Pull button into test branch
[linux-2.6] / drivers / media / video / cx88 / cx88-core.c
1 /*
2  *
3  * device driver for Conexant 2388x based TV cards
4  * driver core
5  *
6  * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/init.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/kmod.h>
30 #include <linux/sound.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/videodev2.h>
35 #include <linux/mutex.h>
36
37 #include "cx88.h"
38 #include <media/v4l2-common.h>
39
40 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
41 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
42 MODULE_LICENSE("GPL");
43
44 /* ------------------------------------------------------------------ */
45
46 static unsigned int core_debug = 0;
47 module_param(core_debug,int,0644);
48 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
49
50 static unsigned int latency = UNSET;
51 module_param(latency,int,0444);
52 MODULE_PARM_DESC(latency,"pci latency timer");
53
54 static unsigned int tuner[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
55 static unsigned int radio[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
56 static unsigned int card[]  = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
57
58 module_param_array(tuner, int, NULL, 0444);
59 module_param_array(radio, int, NULL, 0444);
60 module_param_array(card,  int, NULL, 0444);
61
62 MODULE_PARM_DESC(tuner,"tuner type");
63 MODULE_PARM_DESC(radio,"radio tuner type");
64 MODULE_PARM_DESC(card,"card type");
65
66 static unsigned int nicam = 0;
67 module_param(nicam,int,0644);
68 MODULE_PARM_DESC(nicam,"tv audio is nicam");
69
70 static unsigned int nocomb = 0;
71 module_param(nocomb,int,0644);
72 MODULE_PARM_DESC(nocomb,"disable comb filter");
73
74 #define dprintk(level,fmt, arg...)      if (core_debug >= level)        \
75         printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
76
77 static unsigned int cx88_devcount;
78 static LIST_HEAD(cx88_devlist);
79 static DEFINE_MUTEX(devlist);
80
81 #define NO_SYNC_LINE (-1U)
82
83 static u32* cx88_risc_field(u32 *rp, struct scatterlist *sglist,
84                             unsigned int offset, u32 sync_line,
85                             unsigned int bpl, unsigned int padding,
86                             unsigned int lines)
87 {
88         struct scatterlist *sg;
89         unsigned int line,todo;
90
91         /* sync instruction */
92         if (sync_line != NO_SYNC_LINE)
93                 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
94
95         /* scan lines */
96         sg = sglist;
97         for (line = 0; line < lines; line++) {
98                 while (offset && offset >= sg_dma_len(sg)) {
99                         offset -= sg_dma_len(sg);
100                         sg++;
101                 }
102                 if (bpl <= sg_dma_len(sg)-offset) {
103                         /* fits into current chunk */
104                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|RISC_EOL|bpl);
105                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
106                         offset+=bpl;
107                 } else {
108                         /* scanline needs to be split */
109                         todo = bpl;
110                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|
111                                             (sg_dma_len(sg)-offset));
112                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
113                         todo -= (sg_dma_len(sg)-offset);
114                         offset = 0;
115                         sg++;
116                         while (todo > sg_dma_len(sg)) {
117                                 *(rp++)=cpu_to_le32(RISC_WRITE|
118                                                     sg_dma_len(sg));
119                                 *(rp++)=cpu_to_le32(sg_dma_address(sg));
120                                 todo -= sg_dma_len(sg);
121                                 sg++;
122                         }
123                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
124                         *(rp++)=cpu_to_le32(sg_dma_address(sg));
125                         offset += todo;
126                 }
127                 offset += padding;
128         }
129
130         return rp;
131 }
132
133 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
134                      struct scatterlist *sglist,
135                      unsigned int top_offset, unsigned int bottom_offset,
136                      unsigned int bpl, unsigned int padding, unsigned int lines)
137 {
138         u32 instructions,fields;
139         u32 *rp;
140         int rc;
141
142         fields = 0;
143         if (UNSET != top_offset)
144                 fields++;
145         if (UNSET != bottom_offset)
146                 fields++;
147
148         /* estimate risc mem: worst case is one write per page border +
149            one write per scan line + syncs + jump (all 2 dwords).  Padding
150            can cause next bpl to start close to a page border.  First DMA
151            region may be smaller than PAGE_SIZE */
152         instructions  = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
153         instructions += 2;
154         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
155                 return rc;
156
157         /* write risc instructions */
158         rp = risc->cpu;
159         if (UNSET != top_offset)
160                 rp = cx88_risc_field(rp, sglist, top_offset, 0,
161                                      bpl, padding, lines);
162         if (UNSET != bottom_offset)
163                 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
164                                      bpl, padding, lines);
165
166         /* save pointer to jmp instruction address */
167         risc->jmp = rp;
168         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
169         return 0;
170 }
171
172 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
173                          struct scatterlist *sglist, unsigned int bpl,
174                          unsigned int lines)
175 {
176         u32 instructions;
177         u32 *rp;
178         int rc;
179
180         /* estimate risc mem: worst case is one write per page border +
181            one write per scan line + syncs + jump (all 2 dwords).  Here
182            there is no padding and no sync.  First DMA region may be smaller
183            than PAGE_SIZE */
184         instructions  = 1 + (bpl * lines) / PAGE_SIZE + lines;
185         instructions += 1;
186         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
187                 return rc;
188
189         /* write risc instructions */
190         rp = risc->cpu;
191         rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines);
192
193         /* save pointer to jmp instruction address */
194         risc->jmp = rp;
195         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
196         return 0;
197 }
198
199 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
200                       u32 reg, u32 mask, u32 value)
201 {
202         u32 *rp;
203         int rc;
204
205         if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
206                 return rc;
207
208         /* write risc instructions */
209         rp = risc->cpu;
210         *(rp++) = cpu_to_le32(RISC_WRITECR  | RISC_IRQ2 | RISC_IMM);
211         *(rp++) = cpu_to_le32(reg);
212         *(rp++) = cpu_to_le32(value);
213         *(rp++) = cpu_to_le32(mask);
214         *(rp++) = cpu_to_le32(RISC_JUMP);
215         *(rp++) = cpu_to_le32(risc->dma);
216         return 0;
217 }
218
219 void
220 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
221 {
222         BUG_ON(in_interrupt());
223         videobuf_waiton(&buf->vb,0,0);
224         videobuf_dma_unmap(q, &buf->vb.dma);
225         videobuf_dma_free(&buf->vb.dma);
226         btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc);
227         buf->vb.state = STATE_NEEDS_INIT;
228 }
229
230 /* ------------------------------------------------------------------ */
231 /* our SRAM memory layout                                             */
232
233 /* we are going to put all thr risc programs into host memory, so we
234  * can use the whole SDRAM for the DMA fifos.  To simplify things, we
235  * use a static memory layout.  That surely will waste memory in case
236  * we don't use all DMA channels at the same time (which will be the
237  * case most of the time).  But that still gives us enougth FIFO space
238  * to be able to deal with insane long pci latencies ...
