(cfqq);
1390 cfqq = cic->cfqq[SYNC];
1392 cfq_mark_cfqq_prio_changed(cfqq);
1393 cfq_init_prio_data(cfqq);
1395 spin_unlock(cfqd->queue->queue_lock);
1400 * callback from sys_ioprio_set, irqs are disabled
1402 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1404 struct cfq_io_context *cic;
1407 spin_lock(&cfq_exit_lock);
1409 n = rb_first(&ioc->cic_root);
1411 cic = rb_entry(n, struct cfq_io_context, rb_node);
1413 changed_ioprio(cic);
1417 spin_unlock(&cfq_exit_lock);
1422 static struct cfq_queue *
1423 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1426 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1427 struct cfq_queue *cfqq, *new_cfqq = NULL;
1428 unsigned short ioprio;
1431 ioprio = tsk->ioprio;
1432 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1438 } else if (gfp_mask & __GFP_WAIT) {
1439 spin_unlock_irq(cfqd->queue->queue_lock);
1440 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1441 spin_lock_irq(cfqd->queue->queue_lock);
1444 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1449 memset(cfqq, 0, sizeof(*cfqq));
1451 INIT_HLIST_NODE(&cfqq->cfq_hash);
1452 INIT_LIST_HEAD(&cfqq->cfq_list);
1453 RB_CLEAR_ROOT(&cfqq->sort_list);
1454 INIT_LIST_HEAD(&cfqq->fifo);
1457 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1458 atomic_set(&cfqq->ref, 0);
1460 cfqq->service_last = 0;
1462 * set ->slice_left to allow preemption for a new process
1464 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1466 cfq_mark_cfqq_idle_window(cfqq);
1467 cfq_mark_cfqq_prio_changed(cfqq);
1468 cfq_init_prio_data(cfqq);
1472 kmem_cache_free(cfq_pool, new_cfqq);
1474 atomic_inc(&cfqq->ref);
1476 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1481 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1483 spin_lock(&cfq_exit_lock);
1484 rb_erase(&cic->rb_node, &ioc->cic_root);
1485 list_del_init(&cic->queue_list);
1486 spin_unlock(&cfq_exit_lock);
1487 kmem_cache_free(cfq_ioc_pool, cic);
1488 atomic_dec(&ioc_count);
1491 static struct cfq_io_context *
1492 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1495 struct cfq_io_context *cic;
1496 void *k, *key = cfqd;
1499 n = ioc->cic_root.rb_node;
1501 cic = rb_entry(n, struct cfq_io_context, rb_node);
1502 /* ->key must be copied to avoid race with cfq_exit_queue() */
1505 cfq_drop_dead_cic(ioc, cic);
1521 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1522 struct cfq_io_context *cic)
1525 struct rb_node *parent;
1526 struct cfq_io_context *__cic;
1532 ioc->set_ioprio = cfq_ioc_set_ioprio;
1535 p = &ioc->cic_root.rb_node;
1538 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1539 /* ->key must be copied to avoid race with cfq_exit_queue() */
1542 cfq_drop_dead_cic(ioc, cic);
1548 else if (cic->key > k)
1549 p = &(*p)->rb_right;
1554 spin_lock(&cfq_exit_lock);
1555 rb_link_node(&cic->rb_node, parent, p);
1556 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1557 list_add(&cic->queue_list, &cfqd->cic_list);
1558 spin_unlock(&cfq_exit_lock);
1562 * Setup general io context and cfq io context. There can be several cfq
1563 * io contexts per general io context, if this process is doing io to more
1564 * than one device managed by cfq.
