[PATCH] Kill PF_SYNCWRITE flag
[linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8  */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16
17 /*
18  * tunables
19  */
20 static const int cfq_quantum = 4;               /* max queue in one round of service */
21 static const int cfq_queued = 8;                /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
25
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 70;
30
31 #define CFQ_IDLE_GRACE          (HZ / 10)
32 #define CFQ_SLICE_SCALE         (5)
33
34 #define CFQ_KEY_ASYNC           (0)
35
36 static DEFINE_SPINLOCK(cfq_exit_lock);
37
38 /*
39  * for the hash of cfqq inside the cfqd
40  */
41 #define CFQ_QHASH_SHIFT         6
42 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
44
45 /*
46  * for the hash of crq inside the cfqq
47  */
48 #define CFQ_MHASH_SHIFT         6
49 #define CFQ_MHASH_BLOCK(sec)    ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES       (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec)       hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq)         ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr)    hlist_entry((ptr), struct cfq_rq, hash)
54
55 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr)    list_entry((ptr), struct request, queuelist)
57
58 #define RQ_DATA(rq)             (rq)->elevator_private
59
60 /*
61  * rb-tree defines
62  */
63 #define RB_EMPTY(node)          ((node)->rb_node == NULL)
64 #define RB_CLEAR(node)          do {    \
65                 memset(node, 0, sizeof(*node)); \
66 } while (0)
67 #define RB_CLEAR_ROOT(root)     ((root)->rb_node = NULL)
68 #define rb_entry_crq(node)      rb_entry((node), struct cfq_rq, rb_node)
69 #define rq_rb_key(rq)           (rq)->sector
70
71 static kmem_cache_t *crq_pool;
72 static kmem_cache_t *cfq_pool;
73 static kmem_cache_t *cfq_ioc_pool;
74
75 static atomic_t ioc_count = ATOMIC_INIT(0);
76 static struct completion *ioc_gone;
77
78 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
79 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
80 #define cfq_class_be(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
81 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
82
83 #define ASYNC                   (0)
84 #define SYNC                    (1)
85
86 #define cfq_cfqq_dispatched(cfqq)       \
87         ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
88
89 #define cfq_cfqq_class_sync(cfqq)       ((cfqq)->key != CFQ_KEY_ASYNC)
90
91 #define cfq_cfqq_sync(cfqq)             \
92         (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
93
94 #define sample_valid(samples)   ((samples) > 80)
95
96 /*
97  * Per block device queue structure
98  */
99 struct cfq_data {
100         request_queue_t *queue;
101
102         /*
103          * rr list of queues with requests and the count of them
104          */
105         struct list_head rr_list[CFQ_PRIO_LISTS];
106         struct list_head busy_rr;
107         struct list_head cur_rr;
108         struct list_head idle_rr;
109         unsigned int busy_queues;
110
111         /*
112          * non-ordered list of empty cfqq's
113          */
114         struct list_head empty_list;
115
116         /*
117          * cfqq lookup hash
118          */
119         struct hlist_head *cfq_hash;
120
121         /*
122          * global crq hash for all queues
123          */
124         struct hlist_head *crq_hash;
125
126         mempool_t *crq_pool;
127
128         int rq_in_driver;
129         int hw_tag;
130
131         /*
132          * schedule slice state info
133          */
134         /*
135          * idle window management
136          */
137         struct timer_list idle_slice_timer;
138         struct work_struct unplug_work;
139
140         struct cfq_queue *active_queue;
141         struct cfq_io_context *active_cic;
142         int cur_prio, cur_end_prio;
143         unsigned int dispatch_slice;
144
145         struct timer_list idle_class_timer;
146
147         sector_t last_sector;
148         unsigned long last_end_request;
149
150         unsigned int rq_starved;
151
152         /*
153          * tunables, see top of file
154          */
155         unsigned int cfq_quantum;
156         unsigned int cfq_queued;
157         unsigned int cfq_fifo_expire[2];
158         unsigned int cfq_back_penalty;
159         unsigned int cfq_back_max;
160         unsigned int cfq_slice[2];
161         unsigned int cfq_slice_async_rq;
162         unsigned int cfq_slice_idle;
163
164         struct list_head cic_list;
165 };
166
167 /*
168  * Per process-grouping structure
169  */
170 struct cfq_queue {
171         /* reference count */
172         atomic_t ref;
173         /* parent cfq_data */
174         struct cfq_data *cfqd;
175         /* cfqq lookup hash */
176         struct hlist_node cfq_hash;
177         /* hash key */
178         unsigned int key;
179         /* on either rr or empty list of cfqd */
180         struct list_head cfq_list;
181         /* sorted list of pending requests */
182         struct rb_root sort_list;
183         /* if fifo isn't expired, next request to serve */
184         struct cfq_rq *next_crq;
185         /* requests queued in sort_list */
186         int queued[2];
187         /* currently allocated requests */
188         int allocated[2];
189         /* fifo list of requests in sort_list */
190         struct list_head fifo;
191
192         unsigned long slice_start;
193         unsigned long slice_end;
194         unsigned long slice_left;
195         unsigned long service_last;
196
197         /* number of requests that are on the dispatch list */
198         int on_dispatch[2];
199
200         /* io prio of this group */
201         unsigned short ioprio, org_ioprio;
202         unsigned short ioprio_class, org_ioprio_class;
203
204         /* various state flags, see below */
205         unsigned int flags;
206 };
207
208 struct cfq_rq {
209         struct rb_node rb_node;
210         sector_t rb_key;
211         struct request *request;
212         struct hlist_node hash;
213
214         struct cfq_queue *cfq_queue;
215         struct cfq_io_context *io_context;
216
217         unsigned int crq_flags;
218 };
219
220 enum cfqq_state_flags {
221         CFQ_CFQQ_FLAG_on_rr = 0,
222         CFQ_CFQQ_FLAG_wait_request,
223         CFQ_CFQQ_FLAG_must_alloc,
224         CFQ_CFQQ_FLAG_must_alloc_slice,
225         CFQ_CFQQ_FLAG_must_dispatch,
226         CFQ_CFQQ_FLAG_fifo_expire,
227         CFQ_CFQQ_FLAG_idle_window,
228         CFQ_CFQQ_FLAG_prio_changed,
229 };
230
231 #define CFQ_CFQQ_FNS(name)                                              \
232 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
233 {                                                                       \
234         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
235 }                                                                       \
236 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
237 {                                                                       \
238         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
239 }                                                                       \
240 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
241 {                                                                       \
242         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
243 }
244
245 CFQ_CFQQ_FNS(on_rr);
246 CFQ_CFQQ_FNS(wait_request);
247 CFQ_CFQQ_FNS(must_alloc);
248 CFQ_CFQQ_FNS(must_alloc_slice);
249 CFQ_CFQQ_FNS(must_dispatch);
250 CFQ_CFQQ_FNS(fifo_expire);
251 CFQ_CFQQ_FNS(idle_window);
252 CFQ_CFQQ_FNS(prio_changed);
253 #undef CFQ_CFQQ_FNS
254
255 enum cfq_rq_state_flags {
256         CFQ_CRQ_FLAG_is_sync = 0,
257 };
258
259 #define CFQ_CRQ_FNS(name)                                               \
260 static inline void cfq_mark_crq_##name(struct cfq_rq *crq)              \
261 {                                                                       \
262         crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name);                   \
263 }                                                                       \
264 static inline void cfq_clear_crq_##name(struct cfq_rq *crq)             \
265 {                                                                       \
266         crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name);                  \
267 }                                                                       \
268 static inline int cfq_crq_##name(const struct cfq_rq *crq)              \
269 {                                                                       \
270         return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0;      \
271 }
272
273 CFQ_CRQ_FNS(is_sync);
274 #undef CFQ_CRQ_FNS
275
276 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
277 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
278 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
279
280 /*
281  * lots of deadline iosched dupes, can be abstracted later...
282  */
283 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
284 {
285         hlist_del_init(&crq->hash);
286 }
287
288 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
289 {
290         const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
291
292         hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
293 }
294
295 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
296 {
297         struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
298         struct hlist_node *entry, *next;
299
300         hlist_for_each_safe(entry, next, hash_list) {
301                 struct cfq_rq *crq = list_entry_hash(entry);
302                 struct request *__rq = crq->request;
303
304                 if (!rq_mergeable(__rq)) {
305                         cfq_del_crq_hash(crq);
306                         continue;
307                 }
308
309                 if (rq_hash_key(__rq) == offset)
310                         return __rq;
311         }
312
313         return NULL;
314 }
315
316 /*
317  * scheduler run of queue, if there are requests pending and no one in the
318  * driver that will restart queueing
319  */
320 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
321 {
322         if (cfqd->busy_queues)
323                 kblockd_schedule_work(&cfqd->unplug_work);
324 }
325
326 static int cfq_queue_empty(request_queue_t *q)
327 {
328         struct cfq_data *cfqd = q->elevator->elevator_data;
329
330         return !cfqd->busy_queues;
331 }
332
333 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
334 {
335         if (rw == READ || rw == WRITE_SYNC)
336                 return task->pid;
337
338         return CFQ_KEY_ASYNC;
339 }
340
341 /*
342  * Lifted from AS - choose which of crq1 and crq2 that is best served now.