239  *
240  * FIFO space allocations:
241  *    channel  21    (y video)  - 10.0k
242  *    channel  22    (u video)  -  2.0k
243  *    channel  23    (v video)  -  2.0k
244  *    channel  24    (vbi)      -  4.0k
245  *    channels 25+26 (audio)    -  4.0k
246  *    channel  28    (mpeg)     -  4.0k
247  *    TOTAL                     = 29.0k
248  *
249  * Every channel has 160 bytes control data (64 bytes instruction
250  * queue and 6 CDT entries), which is close to 2k total.
251  *
252  * Address layout:
253  *    0x0000 - 0x03ff    CMDs / reserved
254  *    0x0400 - 0x0bff    instruction queues + CDs
255  *    0x0c00 -           FIFOs
256  */
257
258 struct sram_channel cx88_sram_channels[] = {
259         [SRAM_CH21] = {
260                 .name       = "video y / packed",
261                 .cmds_start = 0x180040,
262                 .ctrl_start = 0x180400,
263                 .cdt        = 0x180400 + 64,
264                 .fifo_start = 0x180c00,
265                 .fifo_size  = 0x002800,
266                 .ptr1_reg   = MO_DMA21_PTR1,
267                 .ptr2_reg   = MO_DMA21_PTR2,
268                 .cnt1_reg   = MO_DMA21_CNT1,
269                 .cnt2_reg   = MO_DMA21_CNT2,
270         },
271         [SRAM_CH22] = {
272                 .name       = "video u",
273                 .cmds_start = 0x180080,
274                 .ctrl_start = 0x1804a0,
275                 .cdt        = 0x1804a0 + 64,
276                 .fifo_start = 0x183400,
277                 .fifo_size  = 0x000800,
278                 .ptr1_reg   = MO_DMA22_PTR1,
279                 .ptr2_reg   = MO_DMA22_PTR2,
280                 .cnt1_reg   = MO_DMA22_CNT1,
281                 .cnt2_reg   = MO_DMA22_CNT2,
282         },
283         [SRAM_CH23] = {
284                 .name       = "video v",
285                 .cmds_start = 0x1800c0,
286                 .ctrl_start = 0x180540,
287                 .cdt        = 0x180540 + 64,
288                 .fifo_start = 0x183c00,
289                 .fifo_size  = 0x000800,
290                 .ptr1_reg   = MO_DMA23_PTR1,
291                 .ptr2_reg   = MO_DMA23_PTR2,
292                 .cnt1_reg   = MO_DMA23_CNT1,
293                 .cnt2_reg   = MO_DMA23_CNT2,
294         },
295         [SRAM_CH24] = {
296                 .name       = "vbi",
297                 .cmds_start = 0x180100,
298                 .ctrl_start = 0x1805e0,
299                 .cdt        = 0x1805e0 + 64,
300                 .fifo_start = 0x184400,
301                 .fifo_size  = 0x001000,
302                 .ptr1_reg   = MO_DMA24_PTR1,
303                 .ptr2_reg   = MO_DMA24_PTR2,
304                 .cnt1_reg   = MO_DMA24_CNT1,
305                 .cnt2_reg   = MO_DMA24_CNT2,
306         },
307         [SRAM_CH25] = {
308                 .name       = "audio from",
309                 .cmds_start = 0x180140,
310                 .ctrl_start = 0x180680,
311                 .cdt        = 0x180680 + 64,
312                 .fifo_start = 0x185400,
313                 .fifo_size  = 0x001000,
314                 .ptr1_reg   = MO_DMA25_PTR1,
315                 .ptr2_reg   = MO_DMA25_PTR2,
316                 .cnt1_reg   = MO_DMA25_CNT1,
317                 .cnt2_reg   = MO_DMA25_CNT2,
318         },
319         [SRAM_CH26] = {
320                 .name       = "audio to",
321                 .cmds_start = 0x180180,
322                 .ctrl_start = 0x180720,
323                 .cdt        = 0x180680 + 64,  /* same as audio IN */
324                 .fifo_start = 0x185400,       /* same as audio IN */
325                 .fifo_size  = 0x001000,       /* same as audio IN */
326                 .ptr1_reg   = MO_DMA26_PTR1,
327                 .ptr2_reg   = MO_DMA26_PTR2,
328                 .cnt1_reg   = MO_DMA26_CNT1,
329                 .cnt2_reg   = MO_DMA26_CNT2,
330         },
331         [SRAM_CH28] = {
332                 .name       = "mpeg",
333                 .cmds_start = 0x180200,
334                 .ctrl_start = 0x1807C0,
335                 .cdt        = 0x1807C0 + 64,
336                 .fifo_start = 0x186400,
337                 .fifo_size  = 0x001000,
338                 .ptr1_reg   = MO_DMA28_PTR1,
339                 .ptr2_reg   = MO_DMA28_PTR2,
340                 .cnt1_reg   = MO_DMA28_CNT1,
341                 .cnt2_reg   = MO_DMA28_CNT2,
342         },
343 };
344
345 int cx88_sram_channel_setup(struct cx88_core *core,
346                             struct sram_channel *ch,
347                             unsigned int bpl, u32 risc)
348 {
349         unsigned int i,lines;
350         u32 cdt;
351
352         bpl   = (bpl + 7) & ~7; /* alignment */
353         cdt   = ch->cdt;
354         lines = ch->fifo_size / bpl;
355         if (lines > 6)
356                 lines = 6;
357         BUG_ON(lines < 2);
358
359         /* write CDT */
360         for (i = 0; i < lines; i++)
361                 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
362
363         /* write CMDS */
364         cx_write(ch->cmds_start +  0, risc);
365         cx_write(ch->cmds_start +  4, cdt);
366         cx_write(ch->cmds_start +  8, (lines*16) >> 3);
367         cx_write(ch->cmds_start + 12, ch->ctrl_start);
368         cx_write(ch->cmds_start + 16, 64 >> 2);
