mm: introduce VM_MIXEDMAP
[linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
67 struct page *mem_map;
68
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
71 #endif
72
73 unsigned long num_physpages;
74 /*
75  * A number of key systems in x86 including ioremap() rely on the assumption
76  * that high_memory defines the upper bound on direct map memory, then end
77  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79  * and ZONE_HIGHMEM.
80  */
81 void * high_memory;
82
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85
86 /*
87  * Randomize the address space (stacks, mmaps, brk, etc.).
88  *
89  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90  *   as ancient (libc5 based) binaries can segfault. )
91  */
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
94                                         1;
95 #else
96                                         2;
97 #endif
98
99 static int __init disable_randmaps(char *s)
100 {
101         randomize_va_space = 0;
102         return 1;
103 }
104 __setup("norandmaps", disable_randmaps);
105
106
107 /*
108  * If a p?d_bad entry is found while walking page tables, report
109  * the error, before resetting entry to p?d_none.  Usually (but
110  * very seldom) called out from the p?d_none_or_clear_bad macros.
111  */
112
113 void pgd_clear_bad(pgd_t *pgd)
114 {
115         pgd_ERROR(*pgd);
116         pgd_clear(pgd);
117 }
118
119 void pud_clear_bad(pud_t *pud)
120 {
121         pud_ERROR(*pud);
122         pud_clear(pud);
123 }
124
125 void pmd_clear_bad(pmd_t *pmd)
126 {
127         pmd_ERROR(*pmd);
128         pmd_clear(pmd);
129 }
130
131 /*
132  * Note: this doesn't free the actual pages themselves. That
133  * has been handled earlier when unmapping all the memory regions.
134  */
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 {
137         pgtable_t token = pmd_pgtable(*pmd);
138         pmd_clear(pmd);
139         pte_free_tlb(tlb, token);
140         tlb->mm->nr_ptes--;
141 }
142
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144                                 unsigned long addr, unsigned long end,
145                                 unsigned long floor, unsigned long ceiling)
146 {
147         pmd_t *pmd;
148         unsigned long next;
149         unsigned long start;
150
151         start = addr;
152         pmd = pmd_offset(pud, addr);
153         do {
154                 next = pmd_addr_end(addr, end);
155                 if (pmd_none_or_clear_bad(pmd))
156                         continue;
157                 free_pte_range(tlb, pmd);
158         } while (pmd++, addr = next, addr != end);
159
160         start &= PUD_MASK;
161         if (start < floor)
162                 return;
163         if (ceiling) {
164                 ceiling &= PUD_MASK;
165                 if (!ceiling)
166                         return;
167         }
168         if (end - 1 > ceiling - 1)
169                 return;
170
171         pmd = pmd_offset(pud, start);
172         pud_clear(pud);
173         pmd_free_tlb(tlb, pmd);
174 }
175
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177                                 unsigned long addr, unsigned long end,
178                                 unsigned long floor, unsigned long ceiling)
179 {
180         pud_t *pud;
181         unsigned long next;
182         unsigned long start;
183
184         start = addr;
185         pud = pud_offset(pgd, addr);
186         do {
187                 next = pud_addr_end(addr, end);
188                 if (pud_none_or_clear_bad(pud))
189                         continue;
190                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191         } while (pud++, addr = next, addr != end);
192
193         start &= PGDIR_MASK;
194         if (start < floor)
195                 return;
196         if (ceiling) {
197                 ceiling &= PGDIR_MASK;
198                 if (!ceiling)
199                         return;
200         }
201         if (end - 1 > ceiling - 1)
202                 return;
203
204         pud = pud_offset(pgd, start);
205         pgd_clear(pgd);
206         pud_free_tlb(tlb, pud);
207 }
208
209 /*
210  * This function frees user-level page tables of a process.
211  *
212  * Must be called with pagetable lock held.
213  */
214 void free_pgd_range(struct mmu_gather **tlb,
215                         unsigned long addr, unsigned long end,
216                         unsigned long floor, unsigned long ceiling)
217 {
218         pgd_t *pgd;
219         unsigned long next;
220         unsigned long start;
221
222         /*
223          * The next few lines have given us lots of grief...
224          *
225          * Why are we testing PMD* at this top level?  Because often
226          * there will be no work to do at all, and we'd prefer not to
227          * go all the way down to the bottom just to discover that.
228          *
229          * Why all these "- 1"s?  Because 0 represents both the bottom
230          * of the address space and the top of it (using -1 for the
231          * top wouldn't help much: the masks would do the wrong thing).