1566 static struct cfq_io_context *
1567 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1569 struct io_context *ioc = NULL;
1570 struct cfq_io_context *cic;
1572 might_sleep_if(gfp_mask & __GFP_WAIT);
1574 ioc = get_io_context(gfp_mask);
1578 cic = cfq_cic_rb_lookup(cfqd, ioc);
1582 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1586 cfq_cic_link(cfqd, ioc, cic);
1590 put_io_context(ioc);
1595 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1597 unsigned long elapsed, ttime;
1600 * if this context already has stuff queued, thinktime is from
1601 * last queue not last end
1604 if (time_after(cic->last_end_request, cic->last_queue))
1605 elapsed = jiffies - cic->last_end_request;
1607 elapsed = jiffies - cic->last_queue;
1609 elapsed = jiffies - cic->last_end_request;
1612 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1614 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1615 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1616 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1620 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1626 if (cic->last_request_pos < crq->request->sector)
1627 sdist = crq->request->sector - cic->last_request_pos;
1629 sdist = cic->last_request_pos - crq->request->sector;
1632 * Don't allow the seek distance to get too large from the
1633 * odd fragment, pagein, etc
1635 if (cic->seek_samples <= 60) /* second&third seek */
1636 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1638 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1640 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1641 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1642 total = cic->seek_total + (cic->seek_samples/2);
1643 do_div(total, cic->seek_samples);
1644 cic->seek_mean = (sector_t)total;
1648 * Disable idle window if the process thinks too long or seeks so much that
1652 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1653 struct cfq_io_context *cic)
1655 int enable_idle = cfq_cfqq_idle_window(cfqq);
1657 if (!cic->ioc->task || !cfqd->cfq_slice_idle || cfqd->hw_tag)
1659 else if (sample_valid(cic->ttime_samples)) {
1660 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1667 cfq_mark_cfqq_idle_window(cfqq);
1669 cfq_clear_cfqq_idle_window(cfqq);
1674 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1675 * no or if we aren't sure, a 1 will cause a preempt.
1678 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1681 struct cfq_queue *cfqq = cfqd->active_queue;
1683 if (cfq_class_idle(new_cfqq))
1689 if (cfq_class_idle(cfqq))
1691 if (!cfq_cfqq_wait_request(new_cfqq))
1694 * if it doesn't have slice left, forget it
1696 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1698 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1705 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1706 * let it have half of its nominal slice.
1708 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1710 struct cfq_queue *__cfqq, *next;
1712 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1713 cfq_resort_rr_list(__cfqq, 1);
1715 if (!cfqq->slice_left)
1716 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1718 cfqq->slice_end = cfqq->slice_left + jiffies;
1719 __cfq_slice_expired(cfqd, cfqq, 1);
1720 __cfq_set_active_queue(cfqd, cfqq);
1724 * should really be a ll_rw_blk.c helper
1726 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1728 request_queue_t *q = cfqd->queue;
1730 if (!blk_queue_plugged(q))
1733 __generic_unplug_device(q);
1737 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1738 * something we should do about it
1741 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1744 struct cfq_io_context *cic;
1746 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1748 cic = crq->io_context;
1751 * we never wait for an async request and we don't allow preemption
1752 * of an async request. so just return early
1754 if (!cfq_crq_is_sync(crq)) {
1756 * sync process issued an async request, if it's waiting
1757 * then expire it and kick rq handling.
1759 if (cic == cfqd->active_cic &&
1760 del_timer(&cfqd->idle_slice_timer)) {
1761 cfq_slice_expired(cfqd, 0);