369         for (i = 20; i < 64; i += 4)
370                 cx_write(ch->cmds_start + i, 0);
371
372         /* fill registers */
373         cx_write(ch->ptr1_reg, ch->fifo_start);
374         cx_write(ch->ptr2_reg, cdt);
375         cx_write(ch->cnt1_reg, (bpl >> 3) -1);
376         cx_write(ch->cnt2_reg, (lines*16) >> 3);
377
378         dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
379         return 0;
380 }
381
382 /* ------------------------------------------------------------------ */
383 /* debug helper code                                                  */
384
385 static int cx88_risc_decode(u32 risc)
386 {
387         static char *instr[16] = {
388                 [ RISC_SYNC    >> 28 ] = "sync",
389                 [ RISC_WRITE   >> 28 ] = "write",
390                 [ RISC_WRITEC  >> 28 ] = "writec",
391                 [ RISC_READ    >> 28 ] = "read",
392                 [ RISC_READC   >> 28 ] = "readc",
393                 [ RISC_JUMP    >> 28 ] = "jump",
394                 [ RISC_SKIP    >> 28 ] = "skip",
395                 [ RISC_WRITERM >> 28 ] = "writerm",
396                 [ RISC_WRITECM >> 28 ] = "writecm",
397                 [ RISC_WRITECR >> 28 ] = "writecr",
398         };
399         static int incr[16] = {
400                 [ RISC_WRITE   >> 28 ] = 2,
401                 [ RISC_JUMP    >> 28 ] = 2,
402                 [ RISC_WRITERM >> 28 ] = 3,
403                 [ RISC_WRITECM >> 28 ] = 3,
404                 [ RISC_WRITECR >> 28 ] = 4,
405         };
406         static char *bits[] = {
407                 "12",   "13",   "14",   "resync",
408                 "cnt0", "cnt1", "18",   "19",
409                 "20",   "21",   "22",   "23",
410                 "irq1", "irq2", "eol",  "sol",
411         };
412         int i;
413
414         printk("0x%08x [ %s", risc,
415                instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
416         for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
417                 if (risc & (1 << (i + 12)))
418                         printk(" %s",bits[i]);
419         printk(" count=%d ]\n", risc & 0xfff);
420         return incr[risc >> 28] ? incr[risc >> 28] : 1;
421 }
422
423
424 void cx88_sram_channel_dump(struct cx88_core *core,
425                             struct sram_channel *ch)
426 {
427         static char *name[] = {
428                 "initial risc",
429                 "cdt base",
430                 "cdt size",
431                 "iq base",
432                 "iq size",
433                 "risc pc",
434                 "iq wr ptr",
435                 "iq rd ptr",
436                 "cdt current",
437                 "pci target",
438                 "line / byte",
439         };
440         u32 risc;
441         unsigned int i,j,n;
442
443         printk("%s: %s - dma channel status dump\n",
444                core->name,ch->name);
445         for (i = 0; i < ARRAY_SIZE(name); i++)
446                 printk("%s:   cmds: %-12s: 0x%08x\n",
447                        core->name,name[i],
448                        cx_read(ch->cmds_start + 4*i));
449         for (i = 0; i < 4; i++) {
450                 risc = cx_read(ch->cmds_start + 4 * (i+11));
451                 printk("%s:   risc%d: ", core->name, i);
452                 cx88_risc_decode(risc);
453         }
454         for (i = 0; i < 16; i += n) {
455                 risc = cx_read(ch->ctrl_start + 4 * i);
456                 printk("%s:   iq %x: ", core->name, i);
457                 n = cx88_risc_decode(risc);
458                 for (j = 1; j < n; j++) {
459                         risc = cx_read(ch->ctrl_start + 4 * (i+j));
460                         printk("%s:   iq %x: 0x%08x [ arg #%d ]\n",
461                                core->name, i+j, risc, j);
462                 }
463         }
464
465         printk("%s: fifo: 0x%08x -> 0x%x\n",
466                core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
467         printk("%s: ctrl: 0x%08x -> 0x%x\n",
468                core->name, ch->ctrl_start, ch->ctrl_start+6*16);
469         printk("%s:   ptr1_reg: 0x%08x\n",
470                core->name,cx_read(ch->ptr1_reg));
471         printk("%s:   ptr2_reg: 0x%08x\n",
472                core->name,cx_read(ch->ptr2_reg));
473         printk("%s:   cnt1_reg: 0x%08x\n",
474                core->name,cx_read(ch->cnt1_reg));
475         printk("%s:   cnt2_reg: 0x%08x\n",
476                core->name,cx_read(ch->cnt2_reg));
477 }
478
479 static char *cx88_pci_irqs[32] = {
480         "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
481         "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
482         "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
483         "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
484 };
485
486 void cx88_print_irqbits(char *name, char *tag, char **strings,
487                         u32 bits, u32 mask)
488 {
489         unsigned int i;
490
491         printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
492         for (i = 0; i < 32; i++) {
493                 if (!(bits & (1 << i)))
494                         continue;
495                 if (strings[i])
496                         printk(" %s", strings[i]);
