2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
131 fis[13] = tf->hob_nsect;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
216 int index, fua, lba48, write;
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
230 tf->protocol = ATA_PROT_DMA;
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
289 static const struct ata_xfer_ent {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
310 * Matching XFER_* value, 0 if no match found.
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
327 * Return matching xfer_mask for @xfer_mode.
333 * Matching xfer_mask, 0 if no match found.
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337 const struct ata_xfer_ent *ent;
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
349 * Return matching xfer_shift for @xfer_mode.
355 * Matching xfer_shift, -1 if no match found.
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
359 const struct ata_xfer_ent *ent;
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
381 static const char *ata_mode_string(unsigned int xfer_mask)
383 static const char * const xfer_mode_str[] = {
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
413 static const char *sata_spd_string(unsigned int spd)
415 static const char * const spd_str[] = {
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
422 return spd_str[spd - 1];
425 void ata_dev_disable(struct ata_device *dev)
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
454 struct ata_ioports *ioaddr = &ap->ioaddr;
457 ap->ops->dev_select(ap, device);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
474 return 0; /* nothing found */
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
498 struct ata_ioports *ioaddr = &ap->ioaddr;
501 ap->ops->dev_select(ap, device);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
518 return 0; /* nothing found */
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
534 static unsigned int ata_devchk(struct ata_port *ap,
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
606 struct ata_taskfile tf;
610 ap->ops->dev_select(ap, device);
612 memset(&tf, 0, sizeof(tf));
614 ap->ops->tf_read(ap, &tf);
619 /* see if device passed diags */
622 else if ((device == 0) && (err == 0x81))
627 /* determine if device is ATA or ATAPI */
628 class = ata_dev_classify(&tf);
630 if (class == ATA_DEV_UNKNOWN)
632 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
638 * ata_id_string - Convert IDENTIFY DEVICE page into string
639 * @id: IDENTIFY DEVICE results we will examine
640 * @s: string into which data is output
641 * @ofs: offset into identify device page
642 * @len: length of string to return. must be an even number.
644 * The strings in the IDENTIFY DEVICE page are broken up into
645 * 16-bit chunks. Run through the string, and output each
646 * 8-bit chunk linearly, regardless of platform.
652 void ata_id_string(const u16 *id, unsigned char *s,
653 unsigned int ofs, unsigned int len)
672 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
673 * @id: IDENTIFY DEVICE results we will examine
674 * @s: string into which data is output
675 * @ofs: offset into identify device page
676 * @len: length of string to return. must be an odd number.
678 * This function is identical to ata_id_string except that it
679 * trims trailing spaces and terminates the resulting string with
680 * null. @len must be actual maximum length (even number) + 1.
685 void ata_id_c_string(const u16 *id, unsigned char *s,
686 unsigned int ofs, unsigned int len)
692 ata_id_string(id, s, ofs, len - 1);
694 p = s + strnlen(s, len - 1);
695 while (p > s && p[-1] == ' ')
700 static u64 ata_id_n_sectors(const u16 *id)
702 if (ata_id_has_lba(id)) {
703 if (ata_id_has_lba48(id))
704 return ata_id_u64(id, 100);
706 return ata_id_u32(id, 60);
708 if (ata_id_current_chs_valid(id))
709 return ata_id_u32(id, 57);
711 return id[1] * id[3] * id[6];
716 * ata_noop_dev_select - Select device 0/1 on ATA bus
717 * @ap: ATA channel to manipulate
718 * @device: ATA device (numbered from zero) to select
720 * This function performs no actual function.
722 * May be used as the dev_select() entry in ata_port_operations.
727 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
733 * ata_std_dev_select - Select device 0/1 on ATA bus
734 * @ap: ATA channel to manipulate
735 * @device: ATA device (numbered from zero) to select
737 * Use the method defined in the ATA specification to
738 * make either device 0, or device 1, active on the
739 * ATA channel. Works with both PIO and MMIO.
741 * May be used as the dev_select() entry in ata_port_operations.
747 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
752 tmp = ATA_DEVICE_OBS;
754 tmp = ATA_DEVICE_OBS | ATA_DEV1;
756 if (ap->flags & ATA_FLAG_MMIO) {
757 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
759 outb(tmp, ap->ioaddr.device_addr);
761 ata_pause(ap); /* needed; also flushes, for mmio */
765 * ata_dev_select - Select device 0/1 on ATA bus
766 * @ap: ATA channel to manipulate
767 * @device: ATA device (numbered from zero) to select
768 * @wait: non-zero to wait for Status register BSY bit to clear
769 * @can_sleep: non-zero if context allows sleeping
771 * Use the method defined in the ATA specification to
772 * make either device 0, or device 1, active on the
775 * This is a high-level version of ata_std_dev_select(),
776 * which additionally provides the services of inserting
777 * the proper pauses and status polling, where needed.
783 void ata_dev_select(struct ata_port *ap, unsigned int device,
784 unsigned int wait, unsigned int can_sleep)
786 if (ata_msg_probe(ap))
787 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
788 "device %u, wait %u\n", ap->id, device, wait);
793 ap->ops->dev_select(ap, device);
796 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
803 * ata_dump_id - IDENTIFY DEVICE info debugging output
804 * @id: IDENTIFY DEVICE page to dump
806 * Dump selected 16-bit words from the given IDENTIFY DEVICE
813 static inline void ata_dump_id(const u16 *id)
815 DPRINTK("49==0x%04x "
825 DPRINTK("80==0x%04x "
835 DPRINTK("88==0x%04x "
842 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
843 * @id: IDENTIFY data to compute xfer mask from
845 * Compute the xfermask for this device. This is not as trivial
846 * as it seems if we must consider early devices correctly.
848 * FIXME: pre IDE drive timing (do we care ?).
856 static unsigned int ata_id_xfermask(const u16 *id)
858 unsigned int pio_mask, mwdma_mask, udma_mask;
860 /* Usual case. Word 53 indicates word 64 is valid */
861 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
862 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 /* If word 64 isn't valid then Word 51 high byte holds
867 * the PIO timing number for the maximum. Turn it into
870 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
872 /* But wait.. there's more. Design your standards by
873 * committee and you too can get a free iordy field to
874 * process. However its the speeds not the modes that
875 * are supported... Note drivers using the timing API
876 * will get this right anyway
880 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
882 if (ata_id_is_cfa(id)) {
884 * Process compact flash extended modes
886 int pio = id[163] & 0x7;
887 int dma = (id[163] >> 3) & 7;
890 pio_mask |= (1 << 5);
892 pio_mask |= (1 << 6);
894 mwdma_mask |= (1 << 3);
896 mwdma_mask |= (1 << 4);
900 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
901 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
903 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
907 * ata_port_queue_task - Queue port_task
908 * @ap: The ata_port to queue port_task for
909 * @fn: workqueue function to be scheduled
910 * @data: data value to pass to workqueue function
911 * @delay: delay time for workqueue function
913 * Schedule @fn(@data) for execution after @delay jiffies using
914 * port_task. There is one port_task per port and it's the
915 * user(low level driver)'s responsibility to make sure that only
916 * one task is active at any given time.
918 * libata core layer takes care of synchronization between
919 * port_task and EH. ata_port_queue_task() may be ignored for EH
923 * Inherited from caller.
925 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
930 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
933 PREPARE_WORK(&ap->port_task, fn, data);
936 rc = queue_work(ata_wq, &ap->port_task);
938 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
940 /* rc == 0 means that another user is using port task */
945 * ata_port_flush_task - Flush port_task
946 * @ap: The ata_port to flush port_task for
948 * After this function completes, port_task is guranteed not to
949 * be running or scheduled.
952 * Kernel thread context (may sleep)
954 void ata_port_flush_task(struct ata_port *ap)
960 spin_lock_irqsave(ap->lock, flags);
961 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
962 spin_unlock_irqrestore(ap->lock, flags);
964 DPRINTK("flush #1\n");
965 flush_workqueue(ata_wq);
968 * At this point, if a task is running, it's guaranteed to see
969 * the FLUSH flag; thus, it will never queue pio tasks again.
972 if (!cancel_delayed_work(&ap->port_task)) {
974 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
976 flush_workqueue(ata_wq);
979 spin_lock_irqsave(ap->lock, flags);
980 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
981 spin_unlock_irqrestore(ap->lock, flags);
984 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
987 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
989 struct completion *waiting = qc->private_data;
995 * ata_exec_internal - execute libata internal command
996 * @dev: Device to which the command is sent
997 * @tf: Taskfile registers for the command and the result
998 * @cdb: CDB for packet command
999 * @dma_dir: Data tranfer direction of the command
1000 * @buf: Data buffer of the command
1001 * @buflen: Length of data buffer
1003 * Executes libata internal command with timeout. @tf contains
1004 * command on entry and result on return. Timeout and error
1005 * conditions are reported via return value. No recovery action
1006 * is taken after a command times out. It's caller's duty to
1007 * clean up after timeout.
1010 * None. Should be called with kernel context, might sleep.
1013 * Zero on success, AC_ERR_* mask on failure
1015 unsigned ata_exec_internal(struct ata_device *dev,
1016 struct ata_taskfile *tf, const u8 *cdb,
1017 int dma_dir, void *buf, unsigned int buflen)
1019 struct ata_port *ap = dev->ap;
1020 u8 command = tf->command;
1021 struct ata_queued_cmd *qc;
1022 unsigned int tag, preempted_tag;
1023 u32 preempted_sactive, preempted_qc_active;
1024 DECLARE_COMPLETION_ONSTACK(wait);
1025 unsigned long flags;
1026 unsigned int err_mask;
1029 spin_lock_irqsave(ap->lock, flags);
1031 /* no internal command while frozen */
1032 if (ap->pflags & ATA_PFLAG_FROZEN) {
1033 spin_unlock_irqrestore(ap->lock, flags);
1034 return AC_ERR_SYSTEM;
1037 /* initialize internal qc */
1039 /* XXX: Tag 0 is used for drivers with legacy EH as some
1040 * drivers choke if any other tag is given. This breaks
1041 * ata_tag_internal() test for those drivers. Don't use new
1042 * EH stuff without converting to it.
1044 if (ap->ops->error_handler)
1045 tag = ATA_TAG_INTERNAL;
1049 if (test_and_set_bit(tag, &ap->qc_allocated))
1051 qc = __ata_qc_from_tag(ap, tag);
1059 preempted_tag = ap->active_tag;
1060 preempted_sactive = ap->sactive;
1061 preempted_qc_active = ap->qc_active;
1062 ap->active_tag = ATA_TAG_POISON;
1066 /* prepare & issue qc */
1069 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1070 qc->flags |= ATA_QCFLAG_RESULT_TF;
1071 qc->dma_dir = dma_dir;
1072 if (dma_dir != DMA_NONE) {
1073 ata_sg_init_one(qc, buf, buflen);
1074 qc->nsect = buflen / ATA_SECT_SIZE;
1077 qc->private_data = &wait;
1078 qc->complete_fn = ata_qc_complete_internal;
1082 spin_unlock_irqrestore(ap->lock, flags);
1084 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1086 ata_port_flush_task(ap);
1089 spin_lock_irqsave(ap->lock, flags);
1091 /* We're racing with irq here. If we lose, the
1092 * following test prevents us from completing the qc
1093 * twice. If we win, the port is frozen and will be
1094 * cleaned up by ->post_internal_cmd().
1096 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1097 qc->err_mask |= AC_ERR_TIMEOUT;
1099 if (ap->ops->error_handler)
1100 ata_port_freeze(ap);
1102 ata_qc_complete(qc);
1104 if (ata_msg_warn(ap))
1105 ata_dev_printk(dev, KERN_WARNING,
1106 "qc timeout (cmd 0x%x)\n", command);
1109 spin_unlock_irqrestore(ap->lock, flags);
1112 /* do post_internal_cmd */
1113 if (ap->ops->post_internal_cmd)
1114 ap->ops->post_internal_cmd(qc);
1116 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1117 if (ata_msg_warn(ap))
1118 ata_dev_printk(dev, KERN_WARNING,
1119 "zero err_mask for failed "
1120 "internal command, assuming AC_ERR_OTHER\n");
1121 qc->err_mask |= AC_ERR_OTHER;
1125 spin_lock_irqsave(ap->lock, flags);
1127 *tf = qc->result_tf;
1128 err_mask = qc->err_mask;
1131 ap->active_tag = preempted_tag;
1132 ap->sactive = preempted_sactive;
1133 ap->qc_active = preempted_qc_active;
1135 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1136 * Until those drivers are fixed, we detect the condition
1137 * here, fail the command with AC_ERR_SYSTEM and reenable the
1140 * Note that this doesn't change any behavior as internal
1141 * command failure results in disabling the device in the
1142 * higher layer for LLDDs without new reset/EH callbacks.
1144 * Kill the following code as soon as those drivers are fixed.
1146 if (ap->flags & ATA_FLAG_DISABLED) {
1147 err_mask |= AC_ERR_SYSTEM;
1151 spin_unlock_irqrestore(ap->lock, flags);
1157 * ata_do_simple_cmd - execute simple internal command
1158 * @dev: Device to which the command is sent
1159 * @cmd: Opcode to execute
1161 * Execute a 'simple' command, that only consists of the opcode
1162 * 'cmd' itself, without filling any other registers
1165 * Kernel thread context (may sleep).
1168 * Zero on success, AC_ERR_* mask on failure
1170 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1172 struct ata_taskfile tf;
1174 ata_tf_init(dev, &tf);
1177 tf.flags |= ATA_TFLAG_DEVICE;
1178 tf.protocol = ATA_PROT_NODATA;
1180 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1184 * ata_pio_need_iordy - check if iordy needed
1187 * Check if the current speed of the device requires IORDY. Used
1188 * by various controllers for chip configuration.
1191 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1194 int speed = adev->pio_mode - XFER_PIO_0;
1201 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1203 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1204 pio = adev->id[ATA_ID_EIDE_PIO];
1205 /* Is the speed faster than the drive allows non IORDY ? */
1207 /* This is cycle times not frequency - watch the logic! */
1208 if (pio > 240) /* PIO2 is 240nS per cycle */
1217 * ata_dev_read_id - Read ID data from the specified device
1218 * @dev: target device
1219 * @p_class: pointer to class of the target device (may be changed)
1220 * @post_reset: is this read ID post-reset?
1221 * @id: buffer to read IDENTIFY data into
1223 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1224 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1225 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1226 * for pre-ATA4 drives.
1229 * Kernel thread context (may sleep)
1232 * 0 on success, -errno otherwise.
1234 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1235 int post_reset, u16 *id)
1237 struct ata_port *ap = dev->ap;
1238 unsigned int class = *p_class;
1239 struct ata_taskfile tf;
1240 unsigned int err_mask = 0;
1244 if (ata_msg_ctl(ap))
1245 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1246 __FUNCTION__, ap->id, dev->devno);
1248 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1251 ata_tf_init(dev, &tf);
1255 tf.command = ATA_CMD_ID_ATA;
1258 tf.command = ATA_CMD_ID_ATAPI;
1262 reason = "unsupported class";
1266 tf.protocol = ATA_PROT_PIO;
1268 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1269 id, sizeof(id[0]) * ATA_ID_WORDS);
1272 reason = "I/O error";
1276 swap_buf_le16(id, ATA_ID_WORDS);
1279 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1281 reason = "device reports illegal type";
1285 if (post_reset && class == ATA_DEV_ATA) {
1287 * The exact sequence expected by certain pre-ATA4 drives is:
1290 * INITIALIZE DEVICE PARAMETERS
1292 * Some drives were very specific about that exact sequence.
