Pull button into test branch
[linux-2.6] / drivers / media / dvb / frontends / tda10086.c
1   /*
2      Driver for Philips tda10086 DVBS Demodulator
3
4      (c) 2006 Andrew de Quincey
5
6      This program is free software; you can redistribute it and/or modify
7      it under the terms of the GNU General Public License as published by
8      the Free Software Foundation; either version 2 of the License, or
9      (at your option) any later version.
10
11      This program is distributed in the hope that it will be useful,
12      but WITHOUT ANY WARRANTY; without even the implied warranty of
13      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
15      GNU General Public License for more details.
16
17      You should have received a copy of the GNU General Public License
18      along with this program; if not, write to the Free Software
19      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21    */
22
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/device.h>
27 #include <linux/jiffies.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30
31 #include "dvb_frontend.h"
32 #include "tda10086.h"
33
34 #define SACLK 96000000
35
36 struct tda10086_state {
37         struct i2c_adapter* i2c;
38         const struct tda10086_config* config;
39         struct dvb_frontend frontend;
40
41         /* private demod data */
42         u32 frequency;
43         u32 symbol_rate;
44 };
45
46 static int debug = 0;
47 #define dprintk(args...) \
48         do { \
49                 if (debug) printk(KERN_DEBUG "tda10086: " args); \
50         } while (0)
51
52 static int tda10086_write_byte(struct tda10086_state *state, int reg, int data)
53 {
54         int ret;
55         u8 b0[] = { reg, data };
56         struct i2c_msg msg = { .flags = 0, .buf = b0, .len = 2 };
57
58         msg.addr = state->config->demod_address;
59         ret = i2c_transfer(state->i2c, &msg, 1);
60
61         if (ret != 1)
62                 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
63                         __FUNCTION__, reg, data, ret);
64
65         return (ret != 1) ? ret : 0;
66 }
67
68 static int tda10086_read_byte(struct tda10086_state *state, int reg)
69 {
70         int ret;
71         u8 b0[] = { reg };
72         u8 b1[] = { 0 };
73         struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
74                                 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
75
76         msg[0].addr = state->config->demod_address;
77         msg[1].addr = state->config->demod_address;
78         ret = i2c_transfer(state->i2c, msg, 2);
79
80         if (ret != 2) {
81                 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
82                         ret);
83                 return ret;
84         }
85
86         return b1[0];
87 }
88
89 static int tda10086_write_mask(struct tda10086_state *state, int reg, int mask, int data)
90 {
91         int val;
92
93         // read a byte and check
94         val = tda10086_read_byte(state, reg);
95         if (val < 0)
96                 return val;
97
98         // mask if off
99         val = val & ~mask;
100         val |= data & 0xff;
101
102         // write it out again
103         return tda10086_write_byte(state, reg, val);
104 }
105
106 static int tda10086_init(struct dvb_frontend* fe)
107 {
108         struct tda10086_state* state = fe->demodulator_priv;
109
110         dprintk ("%s\n", __FUNCTION__);
111
112         // reset
113         tda10086_write_byte(state, 0x00, 0x00);
114         msleep(10);
115
116         // misc setup
117         tda10086_write_byte(state, 0x01, 0x94);
118         tda10086_write_byte(state, 0x02, 0x35); // NOTE: TT drivers appear to disable CSWP
119         tda10086_write_byte(state, 0x03, 0x64);
120         tda10086_write_byte(state, 0x04, 0x43);
121         tda10086_write_byte(state, 0x0c, 0x0c);
122         tda10086_write_byte(state, 0x1b, 0xb0); // noise threshold
123         tda10086_write_byte(state, 0x20, 0x89); // misc
124         tda10086_write_byte(state, 0x30, 0x04); // acquisition period length
125         tda10086_write_byte(state, 0x32, 0x00); // irq off
126         tda10086_write_byte(state, 0x31, 0x56); // setup AFC
127
128         // setup PLL (assumes 16Mhz XIN)
129         tda10086_write_byte(state, 0x55, 0x2c); // misc PLL setup
130         tda10086_write_byte(state, 0x3a, 0x0b); // M=12
131         tda10086_write_byte(state, 0x3b, 0x01); // P=2
132         tda10086_write_mask(state, 0x55, 0x20, 0x00); // powerup PLL
133
134         // setup TS interface
135         tda10086_write_byte(state, 0x11, 0x81);
136         tda10086_write_byte(state, 0x12, 0x81);
137         tda10086_write_byte(state, 0x19, 0x40); // parallel mode A + MSBFIRST
138         tda10086_write_byte(state, 0x56, 0x80); // powerdown WPLL - unused in the mode we use
139         tda10086_write_byte(state, 0x57, 0x08); // bypass WPLL - unused in the mode we use