497                 else
498                         printk(" %d", i);
499                 if (!(mask & (1 << i)))
500                         continue;
501                 printk("*");
502         }
503         printk("\n");
504 }
505
506 /* ------------------------------------------------------------------ */
507
508 int cx88_core_irq(struct cx88_core *core, u32 status)
509 {
510         int handled = 0;
511
512         if (status & (1<<18)) {
513                 cx88_ir_irq(core);
514                 handled++;
515         }
516         if (!handled)
517                 cx88_print_irqbits(core->name, "irq pci",
518                                    cx88_pci_irqs, status,
519                                    core->pci_irqmask);
520         return handled;
521 }
522
523 void cx88_wakeup(struct cx88_core *core,
524                  struct cx88_dmaqueue *q, u32 count)
525 {
526         struct cx88_buffer *buf;
527         int bc;
528
529         for (bc = 0;; bc++) {
530                 if (list_empty(&q->active))
531                         break;
532                 buf = list_entry(q->active.next,
533                                  struct cx88_buffer, vb.queue);
534                 /* count comes from the hw and is is 16bit wide --
535                  * this trick handles wrap-arounds correctly for
536                  * up to 32767 buffers in flight... */
537                 if ((s16) (count - buf->count) < 0)
538                         break;
539                 do_gettimeofday(&buf->vb.ts);
540                 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
541                         count, buf->count);
542                 buf->vb.state = STATE_DONE;
543                 list_del(&buf->vb.queue);
544                 wake_up(&buf->vb.done);
545         }
546         if (list_empty(&q->active)) {
547                 del_timer(&q->timeout);
548         } else {
549                 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
550         }
551         if (bc != 1)
552                 printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__,bc);
553 }
554
555 void cx88_shutdown(struct cx88_core *core)
556 {
557         /* disable RISC controller + IRQs */
558         cx_write(MO_DEV_CNTRL2, 0);
559
560         /* stop dma transfers */
561         cx_write(MO_VID_DMACNTRL, 0x0);
562         cx_write(MO_AUD_DMACNTRL, 0x0);
563         cx_write(MO_TS_DMACNTRL, 0x0);
564         cx_write(MO_VIP_DMACNTRL, 0x0);
565         cx_write(MO_GPHST_DMACNTRL, 0x0);
566
567         /* stop interrupts */
568         cx_write(MO_PCI_INTMSK, 0x0);
569         cx_write(MO_VID_INTMSK, 0x0);
570         cx_write(MO_AUD_INTMSK, 0x0);
571         cx_write(MO_TS_INTMSK, 0x0);
572         cx_write(MO_VIP_INTMSK, 0x0);
573         cx_write(MO_GPHST_INTMSK, 0x0);
574
575         /* stop capturing */
576         cx_write(VID_CAPTURE_CONTROL, 0);
577 }
578
579 int cx88_reset(struct cx88_core *core)
580 {
581         dprintk(1,"%s\n",__FUNCTION__);
582         cx88_shutdown(core);
583
584         /* clear irq status */
585         cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
586         cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
587         cx_write(MO_INT1_STAT,   0xFFFFFFFF); // Clear RISC int
588
589         /* wait a bit */
590         msleep(100);
591
592         /* init sram */
593         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
594         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
595         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
596         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
597         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
598         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
599         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
600
601         /* misc init ... */
602         cx_write(MO_INPUT_FORMAT, ((1 << 13) |   // agc enable
603                                    (1 << 12) |   // agc gain
604                                    (1 << 11) |   // adaptibe agc
605                                    (0 << 10) |   // chroma agc
606                                    (0 <<  9) |   // ckillen
607                                    (7)));
608
609         /* setup image format */
610         cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
611
612         /* setup FIFO Threshholds */
613         cx_write(MO_PDMA_STHRSH,   0x0807);
614         cx_write(MO_PDMA_DTHRSH,   0x0807);
615
616         /* fixes flashing of image */
617         cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
618         cx_write(MO_AGC_BACK_VBI,  0x00E00555);
619
620         cx_write(MO_VID_INTSTAT,   0xFFFFFFFF); // Clear PIV int
621         cx_write(MO_PCI_INTSTAT,   0xFFFFFFFF); // Clear PCI int
622         cx_write(MO_INT1_STAT,     0xFFFFFFFF); // Clear RISC int
623
624         /* Reset on-board parts */
625         cx_write(MO_SRST_IO, 0);
626         msleep(10);
627         cx_write(MO_SRST_IO, 1);
628
629         return 0;
630 }
631
632 /* ------------------------------------------------------------------ */
633
634 static unsigned int inline norm_swidth(struct cx88_tvnorm *norm)
635 {
636         return (norm->id & V4L2_STD_625_50) ? 922 : 754;