1294 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1295 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1298 reason = "INIT_DEV_PARAMS failed";
1302 /* current CHS translation info (id[53-58]) might be
1303 * changed. reread the identify device info.
1315 if (ata_msg_warn(ap))
1316 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1317 "(%s, err_mask=0x%x)\n", reason, err_mask);
1321 static inline u8 ata_dev_knobble(struct ata_device *dev)
1323 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1326 static void ata_dev_config_ncq(struct ata_device *dev,
1327 char *desc, size_t desc_sz)
1329 struct ata_port *ap = dev->ap;
1330 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1332 if (!ata_id_has_ncq(dev->id)) {
1337 if (ap->flags & ATA_FLAG_NCQ) {
1338 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1339 dev->flags |= ATA_DFLAG_NCQ;
1342 if (hdepth >= ddepth)
1343 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1345 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1348 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1353 ap->host->max_cmd_len = 0;
1354 for (i = 0; i < ATA_MAX_DEVICES; i++)
1355 ap->host->max_cmd_len = max_t(unsigned int,
1356 ap->host->max_cmd_len,
1357 ap->device[i].cdb_len);
1362 * ata_dev_configure - Configure the specified ATA/ATAPI device
1363 * @dev: Target device to configure
1364 * @print_info: Enable device info printout
1366 * Configure @dev according to @dev->id. Generic and low-level
1367 * driver specific fixups are also applied.
1370 * Kernel thread context (may sleep)
1373 * 0 on success, -errno otherwise
1375 int ata_dev_configure(struct ata_device *dev, int print_info)
1377 struct ata_port *ap = dev->ap;
1378 const u16 *id = dev->id;
1379 unsigned int xfer_mask;
1380 char revbuf[7]; /* XYZ-99\0 */
1383 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1384 ata_dev_printk(dev, KERN_INFO,
1385 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1386 __FUNCTION__, ap->id, dev->devno);
1390 if (ata_msg_probe(ap))
1391 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1392 __FUNCTION__, ap->id, dev->devno);
1394 /* print device capabilities */
1395 if (ata_msg_probe(ap))
1396 ata_dev_printk(dev, KERN_DEBUG,
1397 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1398 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1400 id[49], id[82], id[83], id[84],
1401 id[85], id[86], id[87], id[88]);
1403 /* initialize to-be-configured parameters */
1404 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1405 dev->max_sectors = 0;
1413 * common ATA, ATAPI feature tests
1416 /* find max transfer mode; for printk only */
1417 xfer_mask = ata_id_xfermask(id);
1419 if (ata_msg_probe(ap))
1422 /* ATA-specific feature tests */
1423 if (dev->class == ATA_DEV_ATA) {
1424 if (ata_id_is_cfa(id)) {
1425 if (id[162] & 1) /* CPRM may make this media unusable */
1426 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1427 ap->id, dev->devno);
1428 snprintf(revbuf, 7, "CFA");
1431 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1433 dev->n_sectors = ata_id_n_sectors(id);
1435 if (ata_id_has_lba(id)) {
1436 const char *lba_desc;
1440 dev->flags |= ATA_DFLAG_LBA;
1441 if (ata_id_has_lba48(id)) {
1442 dev->flags |= ATA_DFLAG_LBA48;
1447 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1449 /* print device info to dmesg */
1450 if (ata_msg_drv(ap) && print_info)
1451 ata_dev_printk(dev, KERN_INFO, "%s, "
1452 "max %s, %Lu sectors: %s %s\n",
1454 ata_mode_string(xfer_mask),
1455 (unsigned long long)dev->n_sectors,
1456 lba_desc, ncq_desc);
1460 /* Default translation */
1461 dev->cylinders = id[1];
1463 dev->sectors = id[6];
1465 if (ata_id_current_chs_valid(id)) {
1466 /* Current CHS translation is valid. */
1467 dev->cylinders = id[54];
1468 dev->heads = id[55];
1469 dev->sectors = id[56];
1472 /* print device info to dmesg */
1473 if (ata_msg_drv(ap) && print_info)
1474 ata_dev_printk(dev, KERN_INFO, "%s, "
1475 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1477 ata_mode_string(xfer_mask),
1478 (unsigned long long)dev->n_sectors,
1479 dev->cylinders, dev->heads,
1483 if (dev->id[59] & 0x100) {
1484 dev->multi_count = dev->id[59] & 0xff;
1485 if (ata_msg_drv(ap) && print_info)
1486 ata_dev_printk(dev, KERN_INFO,
1487 "ata%u: dev %u multi count %u\n",
1488 ap->id, dev->devno, dev->multi_count);
1494 /* ATAPI-specific feature tests */
1495 else if (dev->class == ATA_DEV_ATAPI) {
1496 char *cdb_intr_string = "";
1498 rc = atapi_cdb_len(id);
1499 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1500 if (ata_msg_warn(ap))
1501 ata_dev_printk(dev, KERN_WARNING,
1502 "unsupported CDB len\n");
1506 dev->cdb_len = (unsigned int) rc;
1508 if (ata_id_cdb_intr(dev->id)) {
1509 dev->flags |= ATA_DFLAG_CDB_INTR;
1510 cdb_intr_string = ", CDB intr";
1513 /* print device info to dmesg */
1514 if (ata_msg_drv(ap) && print_info)
1515 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1516 ata_mode_string(xfer_mask),
1520 ata_set_port_max_cmd_len(ap);
1522 /* limit bridge transfers to udma5, 200 sectors */
1523 if (ata_dev_knobble(dev)) {
1524 if (ata_msg_drv(ap) && print_info)
1525 ata_dev_printk(dev, KERN_INFO,
1526 "applying bridge limits\n");
1527 dev->udma_mask &= ATA_UDMA5;
1528 dev->max_sectors = ATA_MAX_SECTORS;
1531 if (ap->ops->dev_config)
1532 ap->ops->dev_config(ap, dev);
1534 if (ata_msg_probe(ap))
1535 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1536 __FUNCTION__, ata_chk_status(ap));
1540 if (ata_msg_probe(ap))
1541 ata_dev_printk(dev, KERN_DEBUG,
1542 "%s: EXIT, err\n", __FUNCTION__);
1547 * ata_bus_probe - Reset and probe ATA bus
1550 * Master ATA bus probing function. Initiates a hardware-dependent
1551 * bus reset, then attempts to identify any devices found on
1555 * PCI/etc. bus probe sem.
1558 * Zero on success, negative errno otherwise.
1561 int ata_bus_probe(struct ata_port *ap)
1563 unsigned int classes[ATA_MAX_DEVICES];
1564 int tries[ATA_MAX_DEVICES];
1565 int i, rc, down_xfermask;
1566 struct ata_device *dev;
1570 for (i = 0; i < ATA_MAX_DEVICES; i++)
1571 tries[i] = ATA_PROBE_MAX_TRIES;
1576 /* reset and determine device classes */
1577 ap->ops->phy_reset(ap);
1579 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1580 dev = &ap->device[i];
1582 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1583 dev->class != ATA_DEV_UNKNOWN)
1584 classes[dev->devno] = dev->class;
1586 classes[dev->devno] = ATA_DEV_NONE;
1588 dev->class = ATA_DEV_UNKNOWN;
1593 /* after the reset the device state is PIO 0 and the controller
1594 state is undefined. Record the mode */
1596 for (i = 0; i < ATA_MAX_DEVICES; i++)
1597 ap->device[i].pio_mode = XFER_PIO_0;
1599 /* read IDENTIFY page and configure devices */
1600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1601 dev = &ap->device[i];
1604 dev->class = classes[i];
1606 if (!ata_dev_enabled(dev))
1609 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1613 rc = ata_dev_configure(dev, 1);
1618 /* configure transfer mode */
1619 rc = ata_set_mode(ap, &dev);
1625 for (i = 0; i < ATA_MAX_DEVICES; i++)
1626 if (ata_dev_enabled(&ap->device[i]))
1629 /* no device present, disable port */
1630 ata_port_disable(ap);
1631 ap->ops->port_disable(ap);
1638 tries[dev->devno] = 0;
1641 sata_down_spd_limit(ap);
1644 tries[dev->devno]--;
1645 if (down_xfermask &&
1646 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1647 tries[dev->devno] = 0;
1650 if (!tries[dev->devno]) {
1651 ata_down_xfermask_limit(dev, 1);
1652 ata_dev_disable(dev);
1659 * ata_port_probe - Mark port as enabled
1660 * @ap: Port for which we indicate enablement
1662 * Modify @ap data structure such that the system
1663 * thinks that the entire port is enabled.
1665 * LOCKING: host_set lock, or some other form of
1669 void ata_port_probe(struct ata_port *ap)
1671 ap->flags &= ~ATA_FLAG_DISABLED;
1675 * sata_print_link_status - Print SATA link status
1676 * @ap: SATA port to printk link status about
1678 * This function prints link speed and status of a SATA link.
1683 static void sata_print_link_status(struct ata_port *ap)
1685 u32 sstatus, scontrol, tmp;
1687 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1689 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1691 if (ata_port_online(ap)) {
1692 tmp = (sstatus >> 4) & 0xf;
1693 ata_port_printk(ap, KERN_INFO,
1694 "SATA link up %s (SStatus %X SControl %X)\n",
1695 sata_spd_string(tmp), sstatus, scontrol);
1697 ata_port_printk(ap, KERN_INFO,
1698 "SATA link down (SStatus %X SControl %X)\n",
1704 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1705 * @ap: SATA port associated with target SATA PHY.
1707 * This function issues commands to standard SATA Sxxx
1708 * PHY registers, to wake up the phy (and device), and
1709 * clear any reset condition.
1712 * PCI/etc. bus probe sem.
1715 void __sata_phy_reset(struct ata_port *ap)
1718 unsigned long timeout = jiffies + (HZ * 5);
1720 if (ap->flags & ATA_FLAG_SATA_RESET) {
1721 /* issue phy wake/reset */
1722 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1723 /* Couldn't find anything in SATA I/II specs, but
1724 * AHCI-1.1 10.4.2 says at least 1 ms. */
1727 /* phy wake/clear reset */
1728 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1730 /* wait for phy to become ready, if necessary */
1733 sata_scr_read(ap, SCR_STATUS, &sstatus);
1734 if ((sstatus & 0xf) != 1)
1736 } while (time_before(jiffies, timeout));
1738 /* print link status */
1739 sata_print_link_status(ap);
1741 /* TODO: phy layer with polling, timeouts, etc. */
1742 if (!ata_port_offline(ap))
1745 ata_port_disable(ap);
1747 if (ap->flags & ATA_FLAG_DISABLED)
1750 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1751 ata_port_disable(ap);
1755 ap->cbl = ATA_CBL_SATA;
1759 * sata_phy_reset - Reset SATA bus.
1760 * @ap: SATA port associated with target SATA PHY.
1762 * This function resets the SATA bus, and then probes
1763 * the bus for devices.
1766 * PCI/etc. bus probe sem.
1769 void sata_phy_reset(struct ata_port *ap)
1771 __sata_phy_reset(ap);
1772 if (ap->flags & ATA_FLAG_DISABLED)
1778 * ata_dev_pair - return other device on cable
1781 * Obtain the other device on the same cable, or if none is
1782 * present NULL is returned
1785 struct ata_device *ata_dev_pair(struct ata_device *adev)
1787 struct ata_port *ap = adev->ap;
1788 struct ata_device *pair = &ap->device[1 - adev->devno];
1789 if (!ata_dev_enabled(pair))
1795 * ata_port_disable - Disable port.
1796 * @ap: Port to be disabled.
1798 * Modify @ap data structure such that the system
1799 * thinks that the entire port is disabled, and should
1800 * never attempt to probe or communicate with devices
1803 * LOCKING: host_set lock, or some other form of
1807 void ata_port_disable(struct ata_port *ap)
1809 ap->device[0].class = ATA_DEV_NONE;
1810 ap->device[1].class = ATA_DEV_NONE;
1811 ap->flags |= ATA_FLAG_DISABLED;
1815 * sata_down_spd_limit - adjust SATA spd limit downward
1816 * @ap: Port to adjust SATA spd limit for
1818 * Adjust SATA spd limit of @ap downward. Note that this
1819 * function only adjusts the limit. The change must be applied
1820 * using sata_set_spd().
1823 * Inherited from caller.
1826 * 0 on success, negative errno on failure
1828 int sata_down_spd_limit(struct ata_port *ap)
1830 u32 sstatus, spd, mask;
1833 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1837 mask = ap->sata_spd_limit;
1840 highbit = fls(mask) - 1;
1841 mask &= ~(1 << highbit);
1843 spd = (sstatus >> 4) & 0xf;
1847 mask &= (1 << spd) - 1;
1851 ap->sata_spd_limit = mask;
1853 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1854 sata_spd_string(fls(mask)));
1859 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1863 if (ap->sata_spd_limit == UINT_MAX)
1866 limit = fls(ap->sata_spd_limit);
1868 spd = (*scontrol >> 4) & 0xf;
1869 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1871 return spd != limit;
1875 * sata_set_spd_needed - is SATA spd configuration needed
1876 * @ap: Port in question
1878 * Test whether the spd limit in SControl matches
1879 * @ap->sata_spd_limit. This function is used to determine
1880 * whether hardreset is necessary to apply SATA spd
1884 * Inherited from caller.
1887 * 1 if SATA spd configuration is needed, 0 otherwise.
1889 int sata_set_spd_needed(struct ata_port *ap)
1893 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1896 return __sata_set_spd_needed(ap, &scontrol);
1900 * sata_set_spd - set SATA spd according to spd limit
1901 * @ap: Port to set SATA spd for
1903 * Set SATA spd of @ap according to sata_spd_limit.
1906 * Inherited from caller.
1909 * 0 if spd doesn't need to be changed, 1 if spd has been
1910 * changed. Negative errno if SCR registers are inaccessible.
1912 int sata_set_spd(struct ata_port *ap)
1917 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1920 if (!__sata_set_spd_needed(ap, &scontrol))
1923 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1930 * This mode timing computation functionality is ported over from
1931 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1934 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1935 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1936 * for UDMA6, which is currently supported only by Maxtor drives.
1938 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1941 static const struct ata_timing ata_timing[] = {
1943 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1944 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1945 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1946 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1948 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1949 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1950 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1951 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1952 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1954 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1956 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1957 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1958 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1960 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1961 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1962 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1964 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1965 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
1966 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1967 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1969 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1970 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1971 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1973 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1978 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1979 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1981 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1983 q->setup = EZ(t->setup * 1000, T);
1984 q->act8b = EZ(t->act8b * 1000, T);
1985 q->rec8b = EZ(t->rec8b * 1000, T);
1986 q->cyc8b = EZ(t->cyc8b * 1000, T);
1987 q->active = EZ(t->active * 1000, T);
1988 q->recover = EZ(t->recover * 1000, T);
1989 q->cycle = EZ(t->cycle * 1000, T);
1990 q->udma = EZ(t->udma * 1000, UT);
1993 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1994 struct ata_timing *m, unsigned int what)
1996 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1997 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1998 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1999 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2000 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2001 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2002 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2003 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2006 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2008 const struct ata_timing *t;
2010 for (t = ata_timing; t->mode != speed; t++)
2011 if (t->mode == 0xFF)
2016 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2017 struct ata_timing *t, int T, int UT)
2019 const struct ata_timing *s;
2020 struct ata_timing p;
2026 if (!(s = ata_timing_find_mode(speed)))
2029 memcpy(t, s, sizeof(*s));
2032 * If the drive is an EIDE drive, it can tell us it needs extended
2033 * PIO/MW_DMA cycle timing.