343  * We choose the request that is closest to the head right now. Distance
344  * behind the head is penalized and only allowed to a certain extent.
345  */
346 static struct cfq_rq *
347 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
348 {
349         sector_t last, s1, s2, d1 = 0, d2 = 0;
350         unsigned long back_max;
351 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
352 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
353         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
354
355         if (crq1 == NULL || crq1 == crq2)
356                 return crq2;
357         if (crq2 == NULL)
358                 return crq1;
359
360         if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
361                 return crq1;
362         else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
363                 return crq2;
364
365         s1 = crq1->request->sector;
366         s2 = crq2->request->sector;
367
368         last = cfqd->last_sector;
369
370         /*
371          * by definition, 1KiB is 2 sectors
372          */
373         back_max = cfqd->cfq_back_max * 2;
374
375         /*
376          * Strict one way elevator _except_ in the case where we allow
377          * short backward seeks which are biased as twice the cost of a
378          * similar forward seek.
379          */
380         if (s1 >= last)
381                 d1 = s1 - last;
382         else if (s1 + back_max >= last)
383                 d1 = (last - s1) * cfqd->cfq_back_penalty;
384         else
385                 wrap |= CFQ_RQ1_WRAP;
386
387         if (s2 >= last)
388                 d2 = s2 - last;
389         else if (s2 + back_max >= last)
390                 d2 = (last - s2) * cfqd->cfq_back_penalty;
391         else
392                 wrap |= CFQ_RQ2_WRAP;
393
394         /* Found required data */
395
396         /*
397          * By doing switch() on the bit mask "wrap" we avoid having to
398          * check two variables for all permutations: --> faster!
399          */
400         switch (wrap) {
401         case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
402                 if (d1 < d2)
403                         return crq1;
404                 else if (d2 < d1)
405                         return crq2;
406                 else {
407                         if (s1 >= s2)
408                                 return crq1;
409                         else
410                                 return crq2;
411                 }
412
413         case CFQ_RQ2_WRAP:
414                 return crq1;
415         case CFQ_RQ1_WRAP:
416                 return crq2;
417         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
418         default:
419                 /*
420                  * Since both rqs are wrapped,
421                  * start with the one that's further behind head
422                  * (--> only *one* back seek required),
423                  * since back seek takes more time than forward.
424                  */
425                 if (s1 <= s2)
426                         return crq1;
427                 else
428                         return crq2;
429         }
430 }
431
432 /*
433  * would be nice to take fifo expire time into account as well
434  */
435 static struct cfq_rq *
436 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
437                   struct cfq_rq *last)
438 {
439         struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
440         struct rb_node *rbnext, *rbprev;
441
442         if (!(rbnext = rb_next(&last->rb_node))) {
443                 rbnext = rb_first(&cfqq->sort_list);
444                 if (rbnext == &last->rb_node)
445                         rbnext = NULL;
446         }
447
448         rbprev = rb_prev(&last->rb_node);
449
450         if (rbprev)
451                 crq_prev = rb_entry_crq(rbprev);
452         if (rbnext)
453                 crq_next = rb_entry_crq(rbnext);
454
455         return cfq_choose_req(cfqd, crq_next, crq_prev);
456 }
457
458 static void cfq_update_next_crq(struct cfq_rq *crq)
459 {
460         struct cfq_queue *cfqq = crq->cfq_queue;
461
462         if (cfqq->next_crq == crq)
463                 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
464 }
465
466 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
467 {
468         struct cfq_data *cfqd = cfqq->cfqd;
469         struct list_head *list, *entry;
470
471         BUG_ON(!cfq_cfqq_on_rr(cfqq));
472
473         list_del(&cfqq->cfq_list);
474
475         if (cfq_class_rt(cfqq))
476                 list = &cfqd->cur_rr;
477         else if (cfq_class_idle(cfqq))
478                 list = &cfqd->idle_rr;
479         else {
480                 /*
481                  * if cfqq has requests in flight, don't allow it to be
482                  * found in cfq_set_active_queue before it has finished them.
483                  * this is done to increase fairness between a process that
484                  * has lots of io pending vs one that only generates one
485                  * sporadically or synchronously
486                  */
487                 if (cfq_cfqq_dispatched(cfqq))
488                         list = &cfqd->busy_rr;
489                 else
490                         list = &cfqd->rr_list[cfqq->ioprio];
491         }
492
493         /*
494          * if queue was preempted, just add to front to be fair. busy_rr
495          * isn't sorted, but insert at the back for fairness.
496          */
497         if (preempted || list == &cfqd->busy_rr) {
498                 if (preempted)
499                         list = list->prev;
500
501                 list_add_tail(&cfqq->cfq_list, list);
502                 return;
503         }
504
505         /*
506          * sort by when queue was last serviced
507          */
508         entry = list;
509         while ((entry = entry->prev) != list) {
510                 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
511
512                 if (!__cfqq->service_last)
513                         break;
514                 if (time_before(__cfqq->service_last, cfqq->service_last))
515                         break;
516         }
517
518         list_add(&cfqq->cfq_list, entry);
519 }
520
521 /*
522  * add to busy list of queues for service, trying to be fair in ordering
523  * the pending list according to last request service
524  */
525 static inline void
526 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
527 {
528         BUG_ON(cfq_cfqq_on_rr(cfqq));
529         cfq_mark_cfqq_on_rr(cfqq);
530         cfqd->busy_queues++;
531
532         cfq_resort_rr_list(cfqq, 0);
533 }
534
535 static inline void
536 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
537 {
538         BUG_ON(!cfq_cfqq_on_rr(cfqq));
539         cfq_clear_cfqq_on_rr(cfqq);
540         list_move(&cfqq->cfq_list, &cfqd->empty_list);
541
542         BUG_ON(!cfqd->busy_queues);
543         cfqd->busy_queues--;
544 }
545
546 /*
547  * rb tree support functions
548  */
549 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
550 {
551         struct cfq_queue *cfqq = crq->cfq_queue;
552         struct cfq_data *cfqd = cfqq->cfqd;
553         const int sync = cfq_crq_is_sync(crq);
554
555         BUG_ON(!cfqq->queued[sync]);
556         cfqq->queued[sync]--;
557
558         cfq_update_next_crq(crq);
559
560         rb_erase(&crq->rb_node, &cfqq->sort_list);
561
562         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
563                 cfq_del_cfqq_rr(cfqd, cfqq);
564 }
565
566 static struct cfq_rq *
567 __cfq_add_crq_rb(struct cfq_rq *crq)
568 {
569         struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
570         struct rb_node *parent = NULL;
571         struct cfq_rq *__crq;
572
573         while (*p) {
574                 parent = *p;
575                 __crq = rb_entry_crq(parent);
576
577                 if (crq->rb_key < __crq->rb_key)
578                         p = &(*p)->rb_left;
579                 else if (crq->rb_key > __crq->rb_key)
580                         p = &(*p)->rb_right;
581                 else
582                         return __crq;
583         }
584
585         rb_link_node(&crq->rb_node, parent, p);
586         return NULL;
587 }
588
589 static void cfq_add_crq_rb(struct cfq_rq *crq)
590 {
591         struct cfq_queue *cfqq = crq->cfq_queue;
592         struct cfq_data *cfqd = cfqq->cfqd;
593         struct request *rq = crq->request;
594         struct cfq_rq *__alias;
595
596         crq->rb_key = rq_rb_key(rq);
597         cfqq->queued[cfq_crq_is_sync(crq)]++;
598
599         /*
600          * looks a little odd, but the first insert might return an alias.
601          * if that happens, put the alias on the dispatch list
602          */
603         while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
604                 cfq_dispatch_insert(cfqd->queue, __alias);
605
606         rb_insert_color(&crq->rb_node, &cfqq->sort_list);
607
608         if (!cfq_cfqq_on_rr(cfqq))
609                 cfq_add_cfqq_rr(cfqd, cfqq);
610
611         /*
612          * check if this request is a better next-serve candidate
613          */
614         cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
615 }
616
617 static inline void
618 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
619 {
620         rb_erase(&crq->rb_node, &cfqq->sort_list);
621         cfqq->queued[cfq_crq_is_sync(crq)]--;
622
623         cfq_add_crq_rb(crq);
624 }
625
626 static struct request *
627 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
628 {
629         struct task_struct *tsk = current;
630         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
631         struct cfq_queue *cfqq;
632         struct rb_node *n;
633         sector_t sector;
634
635         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
636         if (!cfqq)
637                 goto out;
638
639         sector = bio->bi_sector + bio_sectors(bio);
640         n = cfqq->sort_list.rb_node;
641         while (n) {
642                 struct cfq_rq *crq = rb_entry_crq(n);
643
644                 if (sector < crq->rb_key)
645                         n = n->rb_left;
646                 else if (sector > crq->rb_key)
647                         n = n->rb_right;
648                 else
649                         return crq->request;
650         }
651
652 out:
653         return NULL;
654 }
655
656 static void cfq_activate_request(request_queue_t *q, struct request *rq)
657 {
658         struct cfq_data *cfqd = q->elevator->elevator_data;
659
660         cfqd->rq_in_driver++;
661
662         /*
663          * If the depth is larger 1, it really could be queueing. But lets
664          * make the mark a little higher - idling could still be good for
665          * low queueing, and a low queueing number could also just indicate
666          * a SCSI mid layer like behaviour where limit+1 is often seen.