637 }
638
639 static unsigned int inline norm_hdelay(struct cx88_tvnorm *norm)
640 {
641         return (norm->id & V4L2_STD_625_50) ? 186 : 135;
642 }
643
644 static unsigned int inline norm_vdelay(struct cx88_tvnorm *norm)
645 {
646         return (norm->id & V4L2_STD_625_50) ? 0x24 : 0x18;
647 }
648
649 static unsigned int inline norm_fsc8(struct cx88_tvnorm *norm)
650 {
651         static const unsigned int ntsc = 28636360;
652         static const unsigned int pal  = 35468950;
653         static const unsigned int palm  = 28604892;
654
655         if (norm->id & V4L2_STD_PAL_M)
656                 return palm;
657
658         return (norm->id & V4L2_STD_625_50) ? pal : ntsc;
659 }
660
661 static unsigned int inline norm_htotal(struct cx88_tvnorm *norm)
662 {
663         /* Should always be Line Draw Time / (4*FSC) */
664
665         if (norm->id & V4L2_STD_PAL_M)
666                 return 909;
667
668         return (norm->id & V4L2_STD_625_50) ? 1135 : 910;
669 }
670
671 static unsigned int inline norm_vbipack(struct cx88_tvnorm *norm)
672 {
673         return (norm->id & V4L2_STD_625_50) ? 511 : 400;
674 }
675
676 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
677                    enum v4l2_field field)
678 {
679         unsigned int swidth  = norm_swidth(core->tvnorm);
680         unsigned int sheight = norm_maxh(core->tvnorm);
681         u32 value;
682
683         dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
684                 V4L2_FIELD_HAS_TOP(field)    ? "T" : "",
685                 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
686                 core->tvnorm->name);
687         if (!V4L2_FIELD_HAS_BOTH(field))
688                 height *= 2;
689
690         // recalc H delay and scale registers
691         value = (width * norm_hdelay(core->tvnorm)) / swidth;
692         value &= 0x3fe;
693         cx_write(MO_HDELAY_EVEN,  value);
694         cx_write(MO_HDELAY_ODD,   value);
695         dprintk(1,"set_scale: hdelay  0x%04x\n", value);
696
697         value = (swidth * 4096 / width) - 4096;
698         cx_write(MO_HSCALE_EVEN,  value);
699         cx_write(MO_HSCALE_ODD,   value);
700         dprintk(1,"set_scale: hscale  0x%04x\n", value);
701
702         cx_write(MO_HACTIVE_EVEN, width);
703         cx_write(MO_HACTIVE_ODD,  width);
704         dprintk(1,"set_scale: hactive 0x%04x\n", width);
705
706         // recalc V scale Register (delay is constant)
707         cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
708         cx_write(MO_VDELAY_ODD,  norm_vdelay(core->tvnorm));
709         dprintk(1,"set_scale: vdelay  0x%04x\n", norm_vdelay(core->tvnorm));
710
711         value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
712         cx_write(MO_VSCALE_EVEN,  value);
713         cx_write(MO_VSCALE_ODD,   value);
714         dprintk(1,"set_scale: vscale  0x%04x\n", value);
715
716         cx_write(MO_VACTIVE_EVEN, sheight);
717         cx_write(MO_VACTIVE_ODD,  sheight);
718         dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
719
720         // setup filters
721         value = 0;
722         value |= (1 << 19);        // CFILT (default)
723         if (core->tvnorm->id & V4L2_STD_SECAM) {
724                 value |= (1 << 15);
725                 value |= (1 << 16);
726         }
727         if (INPUT(core->input)->type == CX88_VMUX_SVIDEO)
728                 value |= (1 << 13) | (1 << 5);
729         if (V4L2_FIELD_INTERLACED == field)
730                 value |= (1 << 3); // VINT (interlaced vertical scaling)
731         if (width < 385)
732                 value |= (1 << 0); // 3-tap interpolation
733         if (width < 193)
734                 value |= (1 << 1); // 5-tap interpolation
735         if (nocomb)
736                 value |= (3 << 5); // disable comb filter
737
738         cx_write(MO_FILTER_EVEN,  value);
739         cx_write(MO_FILTER_ODD,   value);
740         dprintk(1,"set_scale: filter  0x%04x\n", value);
741
742         return 0;
743 }
744
745 static const u32 xtal = 28636363;
746
747 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
748 {
749         static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
750         u64 pll;
751         u32 reg;
752         int i;
753
754         if (prescale < 2)
755                 prescale = 2;
756         if (prescale > 5)
757                 prescale = 5;
758
759         pll = ofreq * 8 * prescale * (u64)(1 << 20);
760         do_div(pll,xtal);
761         reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
762         if (((reg >> 20) & 0x3f) < 14) {
763                 printk("%s/0: pll out of range\n",core->name);
764                 return -1;
765         }
766
767         dprintk(1,"set_pll:    MO_PLL_REG       0x%08x [old=0x%08x,freq=%d]\n",
768                 reg, cx_read(MO_PLL_REG), ofreq);
769         cx_write(MO_PLL_REG, reg);
770         for (i = 0; i < 100; i++) {
771                 reg = cx_read(MO_DEVICE_STATUS);
772                 if (reg & (1<<2)) {
773                         dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
774                                 prescale,ofreq);
775                         return 0;
776                 }
777                 dprintk(1,"pll not locked yet, waiting ...\n");