1762 cfq_start_queueing(cfqd, cfqq);
1767 cfq_update_io_thinktime(cfqd, cic);
1768 cfq_update_io_seektime(cfqd, cic, crq);
1769 cfq_update_idle_window(cfqd, cfqq, cic);
1771 cic->last_queue = jiffies;
1772 cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1774 if (cfqq == cfqd->active_queue) {
1776 * if we are waiting for a request for this queue, let it rip
1777 * immediately and flag that we must not expire this queue
1780 if (cfq_cfqq_wait_request(cfqq)) {
1781 cfq_mark_cfqq_must_dispatch(cfqq);
1782 del_timer(&cfqd->idle_slice_timer);
1783 cfq_start_queueing(cfqd, cfqq);
1785 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1787 * not the active queue - expire current slice if it is
1788 * idle and has expired it's mean thinktime or this new queue
1789 * has some old slice time left and is of higher priority
1791 cfq_preempt_queue(cfqd, cfqq);
1792 cfq_mark_cfqq_must_dispatch(cfqq);
1793 cfq_start_queueing(cfqd, cfqq);
1797 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1799 struct cfq_data *cfqd = q->elevator->elevator_data;
1800 struct cfq_rq *crq = RQ_DATA(rq);
1801 struct cfq_queue *cfqq = crq->cfq_queue;
1803 cfq_init_prio_data(cfqq);
1805 cfq_add_crq_rb(crq);
1807 list_add_tail(&rq->queuelist, &cfqq->fifo);
1809 if (rq_mergeable(rq))
1810 cfq_add_crq_hash(cfqd, crq);
1812 cfq_crq_enqueued(cfqd, cfqq, crq);
1815 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1817 struct cfq_rq *crq = RQ_DATA(rq);
1818 struct cfq_queue *cfqq = crq->cfq_queue;
1819 struct cfq_data *cfqd = cfqq->cfqd;
1820 const int sync = cfq_crq_is_sync(crq);
1825 WARN_ON(!cfqd->rq_in_driver);
1826 WARN_ON(!cfqq->on_dispatch[sync]);
1827 cfqd->rq_in_driver--;
1828 cfqq->on_dispatch[sync]--;
1830 if (!cfq_class_idle(cfqq))
1831 cfqd->last_end_request = now;
1833 if (!cfq_cfqq_dispatched(cfqq)) {
1834 if (cfq_cfqq_on_rr(cfqq)) {
1835 cfqq->service_last = now;
1836 cfq_resort_rr_list(cfqq, 0);
1838 cfq_schedule_dispatch(cfqd);
1841 if (cfq_crq_is_sync(crq))
1842 crq->io_context->last_end_request = now;
1845 static struct request *
1846 cfq_former_request(request_queue_t *q, struct request *rq)
1848 struct cfq_rq *crq = RQ_DATA(rq);
1849 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1852 return rb_entry_crq(rbprev)->request;
1857 static struct request *
1858 cfq_latter_request(request_queue_t *q, struct request *rq)
1860 struct cfq_rq *crq = RQ_DATA(rq);
1861 struct rb_node *rbnext = rb_next(&crq->rb_node);
1864 return rb_entry_crq(rbnext)->request;
1870 * we temporarily boost lower priority queues if they are holding fs exclusive
1871 * resources. they are boosted to normal prio (CLASS_BE/4)
1873 static void cfq_prio_boost(struct cfq_queue *cfqq)
1875 const int ioprio_class = cfqq->ioprio_class;
1876 const int ioprio = cfqq->ioprio;
1878 if (has_fs_excl()) {
1880 * boost idle prio on transactions that would lock out other
1881 * users of the filesystem
1883 if (cfq_class_idle(cfqq))
1884 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1885 if (cfqq->ioprio > IOPRIO_NORM)
1886 cfqq->ioprio = IOPRIO_NORM;
1889 * check if we need to unboost the queue
1891 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1892 cfqq->ioprio_class = cfqq->org_ioprio_class;
1893 if (cfqq->ioprio != cfqq->org_ioprio)
1894 cfqq->ioprio = cfqq->org_ioprio;
1898 * refile between round-robin lists if we moved the priority class
1900 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1901 cfq_cfqq_on_rr(cfqq))
1902 cfq_resort_rr_list(cfqq, 0);
1906 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1907 struct task_struct *task, int rw)
1909 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1910 !cfq_cfqq_must_alloc_slice(cfqq)) {
1911 cfq_mark_cfqq_must_alloc_slice(cfqq);
1912 return ELV_MQUEUE_MUST;
1915 return ELV_MQUEUE_MAY;
1918 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1920 struct cfq_data *cfqd = q->elevator->elevator_data;
1921 struct task_struct *tsk = current;
1922 struct cfq_queue *cfqq;
1925 * don't force setup of a queue from here, as a call to may_queue
1926 * does not necessarily imply that a request actually will be queued.