667          */
668         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
669                 cfqd->hw_tag = 1;
670 }
671
672 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
673 {
674         struct cfq_data *cfqd = q->elevator->elevator_data;
675
676         WARN_ON(!cfqd->rq_in_driver);
677         cfqd->rq_in_driver--;
678 }
679
680 static void cfq_remove_request(struct request *rq)
681 {
682         struct cfq_rq *crq = RQ_DATA(rq);
683
684         list_del_init(&rq->queuelist);
685         cfq_del_crq_rb(crq);
686         cfq_del_crq_hash(crq);
687 }
688
689 static int
690 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
691 {
692         struct cfq_data *cfqd = q->elevator->elevator_data;
693         struct request *__rq;
694         int ret;
695
696         __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
697         if (__rq && elv_rq_merge_ok(__rq, bio)) {
698                 ret = ELEVATOR_BACK_MERGE;
699                 goto out;
700         }
701
702         __rq = cfq_find_rq_fmerge(cfqd, bio);
703         if (__rq && elv_rq_merge_ok(__rq, bio)) {
704                 ret = ELEVATOR_FRONT_MERGE;
705                 goto out;
706         }
707
708         return ELEVATOR_NO_MERGE;
709 out:
710         *req = __rq;
711         return ret;
712 }
713
714 static void cfq_merged_request(request_queue_t *q, struct request *req)
715 {
716         struct cfq_data *cfqd = q->elevator->elevator_data;
717         struct cfq_rq *crq = RQ_DATA(req);
718
719         cfq_del_crq_hash(crq);
720         cfq_add_crq_hash(cfqd, crq);
721
722         if (rq_rb_key(req) != crq->rb_key) {
723                 struct cfq_queue *cfqq = crq->cfq_queue;
724
725                 cfq_update_next_crq(crq);
726                 cfq_reposition_crq_rb(cfqq, crq);
727         }
728 }
729
730 static void
731 cfq_merged_requests(request_queue_t *q, struct request *rq,
732                     struct request *next)
733 {
734         cfq_merged_request(q, rq);
735
736         /*
737          * reposition in fifo if next is older than rq
738          */
739         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
740             time_before(next->start_time, rq->start_time))
741                 list_move(&rq->queuelist, &next->queuelist);
742
743         cfq_remove_request(next);
744 }
745
746 static inline void
747 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
748 {
749         if (cfqq) {
750                 /*
751                  * stop potential idle class queues waiting service
752                  */
753                 del_timer(&cfqd->idle_class_timer);
754
755                 cfqq->slice_start = jiffies;
756                 cfqq->slice_end = 0;
757                 cfqq->slice_left = 0;
758                 cfq_clear_cfqq_must_alloc_slice(cfqq);
759                 cfq_clear_cfqq_fifo_expire(cfqq);
760         }
761
762         cfqd->active_queue = cfqq;
763 }
764
765 /*
766  * current cfqq expired its slice (or was too idle), select new one
767  */
768 static void
769 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
770                     int preempted)
771 {
772         unsigned long now = jiffies;
773
774         if (cfq_cfqq_wait_request(cfqq))
775                 del_timer(&cfqd->idle_slice_timer);
776
777         if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
778                 cfqq->service_last = now;
779                 cfq_schedule_dispatch(cfqd);
780         }
781
782         cfq_clear_cfqq_must_dispatch(cfqq);
783         cfq_clear_cfqq_wait_request(cfqq);
784
785         /*
786          * store what was left of this slice, if the queue idled out
787          * or was preempted
788          */
789         if (time_after(cfqq->slice_end, now))
790                 cfqq->slice_left = cfqq->slice_end - now;
791         else
792                 cfqq->slice_left = 0;
793
794         if (cfq_cfqq_on_rr(cfqq))
795                 cfq_resort_rr_list(cfqq, preempted);
796
797         if (cfqq == cfqd->active_queue)
798                 cfqd->active_queue = NULL;
799
800         if (cfqd->active_cic) {
801                 put_io_context(cfqd->active_cic->ioc);
802                 cfqd->active_cic = NULL;
803         }
804
805         cfqd->dispatch_slice = 0;
806 }
807
808 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
809 {
810         struct cfq_queue *cfqq = cfqd->active_queue;
811
812         if (cfqq)
813                 __cfq_slice_expired(cfqd, cfqq, preempted);
814 }
815
816 /*
817  * 0
818  * 0,1
819  * 0,1,2
820  * 0,1,2,3
821  * 0,1,2,3,4
822  * 0,1,2,3,4,5
823  * 0,1,2,3,4,5,6
824  * 0,1,2,3,4,5,6,7
825  */
826 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
827 {
828         int prio, wrap;
829
830         prio = -1;
831         wrap = 0;
832         do {
833                 int p;
834
835                 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
836                         if (!list_empty(&cfqd->rr_list[p])) {
837                                 prio = p;
838                                 break;
839                         }
840                 }
841
842                 if (prio != -1)
843                         break;
844                 cfqd->cur_prio = 0;
845                 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
846                         cfqd->cur_end_prio = 0;
847                         if (wrap)
848                                 break;
849                         wrap = 1;
850                 }
851         } while (1);
852
853         if (unlikely(prio == -1))
854                 return -1;
855
856         BUG_ON(prio >= CFQ_PRIO_LISTS);
857
858         list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
859
860         cfqd->cur_prio = prio + 1;
861         if (cfqd->cur_prio > cfqd->cur_end_prio) {
862                 cfqd->cur_end_prio = cfqd->cur_prio;
863                 cfqd->cur_prio = 0;
864         }
865         if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
866                 cfqd->cur_prio = 0;
867                 cfqd->cur_end_prio = 0;
868         }
869
870         return prio;
871 }
872
873 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
874 {
875         struct cfq_queue *cfqq = NULL;
876
877         /*
878          * if current list is non-empty, grab first entry. if it is empty,
879          * get next prio level and grab first entry then if any are spliced
880          */
881         if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
882                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
883
884         /*
885          * If no new queues are available, check if the busy list has some
886          * before falling back to idle io.
887          */
888         if (!cfqq && !list_empty(&cfqd->busy_rr))
889                 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
890
891         /*
892          * if we have idle queues and no rt or be queues had pending
893          * requests, either allow immediate service if the grace period
894          * has passed or arm the idle grace timer
895          */
896         if (!cfqq && !list_empty(&cfqd->idle_rr)) {
897                 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
898
899                 if (time_after_eq(jiffies, end))
900                         cfqq = list_entry_cfqq(cfqd->idle_rr.next);
901                 else
902                         mod_timer(&cfqd->idle_class_timer, end);
903         }
904
905         __cfq_set_active_queue(cfqd, cfqq);
906         return cfqq;
907 }
908
909 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
910
911 {
912         struct cfq_io_context *cic;
913         unsigned long sl;
914
915         WARN_ON(!RB_EMPTY(&cfqq->sort_list));
916         WARN_ON(cfqq != cfqd->active_queue);
917
918         /*
919          * idle is disabled, either manually or by past process history
920          */
921         if (!cfqd->cfq_slice_idle)
922                 return 0;
923         if (!cfq_cfqq_idle_window(cfqq))
924                 return 0;
925         /*
926          * task has exited, don't wait
927          */
928         cic = cfqd->active_cic;
929         if (!cic || !cic->ioc->task)
930                 return 0;
931
932         cfq_mark_cfqq_must_dispatch(cfqq);
933         cfq_mark_cfqq_wait_request(cfqq);
934
935         sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
936
937         /*
938          * we don't want to idle for seeks, but we do want to allow
939          * fair distribution of slice time for a process doing back-to-back
940          * seeks. so allow a little bit of time for him to submit a new rq
941          */
942         if (sample_valid(cic->seek_samples) && cic->seek_mean > 131072)
943                 sl = 2;
944
945         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
946         return 1;
947 }
948
949 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
950 {
951         struct cfq_data *cfqd = q->elevator->elevator_data;
952         struct cfq_queue *cfqq = crq->cfq_queue;
953
954         cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
955         cfq_remove_request(crq->request);
956         cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
957         elv_dispatch_sort(q, crq->request);
958 }
959
960 /*
961  * return expired entry, or NULL to just start from scratch in rbtree
962  */
963 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
964 {
965         struct cfq_data *cfqd = cfqq->cfqd;
966         struct request *rq;
967         struct cfq_rq *crq;
968
969         if (cfq_cfqq_fifo_expire(cfqq))
970                 return NULL;
971
972         if (!list_empty(&cfqq->fifo)) {
973                 int fifo = cfq_cfqq_class_sync(cfqq);
974
975                 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
976                 rq = crq->request;
977                 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
978                         cfq_mark_cfqq_fifo_expire(cfqq);
979                         return crq;
980                 }
981         }
982
983         return NULL;
984 }
985
986 /*
987  * Scale schedule slice based on io priority. Use the sync time slice only
988  * if a queue is marked sync and has sync io queued. A sync queue with async
989  * io only, should not get full sync slice length.