140         tda10086_write_byte(state, 0x10, 0x2a);
141
142         // setup ADC
143         tda10086_write_byte(state, 0x58, 0x61); // ADC setup
144         tda10086_write_mask(state, 0x58, 0x01, 0x00); // powerup ADC
145
146         // setup AGC
147         tda10086_write_byte(state, 0x05, 0x0B);
148         tda10086_write_byte(state, 0x37, 0x63);
149         tda10086_write_byte(state, 0x3f, 0x03); // NOTE: flydvb uses 0x0a and varies it
150         tda10086_write_byte(state, 0x40, 0x64);
151         tda10086_write_byte(state, 0x41, 0x4f);
152         tda10086_write_byte(state, 0x42, 0x43);
153
154         // setup viterbi
155         tda10086_write_byte(state, 0x1a, 0x11); // VBER 10^6, DVB, QPSK
156
157         // setup carrier recovery
158         tda10086_write_byte(state, 0x3d, 0x80);
159
160         // setup SEC
161         tda10086_write_byte(state, 0x36, 0x00); // all SEC off
162         tda10086_write_byte(state, 0x34, (((1<<19) * (22000/1000)) / (SACLK/1000)));      // } tone frequency
163         tda10086_write_byte(state, 0x35, (((1<<19) * (22000/1000)) / (SACLK/1000)) >> 8); // }
164
165         return 0;
166 }
167
168 static void tda10086_diseqc_wait(struct tda10086_state *state)
169 {
170         unsigned long timeout = jiffies + msecs_to_jiffies(200);
171         while (!(tda10086_read_byte(state, 0x50) & 0x01)) {
172                 if(time_after(jiffies, timeout)) {
173                         printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
174                         break;
175                 }
176                 msleep(10);
177         }
178 }
179
180 static int tda10086_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
181 {
182         struct tda10086_state* state = fe->demodulator_priv;
183
184         dprintk ("%s\n", __FUNCTION__);
185
186         switch(tone) {
187         case SEC_TONE_OFF:
188                 tda10086_write_byte(state, 0x36, 0x00);
189                 break;
190
191         case SEC_TONE_ON:
192                 tda10086_write_byte(state, 0x36, 0x01);
193                 break;
194         }
195
196         return 0;
197 }
198
199 static int tda10086_send_master_cmd (struct dvb_frontend* fe,
200                                     struct dvb_diseqc_master_cmd* cmd)
201 {
202         struct tda10086_state* state = fe->demodulator_priv;
203         int i;
204         u8 oldval;
205
206         dprintk ("%s\n", __FUNCTION__);
207
208         if (cmd->msg_len > 6)
209                 return -EINVAL;
210         oldval = tda10086_read_byte(state, 0x36);
211
212         for(i=0; i< cmd->msg_len; i++) {
213                 tda10086_write_byte(state, 0x48+i, cmd->msg[i]);
214         }
215         tda10086_write_byte(state, 0x36, 0x08 | ((cmd->msg_len + 1) << 4));
216
217         tda10086_diseqc_wait(state);
218
219         tda10086_write_byte(state, 0x36, oldval);
220
221         return 0;
222 }
223
224 static int tda10086_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
225 {
226         struct tda10086_state* state = fe->demodulator_priv;
227         u8 oldval = tda10086_read_byte(state, 0x36);
228
229         dprintk ("%s\n", __FUNCTION__);
230
231         switch(minicmd) {
232         case SEC_MINI_A:
233                 tda10086_write_byte(state, 0x36, 0x04);
234                 break;
235
236         case SEC_MINI_B:
237                 tda10086_write_byte(state, 0x36, 0x06);
238                 break;
239         }
240
241         tda10086_diseqc_wait(state);
242
243         tda10086_write_byte(state, 0x36, oldval);
244
245         return 0;
246 }
247
248 static int tda10086_set_inversion(struct tda10086_state *state,
249                                   struct dvb_frontend_parameters *fe_params)
250 {
251         u8 invval = 0x80;
252
253         dprintk ("%s %i %i\n", __FUNCTION__, fe_params->inversion, state->config->invert);
254
255         switch(fe_params->inversion) {
256         case INVERSION_OFF:
257                 if (state->config->invert)
258                         invval = 0x40;
259                 break;
260         case INVERSION_ON:
261                 if (!state->config->invert)
262                         invval = 0x40;
263                 break;
264         case INVERSION_AUTO:
265                 invval = 0x00;
266                 break;
267         }
268         tda10086_write_mask(state, 0x0c, 0xc0, invval);
269
270         return 0;
271 }
272
273 static int tda10086_set_symbol_rate(struct tda10086_state *state,
274                                     struct dvb_frontend_parameters *fe_params)
275 {
276         u8 dfn = 0;
277         u8 afs = 0;
278         u8 byp = 0;
279         u8 reg37 = 0x43;
280         u8 reg42 = 0x43;
281         u64 big;
282         u32 tmp;
283         u32 bdr;
284         u32 bdri;
285         u32 symbol_rate = fe_params->u.qpsk.symbol_rate;
286
287         dprintk ("%s %i\n", __FUNCTION__, symbol_rate);
288
289         // setup the decimation and anti-aliasing filters..