2036 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2037 memset(&p, 0, sizeof(p));
2038 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2039 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2040 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2041 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2042 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2044 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2048 * Convert the timing to bus clock counts.
2051 ata_timing_quantize(t, t, T, UT);
2054 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2055 * S.M.A.R.T * and some other commands. We have to ensure that the
2056 * DMA cycle timing is slower/equal than the fastest PIO timing.
2059 if (speed > XFER_PIO_4) {
2060 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2061 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2065 * Lengthen active & recovery time so that cycle time is correct.
2068 if (t->act8b + t->rec8b < t->cyc8b) {
2069 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2070 t->rec8b = t->cyc8b - t->act8b;
2073 if (t->active + t->recover < t->cycle) {
2074 t->active += (t->cycle - (t->active + t->recover)) / 2;
2075 t->recover = t->cycle - t->active;
2082 * ata_down_xfermask_limit - adjust dev xfer masks downward
2083 * @dev: Device to adjust xfer masks
2084 * @force_pio0: Force PIO0
2086 * Adjust xfer masks of @dev downward. Note that this function
2087 * does not apply the change. Invoking ata_set_mode() afterwards
2088 * will apply the limit.
2091 * Inherited from caller.
2094 * 0 on success, negative errno on failure
2096 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2098 unsigned long xfer_mask;
2101 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2106 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2107 if (xfer_mask & ATA_MASK_UDMA)
2108 xfer_mask &= ~ATA_MASK_MWDMA;
2110 highbit = fls(xfer_mask) - 1;
2111 xfer_mask &= ~(1 << highbit);
2113 xfer_mask &= 1 << ATA_SHIFT_PIO;
2117 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2120 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2121 ata_mode_string(xfer_mask));
2129 static int ata_dev_set_mode(struct ata_device *dev)
2131 unsigned int err_mask;
2134 dev->flags &= ~ATA_DFLAG_PIO;
2135 if (dev->xfer_shift == ATA_SHIFT_PIO)
2136 dev->flags |= ATA_DFLAG_PIO;
2138 err_mask = ata_dev_set_xfermode(dev);
2140 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2141 "(err_mask=0x%x)\n", err_mask);
2145 rc = ata_dev_revalidate(dev, 0);
2149 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2150 dev->xfer_shift, (int)dev->xfer_mode);
2152 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2153 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2158 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2159 * @ap: port on which timings will be programmed
2160 * @r_failed_dev: out paramter for failed device
2162 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2163 * ata_set_mode() fails, pointer to the failing device is
2164 * returned in @r_failed_dev.
2167 * PCI/etc. bus probe sem.
2170 * 0 on success, negative errno otherwise
2172 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2174 struct ata_device *dev;
2175 int i, rc = 0, used_dma = 0, found = 0;
2177 /* has private set_mode? */
2178 if (ap->ops->set_mode) {
2179 /* FIXME: make ->set_mode handle no device case and
2180 * return error code and failing device on failure.
2182 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2183 if (ata_dev_ready(&ap->device[i])) {
2184 ap->ops->set_mode(ap);
2191 /* step 1: calculate xfer_mask */
2192 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2193 unsigned int pio_mask, dma_mask;
2195 dev = &ap->device[i];
2197 if (!ata_dev_enabled(dev))
2200 ata_dev_xfermask(dev);
2202 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2203 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2204 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2205 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2214 /* step 2: always set host PIO timings */
2215 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2216 dev = &ap->device[i];
2217 if (!ata_dev_enabled(dev))
2220 if (!dev->pio_mode) {
2221 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2226 dev->xfer_mode = dev->pio_mode;
2227 dev->xfer_shift = ATA_SHIFT_PIO;
2228 if (ap->ops->set_piomode)
2229 ap->ops->set_piomode(ap, dev);
2232 /* step 3: set host DMA timings */
2233 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2234 dev = &ap->device[i];
2236 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2239 dev->xfer_mode = dev->dma_mode;
2240 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2241 if (ap->ops->set_dmamode)
2242 ap->ops->set_dmamode(ap, dev);
2245 /* step 4: update devices' xfer mode */
2246 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2247 dev = &ap->device[i];
2249 /* don't udpate suspended devices' xfer mode */
2250 if (!ata_dev_ready(dev))
2253 rc = ata_dev_set_mode(dev);
2258 /* Record simplex status. If we selected DMA then the other
2259 * host channels are not permitted to do so.
2261 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2262 ap->host_set->simplex_claimed = 1;
2264 /* step5: chip specific finalisation */
2265 if (ap->ops->post_set_mode)
2266 ap->ops->post_set_mode(ap);
2270 *r_failed_dev = dev;
2275 * ata_tf_to_host - issue ATA taskfile to host controller
2276 * @ap: port to which command is being issued
2277 * @tf: ATA taskfile register set
2279 * Issues ATA taskfile register set to ATA host controller,
2280 * with proper synchronization with interrupt handler and
2284 * spin_lock_irqsave(host_set lock)
2287 static inline void ata_tf_to_host(struct ata_port *ap,
2288 const struct ata_taskfile *tf)
2290 ap->ops->tf_load(ap, tf);
2291 ap->ops->exec_command(ap, tf);
2295 * ata_busy_sleep - sleep until BSY clears, or timeout
2296 * @ap: port containing status register to be polled
2297 * @tmout_pat: impatience timeout
2298 * @tmout: overall timeout
2300 * Sleep until ATA Status register bit BSY clears,
2301 * or a timeout occurs.
2306 unsigned int ata_busy_sleep (struct ata_port *ap,
2307 unsigned long tmout_pat, unsigned long tmout)
2309 unsigned long timer_start, timeout;
2312 status = ata_busy_wait(ap, ATA_BUSY, 300);
2313 timer_start = jiffies;
2314 timeout = timer_start + tmout_pat;
2315 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2317 status = ata_busy_wait(ap, ATA_BUSY, 3);
2320 if (status & ATA_BUSY)
2321 ata_port_printk(ap, KERN_WARNING,
2322 "port is slow to respond, please be patient\n");
2324 timeout = timer_start + tmout;
2325 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2327 status = ata_chk_status(ap);
2330 if (status & ATA_BUSY) {
2331 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2332 "(%lu secs)\n", tmout / HZ);
2339 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2341 struct ata_ioports *ioaddr = &ap->ioaddr;
2342 unsigned int dev0 = devmask & (1 << 0);
2343 unsigned int dev1 = devmask & (1 << 1);
2344 unsigned long timeout;
2346 /* if device 0 was found in ata_devchk, wait for its
2350 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2352 /* if device 1 was found in ata_devchk, wait for
2353 * register access, then wait for BSY to clear
2355 timeout = jiffies + ATA_TMOUT_BOOT;
2359 ap->ops->dev_select(ap, 1);
2360 if (ap->flags & ATA_FLAG_MMIO) {
2361 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2362 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2364 nsect = inb(ioaddr->nsect_addr);
2365 lbal = inb(ioaddr->lbal_addr);
2367 if ((nsect == 1) && (lbal == 1))
2369 if (time_after(jiffies, timeout)) {
2373 msleep(50); /* give drive a breather */
2376 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2378 /* is all this really necessary? */
2379 ap->ops->dev_select(ap, 0);
2381 ap->ops->dev_select(ap, 1);
2383 ap->ops->dev_select(ap, 0);
2386 static unsigned int ata_bus_softreset(struct ata_port *ap,
2387 unsigned int devmask)
2389 struct ata_ioports *ioaddr = &ap->ioaddr;
2391 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2393 /* software reset. causes dev0 to be selected */
2394 if (ap->flags & ATA_FLAG_MMIO) {
2395 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2396 udelay(20); /* FIXME: flush */
2397 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2398 udelay(20); /* FIXME: flush */
2399 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2401 outb(ap->ctl, ioaddr->ctl_addr);
2403 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2405 outb(ap->ctl, ioaddr->ctl_addr);
2408 /* spec mandates ">= 2ms" before checking status.
2409 * We wait 150ms, because that was the magic delay used for
2410 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2411 * between when the ATA command register is written, and then
2412 * status is checked. Because waiting for "a while" before
2413 * checking status is fine, post SRST, we perform this magic
2414 * delay here as well.
2416 * Old drivers/ide uses the 2mS rule and then waits for ready
2420 /* Before we perform post reset processing we want to see if
2421 * the bus shows 0xFF because the odd clown forgets the D7
2422 * pulldown resistor.
2424 if (ata_check_status(ap) == 0xFF) {
2425 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2426 return AC_ERR_OTHER;
2429 ata_bus_post_reset(ap, devmask);
2435 * ata_bus_reset - reset host port and associated ATA channel
2436 * @ap: port to reset
2438 * This is typically the first time we actually start issuing
2439 * commands to the ATA channel. We wait for BSY to clear, then
2440 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2441 * result. Determine what devices, if any, are on the channel
2442 * by looking at the device 0/1 error register. Look at the signature
2443 * stored in each device's taskfile registers, to determine if
2444 * the device is ATA or ATAPI.
2447 * PCI/etc. bus probe sem.
2448 * Obtains host_set lock.
2451 * Sets ATA_FLAG_DISABLED if bus reset fails.
2454 void ata_bus_reset(struct ata_port *ap)
2456 struct ata_ioports *ioaddr = &ap->ioaddr;
2457 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2459 unsigned int dev0, dev1 = 0, devmask = 0;
2461 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2463 /* determine if device 0/1 are present */
2464 if (ap->flags & ATA_FLAG_SATA_RESET)
2467 dev0 = ata_devchk(ap, 0);
2469 dev1 = ata_devchk(ap, 1);
2473 devmask |= (1 << 0);
2475 devmask |= (1 << 1);
2477 /* select device 0 again */
2478 ap->ops->dev_select(ap, 0);
2480 /* issue bus reset */
2481 if (ap->flags & ATA_FLAG_SRST)
2482 if (ata_bus_softreset(ap, devmask))
2486 * determine by signature whether we have ATA or ATAPI devices
2488 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2489 if ((slave_possible) && (err != 0x81))
2490 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2492 /* re-enable interrupts */
2493 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2496 /* is double-select really necessary? */
2497 if (ap->device[1].class != ATA_DEV_NONE)
2498 ap->ops->dev_select(ap, 1);
2499 if (ap->device[0].class != ATA_DEV_NONE)
2500 ap->ops->dev_select(ap, 0);
2502 /* if no devices were detected, disable this port */
2503 if ((ap->device[0].class == ATA_DEV_NONE) &&
2504 (ap->device[1].class == ATA_DEV_NONE))
2507 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2508 /* set up device control for ATA_FLAG_SATA_RESET */
2509 if (ap->flags & ATA_FLAG_MMIO)
2510 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2512 outb(ap->ctl, ioaddr->ctl_addr);
2519 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2520 ap->ops->port_disable(ap);
2526 * sata_phy_debounce - debounce SATA phy status
2527 * @ap: ATA port to debounce SATA phy status for
2528 * @params: timing parameters { interval, duratinon, timeout } in msec
2530 * Make sure SStatus of @ap reaches stable state, determined by
2531 * holding the same value where DET is not 1 for @duration polled
2532 * every @interval, before @timeout. Timeout constraints the
2533 * beginning of the stable state. Because, after hot unplugging,
2534 * DET gets stuck at 1 on some controllers, this functions waits
2535 * until timeout then returns 0 if DET is stable at 1.
2538 * Kernel thread context (may sleep)
2541 * 0 on success, -errno on failure.
2543 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2545 unsigned long interval_msec = params[0];
2546 unsigned long duration = params[1] * HZ / 1000;
2547 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2548 unsigned long last_jiffies;
2552 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2557 last_jiffies = jiffies;
2560 msleep(interval_msec);
2561 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2567 if (cur == 1 && time_before(jiffies, timeout))
2569 if (time_after(jiffies, last_jiffies + duration))
2574 /* unstable, start over */
2576 last_jiffies = jiffies;
2579 if (time_after(jiffies, timeout))
2585 * sata_phy_resume - resume SATA phy
2586 * @ap: ATA port to resume SATA phy for
2587 * @params: timing parameters { interval, duratinon, timeout } in msec
2589 * Resume SATA phy of @ap and debounce it.
2592 * Kernel thread context (may sleep)
2595 * 0 on success, -errno on failure.
2597 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2602 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2605 scontrol = (scontrol & 0x0f0) | 0x300;
2607 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2610 /* Some PHYs react badly if SStatus is pounded immediately
2611 * after resuming. Delay 200ms before debouncing.
2615 return sata_phy_debounce(ap, params);
2618 static void ata_wait_spinup(struct ata_port *ap)
2620 struct ata_eh_context *ehc = &ap->eh_context;
2621 unsigned long end, secs;
2624 /* first, debounce phy if SATA */
2625 if (ap->cbl == ATA_CBL_SATA) {
2626 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2628 /* if debounced successfully and offline, no need to wait */
2629 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2633 /* okay, let's give the drive time to spin up */
2634 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2635 secs = ((end - jiffies) + HZ - 1) / HZ;
2637 if (time_after(jiffies, end))
2641 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2642 "(%lu secs)\n", secs);
2644 schedule_timeout_uninterruptible(end - jiffies);
2648 * ata_std_prereset - prepare for reset
2649 * @ap: ATA port to be reset
2651 * @ap is about to be reset. Initialize it.
2654 * Kernel thread context (may sleep)
2657 * 0 on success, -errno otherwise.
2659 int ata_std_prereset(struct ata_port *ap)
2661 struct ata_eh_context *ehc = &ap->eh_context;
2662 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2665 /* handle link resume & hotplug spinup */
2666 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2667 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2668 ehc->i.action |= ATA_EH_HARDRESET;
2670 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2671 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2672 ata_wait_spinup(ap);
2674 /* if we're about to do hardreset, nothing more to do */
2675 if (ehc->i.action & ATA_EH_HARDRESET)
2678 /* if SATA, resume phy */
2679 if (ap->cbl == ATA_CBL_SATA) {
2680 rc = sata_phy_resume(ap, timing);
2681 if (rc && rc != -EOPNOTSUPP) {
2682 /* phy resume failed */
2683 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2684 "link for reset (errno=%d)\n", rc);
2689 /* Wait for !BSY if the controller can wait for the first D2H
2690 * Reg FIS and we don't know that no device is attached.
2692 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2693 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2699 * ata_std_softreset - reset host port via ATA SRST
2700 * @ap: port to reset
2701 * @classes: resulting classes of attached devices
2703 * Reset host port using ATA SRST.
2706 * Kernel thread context (may sleep)
2709 * 0 on success, -errno otherwise.
2711 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2713 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2714 unsigned int devmask = 0, err_mask;
2719 if (ata_port_offline(ap)) {
2720 classes[0] = ATA_DEV_NONE;
2724 /* determine if device 0/1 are present */
2725 if (ata_devchk(ap, 0))
2726 devmask |= (1 << 0);
2727 if (slave_possible && ata_devchk(ap, 1))
2728 devmask |= (1 << 1);
2730 /* select device 0 again */
2731 ap->ops->dev_select(ap, 0);
2733 /* issue bus reset */
2734 DPRINTK("about to softreset, devmask=%x\n", devmask);
2735 err_mask = ata_bus_softreset(ap, devmask);
2737 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2742 /* determine by signature whether we have ATA or ATAPI devices */
2743 classes[0] = ata_dev_try_classify(ap, 0, &err);
2744 if (slave_possible && err != 0x81)
2745 classes[1] = ata_dev_try_classify(ap, 1, &err);
2748 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2753 * sata_std_hardreset - reset host port via SATA phy reset
2754 * @ap: port to reset
2755 * @class: resulting class of attached device
2757 * SATA phy-reset host port using DET bits of SControl register.