990  */
991 static inline int
992 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
993 {
994         const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
995
996         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
997
998         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
999 }
1000
1001 static inline void
1002 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1003 {
1004         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1005 }
1006
1007 static inline int
1008 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1009 {
1010         const int base_rq = cfqd->cfq_slice_async_rq;
1011
1012         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1013
1014         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1015 }
1016
1017 /*
1018  * get next queue for service
1019  */
1020 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1021 {
1022         unsigned long now = jiffies;
1023         struct cfq_queue *cfqq;
1024
1025         cfqq = cfqd->active_queue;
1026         if (!cfqq)
1027                 goto new_queue;
1028
1029         /*
1030          * slice has expired
1031          */
1032         if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1033                 goto expire;
1034
1035         /*
1036          * if queue has requests, dispatch one. if not, check if
1037          * enough slice is left to wait for one
1038          */
1039         if (!RB_EMPTY(&cfqq->sort_list))
1040                 goto keep_queue;
1041         else if (cfq_cfqq_class_sync(cfqq) &&
1042                  time_before(now, cfqq->slice_end)) {
1043                 if (cfq_arm_slice_timer(cfqd, cfqq))
1044                         return NULL;
1045         }
1046
1047 expire:
1048         cfq_slice_expired(cfqd, 0);
1049 new_queue:
1050         cfqq = cfq_set_active_queue(cfqd);
1051 keep_queue:
1052         return cfqq;
1053 }
1054
1055 static int
1056 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1057                         int max_dispatch)
1058 {
1059         int dispatched = 0;
1060
1061         BUG_ON(RB_EMPTY(&cfqq->sort_list));
1062
1063         do {
1064                 struct cfq_rq *crq;
1065
1066                 /*
1067                  * follow expired path, else get first next available
1068                  */
1069                 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1070                         crq = cfqq->next_crq;
1071
1072                 /*
1073                  * finally, insert request into driver dispatch list
1074                  */
1075                 cfq_dispatch_insert(cfqd->queue, crq);
1076
1077                 cfqd->dispatch_slice++;
1078                 dispatched++;
1079
1080                 if (!cfqd->active_cic) {
1081                         atomic_inc(&crq->io_context->ioc->refcount);
1082                         cfqd->active_cic = crq->io_context;
1083                 }
1084
1085                 if (RB_EMPTY(&cfqq->sort_list))
1086                         break;
1087
1088         } while (dispatched < max_dispatch);
1089
1090         /*
1091          * if slice end isn't set yet, set it. if at least one request was
1092          * sync, use the sync time slice value
1093          */
1094         if (!cfqq->slice_end)
1095                 cfq_set_prio_slice(cfqd, cfqq);
1096
1097         /*
1098          * expire an async queue immediately if it has used up its slice. idle
1099          * queue always expire after 1 dispatch round.
1100          */
1101         if ((!cfq_cfqq_sync(cfqq) &&
1102             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1103             cfq_class_idle(cfqq))
1104                 cfq_slice_expired(cfqd, 0);
1105
1106         return dispatched;
1107 }
1108
1109 static int
1110 cfq_forced_dispatch_cfqqs(struct list_head *list)
1111 {
1112         int dispatched = 0;
1113         struct cfq_queue *cfqq, *next;
1114         struct cfq_rq *crq;
1115
1116         list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1117                 while ((crq = cfqq->next_crq)) {
1118                         cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1119                         dispatched++;
1120                 }
1121                 BUG_ON(!list_empty(&cfqq->fifo));
1122         }
1123         return dispatched;
1124 }
1125
1126 static int
1127 cfq_forced_dispatch(struct cfq_data *cfqd)
1128 {
1129         int i, dispatched = 0;
1130
1131         for (i = 0; i < CFQ_PRIO_LISTS; i++)
1132                 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1133
1134         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1135         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1136         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1137
1138         cfq_slice_expired(cfqd, 0);
1139
1140         BUG_ON(cfqd->busy_queues);
1141
1142         return dispatched;
1143 }
1144
1145 static int
1146 cfq_dispatch_requests(request_queue_t *q, int force)
1147 {
1148         struct cfq_data *cfqd = q->elevator->elevator_data;
1149         struct cfq_queue *cfqq;
1150
1151         if (!cfqd->busy_queues)
1152                 return 0;
1153
1154         if (unlikely(force))
1155                 return cfq_forced_dispatch(cfqd);
1156
1157         cfqq = cfq_select_queue(cfqd);
1158         if (cfqq) {
1159                 int max_dispatch;
1160
1161                 cfq_clear_cfqq_must_dispatch(cfqq);
1162                 cfq_clear_cfqq_wait_request(cfqq);
1163                 del_timer(&cfqd->idle_slice_timer);
1164
1165                 max_dispatch = cfqd->cfq_quantum;
1166                 if (cfq_class_idle(cfqq))
1167                         max_dispatch = 1;
1168
1169                 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1170         }
1171
1172         return 0;
1173 }
1174
1175 /*
1176  * task holds one reference to the queue, dropped when task exits. each crq
1177  * in-flight on this queue also holds a reference, dropped when crq is freed.
1178  *
1179  * queue lock must be held here.
1180  */
1181 static void cfq_put_queue(struct cfq_queue *cfqq)
1182 {
1183         struct cfq_data *cfqd = cfqq->cfqd;
1184
1185         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1186
1187         if (!atomic_dec_and_test(&cfqq->ref))
1188                 return;
1189
1190         BUG_ON(rb_first(&cfqq->sort_list));
1191         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1192         BUG_ON(cfq_cfqq_on_rr(cfqq));
1193
1194         if (unlikely(cfqd->active_queue == cfqq))
1195                 __cfq_slice_expired(cfqd, cfqq, 0);
1196
1197         /*
1198          * it's on the empty list and still hashed
1199          */
1200         list_del(&cfqq->cfq_list);
1201         hlist_del(&cfqq->cfq_hash);
1202         kmem_cache_free(cfq_pool, cfqq);
1203 }
1204
1205 static inline struct cfq_queue *
1206 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1207                     const int hashval)
1208 {
1209         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1210         struct hlist_node *entry;
1211         struct cfq_queue *__cfqq;
1212
1213         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1214                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1215
1216                 if (__cfqq->key == key && (__p == prio || !prio))
1217                         return __cfqq;
1218         }
1219
1220         return NULL;
1221 }
1222
1223 static struct cfq_queue *
1224 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1225 {
1226         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1227 }
1228
1229 static void cfq_free_io_context(struct io_context *ioc)
1230 {
1231         struct cfq_io_context *__cic;
1232         struct rb_node *n;
1233         int freed = 0;
1234
1235         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1236                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1237                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1238                 kmem_cache_free(cfq_ioc_pool, __cic);
1239                 freed++;
1240         }
1241
1242         if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1243                 complete(ioc_gone);
1244 }
1245
1246 static void cfq_trim(struct io_context *ioc)
1247 {
1248         ioc->set_ioprio = NULL;
1249         cfq_free_io_context(ioc);
1250 }
1251
1252 /*
1253  * Called with interrupts disabled
1254  */
1255 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1256 {
1257         struct cfq_data *cfqd = cic->key;
1258         request_queue_t *q;
1259
1260         if (!cfqd)
1261                 return;
1262
1263         q = cfqd->queue;
1264
1265         WARN_ON(!irqs_disabled());
1266
1267         spin_lock(q->queue_lock);
1268
1269         if (cic->cfqq[ASYNC]) {
1270                 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1271                         __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1272                 cfq_put_queue(cic->cfqq[ASYNC]);
1273                 cic->cfqq[ASYNC] = NULL;
1274         }
1275
1276         if (cic->cfqq[SYNC]) {
1277                 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1278                         __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1279                 cfq_put_queue(cic->cfqq[SYNC]);
1280                 cic->cfqq[SYNC] = NULL;
1281         }
1282
1283         cic->key = NULL;
1284         list_del_init(&cic->queue_list);
1285         spin_unlock(q->queue_lock);
1286 }
1287
1288 static void cfq_exit_io_context(struct io_context *ioc)
1289 {
1290         struct cfq_io_context *__cic;
1291         unsigned long flags;
1292         struct rb_node *n;
1293
1294         /*
1295          * put the reference this task is holding to the various queues
1296          */