290         if (symbol_rate < (u32) (SACLK * 0.0137)) {
291                 dfn=4;
292                 afs=1;
293         } else if (symbol_rate < (u32) (SACLK * 0.0208)) {
294                 dfn=4;
295                 afs=0;
296         } else if (symbol_rate < (u32) (SACLK * 0.0270)) {
297                 dfn=3;
298                 afs=1;
299         } else if (symbol_rate < (u32) (SACLK * 0.0416)) {
300                 dfn=3;
301                 afs=0;
302         } else if (symbol_rate < (u32) (SACLK * 0.0550)) {
303                 dfn=2;
304                 afs=1;
305         } else if (symbol_rate < (u32) (SACLK * 0.0833)) {
306                 dfn=2;
307                 afs=0;
308         } else if (symbol_rate < (u32) (SACLK * 0.1100)) {
309                 dfn=1;
310                 afs=1;
311         } else if (symbol_rate < (u32) (SACLK * 0.1666)) {
312                 dfn=1;
313                 afs=0;
314         } else if (symbol_rate < (u32) (SACLK * 0.2200)) {
315                 dfn=0;
316                 afs=1;
317         } else if (symbol_rate < (u32) (SACLK * 0.3333)) {
318                 dfn=0;
319                 afs=0;
320         } else {
321                 reg37 = 0x63;
322                 reg42 = 0x4f;
323                 byp=1;
324         }
325
326         // calculate BDR
327         big = (1ULL<<21) * ((u64) symbol_rate/1000ULL) * (1ULL<<dfn);
328         big += ((SACLK/1000ULL)-1ULL);
329         do_div(big, (SACLK/1000ULL));
330         bdr = big & 0xfffff;
331
332         // calculate BDRI
333         tmp = (1<<dfn)*(symbol_rate/1000);
334         bdri = ((32 * (SACLK/1000)) + (tmp-1)) / tmp;
335
336         tda10086_write_byte(state, 0x21, (afs << 7) | dfn);
337         tda10086_write_mask(state, 0x20, 0x08, byp << 3);
338         tda10086_write_byte(state, 0x06, bdr);
339         tda10086_write_byte(state, 0x07, bdr >> 8);
340         tda10086_write_byte(state, 0x08, bdr >> 16);
341         tda10086_write_byte(state, 0x09, bdri);
342         tda10086_write_byte(state, 0x37, reg37);
343         tda10086_write_byte(state, 0x42, reg42);
344
345         return 0;
346 }
347
348 static int tda10086_set_fec(struct tda10086_state *state,
349                             struct dvb_frontend_parameters *fe_params)
350 {
351         u8 fecval;
352
353         dprintk ("%s %i\n", __FUNCTION__, fe_params->u.qpsk.fec_inner);
354
355         switch(fe_params->u.qpsk.fec_inner) {
356         case FEC_1_2:
357                 fecval = 0x00;
358                 break;
359         case FEC_2_3:
360                 fecval = 0x01;
361                 break;
362         case FEC_3_4:
363                 fecval = 0x02;
364                 break;
365         case FEC_4_5:
366                 fecval = 0x03;
367                 break;
368         case FEC_5_6:
369                 fecval = 0x04;
370                 break;
371         case FEC_6_7:
372                 fecval = 0x05;
373                 break;
374         case FEC_7_8:
375                 fecval = 0x06;
376                 break;
377         case FEC_8_9:
378                 fecval = 0x07;
379                 break;
380         case FEC_AUTO:
381                 fecval = 0x08;
382                 break;
383         default:
384                 return -1;
385         }
386         tda10086_write_byte(state, 0x0d, fecval);
387
388         return 0;
389 }
390
391 static int tda10086_set_frontend(struct dvb_frontend* fe,
392                                  struct dvb_frontend_parameters *fe_params)
393 {
394         struct tda10086_state *state = fe->demodulator_priv;
395         int ret;
396         u32 freq = 0;
397         int freqoff;
398
399         dprintk ("%s\n", __FUNCTION__);
400
401         // set params
402         if (fe->ops.tuner_ops.set_params) {
403                 fe->ops.tuner_ops.set_params(fe, fe_params);
404                 if (fe->ops.i2c_gate_ctrl)
405                         fe->ops.i2c_gate_ctrl(fe, 0);
406
407                 if (fe->ops.tuner_ops.get_frequency)