2760 * Kernel thread context (may sleep)
2763 * 0 on success, -errno otherwise.
2765 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2767 struct ata_eh_context *ehc = &ap->eh_context;
2768 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2774 if (sata_set_spd_needed(ap)) {
2775 /* SATA spec says nothing about how to reconfigure
2776 * spd. To be on the safe side, turn off phy during
2777 * reconfiguration. This works for at least ICH7 AHCI
2780 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2783 scontrol = (scontrol & 0x0f0) | 0x304;
2785 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2791 /* issue phy wake/reset */
2792 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2795 scontrol = (scontrol & 0x0f0) | 0x301;
2797 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2800 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2801 * 10.4.2 says at least 1 ms.
2805 /* bring phy back */
2806 sata_phy_resume(ap, timing);
2808 /* TODO: phy layer with polling, timeouts, etc. */
2809 if (ata_port_offline(ap)) {
2810 *class = ATA_DEV_NONE;
2811 DPRINTK("EXIT, link offline\n");
2815 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2816 ata_port_printk(ap, KERN_ERR,
2817 "COMRESET failed (device not ready)\n");
2821 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2823 *class = ata_dev_try_classify(ap, 0, NULL);
2825 DPRINTK("EXIT, class=%u\n", *class);
2830 * ata_std_postreset - standard postreset callback
2831 * @ap: the target ata_port
2832 * @classes: classes of attached devices
2834 * This function is invoked after a successful reset. Note that
2835 * the device might have been reset more than once using
2836 * different reset methods before postreset is invoked.
2839 * Kernel thread context (may sleep)
2841 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2847 /* print link status */
2848 sata_print_link_status(ap);
2851 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2852 sata_scr_write(ap, SCR_ERROR, serror);
2854 /* re-enable interrupts */
2855 if (!ap->ops->error_handler) {
2856 /* FIXME: hack. create a hook instead */
2857 if (ap->ioaddr.ctl_addr)
2861 /* is double-select really necessary? */
2862 if (classes[0] != ATA_DEV_NONE)
2863 ap->ops->dev_select(ap, 1);
2864 if (classes[1] != ATA_DEV_NONE)
2865 ap->ops->dev_select(ap, 0);
2867 /* bail out if no device is present */
2868 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2869 DPRINTK("EXIT, no device\n");
2873 /* set up device control */
2874 if (ap->ioaddr.ctl_addr) {
2875 if (ap->flags & ATA_FLAG_MMIO)
2876 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2878 outb(ap->ctl, ap->ioaddr.ctl_addr);
2885 * ata_dev_same_device - Determine whether new ID matches configured device
2886 * @dev: device to compare against
2887 * @new_class: class of the new device
2888 * @new_id: IDENTIFY page of the new device
2890 * Compare @new_class and @new_id against @dev and determine
2891 * whether @dev is the device indicated by @new_class and
2898 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2900 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2903 const u16 *old_id = dev->id;
2904 unsigned char model[2][41], serial[2][21];
2907 if (dev->class != new_class) {
2908 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2909 dev->class, new_class);
2913 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2914 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2915 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2916 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2917 new_n_sectors = ata_id_n_sectors(new_id);
2919 if (strcmp(model[0], model[1])) {
2920 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2921 "'%s' != '%s'\n", model[0], model[1]);
2925 if (strcmp(serial[0], serial[1])) {
2926 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2927 "'%s' != '%s'\n", serial[0], serial[1]);
2931 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2932 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2934 (unsigned long long)dev->n_sectors,
2935 (unsigned long long)new_n_sectors);
2943 * ata_dev_revalidate - Revalidate ATA device
2944 * @dev: device to revalidate
2945 * @post_reset: is this revalidation after reset?
2947 * Re-read IDENTIFY page and make sure @dev is still attached to
2951 * Kernel thread context (may sleep)
2954 * 0 on success, negative errno otherwise
2956 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2958 unsigned int class = dev->class;
2959 u16 *id = (void *)dev->ap->sector_buf;
2962 if (!ata_dev_enabled(dev)) {
2968 rc = ata_dev_read_id(dev, &class, post_reset, id);
2972 /* is the device still there? */
2973 if (!ata_dev_same_device(dev, class, id)) {
2978 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2980 /* configure device according to the new ID */
2981 rc = ata_dev_configure(dev, 0);
2986 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2990 static const char * const ata_dma_blacklist [] = {
2991 "WDC AC11000H", NULL,
2992 "WDC AC22100H", NULL,
2993 "WDC AC32500H", NULL,
2994 "WDC AC33100H", NULL,
2995 "WDC AC31600H", NULL,
2996 "WDC AC32100H", "24.09P07",
2997 "WDC AC23200L", "21.10N21",
2998 "Compaq CRD-8241B", NULL,
3003 "SanDisk SDP3B", NULL,
3004 "SanDisk SDP3B-64", NULL,
3005 "SANYO CD-ROM CRD", NULL,
3006 "HITACHI CDR-8", NULL,
3007 "HITACHI CDR-8335", NULL,
3008 "HITACHI CDR-8435", NULL,
3009 "Toshiba CD-ROM XM-6202B", NULL,
3010 "TOSHIBA CD-ROM XM-1702BC", NULL,
3012 "E-IDE CD-ROM CR-840", NULL,
3013 "CD-ROM Drive/F5A", NULL,
3014 "WPI CDD-820", NULL,
3015 "SAMSUNG CD-ROM SC-148C", NULL,
3016 "SAMSUNG CD-ROM SC", NULL,
3017 "SanDisk SDP3B-64", NULL,
3018 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3019 "_NEC DV5800A", NULL,
3020 "SAMSUNG CD-ROM SN-124", "N001"
3023 static int ata_strim(char *s, size_t len)
3025 len = strnlen(s, len);
3027 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3028 while ((len > 0) && (s[len - 1] == ' ')) {
3035 static int ata_dma_blacklisted(const struct ata_device *dev)
3037 unsigned char model_num[40];
3038 unsigned char model_rev[16];
3039 unsigned int nlen, rlen;
3042 /* We don't support polling DMA.
3043 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3044 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3046 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3047 (dev->flags & ATA_DFLAG_CDB_INTR))
3050 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3052 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3054 nlen = ata_strim(model_num, sizeof(model_num));
3055 rlen = ata_strim(model_rev, sizeof(model_rev));
3057 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3058 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3059 if (ata_dma_blacklist[i+1] == NULL)
3061 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3069 * ata_dev_xfermask - Compute supported xfermask of the given device
3070 * @dev: Device to compute xfermask for
3072 * Compute supported xfermask of @dev and store it in
3073 * dev->*_mask. This function is responsible for applying all
3074 * known limits including host controller limits, device
3080 static void ata_dev_xfermask(struct ata_device *dev)
3082 struct ata_port *ap = dev->ap;
3083 struct ata_host_set *hs = ap->host_set;
3084 unsigned long xfer_mask;
3086 /* controller modes available */
3087 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3088 ap->mwdma_mask, ap->udma_mask);
3090 /* Apply cable rule here. Don't apply it early because when
3091 * we handle hot plug the cable type can itself change.
3093 if (ap->cbl == ATA_CBL_PATA40)
3094 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3096 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3097 dev->mwdma_mask, dev->udma_mask);
3098 xfer_mask &= ata_id_xfermask(dev->id);
3101 * CFA Advanced TrueIDE timings are not allowed on a shared
3104 if (ata_dev_pair(dev)) {
3105 /* No PIO5 or PIO6 */
3106 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3107 /* No MWDMA3 or MWDMA 4 */
3108 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3111 if (ata_dma_blacklisted(dev)) {
3112 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3113 ata_dev_printk(dev, KERN_WARNING,
3114 "device is on DMA blacklist, disabling DMA\n");
3117 if ((hs->flags & ATA_HOST_SIMPLEX) && hs->simplex_claimed) {
3118 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3119 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3120 "other device, disabling DMA\n");
3123 if (ap->ops->mode_filter)
3124 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3126 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3127 &dev->mwdma_mask, &dev->udma_mask);
3131 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3132 * @dev: Device to which command will be sent
3134 * Issue SET FEATURES - XFER MODE command to device @dev
3138 * PCI/etc. bus probe sem.
3141 * 0 on success, AC_ERR_* mask otherwise.
3144 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3146 struct ata_taskfile tf;
3147 unsigned int err_mask;
3149 /* set up set-features taskfile */
3150 DPRINTK("set features - xfer mode\n");
3152 ata_tf_init(dev, &tf);
3153 tf.command = ATA_CMD_SET_FEATURES;
3154 tf.feature = SETFEATURES_XFER;
3155 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3156 tf.protocol = ATA_PROT_NODATA;
3157 tf.nsect = dev->xfer_mode;
3159 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3161 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3166 * ata_dev_init_params - Issue INIT DEV PARAMS command
3167 * @dev: Device to which command will be sent
3168 * @heads: Number of heads (taskfile parameter)
3169 * @sectors: Number of sectors (taskfile parameter)
3172 * Kernel thread context (may sleep)
3175 * 0 on success, AC_ERR_* mask otherwise.
3177 static unsigned int ata_dev_init_params(struct ata_device *dev,
3178 u16 heads, u16 sectors)
3180 struct ata_taskfile tf;
3181 unsigned int err_mask;
3183 /* Number of sectors per track 1-255. Number of heads 1-16 */
3184 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3185 return AC_ERR_INVALID;
3187 /* set up init dev params taskfile */
3188 DPRINTK("init dev params \n");
3190 ata_tf_init(dev, &tf);
3191 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3192 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3193 tf.protocol = ATA_PROT_NODATA;
3195 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3197 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3199 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3204 * ata_sg_clean - Unmap DMA memory associated with command
3205 * @qc: Command containing DMA memory to be released
3207 * Unmap all mapped DMA memory associated with this command.
3210 * spin_lock_irqsave(host_set lock)
3213 static void ata_sg_clean(struct ata_queued_cmd *qc)
3215 struct ata_port *ap = qc->ap;
3216 struct scatterlist *sg = qc->__sg;
3217 int dir = qc->dma_dir;
3218 void *pad_buf = NULL;
3220 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3221 WARN_ON(sg == NULL);
3223 if (qc->flags & ATA_QCFLAG_SINGLE)
3224 WARN_ON(qc->n_elem > 1);
3226 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3228 /* if we padded the buffer out to 32-bit bound, and data
3229 * xfer direction is from-device, we must copy from the
3230 * pad buffer back into the supplied buffer
3232 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3233 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3235 if (qc->flags & ATA_QCFLAG_SG) {
3237 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3238 /* restore last sg */
3239 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3241 struct scatterlist *psg = &qc->pad_sgent;
3242 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3243 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3244 kunmap_atomic(addr, KM_IRQ0);
3248 dma_unmap_single(ap->dev,
3249 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3252 sg->length += qc->pad_len;
3254 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3255 pad_buf, qc->pad_len);
3258 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3263 * ata_fill_sg - Fill PCI IDE PRD table
3264 * @qc: Metadata associated with taskfile to be transferred
3266 * Fill PCI IDE PRD (scatter-gather) table with segments
3267 * associated with the current disk command.
3270 * spin_lock_irqsave(host_set lock)
3273 static void ata_fill_sg(struct ata_queued_cmd *qc)
3275 struct ata_port *ap = qc->ap;
3276 struct scatterlist *sg;
3279 WARN_ON(qc->__sg == NULL);
3280 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3283 ata_for_each_sg(sg, qc) {
3287 /* determine if physical DMA addr spans 64K boundary.
3288 * Note h/w doesn't support 64-bit, so we unconditionally
3289 * truncate dma_addr_t to u32.
3291 addr = (u32) sg_dma_address(sg);
3292 sg_len = sg_dma_len(sg);
3295 offset = addr & 0xffff;
3297 if ((offset + sg_len) > 0x10000)
3298 len = 0x10000 - offset;
3300 ap->prd[idx].addr = cpu_to_le32(addr);
3301 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3302 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3311 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3314 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3315 * @qc: Metadata associated with taskfile to check
3317 * Allow low-level driver to filter ATA PACKET commands, returning
3318 * a status indicating whether or not it is OK to use DMA for the
3319 * supplied PACKET command.
3322 * spin_lock_irqsave(host_set lock)
3324 * RETURNS: 0 when ATAPI DMA can be used
3327 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3329 struct ata_port *ap = qc->ap;
3330 int rc = 0; /* Assume ATAPI DMA is OK by default */
3332 if (ap->ops->check_atapi_dma)
3333 rc = ap->ops->check_atapi_dma(qc);
3338 * ata_qc_prep - Prepare taskfile for submission
3339 * @qc: Metadata associated with taskfile to be prepared
3341 * Prepare ATA taskfile for submission.
3344 * spin_lock_irqsave(host_set lock)
3346 void ata_qc_prep(struct ata_queued_cmd *qc)
3348 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3354 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3357 * ata_sg_init_one - Associate command with memory buffer
3358 * @qc: Command to be associated
3359 * @buf: Memory buffer
3360 * @buflen: Length of memory buffer, in bytes.
3362 * Initialize the data-related elements of queued_cmd @qc
3363 * to point to a single memory buffer, @buf of byte length @buflen.
3366 * spin_lock_irqsave(host_set lock)
3369 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3371 struct scatterlist *sg;
3373 qc->flags |= ATA_QCFLAG_SINGLE;
3375 memset(&qc->sgent, 0, sizeof(qc->sgent));
3376 qc->__sg = &qc->sgent;
3378 qc->orig_n_elem = 1;
3380 qc->nbytes = buflen;
3383 sg_init_one(sg, buf, buflen);
3387 * ata_sg_init - Associate command with scatter-gather table.
3388 * @qc: Command to be associated
3389 * @sg: Scatter-gather table.
3390 * @n_elem: Number of elements in s/g table.
3392 * Initialize the data-related elements of queued_cmd @qc
3393 * to point to a scatter-gather table @sg, containing @n_elem
3397 * spin_lock_irqsave(host_set lock)
3400 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3401 unsigned int n_elem)
3403 qc->flags |= ATA_QCFLAG_SG;
3405 qc->n_elem = n_elem;
3406 qc->orig_n_elem = n_elem;
3410 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3411 * @qc: Command with memory buffer to be mapped.
3413 * DMA-map the memory buffer associated with queued_cmd @qc.
3416 * spin_lock_irqsave(host_set lock)
3419 * Zero on success, negative on error.
3422 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3424 struct ata_port *ap = qc->ap;
3425 int dir = qc->dma_dir;
3426 struct scatterlist *sg = qc->__sg;
3427 dma_addr_t dma_address;
3430 /* we must lengthen transfers to end on a 32-bit boundary */
3431 qc->pad_len = sg->length & 3;
3433 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3434 struct scatterlist *psg = &qc->pad_sgent;
3436 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3438 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3440 if (qc->tf.flags & ATA_TFLAG_WRITE)
3441 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3444 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3445 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3447 sg->length -= qc->pad_len;
3448 if (sg->length == 0)
3451 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3452 sg->length, qc->pad_len);
3460 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3462 if (dma_mapping_error(dma_address)) {
3464 sg->length += qc->pad_len;
3468 sg_dma_address(sg) = dma_address;
3469 sg_dma_len(sg) = sg->length;
3472 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3473 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3479 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3480 * @qc: Command with scatter-gather table to be mapped.