1297         spin_lock_irqsave(&cfq_exit_lock, flags);
1298
1299         n = rb_first(&ioc->cic_root);
1300         while (n != NULL) {
1301                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1302
1303                 cfq_exit_single_io_context(__cic);
1304                 n = rb_next(n);
1305         }
1306
1307         spin_unlock_irqrestore(&cfq_exit_lock, flags);
1308 }
1309
1310 static struct cfq_io_context *
1311 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1312 {
1313         struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1314
1315         if (cic) {
1316                 memset(cic, 0, sizeof(*cic));
1317                 cic->last_end_request = jiffies;
1318                 INIT_LIST_HEAD(&cic->queue_list);
1319                 cic->dtor = cfq_free_io_context;
1320                 cic->exit = cfq_exit_io_context;
1321                 atomic_inc(&ioc_count);
1322         }
1323
1324         return cic;
1325 }
1326
1327 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1328 {
1329         struct task_struct *tsk = current;
1330         int ioprio_class;
1331
1332         if (!cfq_cfqq_prio_changed(cfqq))
1333                 return;
1334
1335         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1336         switch (ioprio_class) {
1337                 default:
1338                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1339                 case IOPRIO_CLASS_NONE:
1340                         /*
1341                          * no prio set, place us in the middle of the BE classes
1342                          */
1343                         cfqq->ioprio = task_nice_ioprio(tsk);
1344                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1345                         break;
1346                 case IOPRIO_CLASS_RT:
1347                         cfqq->ioprio = task_ioprio(tsk);
1348                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1349                         break;
1350                 case IOPRIO_CLASS_BE:
1351                         cfqq->ioprio = task_ioprio(tsk);
1352                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1353                         break;
1354                 case IOPRIO_CLASS_IDLE:
1355                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1356                         cfqq->ioprio = 7;
1357                         cfq_clear_cfqq_idle_window(cfqq);
1358                         break;
1359         }
1360
1361         /*
1362          * keep track of original prio settings in case we have to temporarily
1363          * elevate the priority of this queue
1364          */
1365         cfqq->org_ioprio = cfqq->ioprio;
1366         cfqq->org_ioprio_class = cfqq->ioprio_class;
1367
1368         if (cfq_cfqq_on_rr(cfqq))
1369                 cfq_resort_rr_list(cfqq, 0);
1370
1371         cfq_clear_cfqq_prio_changed(cfqq);
1372 }
1373
1374 static inline void changed_ioprio(struct cfq_io_context *cic)
1375 {
1376         struct cfq_data *cfqd = cic->key;
1377         struct cfq_queue *cfqq;
1378         if (cfqd) {
1379                 spin_lock(cfqd->queue->queue_lock);
1380                 cfqq = cic->cfqq[ASYNC];
1381                 if (cfqq) {
1382                         struct cfq_queue *new_cfqq;
1383                         new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1384                                                 cic->ioc->task, GFP_ATOMIC);
1385                         if (new_cfqq) {
1386                                 cic->cfqq[ASYNC] = new_cfqq;
1387                                 cfq_put_queue(cfqq);
1388                         }
1389                 }
1390                 cfqq = cic->cfqq[SYNC];
1391                 if (cfqq) {
1392                         cfq_mark_cfqq_prio_changed(cfqq);
1393                         cfq_init_prio_data(cfqq);
1394                 }
1395                 spin_unlock(cfqd->queue->queue_lock);
1396         }
1397 }
1398
1399 /*
1400  * callback from sys_ioprio_set, irqs are disabled
1401  */
1402 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1403 {
1404         struct cfq_io_context *cic;
1405         struct rb_node *n;
1406
1407         spin_lock(&cfq_exit_lock);
1408
1409         n = rb_first(&ioc->cic_root);
1410         while (n != NULL) {
1411                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1412
1413                 changed_ioprio(cic);
1414                 n = rb_next(n);
1415         }
1416
1417         spin_unlock(&cfq_exit_lock);
1418
1419         return 0;
1420 }
1421
1422 static struct cfq_queue *
1423 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1424               gfp_t gfp_mask)
1425 {
1426         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1427         struct cfq_queue *cfqq, *new_cfqq = NULL;
1428         unsigned short ioprio;
1429
1430 retry:
1431         ioprio = tsk->ioprio;
1432         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1433
1434         if (!cfqq) {
1435                 if (new_cfqq) {
1436                         cfqq = new_cfqq;
1437                         new_cfqq = NULL;
1438                 } else if (gfp_mask & __GFP_WAIT) {
1439                         spin_unlock_irq(cfqd->queue->queue_lock);
1440                         new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1441                         spin_lock_irq(cfqd->queue->queue_lock);
1442                         goto retry;
1443                 } else {
1444                         cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1445                         if (!cfqq)
1446                                 goto out;
1447                 }
1448
1449                 memset(cfqq, 0, sizeof(*cfqq));
1450
1451                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1452                 INIT_LIST_HEAD(&cfqq->cfq_list);
1453                 RB_CLEAR_ROOT(&cfqq->sort_list);
1454                 INIT_LIST_HEAD(&cfqq->fifo);
1455
1456                 cfqq->key = key;
1457                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1458                 atomic_set(&cfqq->ref, 0);
1459                 cfqq->cfqd = cfqd;
1460                 cfqq->service_last = 0;
1461                 /*
1462                  * set ->slice_left to allow preemption for a new process
1463                  */
1464                 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1465                 if (!cfqd->hw_tag)
1466                         cfq_mark_cfqq_idle_window(cfqq);
1467                 cfq_mark_cfqq_prio_changed(cfqq);
1468                 cfq_init_prio_data(cfqq);
1469         }
1470
1471         if (new_cfqq)
1472                 kmem_cache_free(cfq_pool, new_cfqq);
1473
1474         atomic_inc(&cfqq->ref);
1475 out:
1476         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1477         return cfqq;
1478 }
1479
1480 static void
1481 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1482 {
1483         spin_lock(&cfq_exit_lock);
1484         rb_erase(&cic->rb_node, &ioc->cic_root);
1485         list_del_init(&cic->queue_list);
1486         spin_unlock(&cfq_exit_lock);
1487         kmem_cache_free(cfq_ioc_pool, cic);
1488         atomic_dec(&ioc_count);
1489 }
1490
1491 static struct cfq_io_context *
1492 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1493 {
1494         struct rb_node *n;
1495         struct cfq_io_context *cic;
1496         void *k, *key = cfqd;
1497
1498 restart:
1499         n = ioc->cic_root.rb_node;
1500         while (n) {
1501                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1502                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1503                 k = cic->key;
1504                 if (unlikely(!k)) {
1505                         cfq_drop_dead_cic(ioc, cic);
1506                         goto restart;
1507                 }
1508
1509                 if (key < k)
1510                         n = n->rb_left;
1511                 else if (key > k)
1512                         n = n->rb_right;
1513                 else
1514                         return cic;
1515         }
1516
1517         return NULL;
1518 }
1519
1520 static inline void
1521 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1522              struct cfq_io_context *cic)
1523 {
1524         struct rb_node **p;
1525         struct rb_node *parent;
1526         struct cfq_io_context *__cic;
1527         void *k;
1528
1529         cic->ioc = ioc;
1530         cic->key = cfqd;
1531
1532         ioc->set_ioprio = cfq_ioc_set_ioprio;
1533 restart:
1534         parent = NULL;
1535         p = &ioc->cic_root.rb_node;
1536         while (*p) {
1537                 parent = *p;
1538                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1539                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1540                 k = __cic->key;
1541                 if (unlikely(!k)) {
1542                         cfq_drop_dead_cic(ioc, cic);
1543                         goto restart;
1544                 }
1545
1546                 if (cic->key < k)
1547                         p = &(*p)->rb_left;
1548                 else if (cic->key > k)
1549                         p = &(*p)->rb_right;
1550                 else
1551                         BUG();
1552         }
1553
1554         spin_lock(&cfq_exit_lock);
1555         rb_link_node(&cic->rb_node, parent, p);
1556         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1557         list_add(&cic->queue_list, &cfqd->cic_list);
1558         spin_unlock(&cfq_exit_lock);
1559 }
1560
1561 /*
1562  * Setup general io context and cfq io context. There can be several cfq
1563  * io contexts per general io context, if this process is doing io to more
1564  * than one device managed by cfq.