408                         fe->ops.tuner_ops.get_frequency(fe, &freq);
409                 if (fe->ops.i2c_gate_ctrl)
410                         fe->ops.i2c_gate_ctrl(fe, 0);
411         }
412
413         // calcluate the frequency offset (in *Hz* not kHz)
414         freqoff = fe_params->frequency - freq;
415         freqoff = ((1<<16) * freqoff) / (SACLK/1000);
416         tda10086_write_byte(state, 0x3d, 0x80 | ((freqoff >> 8) & 0x7f));
417         tda10086_write_byte(state, 0x3e, freqoff);
418
419         if ((ret = tda10086_set_inversion(state, fe_params)) < 0)
420                 return ret;
421         if ((ret = tda10086_set_symbol_rate(state, fe_params)) < 0)
422                 return ret;
423         if ((ret = tda10086_set_fec(state, fe_params)) < 0)
424                 return ret;
425
426         // soft reset + disable TS output until lock
427         tda10086_write_mask(state, 0x10, 0x40, 0x40);
428         tda10086_write_mask(state, 0x00, 0x01, 0x00);
429
430         state->symbol_rate = fe_params->u.qpsk.symbol_rate;
431         state->frequency = fe_params->frequency;
432         return 0;
433 }
434
435 static int tda10086_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
436 {
437         struct tda10086_state* state = fe->demodulator_priv;
438         u8 val;
439         int tmp;
440         u64 tmp64;
441
442         dprintk ("%s\n", __FUNCTION__);
443
444         // check for invalid symbol rate
445         if (fe_params->u.qpsk.symbol_rate < 500000)
446                 return -EINVAL;
447
448         // calculate the updated frequency (note: we convert from Hz->kHz)
449         tmp64 = tda10086_read_byte(state, 0x52);
450         tmp64 |= (tda10086_read_byte(state, 0x51) << 8);
451         if (tmp64 & 0x8000)
452                 tmp64 |= 0xffffffffffff0000ULL;
453         tmp64 = (tmp64 * (SACLK/1000ULL));
454         do_div(tmp64, (1ULL<<15) * (1ULL<<1));
455         fe_params->frequency = (int) state->frequency + (int) tmp64;
456
457         // the inversion
458         val = tda10086_read_byte(state, 0x0c);
459         if (val & 0x80) {
460                 switch(val & 0x40) {
461                 case 0x00:
462                         fe_params->inversion = INVERSION_OFF;
463                         if (state->config->invert)
464                                 fe_params->inversion = INVERSION_ON;
465                         break;
466                 default:
467                         fe_params->inversion = INVERSION_ON;
468                         if (state->config->invert)
469                                 fe_params->inversion = INVERSION_OFF;
470                         break;
471                 }
472         } else {
473                 tda10086_read_byte(state, 0x0f);
474                 switch(val & 0x02) {
475                 case 0x00:
476                         fe_params->inversion = INVERSION_OFF;
477                         if (state->config->invert)
478                                 fe_params->inversion = INVERSION_ON;
479                         break;
480                 default:
481                         fe_params->inversion = INVERSION_ON;
482                         if (state->config->invert)
483                                 fe_params->inversion = INVERSION_OFF;
484                         break;
485                 }
486         }
487
488         // calculate the updated symbol rate
489         tmp = tda10086_read_byte(state, 0x1d);
490         if (tmp & 0x80)
491                 tmp |= 0xffffff00;
492         tmp = (tmp * 480 * (1<<1)) / 128;
493         tmp = ((state->symbol_rate/1000) * tmp) / (1000000/1000);
494         fe_params->u.qpsk.symbol_rate = state->symbol_rate + tmp;
495
496         // the FEC
497         val = (tda10086_read_byte(state, 0x0d) & 0x70) >> 4;
498         switch(val) {
499         case 0x00:
500                 fe_params->u.qpsk.fec_inner = FEC_1_2;
501                 break;
502         case 0x01:
503                 fe_params->u.qpsk.fec_inner = FEC_2_3;
504                 break;
505         case 0x02:
506                 fe_params->u.qpsk.fec_inner = FEC_3_4;
507                 break;
508         case 0x03:
509                 fe_params->u.qpsk.fec_inner = FEC_4_5;
510                 break;
511         case 0x04:
512                 fe_params->u.qpsk.fec_inner = FEC_5_6;
513                 break;
514         case 0x05:
515                 fe_params->u.qpsk.fec_inner = FEC_6_7;
516                 break;
517         case 0x06:
518                 fe_params->u.qpsk.fec_inner = FEC_7_8;
519                 break;
520         case 0x07:
521                 fe_params->u.qpsk.fec_inner = FEC_8_9;
522                 break;
523         }
524
525         return 0;
526 }
527
528 static int tda10086_read_status(struct dvb_frontend* fe, fe_status_t *fe_status)
529 {
530         struct tda10086_state* state = fe->demodulator_priv;
531         u8 val;
532
533         dprintk ("%s\n", __FUNCTION__);
534
535         val = tda10086_read_byte(state, 0x0e);
536         *fe_status = 0;
537         if (val & 0x01)
538                 *fe_status |= FE_HAS_SIGNAL;
539         if (val & 0x02)
540                 *fe_status |= FE_HAS_CARRIER;
541         if (val & 0x04)
542                 *fe_status |= FE_HAS_VITERBI;
543         if (val & 0x08)
544                 *fe_status |= FE_HAS_SYNC;
545         if (val & 0x10)
546                 *fe_status |= FE_HAS_LOCK;
547
548         return 0;
549 }
550
551 static int tda10086_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
552 {
553         struct tda10086_state* state = fe->demodulator_priv;
554         u8 _str;
555
556         dprintk ("%s\n", __FUNCTION__);
557
558         _str = tda10086_read_byte(state, 0x43);
559         *signal = (_str << 8) | _str;
560
561         return 0;
562 }
563
564 static int tda10086_read_snr(struct dvb_frontend* fe, u16 * snr)
565 {
566         struct tda10086_state* state = fe->demodulator_priv;
567         u8 _snr;
568
569         dprintk ("%s\n", __FUNCTION__);
570
571         _snr = tda10086_read_byte(state, 0x1c);
572         *snr = (_snr << 8) | _snr;
573
574         return 0;
575 }
576
577 static int tda10086_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
578 {
579         struct tda10086_state* state = fe->demodulator_priv;
580
581         dprintk ("%s\n", __FUNCTION__);
582
583         // read it
584         *ucblocks = tda10086_read_byte(state, 0x18) & 0x7f;
585
586         // reset counter
587         tda10086_write_byte(state, 0x18, 0x00);
588         tda10086_write_byte(state, 0x18, 0x80);
589
590         return 0;
591 }
592
593 static int tda10086_read_ber(struct dvb_frontend* fe, u32* ber)
594 {
595         struct tda10086_state* state = fe->demodulator_priv;
596
597         dprintk ("%s\n", __FUNCTION__);
598
599         // read it
600         *ber = 0;
601         *ber |= tda10086_read_byte(state, 0x15);
602         *ber |= tda10086_read_byte(state, 0x16) << 8;
603         *ber |= (tda10086_read_byte(state, 0x17) & 0xf) << 16;
604
605         return 0;
606 }
607
608 static int tda10086_sleep(struct dvb_frontend* fe)
609 {
610         struct tda10086_state* state = fe->demodulator_priv;
611
612         dprintk ("%s\n", __FUNCTION__);
613
614         tda10086_write_mask(state, 0x00, 0x08, 0x08);
615
616         return 0;
617 }
618
619 static int tda10086_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
620 {
621         struct tda10086_state* state = fe->demodulator_priv;
622
623         dprintk ("%s\n", __FUNCTION__);
624
625         if (enable) {
626                 tda10086_write_mask(state, 0x00, 0x10, 0x10);
627         } else {
628                 tda10086_write_mask(state, 0x00, 0x10, 0x00);
629         }
630
631         return 0;
632 }
633
634 static int tda10086_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
635 {
636         if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) {
637                 fesettings->min_delay_ms = 50;
638                 fesettings->step_size = 2000;
639                 fesettings->max_drift = 8000;
640         } else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) {