3482 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3485 * spin_lock_irqsave(host_set lock)
3488 * Zero on success, negative on error.
3492 static int ata_sg_setup(struct ata_queued_cmd *qc)
3494 struct ata_port *ap = qc->ap;
3495 struct scatterlist *sg = qc->__sg;
3496 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3497 int n_elem, pre_n_elem, dir, trim_sg = 0;
3499 VPRINTK("ENTER, ata%u\n", ap->id);
3500 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3502 /* we must lengthen transfers to end on a 32-bit boundary */
3503 qc->pad_len = lsg->length & 3;
3505 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3506 struct scatterlist *psg = &qc->pad_sgent;
3507 unsigned int offset;
3509 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3511 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3514 * psg->page/offset are used to copy to-be-written
3515 * data in this function or read data in ata_sg_clean.
3517 offset = lsg->offset + lsg->length - qc->pad_len;
3518 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3519 psg->offset = offset_in_page(offset);
3521 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3522 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3523 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3524 kunmap_atomic(addr, KM_IRQ0);
3527 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3528 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3530 lsg->length -= qc->pad_len;
3531 if (lsg->length == 0)
3534 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3535 qc->n_elem - 1, lsg->length, qc->pad_len);
3538 pre_n_elem = qc->n_elem;
3539 if (trim_sg && pre_n_elem)
3548 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3550 /* restore last sg */
3551 lsg->length += qc->pad_len;
3555 DPRINTK("%d sg elements mapped\n", n_elem);
3558 qc->n_elem = n_elem;
3564 * swap_buf_le16 - swap halves of 16-bit words in place
3565 * @buf: Buffer to swap
3566 * @buf_words: Number of 16-bit words in buffer.
3568 * Swap halves of 16-bit words if needed to convert from
3569 * little-endian byte order to native cpu byte order, or
3573 * Inherited from caller.
3575 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3580 for (i = 0; i < buf_words; i++)
3581 buf[i] = le16_to_cpu(buf[i]);
3582 #endif /* __BIG_ENDIAN */
3586 * ata_mmio_data_xfer - Transfer data by MMIO
3587 * @adev: device for this I/O
3589 * @buflen: buffer length
3590 * @write_data: read/write
3592 * Transfer data from/to the device data register by MMIO.
3595 * Inherited from caller.
3598 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3599 unsigned int buflen, int write_data)
3601 struct ata_port *ap = adev->ap;
3603 unsigned int words = buflen >> 1;
3604 u16 *buf16 = (u16 *) buf;
3605 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3607 /* Transfer multiple of 2 bytes */
3609 for (i = 0; i < words; i++)
3610 writew(le16_to_cpu(buf16[i]), mmio);
3612 for (i = 0; i < words; i++)
3613 buf16[i] = cpu_to_le16(readw(mmio));
3616 /* Transfer trailing 1 byte, if any. */
3617 if (unlikely(buflen & 0x01)) {
3618 u16 align_buf[1] = { 0 };
3619 unsigned char *trailing_buf = buf + buflen - 1;
3622 memcpy(align_buf, trailing_buf, 1);
3623 writew(le16_to_cpu(align_buf[0]), mmio);
3625 align_buf[0] = cpu_to_le16(readw(mmio));
3626 memcpy(trailing_buf, align_buf, 1);
3632 * ata_pio_data_xfer - Transfer data by PIO
3633 * @adev: device to target
3635 * @buflen: buffer length
3636 * @write_data: read/write
3638 * Transfer data from/to the device data register by PIO.
3641 * Inherited from caller.
3644 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3645 unsigned int buflen, int write_data)
3647 struct ata_port *ap = adev->ap;
3648 unsigned int words = buflen >> 1;
3650 /* Transfer multiple of 2 bytes */
3652 outsw(ap->ioaddr.data_addr, buf, words);
3654 insw(ap->ioaddr.data_addr, buf, words);
3656 /* Transfer trailing 1 byte, if any. */
3657 if (unlikely(buflen & 0x01)) {
3658 u16 align_buf[1] = { 0 };
3659 unsigned char *trailing_buf = buf + buflen - 1;
3662 memcpy(align_buf, trailing_buf, 1);
3663 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3665 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3666 memcpy(trailing_buf, align_buf, 1);
3672 * ata_pio_data_xfer_noirq - Transfer data by PIO
3673 * @adev: device to target
3675 * @buflen: buffer length
3676 * @write_data: read/write
3678 * Transfer data from/to the device data register by PIO. Do the
3679 * transfer with interrupts disabled.
3682 * Inherited from caller.
3685 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3686 unsigned int buflen, int write_data)
3688 unsigned long flags;
3689 local_irq_save(flags);
3690 ata_pio_data_xfer(adev, buf, buflen, write_data);
3691 local_irq_restore(flags);
3696 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3697 * @qc: Command on going
3699 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3702 * Inherited from caller.
3705 static void ata_pio_sector(struct ata_queued_cmd *qc)
3707 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3708 struct scatterlist *sg = qc->__sg;
3709 struct ata_port *ap = qc->ap;
3711 unsigned int offset;
3714 if (qc->cursect == (qc->nsect - 1))
3715 ap->hsm_task_state = HSM_ST_LAST;
3717 page = sg[qc->cursg].page;
3718 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3720 /* get the current page and offset */
3721 page = nth_page(page, (offset >> PAGE_SHIFT));
3722 offset %= PAGE_SIZE;
3724 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3726 if (PageHighMem(page)) {
3727 unsigned long flags;
3729 /* FIXME: use a bounce buffer */
3730 local_irq_save(flags);
3731 buf = kmap_atomic(page, KM_IRQ0);
3733 /* do the actual data transfer */
3734 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3736 kunmap_atomic(buf, KM_IRQ0);
3737 local_irq_restore(flags);
3739 buf = page_address(page);
3740 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3746 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3753 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3754 * @qc: Command on going
3756 * Transfer one or many ATA_SECT_SIZE of data from/to the
3757 * ATA device for the DRQ request.
3760 * Inherited from caller.
3763 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3765 if (is_multi_taskfile(&qc->tf)) {
3766 /* READ/WRITE MULTIPLE */
3769 WARN_ON(qc->dev->multi_count == 0);
3771 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3779 * atapi_send_cdb - Write CDB bytes to hardware
3780 * @ap: Port to which ATAPI device is attached.
3781 * @qc: Taskfile currently active
3783 * When device has indicated its readiness to accept
3784 * a CDB, this function is called. Send the CDB.
3790 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3793 DPRINTK("send cdb\n");
3794 WARN_ON(qc->dev->cdb_len < 12);
3796 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3797 ata_altstatus(ap); /* flush */
3799 switch (qc->tf.protocol) {
3800 case ATA_PROT_ATAPI:
3801 ap->hsm_task_state = HSM_ST;
3803 case ATA_PROT_ATAPI_NODATA:
3804 ap->hsm_task_state = HSM_ST_LAST;
3806 case ATA_PROT_ATAPI_DMA:
3807 ap->hsm_task_state = HSM_ST_LAST;
3808 /* initiate bmdma */
3809 ap->ops->bmdma_start(qc);
3815 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3816 * @qc: Command on going
3817 * @bytes: number of bytes
3819 * Transfer Transfer data from/to the ATAPI device.
3822 * Inherited from caller.
3826 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3828 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3829 struct scatterlist *sg = qc->__sg;
3830 struct ata_port *ap = qc->ap;
3833 unsigned int offset, count;
3835 if (qc->curbytes + bytes >= qc->nbytes)
3836 ap->hsm_task_state = HSM_ST_LAST;
3839 if (unlikely(qc->cursg >= qc->n_elem)) {
3841 * The end of qc->sg is reached and the device expects
3842 * more data to transfer. In order not to overrun qc->sg
3843 * and fulfill length specified in the byte count register,
3844 * - for read case, discard trailing data from the device
3845 * - for write case, padding zero data to the device
3847 u16 pad_buf[1] = { 0 };
3848 unsigned int words = bytes >> 1;
3851 if (words) /* warning if bytes > 1 */
3852 ata_dev_printk(qc->dev, KERN_WARNING,
3853 "%u bytes trailing data\n", bytes);
3855 for (i = 0; i < words; i++)
3856 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3858 ap->hsm_task_state = HSM_ST_LAST;
3862 sg = &qc->__sg[qc->cursg];
3865 offset = sg->offset + qc->cursg_ofs;
3867 /* get the current page and offset */
3868 page = nth_page(page, (offset >> PAGE_SHIFT));
3869 offset %= PAGE_SIZE;
3871 /* don't overrun current sg */
3872 count = min(sg->length - qc->cursg_ofs, bytes);
3874 /* don't cross page boundaries */
3875 count = min(count, (unsigned int)PAGE_SIZE - offset);
3877 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3879 if (PageHighMem(page)) {
3880 unsigned long flags;
3882 /* FIXME: use bounce buffer */
3883 local_irq_save(flags);
3884 buf = kmap_atomic(page, KM_IRQ0);
3886 /* do the actual data transfer */
3887 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3889 kunmap_atomic(buf, KM_IRQ0);
3890 local_irq_restore(flags);
3892 buf = page_address(page);
3893 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3897 qc->curbytes += count;
3898 qc->cursg_ofs += count;
3900 if (qc->cursg_ofs == sg->length) {
3910 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3911 * @qc: Command on going
3913 * Transfer Transfer data from/to the ATAPI device.
3916 * Inherited from caller.
3919 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3921 struct ata_port *ap = qc->ap;
3922 struct ata_device *dev = qc->dev;
3923 unsigned int ireason, bc_lo, bc_hi, bytes;
3924 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3926 /* Abuse qc->result_tf for temp storage of intermediate TF
3927 * here to save some kernel stack usage.
3928 * For normal completion, qc->result_tf is not relevant. For
3929 * error, qc->result_tf is later overwritten by ata_qc_complete().
3930 * So, the correctness of qc->result_tf is not affected.
3932 ap->ops->tf_read(ap, &qc->result_tf);
3933 ireason = qc->result_tf.nsect;
3934 bc_lo = qc->result_tf.lbam;
3935 bc_hi = qc->result_tf.lbah;
3936 bytes = (bc_hi << 8) | bc_lo;
3938 /* shall be cleared to zero, indicating xfer of data */
3939 if (ireason & (1 << 0))
3942 /* make sure transfer direction matches expected */
3943 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3944 if (do_write != i_write)
3947 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3949 __atapi_pio_bytes(qc, bytes);
3954 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3955 qc->err_mask |= AC_ERR_HSM;
3956 ap->hsm_task_state = HSM_ST_ERR;
3960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3961 * @ap: the target ata_port
3965 * 1 if ok in workqueue, 0 otherwise.
3968 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3970 if (qc->tf.flags & ATA_TFLAG_POLLING)
3973 if (ap->hsm_task_state == HSM_ST_FIRST) {
3974 if (qc->tf.protocol == ATA_PROT_PIO &&
3975 (qc->tf.flags & ATA_TFLAG_WRITE))
3978 if (is_atapi_taskfile(&qc->tf) &&
3979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3987 * ata_hsm_qc_complete - finish a qc running on standard HSM
3988 * @qc: Command to complete
3989 * @in_wq: 1 if called from workqueue, 0 otherwise
3991 * Finish @qc which is running on standard HSM.
3994 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3995 * Otherwise, none on entry and grabs host lock.
3997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3999 struct ata_port *ap = qc->ap;
4000 unsigned long flags;
4002 if (ap->ops->error_handler) {
4004 spin_lock_irqsave(ap->lock, flags);
4006 /* EH might have kicked in while host_set lock
4009 qc = ata_qc_from_tag(ap, qc->tag);
4011 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4013 ata_qc_complete(qc);
4015 ata_port_freeze(ap);
4018 spin_unlock_irqrestore(ap->lock, flags);
4020 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4021 ata_qc_complete(qc);
4023 ata_port_freeze(ap);
4027 spin_lock_irqsave(ap->lock, flags);
4029 ata_qc_complete(qc);
4030 spin_unlock_irqrestore(ap->lock, flags);
4032 ata_qc_complete(qc);
4035 ata_altstatus(ap); /* flush */
4039 * ata_hsm_move - move the HSM to the next state.
4040 * @ap: the target ata_port
4042 * @status: current device status
4043 * @in_wq: 1 if called from workqueue, 0 otherwise
4046 * 1 when poll next status needed, 0 otherwise.
4048 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4049 u8 status, int in_wq)
4051 unsigned long flags = 0;
4054 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4056 /* Make sure ata_qc_issue_prot() does not throw things
4057 * like DMA polling into the workqueue. Notice that
4058 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4060 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4063 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4064 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4066 switch (ap->hsm_task_state) {
4068 /* Send first data block or PACKET CDB */
4070 /* If polling, we will stay in the work queue after
4071 * sending the data. Otherwise, interrupt handler
4072 * takes over after sending the data.
4074 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4076 /* check device status */
4077 if (unlikely((status & ATA_DRQ) == 0)) {
4078 /* handle BSY=0, DRQ=0 as error */
4079 if (likely(status & (ATA_ERR | ATA_DF)))
4080 /* device stops HSM for abort/error */
4081 qc->err_mask |= AC_ERR_DEV;
4083 /* HSM violation. Let EH handle this */
4084 qc->err_mask |= AC_ERR_HSM;
4086 ap->hsm_task_state = HSM_ST_ERR;
4090 /* Device should not ask for data transfer (DRQ=1)
4091 * when it finds something wrong.
4092 * We ignore DRQ here and stop the HSM by
4093 * changing hsm_task_state to HSM_ST_ERR and
4094 * let the EH abort the command or reset the device.
4096 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4097 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4099 qc->err_mask |= AC_ERR_HSM;
4100 ap->hsm_task_state = HSM_ST_ERR;
4104 /* Send the CDB (atapi) or the first data block (ata pio out).
4105 * During the state transition, interrupt handler shouldn't
4106 * be invoked before the data transfer is complete and
4107 * hsm_task_state is changed. Hence, the following locking.
4110 spin_lock_irqsave(ap->lock, flags);
4112 if (qc->tf.protocol == ATA_PROT_PIO) {
4113 /* PIO data out protocol.
4114 * send first data block.
4117 /* ata_pio_sectors() might change the state
4118 * to HSM_ST_LAST. so, the state is changed here
4119 * before ata_pio_sectors().
4121 ap->hsm_task_state = HSM_ST;
4122 ata_pio_sectors(qc);
4123 ata_altstatus(ap); /* flush */
4126 atapi_send_cdb(ap, qc);
4129 spin_unlock_irqrestore(ap->lock, flags);
4131 /* if polling, ata_pio_task() handles the rest.
4132 * otherwise, interrupt handler takes over from here.
4137 /* complete command or read/write the data register */
4138 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4139 /* ATAPI PIO protocol */
4140 if ((status & ATA_DRQ) == 0) {
4141 /* No more data to transfer or device error.
4142 * Device error will be tagged in HSM_ST_LAST.
4144 ap->hsm_task_state = HSM_ST_LAST;
4148 /* Device should not ask for data transfer (DRQ=1)
4149 * when it finds something wrong.