1565  */
1566 static struct cfq_io_context *
1567 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1568 {
1569         struct io_context *ioc = NULL;
1570         struct cfq_io_context *cic;
1571
1572         might_sleep_if(gfp_mask & __GFP_WAIT);
1573
1574         ioc = get_io_context(gfp_mask);
1575         if (!ioc)
1576                 return NULL;
1577
1578         cic = cfq_cic_rb_lookup(cfqd, ioc);
1579         if (cic)
1580                 goto out;
1581
1582         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1583         if (cic == NULL)
1584                 goto err;
1585
1586         cfq_cic_link(cfqd, ioc, cic);
1587 out:
1588         return cic;
1589 err:
1590         put_io_context(ioc);
1591         return NULL;
1592 }
1593
1594 static void
1595 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1596 {
1597         unsigned long elapsed, ttime;
1598
1599         /*
1600          * if this context already has stuff queued, thinktime is from
1601          * last queue not last end
1602          */
1603 #if 0
1604         if (time_after(cic->last_end_request, cic->last_queue))
1605                 elapsed = jiffies - cic->last_end_request;
1606         else
1607                 elapsed = jiffies - cic->last_queue;
1608 #else
1609                 elapsed = jiffies - cic->last_end_request;
1610 #endif
1611
1612         ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1613
1614         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1615         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1616         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1617 }
1618
1619 static void
1620 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1621                        struct cfq_rq *crq)
1622 {
1623         sector_t sdist;
1624         u64 total;
1625
1626         if (cic->last_request_pos < crq->request->sector)
1627                 sdist = crq->request->sector - cic->last_request_pos;
1628         else
1629                 sdist = cic->last_request_pos - crq->request->sector;
1630
1631         /*
1632          * Don't allow the seek distance to get too large from the
1633          * odd fragment, pagein, etc
1634          */
1635         if (cic->seek_samples <= 60) /* second&third seek */
1636                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1637         else
1638                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1639
1640         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1641         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1642         total = cic->seek_total + (cic->seek_samples/2);
1643         do_div(total, cic->seek_samples);
1644         cic->seek_mean = (sector_t)total;
1645 }
1646
1647 /*
1648  * Disable idle window if the process thinks too long or seeks so much that
1649  * it doesn't matter
1650  */
1651 static void
1652 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1653                        struct cfq_io_context *cic)
1654 {
1655         int enable_idle = cfq_cfqq_idle_window(cfqq);
1656
1657         if (!cic->ioc->task || !cfqd->cfq_slice_idle || cfqd->hw_tag)
1658                 enable_idle = 0;
1659         else if (sample_valid(cic->ttime_samples)) {
1660                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1661                         enable_idle = 0;
1662                 else
1663                         enable_idle = 1;
1664         }
1665
1666         if (enable_idle)
1667                 cfq_mark_cfqq_idle_window(cfqq);
1668         else
1669                 cfq_clear_cfqq_idle_window(cfqq);
1670 }
1671
1672
1673 /*
1674  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1675  * no or if we aren't sure, a 1 will cause a preempt.
1676  */
1677 static int
1678 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1679                    struct cfq_rq *crq)
1680 {
1681         struct cfq_queue *cfqq = cfqd->active_queue;
1682
1683         if (cfq_class_idle(new_cfqq))
1684                 return 0;
1685
1686         if (!cfqq)
1687                 return 1;
1688
1689         if (cfq_class_idle(cfqq))
1690                 return 1;
1691         if (!cfq_cfqq_wait_request(new_cfqq))
1692                 return 0;
1693         /*
1694          * if it doesn't have slice left, forget it
1695          */
1696         if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1697                 return 0;
1698         if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1699                 return 1;
1700
1701         return 0;
1702 }
1703
1704 /*
1705  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1706  * let it have half of its nominal slice.
1707  */
1708 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1709 {
1710         struct cfq_queue *__cfqq, *next;
1711
1712         list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1713                 cfq_resort_rr_list(__cfqq, 1);
1714
1715         if (!cfqq->slice_left)
1716                 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1717
1718         cfqq->slice_end = cfqq->slice_left + jiffies;
1719         __cfq_slice_expired(cfqd, cfqq, 1);
1720         __cfq_set_active_queue(cfqd, cfqq);
1721 }
1722
1723 /*
1724  * should really be a ll_rw_blk.c helper
1725  */
1726 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1727 {
1728         request_queue_t *q = cfqd->queue;
1729
1730         if (!blk_queue_plugged(q))
1731                 q->request_fn(q);
1732         else
1733                 __generic_unplug_device(q);
1734 }
1735
1736 /*
1737  * Called when a new fs request (crq) is added (to cfqq). Check if there's
1738  * something we should do about it
1739  */
1740 static void
1741 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1742                  struct cfq_rq *crq)
1743 {
1744         struct cfq_io_context *cic;
1745
1746         cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1747
1748         cic = crq->io_context;
1749
1750         /*
1751          * we never wait for an async request and we don't allow preemption
1752          * of an async request. so just return early
1753          */
1754         if (!cfq_crq_is_sync(crq)) {
1755                 /*
1756                  * sync process issued an async request, if it's waiting
1757                  * then expire it and kick rq handling.
1758                  */
1759                 if (cic == cfqd->active_cic &&
1760                     del_timer(&cfqd->idle_slice_timer)) {
1761                         cfq_slice_expired(cfqd, 0);
1762                         cfq_start_queueing(cfqd, cfqq);
1763                 }
1764                 return;
1765         }
1766
1767         cfq_update_io_thinktime(cfqd, cic);
1768         cfq_update_io_seektime(cfqd, cic, crq);
1769         cfq_update_idle_window(cfqd, cfqq, cic);
1770
1771         cic->last_queue = jiffies;
1772         cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1773
1774         if (cfqq == cfqd->active_queue) {
1775                 /*
1776                  * if we are waiting for a request for this queue, let it rip
1777                  * immediately and flag that we must not expire this queue
1778                  * just now
1779                  */
1780                 if (cfq_cfqq_wait_request(cfqq)) {
1781                         cfq_mark_cfqq_must_dispatch(cfqq);
1782                         del_timer(&cfqd->idle_slice_timer);
1783                         cfq_start_queueing(cfqd, cfqq);
1784                 }
1785         } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1786                 /*
1787                  * not the active queue - expire current slice if it is
1788                  * idle and has expired it's mean thinktime or this new queue
1789                  * has some old slice time left and is of higher priority
1790                  */
1791                 cfq_preempt_queue(cfqd, cfqq);
1792                 cfq_mark_cfqq_must_dispatch(cfqq);
1793                 cfq_start_queueing(cfqd, cfqq);
1794         }
1795 }
1796
1797 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1798 {
1799         struct cfq_data *cfqd = q->elevator->elevator_data;
1800         struct cfq_rq *crq = RQ_DATA(rq);
1801         struct cfq_queue *cfqq = crq->cfq_queue;
1802
1803         cfq_init_prio_data(cfqq);
1804
1805         cfq_add_crq_rb(crq);
1806
1807         list_add_tail(&rq->queuelist, &cfqq->fifo);
1808
1809         if (rq_mergeable(rq))
1810                 cfq_add_crq_hash(cfqd, crq);
1811
1812         cfq_crq_enqueued(cfqd, cfqq, crq);
1813 }
1814
1815 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1816 {
1817         struct cfq_rq *crq = RQ_DATA(rq);
1818         struct cfq_queue *cfqq = crq->cfq_queue;
1819         struct cfq_data *cfqd = cfqq->cfqd;
1820         const int sync = cfq_crq_is_sync(crq);
1821         unsigned long now;
1822
1823         now = jiffies;
1824
1825         WARN_ON(!cfqd->rq_in_driver);
1826         WARN_ON(!cfqq->on_dispatch[sync]);
1827         cfqd->rq_in_driver--;
1828         cfqq->on_dispatch[sync]--;
1829
1830         if (!cfq_class_idle(cfqq))
1831                 cfqd->last_end_request = now;
1832
1833         if (!cfq_cfqq_dispatched(cfqq)) {
1834                 if (cfq_cfqq_on_rr(cfqq)) {
1835                         cfqq->service_last = now;
1836                         cfq_resort_rr_list(cfqq, 0);
1837                 }
1838                 cfq_schedule_dispatch(cfqd);
1839         }
1840
1841         if (cfq_crq_is_sync(crq))
1842                 crq->io_context->last_end_request = now;
1843 }
1844
1845 static struct request *
1846 cfq_former_request(request_queue_t *q, struct request *rq)
1847 {
1848         struct cfq_rq *crq = RQ_DATA(rq);
1849         struct rb_node *rbprev = rb_prev(&crq->rb_node);
1850
1851         if (rbprev)
1852                 return rb_entry_crq(rbprev)->request;
1853
1854         return NULL;
1855 }
1856
1857 static struct request *
1858 cfq_latter_request(request_queue_t *q, struct request *rq)
1859 {
1860         struct cfq_rq *crq = RQ_DATA(rq);
1861         struct rb_node *rbnext = rb_next(&crq->rb_node);
1862
1863         if (rbnext)
1864                 return rb_entry_crq(rbnext)->request;
1865
1866         return NULL;
1867 }
1868
1869 /*
1870  * we temporarily boost lower priority queues if they are holding fs exclusive
1871  * resources. they are boosted to normal prio (CLASS_BE/4)
1872  */
1873 static void cfq_prio_boost(struct cfq_queue *cfqq)
1874 {
1875         const int ioprio_class = cfqq->ioprio_class;
1876         const int ioprio = cfqq->ioprio;
1877
1878         if (has_fs_excl()) {
1879                 /*
1880                  * boost idle prio on transactions that would lock out other
1881                  * users of the filesystem
1882                  */
1883                 if (cfq_class_idle(cfqq))
1884                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1885                 if (cfqq->ioprio > IOPRIO_NORM)
1886                         cfqq->ioprio = IOPRIO_NORM;
1887         } else {
1888                 /*
1889                  * check if we need to unboost the queue
1890                  */
1891                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1892                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1893                 if (cfqq->ioprio != cfqq->org_ioprio)
1894                         cfqq->ioprio = cfqq->org_ioprio;
1895         }
1896
1897         /*
1898          * refile between round-robin lists if we moved the priority class
1899          */
1900         if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1901             cfq_cfqq_on_rr(cfqq))
1902                 cfq_resort_rr_list(cfqq, 0);
1903 }
1904
1905 static inline int
1906 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1907                 struct task_struct *task, int rw)
1908 {
1909         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1910             !cfq_cfqq_must_alloc_slice(cfqq)) {
1911                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1912                 return ELV_MQUEUE_MUST;
1913         }
1914
1915         return ELV_MQUEUE_MAY;
1916 }
1917
1918 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1919 {
1920         struct cfq_data *cfqd = q->elevator->elevator_data;
1921         struct task_struct *tsk = current;
1922         struct cfq_queue *cfqq;
1923
1924         /*
1925          * don't force setup of a queue from here, as a call to may_queue
1926          * does not necessarily imply that a request actually will be queued.