778                 msleep(10);
779         }
780         dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
781         return -1;
782 }
783
784 int cx88_start_audio_dma(struct cx88_core *core)
785 {
786         /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
787         int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
788
789         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
790         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
791                 return 0;
792
793         /* setup fifo + format */
794         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
795         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
796
797         cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
798         cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
799
800         /* start dma */
801         cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
802
803         return 0;
804 }
805
806 int cx88_stop_audio_dma(struct cx88_core *core)
807 {
808         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
809         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
810                 return 0;
811
812         /* stop dma */
813         cx_write(MO_AUD_DMACNTRL, 0x0000);
814
815         return 0;
816 }
817
818 static int set_tvaudio(struct cx88_core *core)
819 {
820         struct cx88_tvnorm *norm = core->tvnorm;
821
822         if (CX88_VMUX_TELEVISION != INPUT(core->input)->type)
823                 return 0;
824
825         if (V4L2_STD_PAL_BG & norm->id) {
826                 core->tvaudio = WW_BG;
827
828         } else if (V4L2_STD_PAL_DK & norm->id) {
829                 core->tvaudio = WW_DK;
830
831         } else if (V4L2_STD_PAL_I & norm->id) {
832                 core->tvaudio = WW_I;
833
834         } else if (V4L2_STD_SECAM_L & norm->id) {
835                 core->tvaudio = WW_L;
836
837         } else if (V4L2_STD_SECAM_DK & norm->id) {
838                 core->tvaudio = WW_DK;
839
840         } else if ((V4L2_STD_NTSC_M & norm->id) ||
841                    (V4L2_STD_PAL_M  & norm->id)) {
842                 core->tvaudio = WW_BTSC;
843
844         } else if (V4L2_STD_NTSC_M_JP & norm->id) {
845                 core->tvaudio = WW_EIAJ;
846
847         } else {
848                 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
849                        core->name, norm->name);
850                 core->tvaudio = 0;
851                 return 0;
852         }
853
854         cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
855         cx88_set_tvaudio(core);
856         /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
857
858 /*
859    This should be needed only on cx88-alsa. It seems that some cx88 chips have
860    bugs and does require DMA enabled for it to work.
861  */
862         cx88_start_audio_dma(core);
863         return 0;
864 }
865
866
867
868 int cx88_set_tvnorm(struct cx88_core *core, struct cx88_tvnorm *norm)
869 {
870         u32 fsc8;
871         u32 adc_clock;
872         u32 vdec_clock;
873         u32 step_db,step_dr;
874         u64 tmp64;
875         u32 bdelay,agcdelay,htotal;
876
877         core->tvnorm = norm;
878         fsc8       = norm_fsc8(norm);
879         adc_clock  = xtal;
880         vdec_clock = fsc8;
881         step_db    = fsc8;
882         step_dr    = fsc8;
883
884         if (norm->id & V4L2_STD_SECAM) {
885                 step_db = 4250000 * 8;
886                 step_dr = 4406250 * 8;
887         }
888
889         dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
890                 norm->name, fsc8, adc_clock, vdec_clock, step_db, step_dr);
891         set_pll(core,2,vdec_clock);
892
893         dprintk(1,"set_tvnorm: MO_INPUT_FORMAT  0x%08x [old=0x%08x]\n",
894                 norm->cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
895         cx_andor(MO_INPUT_FORMAT, 0xf, norm->cxiformat);
896
897         // FIXME: as-is from DScaler
898         dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
899                 norm->cxoformat, cx_read(MO_OUTPUT_FORMAT));
900         cx_write(MO_OUTPUT_FORMAT, norm->cxoformat);
901
902         // MO_SCONV_REG = adc clock / video dec clock * 2^17
903         tmp64  = adc_clock * (u64)(1 << 17);
904         do_div(tmp64, vdec_clock);
905         dprintk(1,"set_tvnorm: MO_SCONV_REG     0x%08x [old=0x%08x]\n",
906                 (u32)tmp64, cx_read(MO_SCONV_REG));
907         cx_write(MO_SCONV_REG, (u32)tmp64);
908
909         // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
910         tmp64  = step_db * (u64)(1 << 22);
911         do_div(tmp64, vdec_clock);
912         dprintk(1,"set_tvnorm: MO_SUB_STEP      0x%08x [old=0x%08x]\n",
913                 (u32)tmp64, cx_read(MO_SUB_STEP));
914         cx_write(MO_SUB_STEP, (u32)tmp64);
915
916         // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
917         tmp64  = step_dr * (u64)(1 << 22);
918         do_div(tmp64, vdec_clock);
919         dprintk(1,"set_tvnorm: MO_SUB_STEP_DR   0x%08x [old=0x%08x]\n",
920                 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
921         cx_write(MO_SUB_STEP_DR, (u32)tmp64);
922
923         // bdelay + agcdelay