1927 * so just lookup a possibly existing queue, or return 'may queue'
1930 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1932 cfq_init_prio_data(cfqq);
1933 cfq_prio_boost(cfqq);
1935 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1938 return ELV_MQUEUE_MAY;
1941 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1943 struct cfq_data *cfqd = q->elevator->elevator_data;
1945 if (unlikely(cfqd->rq_starved)) {
1946 struct request_list *rl = &q->rq;
1949 if (waitqueue_active(&rl->wait[READ]))
1950 wake_up(&rl->wait[READ]);
1951 if (waitqueue_active(&rl->wait[WRITE]))
1952 wake_up(&rl->wait[WRITE]);
1957 * queue lock held here
1959 static void cfq_put_request(request_queue_t *q, struct request *rq)
1961 struct cfq_data *cfqd = q->elevator->elevator_data;
1962 struct cfq_rq *crq = RQ_DATA(rq);
1965 struct cfq_queue *cfqq = crq->cfq_queue;
1966 const int rw = rq_data_dir(rq);
1968 BUG_ON(!cfqq->allocated[rw]);
1969 cfqq->allocated[rw]--;
1971 put_io_context(crq->io_context->ioc);
1973 mempool_free(crq, cfqd->crq_pool);
1974 rq->elevator_private = NULL;
1976 cfq_check_waiters(q, cfqq);
1977 cfq_put_queue(cfqq);
1982 * Allocate cfq data structures associated with this request.
1985 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1988 struct cfq_data *cfqd = q->elevator->elevator_data;
1989 struct task_struct *tsk = current;
1990 struct cfq_io_context *cic;
1991 const int rw = rq_data_dir(rq);
1992 pid_t key = cfq_queue_pid(tsk, rw);
1993 struct cfq_queue *cfqq;
1995 unsigned long flags;
1996 int is_sync = key != CFQ_KEY_ASYNC;
1998 might_sleep_if(gfp_mask & __GFP_WAIT);
2000 cic = cfq_get_io_context(cfqd, gfp_mask);
2002 spin_lock_irqsave(q->queue_lock, flags);
2007 if (!cic->cfqq[is_sync]) {
2008 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2012 cic->cfqq[is_sync] = cfqq;
2014 cfqq = cic->cfqq[is_sync];
2016 cfqq->allocated[rw]++;
2017 cfq_clear_cfqq_must_alloc(cfqq);
2018 cfqd->rq_starved = 0;
2019 atomic_inc(&cfqq->ref);
2020 spin_unlock_irqrestore(q->queue_lock, flags);
2022 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2024 RB_CLEAR(&crq->rb_node);
2027 INIT_HLIST_NODE(&crq->hash);
2028 crq->cfq_queue = cfqq;
2029 crq->io_context = cic;
2032 cfq_mark_crq_is_sync(crq);
2034 cfq_clear_crq_is_sync(crq);
2036 rq->elevator_private = crq;
2040 spin_lock_irqsave(q->queue_lock, flags);
2041 cfqq->allocated[rw]--;
2042 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2043 cfq_mark_cfqq_must_alloc(cfqq);
2044 cfq_put_queue(cfqq);
2047 put_io_context(cic->ioc);
2049 * mark us rq allocation starved. we need to kickstart the process
2050 * ourselves if there are no pending requests that can do it for us.
2051 * that would be an extremely rare OOM situation
2053 cfqd->rq_starved = 1;
2054 cfq_schedule_dispatch(cfqd);
2055 spin_unlock_irqrestore(q->queue_lock, flags);
2059 static void cfq_kick_queue(void *data)
2061 request_queue_t *q = data;
2062 struct cfq_data *cfqd = q->elevator->elevator_data;
2063 unsigned long flags;
2065 spin_lock_irqsave(q->queue_lock, flags);
2067 if (cfqd->rq_starved) {
2068 struct request_list *rl = &q->rq;
2071 * we aren't guaranteed to get a request after this, but we
2072 * have to be opportunistic
2075 if (waitqueue_active(&rl->wait[READ]))
2076 wake_up(&rl->wait[READ]);
2077 if (waitqueue_active(&rl->wait[WRITE]))
2078 wake_up(&rl->wait[WRITE]);
2083 spin_unlock_irqrestore(q->queue_lock, flags);
2087 * Timer running if the active_queue is currently idling inside its time slice
2089 static void cfq_idle_slice_timer(unsigned long data)
2091 struct cfq_data *cfqd = (struct cfq_data *) data;
2092 struct cfq_queue *cfqq;
2093 unsigned long flags;
2095 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2097 if ((cfqq = cfqd->active_queue) != NULL) {
2098 unsigned long now = jiffies;
2103 if (time_after(now, cfqq->slice_end))
2107 * only expire and reinvoke request handler, if there are
2108 * other queues with pending requests
2110 if (!cfqd->busy_queues) {
2111 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2112 add_timer(&cfqd->idle_slice_timer);
2117 * not expired and it has a request pending, let it dispatch