1927          * so just lookup a possibly existing queue, or return 'may queue'
1928          * if that fails
1929          */
1930         cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1931         if (cfqq) {
1932                 cfq_init_prio_data(cfqq);
1933                 cfq_prio_boost(cfqq);
1934
1935                 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1936         }
1937
1938         return ELV_MQUEUE_MAY;
1939 }
1940
1941 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1942 {
1943         struct cfq_data *cfqd = q->elevator->elevator_data;
1944
1945         if (unlikely(cfqd->rq_starved)) {
1946                 struct request_list *rl = &q->rq;
1947
1948                 smp_mb();
1949                 if (waitqueue_active(&rl->wait[READ]))
1950                         wake_up(&rl->wait[READ]);
1951                 if (waitqueue_active(&rl->wait[WRITE]))
1952                         wake_up(&rl->wait[WRITE]);
1953         }
1954 }
1955
1956 /*
1957  * queue lock held here
1958  */
1959 static void cfq_put_request(request_queue_t *q, struct request *rq)
1960 {
1961         struct cfq_data *cfqd = q->elevator->elevator_data;
1962         struct cfq_rq *crq = RQ_DATA(rq);
1963
1964         if (crq) {
1965                 struct cfq_queue *cfqq = crq->cfq_queue;
1966                 const int rw = rq_data_dir(rq);
1967
1968                 BUG_ON(!cfqq->allocated[rw]);
1969                 cfqq->allocated[rw]--;
1970
1971                 put_io_context(crq->io_context->ioc);
1972
1973                 mempool_free(crq, cfqd->crq_pool);
1974                 rq->elevator_private = NULL;
1975
1976                 cfq_check_waiters(q, cfqq);
1977                 cfq_put_queue(cfqq);
1978         }
1979 }
1980
1981 /*
1982  * Allocate cfq data structures associated with this request.
1983  */
1984 static int
1985 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1986                 gfp_t gfp_mask)
1987 {
1988         struct cfq_data *cfqd = q->elevator->elevator_data;
1989         struct task_struct *tsk = current;
1990         struct cfq_io_context *cic;
1991         const int rw = rq_data_dir(rq);
1992         pid_t key = cfq_queue_pid(tsk, rw);
1993         struct cfq_queue *cfqq;
1994         struct cfq_rq *crq;
1995         unsigned long flags;
1996         int is_sync = key != CFQ_KEY_ASYNC;
1997
1998         might_sleep_if(gfp_mask & __GFP_WAIT);
1999
2000         cic = cfq_get_io_context(cfqd, gfp_mask);
2001
2002         spin_lock_irqsave(q->queue_lock, flags);
2003
2004         if (!cic)
2005                 goto queue_fail;
2006
2007         if (!cic->cfqq[is_sync]) {
2008                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2009                 if (!cfqq)
2010                         goto queue_fail;
2011
2012                 cic->cfqq[is_sync] = cfqq;
2013         } else
2014                 cfqq = cic->cfqq[is_sync];
2015
2016         cfqq->allocated[rw]++;
2017         cfq_clear_cfqq_must_alloc(cfqq);
2018         cfqd->rq_starved = 0;
2019         atomic_inc(&cfqq->ref);
2020         spin_unlock_irqrestore(q->queue_lock, flags);
2021
2022         crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2023         if (crq) {
2024                 RB_CLEAR(&crq->rb_node);
2025                 crq->rb_key = 0;
2026                 crq->request = rq;
2027                 INIT_HLIST_NODE(&crq->hash);
2028                 crq->cfq_queue = cfqq;
2029                 crq->io_context = cic;
2030
2031                 if (is_sync)
2032                         cfq_mark_crq_is_sync(crq);
2033                 else
2034                         cfq_clear_crq_is_sync(crq);
2035
2036                 rq->elevator_private = crq;
2037                 return 0;
2038         }
2039
2040         spin_lock_irqsave(q->queue_lock, flags);
2041         cfqq->allocated[rw]--;
2042         if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2043                 cfq_mark_cfqq_must_alloc(cfqq);
2044         cfq_put_queue(cfqq);
2045 queue_fail:
2046         if (cic)
2047                 put_io_context(cic->ioc);
2048         /*
2049          * mark us rq allocation starved. we need to kickstart the process
2050          * ourselves if there are no pending requests that can do it for us.
2051          * that would be an extremely rare OOM situation
2052          */
2053         cfqd->rq_starved = 1;
2054         cfq_schedule_dispatch(cfqd);
2055         spin_unlock_irqrestore(q->queue_lock, flags);
2056         return 1;
2057 }
2058
2059 static void cfq_kick_queue(void *data)
2060 {
2061         request_queue_t *q = data;
2062         struct cfq_data *cfqd = q->elevator->elevator_data;
2063         unsigned long flags;
2064
2065         spin_lock_irqsave(q->queue_lock, flags);
2066
2067         if (cfqd->rq_starved) {
2068                 struct request_list *rl = &q->rq;
2069
2070                 /*
2071                  * we aren't guaranteed to get a request after this, but we
2072                  * have to be opportunistic
2073                  */
2074                 smp_mb();
2075                 if (waitqueue_active(&rl->wait[READ]))
2076                         wake_up(&rl->wait[READ]);
2077                 if (waitqueue_active(&rl->wait[WRITE]))
2078                         wake_up(&rl->wait[WRITE]);
2079         }
2080
2081         blk_remove_plug(q);
2082         q->request_fn(q);
2083         spin_unlock_irqrestore(q->queue_lock, flags);
2084 }
2085
2086 /*
2087  * Timer running if the active_queue is currently idling inside its time slice
2088  */
2089 static void cfq_idle_slice_timer(unsigned long data)
2090 {
2091         struct cfq_data *cfqd = (struct cfq_data *) data;
2092         struct cfq_queue *cfqq;
2093         unsigned long flags;
2094
2095         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2096
2097         if ((cfqq = cfqd->active_queue) != NULL) {
2098                 unsigned long now = jiffies;
2099
2100                 /*
2101                  * expired
2102                  */
2103                 if (time_after(now, cfqq->slice_end))
2104                         goto expire;
2105
2106                 /*
2107                  * only expire and reinvoke request handler, if there are
2108                  * other queues with pending requests
2109                  */
2110                 if (!cfqd->busy_queues) {
2111                         cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2112                         add_timer(&cfqd->idle_slice_timer);
2113                         goto out_cont;
2114                 }
2115
2116                 /*
2117                  * not expired and it has a request pending, let it dispatch
2118                  */
2119                 if (!RB_EMPTY(&cfqq->sort_list)) {
2120                         cfq_mark_cfqq_must_dispatch(cfqq);
2121                         goto out_kick;
2122                 }
2123         }
2124 expire:
2125         cfq_slice_expired(cfqd, 0);
2126 out_kick:
2127         cfq_schedule_dispatch(cfqd);
2128 out_cont:
2129         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2130 }
2131
2132 /*
2133  * Timer running if an idle class queue is waiting for service
2134  */
2135 static void cfq_idle_class_timer(unsigned long data)
2136 {
2137         struct cfq_data *cfqd = (struct cfq_data *) data;
2138         unsigned long flags, end;
2139
2140         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2141
2142         /*
2143          * race with a non-idle queue, reset timer
2144          */
2145         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2146         if (!time_after_eq(jiffies, end))
2147                 mod_timer(&cfqd->idle_class_timer, end);
2148         else
2149                 cfq_schedule_dispatch(cfqd);
2150
2151         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2152 }
2153
2154 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2155 {
2156         del_timer_sync(&cfqd->idle_slice_timer);
2157         del_timer_sync(&cfqd->idle_class_timer);
2158         blk_sync_queue(cfqd->queue);
2159 }
2160
2161 static void cfq_exit_queue(elevator_t *e)
2162 {
2163         struct cfq_data *cfqd = e->elevator_data;
2164         request_queue_t *q = cfqd->queue;
2165
2166         cfq_shutdown_timer_wq(cfqd);
2167
2168         spin_lock(&cfq_exit_lock);
2169         spin_lock_irq(q->queue_lock);
2170
2171         if (cfqd->active_queue)
2172                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2173
2174         while (!list_empty(&cfqd->cic_list)) {
2175                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2176                                                         struct cfq_io_context,
2177                                                         queue_list);
2178                 if (cic->cfqq[ASYNC]) {
2179                         cfq_put_queue(cic->cfqq[ASYNC]);
2180                         cic->cfqq[ASYNC] = NULL;
2181                 }
2182                 if (cic->cfqq[SYNC]) {
2183                         cfq_put_queue(cic->cfqq[SYNC]);
2184                         cic->cfqq[SYNC] = NULL;
2185                 }
2186                 cic->key = NULL;
2187                 list_del_init(&cic->queue_list);
2188         }
2189
2190         spin_unlock_irq(q->queue_lock);
2191         spin_unlock(&cfq_exit_lock);
2192
2193         cfq_shutdown_timer_wq(cfqd);
2194
2195         mempool_destroy(cfqd->crq_pool);
2196         kfree(cfqd->crq_hash);
2197         kfree(cfqd->cfq_hash);
2198         kfree(cfqd);
2199 }
2200
2201 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2202 {
2203         struct cfq_data *cfqd;
2204         int i;
2205
2206         cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2207         if (!cfqd)
2208                 return NULL;
2209
2210         memset(cfqd, 0, sizeof(*cfqd));
2211