924         bdelay   = vdec_clock * 65 / 20000000 + 21;
925         agcdelay = vdec_clock * 68 / 20000000 + 15;
926         dprintk(1,"set_tvnorm: MO_AGC_BURST     0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
927                 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
928         cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
929
930         // htotal
931         tmp64 = norm_htotal(norm) * (u64)vdec_clock;
932         do_div(tmp64, fsc8);
933         htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
934         dprintk(1,"set_tvnorm: MO_HTOTAL        0x%08x [old=0x%08x,htotal=%d]\n",
935                 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
936         cx_write(MO_HTOTAL, htotal);
937
938         // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
939         // the effective vbi offset ~244 samples, the same as the Bt8x8
940         cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
941
942         // this is needed as well to set all tvnorm parameter
943         cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
944
945         // audio
946         set_tvaudio(core);
947
948         // tell i2c chips
949         cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm->id);
950
951         // done
952         return 0;
953 }
954
955 /* ------------------------------------------------------------------ */
956
957 static int cx88_pci_quirks(char *name, struct pci_dev *pci)
958 {
959         unsigned int lat = UNSET;
960         u8 ctrl = 0;
961         u8 value;
962
963         /* check pci quirks */
964         if (pci_pci_problems & PCIPCI_TRITON) {
965                 printk(KERN_INFO "%s: quirk: PCIPCI_TRITON -- set TBFX\n",
966                        name);
967                 ctrl |= CX88X_EN_TBFX;
968         }
969         if (pci_pci_problems & PCIPCI_NATOMA) {
970                 printk(KERN_INFO "%s: quirk: PCIPCI_NATOMA -- set TBFX\n",
971                        name);
972                 ctrl |= CX88X_EN_TBFX;
973         }
974         if (pci_pci_problems & PCIPCI_VIAETBF) {
975                 printk(KERN_INFO "%s: quirk: PCIPCI_VIAETBF -- set TBFX\n",
976                        name);
977                 ctrl |= CX88X_EN_TBFX;
978         }
979         if (pci_pci_problems & PCIPCI_VSFX) {
980                 printk(KERN_INFO "%s: quirk: PCIPCI_VSFX -- set VSFX\n",
981                        name);
982                 ctrl |= CX88X_EN_VSFX;
983         }
984 #ifdef PCIPCI_ALIMAGIK
985         if (pci_pci_problems & PCIPCI_ALIMAGIK) {
986                 printk(KERN_INFO "%s: quirk: PCIPCI_ALIMAGIK -- latency fixup\n",
987                        name);
988                 lat = 0x0A;
989         }
990 #endif
991
992         /* check insmod options */
993         if (UNSET != latency)
994                 lat = latency;
995
996         /* apply stuff */
997         if (ctrl) {
998                 pci_read_config_byte(pci, CX88X_DEVCTRL, &value);
999                 value |= ctrl;
1000                 pci_write_config_byte(pci, CX88X_DEVCTRL, value);
1001         }
1002         if (UNSET != lat) {
1003                 printk(KERN_INFO "%s: setting pci latency timer to %d\n",
1004                        name, latency);
1005                 pci_write_config_byte(pci, PCI_LATENCY_TIMER, latency);
1006         }
1007         return 0;
1008 }
1009
1010 /* ------------------------------------------------------------------ */
1011
1012 struct video_device *cx88_vdev_init(struct cx88_core *core,
1013                                     struct pci_dev *pci,
1014                                     struct video_device *template,
1015                                     char *type)
1016 {
1017         struct video_device *vfd;
1018
1019         vfd = video_device_alloc();
1020         if (NULL == vfd)
1021                 return NULL;
1022         *vfd = *template;
1023         vfd->minor   = -1;
1024         vfd->dev     = &pci->dev;
1025         vfd->release = video_device_release;
1026         snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1027                  core->name, type, cx88_boards[core->board].name);
1028         return vfd;
1029 }
1030
1031 static int get_ressources(struct cx88_core *core, struct pci_dev *pci)
1032 {
1033         if (request_mem_region(pci_resource_start(pci,0),
1034                                pci_resource_len(pci,0),
1035                                core->name))
1036                 return 0;
1037         printk(KERN_ERR "%s: can't get MMIO memory @ 0x%llx\n",
1038                core->name,(unsigned long long)pci_resource_start(pci,0));
1039         return -EBUSY;
1040 }
1041
1042 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1043 {
1044         struct cx88_core *core;
1045         struct list_head *item;
1046         int i;
1047
1048         mutex_lock(&devlist);
1049         list_for_each(item,&cx88_devlist) {
1050                 core = list_entry(item, struct cx88_core, devlist);
1051                 if (pci->bus->number != core->pci_bus)
1052                         continue;
1053                 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1054                         continue;
1055
1056                 if (0 != get_ressources(core,pci))