641                 fesettings->min_delay_ms = 100;
642                 fesettings->step_size = 1500;
643                 fesettings->max_drift = 9000;
644         } else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) {
645                 fesettings->min_delay_ms = 100;
646                 fesettings->step_size = 1000;
647                 fesettings->max_drift = 8000;
648         } else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) {
649                 fesettings->min_delay_ms = 100;
650                 fesettings->step_size = 500;
651                 fesettings->max_drift = 7000;
652         } else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) {
653                 fesettings->min_delay_ms = 200;
654                 fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
655                 fesettings->max_drift = 14 * fesettings->step_size;
656         } else {
657                 fesettings->min_delay_ms = 200;
658                 fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
659                 fesettings->max_drift = 18 * fesettings->step_size;
660         }
661
662         return 0;
663 }
664
665 static void tda10086_release(struct dvb_frontend* fe)
666 {
667         struct tda10086_state *state = fe->demodulator_priv;
668         tda10086_sleep(fe);
669         kfree(state);
670 }
671
672 static struct dvb_frontend_ops tda10086_ops = {
673
674         .info = {
675                 .name     = "Philips TDA10086 DVB-S",
676                 .type     = FE_QPSK,
677                 .frequency_min    = 950000,
678                 .frequency_max    = 2150000,
679                 .frequency_stepsize = 125,     /* kHz for QPSK frontends */
680                 .symbol_rate_min  = 1000000,
681                 .symbol_rate_max  = 45000000,
682                 .caps = FE_CAN_INVERSION_AUTO |
683                         FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
684                         FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
685                         FE_CAN_QPSK
686         },
687
688         .release = tda10086_release,
689
690         .init = tda10086_init,
691         .sleep = tda10086_sleep,
692         .i2c_gate_ctrl = tda10086_i2c_gate_ctrl,
693
694         .set_frontend = tda10086_set_frontend,
695         .get_frontend = tda10086_get_frontend,
696         .get_tune_settings = tda10086_get_tune_settings,
697
698         .read_status = tda10086_read_status,
699         .read_ber = tda10086_read_ber,
700         .read_signal_strength = tda10086_read_signal_strength,
701         .read_snr = tda10086_read_snr,
702         .read_ucblocks = tda10086_read_ucblocks,
703
704         .diseqc_send_master_cmd = tda10086_send_master_cmd,
705         .diseqc_send_burst = tda10086_send_burst,
706         .set_tone = tda10086_set_tone,
707 };
708
709 struct dvb_frontend* tda10086_attach(const struct tda10086_config* config,
710                                      struct i2c_adapter* i2c)
711 {
712         struct tda10086_state *state;
713
714         dprintk ("%s\n", __FUNCTION__);
715
716         /* allocate memory for the internal state */
717         state = kmalloc(sizeof(struct tda10086_state), GFP_KERNEL);
718         if (!state)
719                 return NULL;
720
721         /* setup the state */
722         state->config = config;
723         state->i2c = i2c;
724
725         /* check if the demod is there */
726         if (tda10086_read_byte(state, 0x1e) != 0xe1) {
727                 kfree(state);
728                 return NULL;
729         }
730
731         /* create dvb_frontend */
732         memcpy(&state->frontend.ops, &tda10086_ops, sizeof(struct dvb_frontend_ops));
733         state->frontend.demodulator_priv = state;
734         return &state->frontend;
735 }
736
737 module_param(debug, int, 0644);
738 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
739
740 MODULE_DESCRIPTION("Philips TDA10086 DVB-S Demodulator");
741 MODULE_AUTHOR("Andrew de Quincey");
742 MODULE_LICENSE("GPL");
743
744 EXPORT_SYMBOL(tda10086_attach);