2212         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2213                 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2214
2215         INIT_LIST_HEAD(&cfqd->busy_rr);
2216         INIT_LIST_HEAD(&cfqd->cur_rr);
2217         INIT_LIST_HEAD(&cfqd->idle_rr);
2218         INIT_LIST_HEAD(&cfqd->empty_list);
2219         INIT_LIST_HEAD(&cfqd->cic_list);
2220
2221         cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2222         if (!cfqd->crq_hash)
2223                 goto out_crqhash;
2224
2225         cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2226         if (!cfqd->cfq_hash)
2227                 goto out_cfqhash;
2228
2229         cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2230         if (!cfqd->crq_pool)
2231                 goto out_crqpool;
2232
2233         for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2234                 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2235         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2236                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2237
2238         cfqd->queue = q;
2239
2240         init_timer(&cfqd->idle_slice_timer);
2241         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2242         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2243
2244         init_timer(&cfqd->idle_class_timer);
2245         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2246         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2247
2248         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2249
2250         cfqd->cfq_queued = cfq_queued;
2251         cfqd->cfq_quantum = cfq_quantum;
2252         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2253         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2254         cfqd->cfq_back_max = cfq_back_max;
2255         cfqd->cfq_back_penalty = cfq_back_penalty;
2256         cfqd->cfq_slice[0] = cfq_slice_async;
2257         cfqd->cfq_slice[1] = cfq_slice_sync;
2258         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2259         cfqd->cfq_slice_idle = cfq_slice_idle;
2260
2261         return cfqd;
2262 out_crqpool:
2263         kfree(cfqd->cfq_hash);
2264 out_cfqhash:
2265         kfree(cfqd->crq_hash);
2266 out_crqhash:
2267         kfree(cfqd);
2268         return NULL;
2269 }
2270
2271 static void cfq_slab_kill(void)
2272 {
2273         if (crq_pool)
2274                 kmem_cache_destroy(crq_pool);
2275         if (cfq_pool)
2276                 kmem_cache_destroy(cfq_pool);
2277         if (cfq_ioc_pool)
2278                 kmem_cache_destroy(cfq_ioc_pool);
2279 }
2280
2281 static int __init cfq_slab_setup(void)
2282 {
2283         crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2284                                         NULL, NULL);
2285         if (!crq_pool)
2286                 goto fail;
2287
2288         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2289                                         NULL, NULL);
2290         if (!cfq_pool)
2291                 goto fail;
2292
2293         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2294                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2295         if (!cfq_ioc_pool)
2296                 goto fail;
2297
2298         return 0;
2299 fail:
2300         cfq_slab_kill();
2301         return -ENOMEM;
2302 }
2303
2304 /*
2305  * sysfs parts below -->
2306  */
2307
2308 static ssize_t
2309 cfq_var_show(unsigned int var, char *page)
2310 {
2311         return sprintf(page, "%d\n", var);
2312 }
2313
2314 static ssize_t
2315 cfq_var_store(unsigned int *var, const char *page, size_t count)
2316 {
2317         char *p = (char *) page;
2318
2319         *var = simple_strtoul(p, &p, 10);
2320         return count;
2321 }
2322
2323 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2324 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2325 {                                                                       \
2326         struct cfq_data *cfqd = e->elevator_data;                       \
2327         unsigned int __data = __VAR;                                    \
2328         if (__CONV)                                                     \
2329                 __data = jiffies_to_msecs(__data);                      \
2330         return cfq_var_show(__data, (page));                            \
2331 }
2332 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2333 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2334 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2335 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2336 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2337 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2338 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2339 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2340 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2341 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2342 #undef SHOW_FUNCTION
2343
2344 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2345 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2346 {                                                                       \
2347         struct cfq_data *cfqd = e->elevator_data;                       \
2348         unsigned int __data;                                            \
2349         int ret = cfq_var_store(&__data, (page), count);                \
2350         if (__data < (MIN))                                             \
2351                 __data = (MIN);                                         \
2352         else if (__data > (MAX))                                        \
2353                 __data = (MAX);                                         \
2354         if (__CONV)                                                     \
2355                 *(__PTR) = msecs_to_jiffies(__data);                    \
2356         else                                                            \
2357                 *(__PTR) = __data;                                      \
2358         return ret;                                                     \
2359 }
2360 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2361 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2362 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2363 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2364 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2365 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2366 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2367 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2368 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2369 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2370 #undef STORE_FUNCTION
2371
2372 #define CFQ_ATTR(name) \
2373         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2374
2375 static struct elv_fs_entry cfq_attrs[] = {
2376         CFQ_ATTR(quantum),
2377         CFQ_ATTR(queued),
2378         CFQ_ATTR(fifo_expire_sync),
2379         CFQ_ATTR(fifo_expire_async),
2380         CFQ_ATTR(back_seek_max),
2381         CFQ_ATTR(back_seek_penalty),
2382         CFQ_ATTR(slice_sync),
2383         CFQ_ATTR(slice_async),
2384         CFQ_ATTR(slice_async_rq),
2385         CFQ_ATTR(slice_idle),
2386         __ATTR_NULL
2387 };
2388
2389 static struct elevator_type iosched_cfq = {
2390         .ops = {
2391                 .elevator_merge_fn =            cfq_merge,
2392                 .elevator_merged_fn =           cfq_merged_request,
2393                 .elevator_merge_req_fn =        cfq_merged_requests,
2394                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2395                 .elevator_add_req_fn =          cfq_insert_request,
2396                 .elevator_activate_req_fn =     cfq_activate_request,
2397                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2398                 .elevator_queue_empty_fn =      cfq_queue_empty,
2399                 .elevator_completed_req_fn =    cfq_completed_request,
2400                 .elevator_former_req_fn =       cfq_former_request,
2401                 .elevator_latter_req_fn =       cfq_latter_request,
2402                 .elevator_set_req_fn =          cfq_set_request,
2403                 .elevator_put_req_fn =          cfq_put_request,
2404                 .elevator_may_queue_fn =        cfq_may_queue,
2405                 .elevator_init_fn =             cfq_init_queue,
2406                 .elevator_exit_fn =             cfq_exit_queue,
2407                 .trim =                         cfq_trim,
2408         },
2409         .elevator_attrs =       cfq_attrs,
2410         .elevator_name =        "cfq",
2411         .elevator_owner =       THIS_MODULE,
2412 };
2413
2414 static int __init cfq_init(void)
2415 {
2416         int ret;
2417
2418         /*
2419          * could be 0 on HZ < 1000 setups
2420          */
2421         if (!cfq_slice_async)
2422                 cfq_slice_async = 1;
2423         if (!cfq_slice_idle)
2424                 cfq_slice_idle = 1;
2425
2426         if (cfq_slab_setup())
2427                 return -ENOMEM;
2428
2429         ret = elv_register(&iosched_cfq);
2430         if (ret)
2431                 cfq_slab_kill();
2432
2433         return ret;
2434 }
2435
2436 static void __exit cfq_exit(void)
2437 {
2438         DECLARE_COMPLETION(all_gone);
2439         elv_unregister(&iosched_cfq);
2440         ioc_gone = &all_gone;
2441         /* ioc_gone's update must be visible before reading ioc_count */
2442         smp_wmb();
2443         if (atomic_read(&ioc_count))
2444                 wait_for_completion(ioc_gone);
2445         synchronize_rcu();
2446         cfq_slab_kill();
2447 }
2448
2449 module_init(cfq_init);
2450 module_exit(cfq_exit);
2451
2452 MODULE_AUTHOR("Jens Axboe");
2453 MODULE_LICENSE("GPL");
2454 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");