2119 if (!RB_EMPTY(&cfqq->sort_list)) {
2120 cfq_mark_cfqq_must_dispatch(cfqq);
2125 cfq_slice_expired(cfqd, 0);
2127 cfq_schedule_dispatch(cfqd);
2129 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2133 * Timer running if an idle class queue is waiting for service
2135 static void cfq_idle_class_timer(unsigned long data)
2137 struct cfq_data *cfqd = (struct cfq_data *) data;
2138 unsigned long flags, end;
2140 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2143 * race with a non-idle queue, reset timer
2145 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2146 if (!time_after_eq(jiffies, end))
2147 mod_timer(&cfqd->idle_class_timer, end);
2149 cfq_schedule_dispatch(cfqd);
2151 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2154 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2156 del_timer_sync(&cfqd->idle_slice_timer);
2157 del_timer_sync(&cfqd->idle_class_timer);
2158 blk_sync_queue(cfqd->queue);
2161 static void cfq_exit_queue(elevator_t *e)
2163 struct cfq_data *cfqd = e->elevator_data;
2164 request_queue_t *q = cfqd->queue;
2166 cfq_shutdown_timer_wq(cfqd);
2168 spin_lock(&cfq_exit_lock);
2169 spin_lock_irq(q->queue_lock);
2171 if (cfqd->active_queue)
2172 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2174 while (!list_empty(&cfqd->cic_list)) {
2175 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2176 struct cfq_io_context,
2178 if (cic->cfqq[ASYNC]) {
2179 cfq_put_queue(cic->cfqq[ASYNC]);
2180 cic->cfqq[ASYNC] = NULL;
2182 if (cic->cfqq[SYNC]) {
2183 cfq_put_queue(cic->cfqq[SYNC]);
2184 cic->cfqq[SYNC] = NULL;
2187 list_del_init(&cic->queue_list);
2190 spin_unlock_irq(q->queue_lock);
2191 spin_unlock(&cfq_exit_lock);
2193 cfq_shutdown_timer_wq(cfqd);
2195 mempool_destroy(cfqd->crq_pool);
2196 kfree(cfqd->crq_hash);
2197 kfree(cfqd->cfq_hash);
2201 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2203 struct cfq_data *cfqd;
2206 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2210 memset(cfqd, 0, sizeof(*cfqd));
2212 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2213 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2215 INIT_LIST_HEAD(&cfqd->busy_rr);
2216 INIT_LIST_HEAD(&cfqd->cur_rr);
2217 INIT_LIST_HEAD(&cfqd->idle_rr);
2218 INIT_LIST_HEAD(&cfqd->empty_list);
2219 INIT_LIST_HEAD(&cfqd->cic_list);
2221 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2222 if (!cfqd->crq_hash)
2225 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2226 if (!cfqd->cfq_hash)
2229 cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2230 if (!cfqd->crq_pool)
2233 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2234 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2235 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2236 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2240 init_timer(&cfqd->idle_slice_timer);
2241 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2242 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2244 init_timer(&cfqd->idle_class_timer);
2245 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2246 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2248 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2250 cfqd->cfq_queued = cfq_queued;
2251 cfqd->cfq_quantum = cfq_quantum;
2252 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2253 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2254 cfqd->cfq_back_max = cfq_back_max;
2255 cfqd->cfq_back_penalty = cfq_back_penalty;
2256 cfqd->cfq_slice[0] = cfq_slice_async;
2257 cfqd->cfq_slice[1] = cfq_slice_sync;
2258 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2259 cfqd->cfq_slice_idle = cfq_slice_idle;
2263 kfree(cfqd->cfq_hash);
2265 kfree(cfqd->crq_hash);
2271 static void cfq_slab_kill(void)
2274 kmem_cache_destroy(crq_pool);
2276 kmem_cache_destroy(cfq_pool);
2278 kmem_cache_destroy(cfq_ioc_pool);
2281 static int __init cfq_slab_setup(void)
2283 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2288 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2293 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2294 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2305 * sysfs parts below -->