4150 * We ignore DRQ here and stop the HSM by
4151 * changing hsm_task_state to HSM_ST_ERR and
4152 * let the EH abort the command or reset the device.
4154 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4155 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4157 qc->err_mask |= AC_ERR_HSM;
4158 ap->hsm_task_state = HSM_ST_ERR;
4162 atapi_pio_bytes(qc);
4164 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4165 /* bad ireason reported by device */
4169 /* ATA PIO protocol */
4170 if (unlikely((status & ATA_DRQ) == 0)) {
4171 /* handle BSY=0, DRQ=0 as error */
4172 if (likely(status & (ATA_ERR | ATA_DF)))
4173 /* device stops HSM for abort/error */
4174 qc->err_mask |= AC_ERR_DEV;
4176 /* HSM violation. Let EH handle this */
4177 qc->err_mask |= AC_ERR_HSM;
4179 ap->hsm_task_state = HSM_ST_ERR;
4183 /* For PIO reads, some devices may ask for
4184 * data transfer (DRQ=1) alone with ERR=1.
4185 * We respect DRQ here and transfer one
4186 * block of junk data before changing the
4187 * hsm_task_state to HSM_ST_ERR.
4189 * For PIO writes, ERR=1 DRQ=1 doesn't make
4190 * sense since the data block has been
4191 * transferred to the device.
4193 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4194 /* data might be corrputed */
4195 qc->err_mask |= AC_ERR_DEV;
4197 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4198 ata_pio_sectors(qc);
4200 status = ata_wait_idle(ap);
4203 if (status & (ATA_BUSY | ATA_DRQ))
4204 qc->err_mask |= AC_ERR_HSM;
4206 /* ata_pio_sectors() might change the
4207 * state to HSM_ST_LAST. so, the state
4208 * is changed after ata_pio_sectors().
4210 ap->hsm_task_state = HSM_ST_ERR;
4214 ata_pio_sectors(qc);
4216 if (ap->hsm_task_state == HSM_ST_LAST &&
4217 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4220 status = ata_wait_idle(ap);
4225 ata_altstatus(ap); /* flush */
4230 if (unlikely(!ata_ok(status))) {
4231 qc->err_mask |= __ac_err_mask(status);
4232 ap->hsm_task_state = HSM_ST_ERR;
4236 /* no more data to transfer */
4237 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4238 ap->id, qc->dev->devno, status);
4240 WARN_ON(qc->err_mask);
4242 ap->hsm_task_state = HSM_ST_IDLE;
4244 /* complete taskfile transaction */
4245 ata_hsm_qc_complete(qc, in_wq);
4251 /* make sure qc->err_mask is available to
4252 * know what's wrong and recover
4254 WARN_ON(qc->err_mask == 0);
4256 ap->hsm_task_state = HSM_ST_IDLE;
4258 /* complete taskfile transaction */
4259 ata_hsm_qc_complete(qc, in_wq);
4271 static void ata_pio_task(void *_data)
4273 struct ata_queued_cmd *qc = _data;
4274 struct ata_port *ap = qc->ap;
4279 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4282 * This is purely heuristic. This is a fast path.
4283 * Sometimes when we enter, BSY will be cleared in
4284 * a chk-status or two. If not, the drive is probably seeking
4285 * or something. Snooze for a couple msecs, then
4286 * chk-status again. If still busy, queue delayed work.
4288 status = ata_busy_wait(ap, ATA_BUSY, 5);
4289 if (status & ATA_BUSY) {
4291 status = ata_busy_wait(ap, ATA_BUSY, 10);
4292 if (status & ATA_BUSY) {
4293 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4299 poll_next = ata_hsm_move(ap, qc, status, 1);
4301 /* another command or interrupt handler
4302 * may be running at this point.
4309 * ata_qc_new - Request an available ATA command, for queueing
4310 * @ap: Port associated with device @dev
4311 * @dev: Device from whom we request an available command structure
4317 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4319 struct ata_queued_cmd *qc = NULL;
4322 /* no command while frozen */
4323 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4326 /* the last tag is reserved for internal command. */
4327 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4328 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4329 qc = __ata_qc_from_tag(ap, i);
4340 * ata_qc_new_init - Request an available ATA command, and initialize it
4341 * @dev: Device from whom we request an available command structure
4347 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4349 struct ata_port *ap = dev->ap;
4350 struct ata_queued_cmd *qc;
4352 qc = ata_qc_new(ap);
4365 * ata_qc_free - free unused ata_queued_cmd
4366 * @qc: Command to complete
4368 * Designed to free unused ata_queued_cmd object
4369 * in case something prevents using it.
4372 * spin_lock_irqsave(host_set lock)
4374 void ata_qc_free(struct ata_queued_cmd *qc)
4376 struct ata_port *ap = qc->ap;
4379 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4383 if (likely(ata_tag_valid(tag))) {
4384 qc->tag = ATA_TAG_POISON;
4385 clear_bit(tag, &ap->qc_allocated);
4389 void __ata_qc_complete(struct ata_queued_cmd *qc)
4391 struct ata_port *ap = qc->ap;
4393 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4394 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4396 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4399 /* command should be marked inactive atomically with qc completion */
4400 if (qc->tf.protocol == ATA_PROT_NCQ)
4401 ap->sactive &= ~(1 << qc->tag);
4403 ap->active_tag = ATA_TAG_POISON;
4405 /* atapi: mark qc as inactive to prevent the interrupt handler
4406 * from completing the command twice later, before the error handler
4407 * is called. (when rc != 0 and atapi request sense is needed)
4409 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4410 ap->qc_active &= ~(1 << qc->tag);
4412 /* call completion callback */
4413 qc->complete_fn(qc);
4417 * ata_qc_complete - Complete an active ATA command
4418 * @qc: Command to complete
4419 * @err_mask: ATA Status register contents
4421 * Indicate to the mid and upper layers that an ATA
4422 * command has completed, with either an ok or not-ok status.
4425 * spin_lock_irqsave(host_set lock)
4427 void ata_qc_complete(struct ata_queued_cmd *qc)
4429 struct ata_port *ap = qc->ap;
4431 /* XXX: New EH and old EH use different mechanisms to
4432 * synchronize EH with regular execution path.
4434 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4435 * Normal execution path is responsible for not accessing a
4436 * failed qc. libata core enforces the rule by returning NULL
4437 * from ata_qc_from_tag() for failed qcs.
4439 * Old EH depends on ata_qc_complete() nullifying completion
4440 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4441 * not synchronize with interrupt handler. Only PIO task is
4444 if (ap->ops->error_handler) {
4445 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4447 if (unlikely(qc->err_mask))
4448 qc->flags |= ATA_QCFLAG_FAILED;
4450 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4451 if (!ata_tag_internal(qc->tag)) {
4452 /* always fill result TF for failed qc */
4453 ap->ops->tf_read(ap, &qc->result_tf);
4454 ata_qc_schedule_eh(qc);
4459 /* read result TF if requested */
4460 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4461 ap->ops->tf_read(ap, &qc->result_tf);
4463 __ata_qc_complete(qc);
4465 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4468 /* read result TF if failed or requested */
4469 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4470 ap->ops->tf_read(ap, &qc->result_tf);
4472 __ata_qc_complete(qc);
4477 * ata_qc_complete_multiple - Complete multiple qcs successfully
4478 * @ap: port in question
4479 * @qc_active: new qc_active mask
4480 * @finish_qc: LLDD callback invoked before completing a qc
4482 * Complete in-flight commands. This functions is meant to be
4483 * called from low-level driver's interrupt routine to complete
4484 * requests normally. ap->qc_active and @qc_active is compared
4485 * and commands are completed accordingly.
4488 * spin_lock_irqsave(host_set lock)
4491 * Number of completed commands on success, -errno otherwise.
4493 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4494 void (*finish_qc)(struct ata_queued_cmd *))
4500 done_mask = ap->qc_active ^ qc_active;
4502 if (unlikely(done_mask & qc_active)) {
4503 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4504 "(%08x->%08x)\n", ap->qc_active, qc_active);
4508 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4509 struct ata_queued_cmd *qc;
4511 if (!(done_mask & (1 << i)))
4514 if ((qc = ata_qc_from_tag(ap, i))) {
4517 ata_qc_complete(qc);
4525 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4527 struct ata_port *ap = qc->ap;
4529 switch (qc->tf.protocol) {
4532 case ATA_PROT_ATAPI_DMA:
4535 case ATA_PROT_ATAPI:
4537 if (ap->flags & ATA_FLAG_PIO_DMA)
4550 * ata_qc_issue - issue taskfile to device
4551 * @qc: command to issue to device
4553 * Prepare an ATA command to submission to device.
4554 * This includes mapping the data into a DMA-able
4555 * area, filling in the S/G table, and finally
4556 * writing the taskfile to hardware, starting the command.
4559 * spin_lock_irqsave(host_set lock)
4561 void ata_qc_issue(struct ata_queued_cmd *qc)
4563 struct ata_port *ap = qc->ap;
4565 /* Make sure only one non-NCQ command is outstanding. The
4566 * check is skipped for old EH because it reuses active qc to
4567 * request ATAPI sense.
4569 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4571 if (qc->tf.protocol == ATA_PROT_NCQ) {
4572 WARN_ON(ap->sactive & (1 << qc->tag));
4573 ap->sactive |= 1 << qc->tag;
4575 WARN_ON(ap->sactive);
4576 ap->active_tag = qc->tag;
4579 qc->flags |= ATA_QCFLAG_ACTIVE;
4580 ap->qc_active |= 1 << qc->tag;
4582 if (ata_should_dma_map(qc)) {
4583 if (qc->flags & ATA_QCFLAG_SG) {
4584 if (ata_sg_setup(qc))
4586 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4587 if (ata_sg_setup_one(qc))
4591 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4594 ap->ops->qc_prep(qc);
4596 qc->err_mask |= ap->ops->qc_issue(qc);
4597 if (unlikely(qc->err_mask))
4602 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4603 qc->err_mask |= AC_ERR_SYSTEM;
4605 ata_qc_complete(qc);
4609 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4610 * @qc: command to issue to device
4612 * Using various libata functions and hooks, this function
4613 * starts an ATA command. ATA commands are grouped into
4614 * classes called "protocols", and issuing each type of protocol
4615 * is slightly different.
4617 * May be used as the qc_issue() entry in ata_port_operations.
4620 * spin_lock_irqsave(host_set lock)
4623 * Zero on success, AC_ERR_* mask on failure
4626 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4628 struct ata_port *ap = qc->ap;
4630 /* Use polling pio if the LLD doesn't handle
4631 * interrupt driven pio and atapi CDB interrupt.
4633 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4634 switch (qc->tf.protocol) {
4636 case ATA_PROT_ATAPI:
4637 case ATA_PROT_ATAPI_NODATA:
4638 qc->tf.flags |= ATA_TFLAG_POLLING;
4640 case ATA_PROT_ATAPI_DMA:
4641 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4642 /* see ata_dma_blacklisted() */
4650 /* select the device */
4651 ata_dev_select(ap, qc->dev->devno, 1, 0);
4653 /* start the command */
4654 switch (qc->tf.protocol) {
4655 case ATA_PROT_NODATA:
4656 if (qc->tf.flags & ATA_TFLAG_POLLING)
4657 ata_qc_set_polling(qc);
4659 ata_tf_to_host(ap, &qc->tf);
4660 ap->hsm_task_state = HSM_ST_LAST;
4662 if (qc->tf.flags & ATA_TFLAG_POLLING)
4663 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4668 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4670 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4671 ap->ops->bmdma_setup(qc); /* set up bmdma */
4672 ap->ops->bmdma_start(qc); /* initiate bmdma */
4673 ap->hsm_task_state = HSM_ST_LAST;
4677 if (qc->tf.flags & ATA_TFLAG_POLLING)
4678 ata_qc_set_polling(qc);
4680 ata_tf_to_host(ap, &qc->tf);
4682 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4683 /* PIO data out protocol */
4684 ap->hsm_task_state = HSM_ST_FIRST;
4685 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4687 /* always send first data block using
4688 * the ata_pio_task() codepath.
4691 /* PIO data in protocol */
4692 ap->hsm_task_state = HSM_ST;
4694 if (qc->tf.flags & ATA_TFLAG_POLLING)
4695 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4697 /* if polling, ata_pio_task() handles the rest.
4698 * otherwise, interrupt handler takes over from here.
4704 case ATA_PROT_ATAPI:
4705 case ATA_PROT_ATAPI_NODATA:
4706 if (qc->tf.flags & ATA_TFLAG_POLLING)
4707 ata_qc_set_polling(qc);
4709 ata_tf_to_host(ap, &qc->tf);
4711 ap->hsm_task_state = HSM_ST_FIRST;
4713 /* send cdb by polling if no cdb interrupt */
4714 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4715 (qc->tf.flags & ATA_TFLAG_POLLING))
4716 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4719 case ATA_PROT_ATAPI_DMA:
4720 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4722 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4723 ap->ops->bmdma_setup(qc); /* set up bmdma */
4724 ap->hsm_task_state = HSM_ST_FIRST;
4726 /* send cdb by polling if no cdb interrupt */
4727 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4728 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4733 return AC_ERR_SYSTEM;
4740 * ata_host_intr - Handle host interrupt for given (port, task)
4741 * @ap: Port on which interrupt arrived (possibly...)
4742 * @qc: Taskfile currently active in engine
4744 * Handle host interrupt for given queued command. Currently,
4745 * only DMA interrupts are handled. All other commands are
4746 * handled via polling with interrupts disabled (nIEN bit).
4749 * spin_lock_irqsave(host_set lock)
4752 * One if interrupt was handled, zero if not (shared irq).
4755 inline unsigned int ata_host_intr (struct ata_port *ap,
4756 struct ata_queued_cmd *qc)
4758 u8 status, host_stat = 0;
4760 VPRINTK("ata%u: protocol %d task_state %d\n",
4761 ap->id, qc->tf.protocol, ap->hsm_task_state);
4763 /* Check whether we are expecting interrupt in this state */
4764 switch (ap->hsm_task_state) {
4766 /* Some pre-ATAPI-4 devices assert INTRQ
4767 * at this state when ready to receive CDB.
4770 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4771 * The flag was turned on only for atapi devices.
4772 * No need to check is_atapi_taskfile(&qc->tf) again.
4774 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4778 if (qc->tf.protocol == ATA_PROT_DMA ||
4779 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4780 /* check status of DMA engine */
4781 host_stat = ap->ops->bmdma_status(ap);
4782 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4784 /* if it's not our irq... */
4785 if (!(host_stat & ATA_DMA_INTR))
4788 /* before we do anything else, clear DMA-Start bit */
4789 ap->ops->bmdma_stop(qc);
4791 if (unlikely(host_stat & ATA_DMA_ERR)) {
4792 /* error when transfering data to/from memory */
4793 qc->err_mask |= AC_ERR_HOST_BUS;
4794 ap->hsm_task_state = HSM_ST_ERR;
4804 /* check altstatus */
4805 status = ata_altstatus(ap);
4806 if (status & ATA_BUSY)
4809 /* check main status, clearing INTRQ */
4810 status = ata_chk_status(ap);
4811 if (unlikely(status & ATA_BUSY))
4814 /* ack bmdma irq events */
4815 ap->ops->irq_clear(ap);
4817 ata_hsm_move(ap, qc, status, 0);
4818 return 1; /* irq handled */
4821 ap->stats.idle_irq++;
4824 if ((ap->stats.idle_irq % 1000) == 0) {
4825 ata_irq_ack(ap, 0); /* debug trap */
4826 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4830 return 0; /* irq not handled */
4834 * ata_interrupt - Default ATA host interrupt handler
4835 * @irq: irq line (unused)
4836 * @dev_instance: pointer to our ata_host_set information structure
4839 * Default interrupt handler for PCI IDE devices. Calls
4840 * ata_host_intr() for each port that is not disabled.