1057                         goto fail_unlock;
1058                 atomic_inc(&core->refcount);
1059                 mutex_unlock(&devlist);
1060                 return core;
1061         }
1062         core = kzalloc(sizeof(*core),GFP_KERNEL);
1063         if (NULL == core)
1064                 goto fail_unlock;
1065
1066         atomic_inc(&core->refcount);
1067         core->pci_bus  = pci->bus->number;
1068         core->pci_slot = PCI_SLOT(pci->devfn);
1069         core->pci_irqmask = 0x00fc00;
1070         mutex_init(&core->lock);
1071
1072         core->nr = cx88_devcount++;
1073         sprintf(core->name,"cx88[%d]",core->nr);
1074         if (0 != get_ressources(core,pci)) {
1075                 printk(KERN_ERR "CORE %s No more PCI ressources for "
1076                         "subsystem: %04x:%04x, board: %s\n",
1077                         core->name,pci->subsystem_vendor,
1078                         pci->subsystem_device,
1079                         cx88_boards[core->board].name);
1080
1081                 cx88_devcount--;
1082                 goto fail_free;
1083         }
1084         list_add_tail(&core->devlist,&cx88_devlist);
1085
1086         /* PCI stuff */
1087         cx88_pci_quirks(core->name, pci);
1088         core->lmmio = ioremap(pci_resource_start(pci,0),
1089                               pci_resource_len(pci,0));
1090         core->bmmio = (u8 __iomem *)core->lmmio;
1091
1092         /* board config */
1093         core->board = UNSET;
1094         if (card[core->nr] < cx88_bcount)
1095                 core->board = card[core->nr];
1096         for (i = 0; UNSET == core->board  &&  i < cx88_idcount; i++)
1097                 if (pci->subsystem_vendor == cx88_subids[i].subvendor &&
1098                     pci->subsystem_device == cx88_subids[i].subdevice)
1099                         core->board = cx88_subids[i].card;
1100         if (UNSET == core->board) {
1101                 core->board = CX88_BOARD_UNKNOWN;
1102                 cx88_card_list(core,pci);
1103         }
1104         printk(KERN_INFO "CORE %s: subsystem: %04x:%04x, board: %s [card=%d,%s]\n",
1105                 core->name,pci->subsystem_vendor,
1106                 pci->subsystem_device,cx88_boards[core->board].name,
1107                 core->board, card[core->nr] == core->board ?
1108                 "insmod option" : "autodetected");
1109
1110         core->tuner_type = tuner[core->nr];
1111         core->radio_type = radio[core->nr];
1112         if (UNSET == core->tuner_type)
1113                 core->tuner_type = cx88_boards[core->board].tuner_type;
1114         if (UNSET == core->radio_type)
1115                 core->radio_type = cx88_boards[core->board].radio_type;
1116         if (!core->tuner_addr)
1117                 core->tuner_addr = cx88_boards[core->board].tuner_addr;
1118         if (!core->radio_addr)
1119                 core->radio_addr = cx88_boards[core->board].radio_addr;
1120
1121         printk(KERN_INFO "TV tuner %d at 0x%02x, Radio tuner %d at 0x%02x\n",
1122                 core->tuner_type, core->tuner_addr<<1,
1123                 core->radio_type, core->radio_addr<<1);
1124
1125         core->tda9887_conf = cx88_boards[core->board].tda9887_conf;
1126
1127         /* init hardware */
1128         cx88_reset(core);
1129         cx88_card_setup_pre_i2c(core);
1130         cx88_i2c_init(core,pci);
1131         cx88_call_i2c_clients (core, TUNER_SET_STANDBY, NULL);
1132         cx88_card_setup(core);
1133         cx88_ir_init(core,pci);
1134
1135         mutex_unlock(&devlist);
1136         return core;
1137
1138 fail_free:
1139         kfree(core);
1140 fail_unlock:
1141         mutex_unlock(&devlist);
1142         return NULL;
1143 }
1144
1145 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1146 {
1147         release_mem_region(pci_resource_start(pci,0),
1148                            pci_resource_len(pci,0));
1149
1150         if (!atomic_dec_and_test(&core->refcount))
1151                 return;
1152
1153         mutex_lock(&devlist);
1154         cx88_ir_fini(core);
1155         if (0 == core->i2c_rc)
1156                 i2c_del_adapter(&core->i2c_adap);
1157         list_del(&core->devlist);
1158         iounmap(core->lmmio);
1159         cx88_devcount--;
1160         mutex_unlock(&devlist);
1161         kfree(core);
1162 }
1163
1164 /* ------------------------------------------------------------------ */
1165
1166 EXPORT_SYMBOL(cx88_print_irqbits);
1167
1168 EXPORT_SYMBOL(cx88_core_irq);
1169 EXPORT_SYMBOL(cx88_wakeup);
1170 EXPORT_SYMBOL(cx88_reset);
1171 EXPORT_SYMBOL(cx88_shutdown);
1172
1173 EXPORT_SYMBOL(cx88_risc_buffer);
1174 EXPORT_SYMBOL(cx88_risc_databuffer);
1175 EXPORT_SYMBOL(cx88_risc_stopper);
1176 EXPORT_SYMBOL(cx88_free_buffer);
1177
1178 EXPORT_SYMBOL(cx88_sram_channels);
1179 EXPORT_SYMBOL(cx88_sram_channel_setup);
1180 EXPORT_SYMBOL(cx88_sram_channel_dump);
1181
1182 EXPORT_SYMBOL(cx88_set_tvnorm);
1183 EXPORT_SYMBOL(cx88_set_scale);
1184
1185 EXPORT_SYMBOL(cx88_vdev_init);
1186 EXPORT_SYMBOL(cx88_core_get);
1187 EXPORT_SYMBOL(cx88_core_put);
1188
1189 /*
1190  * Local variables:
1191  * c-basic-offset: 8
1192  * End:
1193  * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
1194  */