2309 cfq_var_show(unsigned int var, char *page)
2311 return sprintf(page, "%d\n", var);
2315 cfq_var_store(unsigned int *var, const char *page, size_t count)
2317 char *p = (char *) page;
2319 *var = simple_strtoul(p, &p, 10);
2323 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2324 static ssize_t __FUNC(elevator_t *e, char *page) \
2326 struct cfq_data *cfqd = e->elevator_data; \
2327 unsigned int __data = __VAR; \
2329 __data = jiffies_to_msecs(__data); \
2330 return cfq_var_show(__data, (page)); \
2332 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2333 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2334 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2335 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2336 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2337 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2338 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2339 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2340 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2341 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2342 #undef SHOW_FUNCTION
2344 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2345 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2347 struct cfq_data *cfqd = e->elevator_data; \
2348 unsigned int __data; \
2349 int ret = cfq_var_store(&__data, (page), count); \
2350 if (__data < (MIN)) \
2352 else if (__data > (MAX)) \
2355 *(__PTR) = msecs_to_jiffies(__data); \
2357 *(__PTR) = __data; \
2360 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2361 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2362 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2363 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2364 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2365 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2366 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2367 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2368 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2369 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2370 #undef STORE_FUNCTION
2372 #define CFQ_ATTR(name) \
2373 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2375 static struct elv_fs_entry cfq_attrs[] = {
2378 CFQ_ATTR(fifo_expire_sync),
2379 CFQ_ATTR(fifo_expire_async),
2380 CFQ_ATTR(back_seek_max),
2381 CFQ_ATTR(back_seek_penalty),
2382 CFQ_ATTR(slice_sync),
2383 CFQ_ATTR(slice_async),
2384 CFQ_ATTR(slice_async_rq),
2385 CFQ_ATTR(slice_idle),
2389 static struct elevator_type iosched_cfq = {
2391 .elevator_merge_fn = cfq_merge,
2392 .elevator_merged_fn = cfq_merged_request,
2393 .elevator_merge_req_fn = cfq_merged_requests,
2394 .elevator_dispatch_fn = cfq_dispatch_requests,
2395 .elevator_add_req_fn = cfq_insert_request,
2396 .elevator_activate_req_fn = cfq_activate_request,
2397 .elevator_deactivate_req_fn = cfq_deactivate_request,
2398 .elevator_queue_empty_fn = cfq_queue_empty,
2399 .elevator_completed_req_fn = cfq_completed_request,
2400 .elevator_former_req_fn = cfq_former_request,
2401 .elevator_latter_req_fn = cfq_latter_request,
2402 .elevator_set_req_fn = cfq_set_request,
2403 .elevator_put_req_fn = cfq_put_request,
2404 .elevator_may_queue_fn = cfq_may_queue,
2405 .elevator_init_fn = cfq_init_queue,
2406 .elevator_exit_fn = cfq_exit_queue,
2409 .elevator_attrs = cfq_attrs,
2410 .elevator_name = "cfq",
2411 .elevator_owner = THIS_MODULE,
2414 static int __init cfq_init(void)
2419 * could be 0 on HZ < 1000 setups
2421 if (!cfq_slice_async)
2422 cfq_slice_async = 1;
2423 if (!cfq_slice_idle)
2426 if (cfq_slab_setup())
2429 ret = elv_register(&iosched_cfq);
2436 static void __exit cfq_exit(void)
2438 DECLARE_COMPLETION(all_gone);
2439 elv_unregister(&iosched_cfq);
2440 ioc_gone = &all_gone;
2441 /* ioc_gone's update must be visible before reading ioc_count */
2443 if (atomic_read(&ioc_count))
2444 wait_for_completion(ioc_gone);
2449 module_init(cfq_init);
2450 module_exit(cfq_exit);
2452 MODULE_AUTHOR("Jens Axboe");
2453 MODULE_LICENSE("GPL");
2454 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");