4843 * Obtains host_set lock during operation.
4846 * IRQ_NONE or IRQ_HANDLED.
4849 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4851 struct ata_host_set *host_set = dev_instance;
4853 unsigned int handled = 0;
4854 unsigned long flags;
4856 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4857 spin_lock_irqsave(&host_set->lock, flags);
4859 for (i = 0; i < host_set->n_ports; i++) {
4860 struct ata_port *ap;
4862 ap = host_set->ports[i];
4864 !(ap->flags & ATA_FLAG_DISABLED)) {
4865 struct ata_queued_cmd *qc;
4867 qc = ata_qc_from_tag(ap, ap->active_tag);
4868 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4869 (qc->flags & ATA_QCFLAG_ACTIVE))
4870 handled |= ata_host_intr(ap, qc);
4874 spin_unlock_irqrestore(&host_set->lock, flags);
4876 return IRQ_RETVAL(handled);
4880 * sata_scr_valid - test whether SCRs are accessible
4881 * @ap: ATA port to test SCR accessibility for
4883 * Test whether SCRs are accessible for @ap.
4889 * 1 if SCRs are accessible, 0 otherwise.
4891 int sata_scr_valid(struct ata_port *ap)
4893 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4897 * sata_scr_read - read SCR register of the specified port
4898 * @ap: ATA port to read SCR for
4900 * @val: Place to store read value
4902 * Read SCR register @reg of @ap into *@val. This function is
4903 * guaranteed to succeed if the cable type of the port is SATA
4904 * and the port implements ->scr_read.
4910 * 0 on success, negative errno on failure.
4912 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4914 if (sata_scr_valid(ap)) {
4915 *val = ap->ops->scr_read(ap, reg);
4922 * sata_scr_write - write SCR register of the specified port
4923 * @ap: ATA port to write SCR for
4924 * @reg: SCR to write
4925 * @val: value to write
4927 * Write @val to SCR register @reg of @ap. This function is
4928 * guaranteed to succeed if the cable type of the port is SATA
4929 * and the port implements ->scr_read.
4935 * 0 on success, negative errno on failure.
4937 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4939 if (sata_scr_valid(ap)) {
4940 ap->ops->scr_write(ap, reg, val);
4947 * sata_scr_write_flush - write SCR register of the specified port and flush
4948 * @ap: ATA port to write SCR for
4949 * @reg: SCR to write
4950 * @val: value to write
4952 * This function is identical to sata_scr_write() except that this
4953 * function performs flush after writing to the register.
4959 * 0 on success, negative errno on failure.
4961 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4963 if (sata_scr_valid(ap)) {
4964 ap->ops->scr_write(ap, reg, val);
4965 ap->ops->scr_read(ap, reg);
4972 * ata_port_online - test whether the given port is online
4973 * @ap: ATA port to test
4975 * Test whether @ap is online. Note that this function returns 0
4976 * if online status of @ap cannot be obtained, so
4977 * ata_port_online(ap) != !ata_port_offline(ap).
4983 * 1 if the port online status is available and online.
4985 int ata_port_online(struct ata_port *ap)
4989 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4995 * ata_port_offline - test whether the given port is offline
4996 * @ap: ATA port to test
4998 * Test whether @ap is offline. Note that this function returns
4999 * 0 if offline status of @ap cannot be obtained, so
5000 * ata_port_online(ap) != !ata_port_offline(ap).
5006 * 1 if the port offline status is available and offline.
5008 int ata_port_offline(struct ata_port *ap)
5012 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5017 int ata_flush_cache(struct ata_device *dev)
5019 unsigned int err_mask;
5022 if (!ata_try_flush_cache(dev))
5025 if (ata_id_has_flush_ext(dev->id))
5026 cmd = ATA_CMD_FLUSH_EXT;
5028 cmd = ATA_CMD_FLUSH;
5030 err_mask = ata_do_simple_cmd(dev, cmd);
5032 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5039 static int ata_host_set_request_pm(struct ata_host_set *host_set,
5040 pm_message_t mesg, unsigned int action,
5041 unsigned int ehi_flags, int wait)
5043 unsigned long flags;
5046 for (i = 0; i < host_set->n_ports; i++) {
5047 struct ata_port *ap = host_set->ports[i];
5049 /* Previous resume operation might still be in
5050 * progress. Wait for PM_PENDING to clear.
5052 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5053 ata_port_wait_eh(ap);
5054 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5057 /* request PM ops to EH */
5058 spin_lock_irqsave(ap->lock, flags);
5063 ap->pm_result = &rc;
5066 ap->pflags |= ATA_PFLAG_PM_PENDING;
5067 ap->eh_info.action |= action;
5068 ap->eh_info.flags |= ehi_flags;
5070 ata_port_schedule_eh(ap);
5072 spin_unlock_irqrestore(ap->lock, flags);
5074 /* wait and check result */
5076 ata_port_wait_eh(ap);
5077 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5087 * ata_host_set_suspend - suspend host_set
5088 * @host_set: host_set to suspend
5091 * Suspend @host_set. Actual operation is performed by EH. This
5092 * function requests EH to perform PM operations and waits for EH
5096 * Kernel thread context (may sleep).
5099 * 0 on success, -errno on failure.
5101 int ata_host_set_suspend(struct ata_host_set *host_set, pm_message_t mesg)
5105 rc = ata_host_set_request_pm(host_set, mesg, 0, ATA_EHI_QUIET, 1);
5109 /* EH is quiescent now. Fail if we have any ready device.
5110 * This happens if hotplug occurs between completion of device
5111 * suspension and here.
5113 for (i = 0; i < host_set->n_ports; i++) {
5114 struct ata_port *ap = host_set->ports[i];
5116 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5117 struct ata_device *dev = &ap->device[j];
5119 if (ata_dev_ready(dev)) {
5120 ata_port_printk(ap, KERN_WARNING,
5121 "suspend failed, device %d "
5122 "still active\n", dev->devno);
5129 host_set->dev->power.power_state = mesg;
5133 ata_host_set_resume(host_set);
5138 * ata_host_set_resume - resume host_set
5139 * @host_set: host_set to resume
5141 * Resume @host_set. Actual operation is performed by EH. This
5142 * function requests EH to perform PM operations and returns.
5143 * Note that all resume operations are performed parallely.
5146 * Kernel thread context (may sleep).
5148 void ata_host_set_resume(struct ata_host_set *host_set)
5150 ata_host_set_request_pm(host_set, PMSG_ON, ATA_EH_SOFTRESET,
5151 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5152 host_set->dev->power.power_state = PMSG_ON;
5156 * ata_port_start - Set port up for dma.
5157 * @ap: Port to initialize
5159 * Called just after data structures for each port are
5160 * initialized. Allocates space for PRD table.
5162 * May be used as the port_start() entry in ata_port_operations.
5165 * Inherited from caller.
5168 int ata_port_start (struct ata_port *ap)
5170 struct device *dev = ap->dev;
5173 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5177 rc = ata_pad_alloc(ap, dev);
5179 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5183 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5190 * ata_port_stop - Undo ata_port_start()
5191 * @ap: Port to shut down
5193 * Frees the PRD table.
5195 * May be used as the port_stop() entry in ata_port_operations.
5198 * Inherited from caller.
5201 void ata_port_stop (struct ata_port *ap)
5203 struct device *dev = ap->dev;
5205 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5206 ata_pad_free(ap, dev);
5209 void ata_host_stop (struct ata_host_set *host_set)
5211 if (host_set->mmio_base)
5212 iounmap(host_set->mmio_base);
5216 * ata_dev_init - Initialize an ata_device structure
5217 * @dev: Device structure to initialize
5219 * Initialize @dev in preparation for probing.
5222 * Inherited from caller.
5224 void ata_dev_init(struct ata_device *dev)
5226 struct ata_port *ap = dev->ap;
5227 unsigned long flags;
5229 /* SATA spd limit is bound to the first device */
5230 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5232 /* High bits of dev->flags are used to record warm plug
5233 * requests which occur asynchronously. Synchronize using
5236 spin_lock_irqsave(ap->lock, flags);
5237 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5238 spin_unlock_irqrestore(ap->lock, flags);
5240 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5241 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5242 dev->pio_mask = UINT_MAX;
5243 dev->mwdma_mask = UINT_MAX;
5244 dev->udma_mask = UINT_MAX;
5248 * ata_port_init - Initialize an ata_port structure
5249 * @ap: Structure to initialize
5250 * @host_set: Collection of hosts to which @ap belongs
5251 * @ent: Probe information provided by low-level driver
5252 * @port_no: Port number associated with this ata_port
5254 * Initialize a new ata_port structure.
5257 * Inherited from caller.
5259 void ata_port_init(struct ata_port *ap, struct ata_host_set *host_set,
5260 const struct ata_probe_ent *ent, unsigned int port_no)
5264 ap->lock = &host_set->lock;
5265 ap->flags = ATA_FLAG_DISABLED;
5266 ap->id = ata_unique_id++;
5267 ap->ctl = ATA_DEVCTL_OBS;
5268 ap->host_set = host_set;
5270 ap->port_no = port_no;
5271 ap->pio_mask = ent->pio_mask;
5272 ap->mwdma_mask = ent->mwdma_mask;
5273 ap->udma_mask = ent->udma_mask;
5274 ap->flags |= ent->host_flags;
5275 ap->ops = ent->port_ops;
5276 ap->hw_sata_spd_limit = UINT_MAX;
5277 ap->active_tag = ATA_TAG_POISON;
5278 ap->last_ctl = 0xFF;
5280 #if defined(ATA_VERBOSE_DEBUG)
5281 /* turn on all debugging levels */
5282 ap->msg_enable = 0x00FF;
5283 #elif defined(ATA_DEBUG)
5284 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5286 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5289 INIT_WORK(&ap->port_task, NULL, NULL);
5290 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5291 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5292 INIT_LIST_HEAD(&ap->eh_done_q);
5293 init_waitqueue_head(&ap->eh_wait_q);
5295 /* set cable type */
5296 ap->cbl = ATA_CBL_NONE;
5297 if (ap->flags & ATA_FLAG_SATA)
5298 ap->cbl = ATA_CBL_SATA;
5300 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5301 struct ata_device *dev = &ap->device[i];
5308 ap->stats.unhandled_irq = 1;
5309 ap->stats.idle_irq = 1;
5312 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5316 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5317 * @ap: ATA port to initialize SCSI host for
5318 * @shost: SCSI host associated with @ap
5320 * Initialize SCSI host @shost associated with ATA port @ap.
5323 * Inherited from caller.
5325 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5329 shost->unique_id = ap->id;
5332 shost->max_channel = 1;
5333 shost->max_cmd_len = 12;
5337 * ata_port_add - Attach low-level ATA driver to system
5338 * @ent: Information provided by low-level driver
5339 * @host_set: Collections of ports to which we add
5340 * @port_no: Port number associated with this host
5342 * Attach low-level ATA driver to system.
5345 * PCI/etc. bus probe sem.
5348 * New ata_port on success, for NULL on error.
5350 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5351 struct ata_host_set *host_set,
5352 unsigned int port_no)
5354 struct Scsi_Host *shost;
5355 struct ata_port *ap;
5359 if (!ent->port_ops->error_handler &&
5360 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5361 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5366 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5370 shost->transportt = &ata_scsi_transport_template;
5372 ap = ata_shost_to_port(shost);
5374 ata_port_init(ap, host_set, ent, port_no);
5375 ata_port_init_shost(ap, shost);
5381 * ata_sas_host_init - Initialize a host_set struct
5382 * @host_set: host_set to initialize
5383 * @dev: device host_set is attached to
5384 * @flags: host_set flags
5388 * PCI/etc. bus probe sem.
5392 void ata_host_set_init(struct ata_host_set *host_set,
5393 struct device *dev, unsigned long flags,
5394 const struct ata_port_operations *ops)
5396 spin_lock_init(&host_set->lock);
5397 host_set->dev = dev;
5398 host_set->flags = flags;
5399 host_set->ops = ops;
5403 * ata_device_add - Register hardware device with ATA and SCSI layers
5404 * @ent: Probe information describing hardware device to be registered
5406 * This function processes the information provided in the probe
5407 * information struct @ent, allocates the necessary ATA and SCSI
5408 * host information structures, initializes them, and registers
5409 * everything with requisite kernel subsystems.
5411 * This function requests irqs, probes the ATA bus, and probes
5415 * PCI/etc. bus probe sem.
5418 * Number of ports registered. Zero on error (no ports registered).
5420 int ata_device_add(const struct ata_probe_ent *ent)
5423 struct device *dev = ent->dev;
5424 struct ata_host_set *host_set;
5428 /* alloc a container for our list of ATA ports (buses) */
5429 host_set = kzalloc(sizeof(struct ata_host_set) +
5430 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5434 ata_host_set_init(host_set, dev, ent->host_set_flags, ent->port_ops);
5435 host_set->n_ports = ent->n_ports;
5436 host_set->irq = ent->irq;
5437 host_set->irq2 = ent->irq2;
5438 host_set->mmio_base = ent->mmio_base;
5439 host_set->private_data = ent->private_data;
5441 /* register each port bound to this device */
5442 for (i = 0; i < host_set->n_ports; i++) {
5443 struct ata_port *ap;
5444 unsigned long xfer_mode_mask;
5445 int irq_line = ent->irq;
5447 ap = ata_port_add(ent, host_set, i);
5451 host_set->ports[i] = ap;
5454 if (ent->dummy_port_mask & (1 << i)) {
5455 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5456 ap->ops = &ata_dummy_port_ops;
5461 rc = ap->ops->port_start(ap);
5463 host_set->ports[i] = NULL;
5464 scsi_host_put(ap->host);
5468 /* Report the secondary IRQ for second channel legacy */
5469 if (i == 1 && ent->irq2)
5470 irq_line = ent->irq2;
5472 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5473 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5474 (ap->pio_mask << ATA_SHIFT_PIO);
5476 /* print per-port info to dmesg */
5477 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5478 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5479 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5480 ata_mode_string(xfer_mode_mask),
5481 ap->ioaddr.cmd_addr,
5482 ap->ioaddr.ctl_addr,
5483 ap->ioaddr.bmdma_addr,
5487 host_set->ops->irq_clear(ap);
5488 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5491 /* obtain irq, that may be shared between channels */
5492 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5493 DRV_NAME, host_set);
5495 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5500 /* do we have a second IRQ for the other channel, eg legacy mode */
5502 /* We will get weird core code crashes later if this is true
5504 BUG_ON(ent->irq == ent->irq2);
5506 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5507 DRV_NAME, host_set);
5509 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5511 goto err_out_free_irq;
5515 /* perform each probe synchronously */
5516 DPRINTK("probe begin\n");
5517 for (i = 0; i < host_set->n_ports; i++) {
5518 struct ata_port *ap = host_set->ports[i];
5522 /* init sata_spd_limit to the current value */
5523 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5524 int spd = (scontrol >> 4) & 0xf;
5525 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5527 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5529 rc = scsi_add_host(ap->host, dev);
5531 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5532 /* FIXME: do something useful here */
5533 /* FIXME: handle unconditional calls to
5534 * scsi_scan_host and ata_host_remove, below,
5539 if (ap->ops->error_handler) {
5540 struct ata_eh_info *ehi = &ap->eh_info;
5541 unsigned long flags;
5545 /* kick EH for boot probing */
5546 spin_lock_irqsave(ap->lock, flags);
5548 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5549 ehi->action |= ATA_EH_SOFTRESET;
5550 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5552 ap->pflags |= ATA_PFLAG_LOADING;
5553 ata_port_schedule_eh(ap);
5555 spin_unlock_irqrestore(ap->lock, flags);
5557 /* wait for EH to finish */
5558 ata_port_wait_eh(ap);
5560 DPRINTK("ata%u: bus probe begin\n", ap->id);
5561 rc = ata_bus_probe(ap);
5562 DPRINTK("ata%u: bus probe end\n", ap->id);
5565 /* FIXME: do something useful here?
5566 * Current libata behavior will
5567 * tear down everything when
5568 * the module is removed
5569 * or the h/w is unplugged.
5575 /* probes are done, now scan each port's disk(s) */
5576 DPRINTK("host probe begin\n");
5577 for (i = 0; i < host_set->n_ports; i++) {
5578 struct ata_port *ap = host_set->ports[i];
5580 ata_scsi_scan_host(ap);
5583 dev_set_drvdata(dev, host_set);
5585 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5586 return ent->n_ports; /* success */
5589 free_irq(ent->irq, host_set);
5591 for (i = 0; i < host_set->n_ports; i++) {
5592 struct ata_port *ap = host_set->ports[i];
5594 ap->ops->port_stop(ap);
5595 scsi_host_put(ap->host);
5600 VPRINTK("EXIT, returning 0\n");
5605 * ata_port_detach - Detach ATA port in prepration of device removal
5606 * @ap: ATA port to be detached
5608 * Detach all ATA devices and the associated SCSI devices of @ap;
5609 * then, remove the associated SCSI host. @ap is guaranteed to
5610 * be quiescent on return from this function.
5613 * Kernel thread context (may sleep).
5615 void ata_port_detach(struct ata_port *ap)
5617 unsigned long flags;
5620 if (!ap->ops->error_handler)
5623 /* tell EH we're leaving & flush EH */
5624 spin_lock_irqsave(ap->lock, flags);
5625 ap->pflags |= ATA_PFLAG_UNLOADING;
5626 spin_unlock_irqrestore(ap->lock, flags);
5628 ata_port_wait_eh(ap);
5630 /* EH is now guaranteed to see UNLOADING, so no new device
5631 * will be attached. Disable all existing devices.
5633 spin_lock_irqsave(ap->lock, flags);
5635 for (i = 0; i < ATA_MAX_DEVICES; i++)
5636 ata_dev_disable(&ap->device[i]);
5638 spin_unlock_irqrestore(ap->lock, flags);
5640 /* Final freeze & EH. All in-flight commands are aborted. EH
5641 * will be skipped and retrials will be terminated with bad
5644 spin_lock_irqsave(ap->lock, flags);
5645 ata_port_freeze(ap); /* won't be thawed */
5646 spin_unlock_irqrestore(ap->lock, flags);
5648 ata_port_wait_eh(ap);
5650 /* Flush hotplug task. The sequence is similar to
5651 * ata_port_flush_task().
5653 flush_workqueue(ata_aux_wq);
5654 cancel_delayed_work(&ap->hotplug_task);
5655 flush_workqueue(ata_aux_wq);
5658 /* remove the associated SCSI host */
5659 scsi_remove_host(ap->host);
5663 * ata_host_set_remove - PCI layer callback for device removal
5664 * @host_set: ATA host set that was removed
5666 * Unregister all objects associated with this host set. Free those
5670 * Inherited from calling layer (may sleep).
5673 void ata_host_set_remove(struct ata_host_set *host_set)
5677 for (i = 0; i < host_set->n_ports; i++)
5678 ata_port_detach(host_set->ports[i]);
5680 free_irq(host_set->irq, host_set);
5682 free_irq(host_set->irq2, host_set);
5684 for (i = 0; i < host_set->n_ports; i++) {
5685 struct ata_port *ap = host_set->ports[i];
5687 ata_scsi_release(ap->host);
5689 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5690 struct ata_ioports *ioaddr = &ap->ioaddr;
5692 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5693 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5694 release_region(ATA_PRIMARY_CMD, 8);
5695 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5696 release_region(ATA_SECONDARY_CMD, 8);
5699 scsi_host_put(ap->host);
5702 if (host_set->ops->host_stop)
5703 host_set->ops->host_stop(host_set);
5709 * ata_scsi_release - SCSI layer callback hook for host unload
5710 * @host: libata host to be unloaded
5712 * Performs all duties necessary to shut down a libata port...
5713 * Kill port kthread, disable port, and release resources.
5716 * Inherited from SCSI layer.
5722 int ata_scsi_release(struct Scsi_Host *host)
5724 struct ata_port *ap = ata_shost_to_port(host);
5728 ap->ops->port_disable(ap);
5729 ap->ops->port_stop(ap);
5735 struct ata_probe_ent *
5736 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5738 struct ata_probe_ent *probe_ent;
5740 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5742 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5743 kobject_name(&(dev->kobj)));
5747 INIT_LIST_HEAD(&probe_ent->node);
5748 probe_ent->dev = dev;
5750 probe_ent->sht = port->sht;
5751 probe_ent->host_flags = port->host_flags;
5752 probe_ent->pio_mask = port->pio_mask;
5753 probe_ent->mwdma_mask = port->mwdma_mask;
5754 probe_ent->udma_mask = port->udma_mask;
5755 probe_ent->port_ops = port->port_ops;
5761 * ata_std_ports - initialize ioaddr with standard port offsets.
5762 * @ioaddr: IO address structure to be initialized
5764 * Utility function which initializes data_addr, error_addr,
5765 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5766 * device_addr, status_addr, and command_addr to standard offsets
5767 * relative to cmd_addr.
5769 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5772 void ata_std_ports(struct ata_ioports *ioaddr)
5774 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5775 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5776 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5777 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5778 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5779 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5780 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5781 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5782 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5783 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5789 void ata_pci_host_stop (struct ata_host_set *host_set)
5791 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5793 pci_iounmap(pdev, host_set->mmio_base);
5797 * ata_pci_remove_one - PCI layer callback for device removal
5798 * @pdev: PCI device that was removed
5800 * PCI layer indicates to libata via this hook that
5801 * hot-unplug or module unload event has occurred.
5802 * Handle this by unregistering all objects associated
5803 * with this PCI device. Free those objects. Then finally
5804 * release PCI resources and disable device.
5807 * Inherited from PCI layer (may sleep).
5810 void ata_pci_remove_one (struct pci_dev *pdev)
5812 struct device *dev = pci_dev_to_dev(pdev);
5813 struct ata_host_set *host_set = dev_get_drvdata(dev);
5815 ata_host_set_remove(host_set);
5817 pci_release_regions(pdev);
5818 pci_disable_device(pdev);
5819 dev_set_drvdata(dev, NULL);
5822 /* move to PCI subsystem */
5823 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5825 unsigned long tmp = 0;
5827 switch (bits->width) {
5830 pci_read_config_byte(pdev, bits->reg, &tmp8);
5836 pci_read_config_word(pdev, bits->reg, &tmp16);
5842 pci_read_config_dword(pdev, bits->reg, &tmp32);
5853 return (tmp == bits->val) ? 1 : 0;
5856 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5858 pci_save_state(pdev);
5860 if (mesg.event == PM_EVENT_SUSPEND) {
5861 pci_disable_device(pdev);
5862 pci_set_power_state(pdev, PCI_D3hot);
5866 void ata_pci_device_do_resume(struct pci_dev *pdev)
5868 pci_set_power_state(pdev, PCI_D0);
5869 pci_restore_state(pdev);
5870 pci_enable_device(pdev);
5871 pci_set_master(pdev);
5874 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5876 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5879 rc = ata_host_set_suspend(host_set, mesg);
5883 ata_pci_device_do_suspend(pdev, mesg);
5888 int ata_pci_device_resume(struct pci_dev *pdev)
5890 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5892 ata_pci_device_do_resume(pdev);
5893 ata_host_set_resume(host_set);
5896 #endif /* CONFIG_PCI */
5899 static int __init ata_init(void)
5901 ata_probe_timeout *= HZ;
5902 ata_wq = create_workqueue("ata");
5906 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5908 destroy_workqueue(ata_wq);
5912 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5916 static void __exit ata_exit(void)
5918 destroy_workqueue(ata_wq);
5919 destroy_workqueue(ata_aux_wq);
5922 module_init(ata_init);
5923 module_exit(ata_exit);
5925 static unsigned long ratelimit_time;
5926 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5928 int ata_ratelimit(void)
5931 unsigned long flags;
5933 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5935 if (time_after(jiffies, ratelimit_time)) {
5937 ratelimit_time = jiffies + (HZ/5);
5941 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5947 * ata_wait_register - wait until register value changes
5948 * @reg: IO-mapped register
5949 * @mask: Mask to apply to read register value
5950 * @val: Wait condition
5951 * @interval_msec: polling interval in milliseconds
5952 * @timeout_msec: timeout in milliseconds
5954 * Waiting for some bits of register to change is a common
5955 * operation for ATA controllers. This function reads 32bit LE
5956 * IO-mapped register @reg and tests for the following condition.
5958 * (*@reg & mask) != val
5960 * If the condition is met, it returns; otherwise, the process is
5961 * repeated after @interval_msec until timeout.
5964 * Kernel thread context (may sleep)
5967 * The final register value.
5969 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5970 unsigned long interval_msec,
5971 unsigned long timeout_msec)
5973 unsigned long timeout;
5976 tmp = ioread32(reg);
5978 /* Calculate timeout _after_ the first read to make sure
5979 * preceding writes reach the controller before starting to
5980 * eat away the timeout.
5982 timeout = jiffies + (timeout_msec * HZ) / 1000;
5984 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5985 msleep(interval_msec);
5986 tmp = ioread32(reg);
5995 static void ata_dummy_noret(struct ata_port *ap) { }
5996 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
5997 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
5999 static u8 ata_dummy_check_status(struct ata_port *ap)
6004 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6006 return AC_ERR_SYSTEM;
6009 const struct ata_port_operations ata_dummy_port_ops = {
6010 .port_disable = ata_port_disable,
6011 .check_status = ata_dummy_check_status,
6012 .check_altstatus = ata_dummy_check_status,
6013 .dev_select = ata_noop_dev_select,
6014 .qc_prep = ata_noop_qc_prep,
6015 .qc_issue = ata_dummy_qc_issue,
6016 .freeze = ata_dummy_noret,
6017 .thaw = ata_dummy_noret,
6018 .error_handler = ata_dummy_noret,
6019 .post_internal_cmd = ata_dummy_qc_noret,
6020 .irq_clear = ata_dummy_noret,
6021 .port_start = ata_dummy_ret0,
6022 .port_stop = ata_dummy_noret,
6026 * libata is essentially a library of internal helper functions for
6027 * low-level ATA host controller drivers. As such, the API/ABI is
6028 * likely to change as new drivers are added and updated.
6029 * Do not depend on ABI/API stability.
6032 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6033 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6034 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6035 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6036 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6037 EXPORT_SYMBOL_GPL(ata_std_ports);
6038 EXPORT_SYMBOL_GPL(ata_host_set_init);
6039 EXPORT_SYMBOL_GPL(ata_device_add);
6040 EXPORT_SYMBOL_GPL(ata_port_detach);
6041 EXPORT_SYMBOL_GPL(ata_host_set_remove);
6042 EXPORT_SYMBOL_GPL(ata_sg_init);
6043 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6044 EXPORT_SYMBOL_GPL(ata_hsm_move);
6045 EXPORT_SYMBOL_GPL(ata_qc_complete);
6046 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6047 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6048 EXPORT_SYMBOL_GPL(ata_tf_load);
6049 EXPORT_SYMBOL_GPL(ata_tf_read);
6050 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6051 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6052 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6053 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6054 EXPORT_SYMBOL_GPL(ata_check_status);
6055 EXPORT_SYMBOL_GPL(ata_altstatus);
6056 EXPORT_SYMBOL_GPL(ata_exec_command);
6057 EXPORT_SYMBOL_GPL(ata_port_start);
6058 EXPORT_SYMBOL_GPL(ata_port_stop);
6059 EXPORT_SYMBOL_GPL(ata_host_stop);
6060 EXPORT_SYMBOL_GPL(ata_interrupt);
6061 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6062 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6063 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6064 EXPORT_SYMBOL_GPL(ata_qc_prep);
6065 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6066 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6067 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6068 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6069 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6070 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6071 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6072 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6073 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6074 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6075 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6076 EXPORT_SYMBOL_GPL(ata_port_probe);
6077 EXPORT_SYMBOL_GPL(sata_set_spd);
6078 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6079 EXPORT_SYMBOL_GPL(sata_phy_resume);
6080 EXPORT_SYMBOL_GPL(sata_phy_reset);
6081 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6082 EXPORT_SYMBOL_GPL(ata_bus_reset);
6083 EXPORT_SYMBOL_GPL(ata_std_prereset);
6084 EXPORT_SYMBOL_GPL(ata_std_softreset);
6085 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6086 EXPORT_SYMBOL_GPL(ata_std_postreset);
6087 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
6088 EXPORT_SYMBOL_GPL(ata_dev_classify);
6089 EXPORT_SYMBOL_GPL(ata_dev_pair);
6090 EXPORT_SYMBOL_GPL(ata_port_disable);
6091 EXPORT_SYMBOL_GPL(ata_ratelimit);
6092 EXPORT_SYMBOL_GPL(ata_wait_register);
6093 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6094 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6095 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6096 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6097 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6098 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6099 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6100 EXPORT_SYMBOL_GPL(ata_scsi_release);
6101 EXPORT_SYMBOL_GPL(ata_host_intr);
6102 EXPORT_SYMBOL_GPL(sata_scr_valid);
6103 EXPORT_SYMBOL_GPL(sata_scr_read);
6104 EXPORT_SYMBOL_GPL(sata_scr_write);
6105 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6106 EXPORT_SYMBOL_GPL(ata_port_online);
6107 EXPORT_SYMBOL_GPL(ata_port_offline);
6108 EXPORT_SYMBOL_GPL(ata_host_set_suspend);
6109 EXPORT_SYMBOL_GPL(ata_host_set_resume);
6110 EXPORT_SYMBOL_GPL(ata_id_string);
6111 EXPORT_SYMBOL_GPL(ata_id_c_string);
6112 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6114 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6115 EXPORT_SYMBOL_GPL(ata_timing_compute);
6116 EXPORT_SYMBOL_GPL(ata_timing_merge);
6119 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6120 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6121 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6122 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6123 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6124 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6125 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6126 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6127 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6128 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6129 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6130 #endif /* CONFIG_PCI */
6132 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6133 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6135 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6136 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6137 EXPORT_SYMBOL_GPL(ata_port_abort);
6138 EXPORT_SYMBOL_GPL(ata_port_freeze);
6139 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6140 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6141 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6142 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6143 EXPORT_SYMBOL_GPL(ata_do_eh);