232          * The rule is that addr 0 and floor 0 refer to the bottom of
233          * the address space, but end 0 and ceiling 0 refer to the top
234          * Comparisons need to use "end - 1" and "ceiling - 1" (though
235          * that end 0 case should be mythical).
236          *
237          * Wherever addr is brought up or ceiling brought down, we must
238          * be careful to reject "the opposite 0" before it confuses the
239          * subsequent tests.  But what about where end is brought down
240          * by PMD_SIZE below? no, end can't go down to 0 there.
241          *
242          * Whereas we round start (addr) and ceiling down, by different
243          * masks at different levels, in order to test whether a table
244          * now has no other vmas using it, so can be freed, we don't
245          * bother to round floor or end up - the tests don't need that.
246          */
247
248         addr &= PMD_MASK;
249         if (addr < floor) {
250                 addr += PMD_SIZE;
251                 if (!addr)
252                         return;
253         }
254         if (ceiling) {
255                 ceiling &= PMD_MASK;
256                 if (!ceiling)
257                         return;
258         }
259         if (end - 1 > ceiling - 1)
260                 end -= PMD_SIZE;
261         if (addr > end - 1)
262                 return;
263
264         start = addr;
265         pgd = pgd_offset((*tlb)->mm, addr);
266         do {
267                 next = pgd_addr_end(addr, end);
268                 if (pgd_none_or_clear_bad(pgd))
269                         continue;
270                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271         } while (pgd++, addr = next, addr != end);
272 }
273
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275                 unsigned long floor, unsigned long ceiling)
276 {
277         while (vma) {
278                 struct vm_area_struct *next = vma->vm_next;
279                 unsigned long addr = vma->vm_start;
280
281                 /*
282                  * Hide vma from rmap and vmtruncate before freeing pgtables
283                  */
284                 anon_vma_unlink(vma);
285                 unlink_file_vma(vma);
286
287                 if (is_vm_hugetlb_page(vma)) {
288                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289                                 floor, next? next->vm_start: ceiling);
290                 } else {
291                         /*
292                          * Optimization: gather nearby vmas into one call down
293                          */
294                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295                                && !is_vm_hugetlb_page(next)) {
296                                 vma = next;
297                                 next = vma->vm_next;
298                                 anon_vma_unlink(vma);
299                                 unlink_file_vma(vma);
300                         }
301                         free_pgd_range(tlb, addr, vma->vm_end,
302                                 floor, next? next->vm_start: ceiling);
303                 }
304                 vma = next;
305         }
306 }
307
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309 {
310         pgtable_t new = pte_alloc_one(mm, address);
311         if (!new)
312                 return -ENOMEM;
313
314         spin_lock(&mm->page_table_lock);
315         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
316                 mm->nr_ptes++;
317                 pmd_populate(mm, pmd, new);
318                 new = NULL;
319         }
320         spin_unlock(&mm->page_table_lock);
321         if (new)
322                 pte_free(mm, new);
323         return 0;
324 }
325
326 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
327 {
328         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
329         if (!new)
330                 return -ENOMEM;
331
332         spin_lock(&init_mm.page_table_lock);
333         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
334                 pmd_populate_kernel(&init_mm, pmd, new);
335                 new = NULL;
336         }
337         spin_unlock(&init_mm.page_table_lock);
338         if (new)
339                 pte_free_kernel(&init_mm, new);
340         return 0;
341 }
342
343 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
344 {
345         if (file_rss)
346                 add_mm_counter(mm, file_rss, file_rss);
347         if (anon_rss)
348                 add_mm_counter(mm, anon_rss, anon_rss);
349 }
350
351 /*
352  * This function is called to print an error when a bad pte
353  * is found. For example, we might have a PFN-mapped pte in
354  * a region that doesn't allow it.
355  *
356  * The calling function must still handle the error.
357  */
358 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
359 {
360         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
361                         "vm_flags = %lx, vaddr = %lx\n",
362                 (long long)pte_val(pte),
363                 (vma->vm_mm == current->mm ? current->comm : "???"),
364                 vma->vm_flags, vaddr);
365         dump_stack();
366 }
367
368 static inline int is_cow_mapping(unsigned int flags)
369 {
370         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
371 }
372
373 /*
374  * This function gets the "struct page" associated with a pte or returns
375  * NULL if no "struct page" is associated with the pte.
376  *
377  * A raw VM_PFNMAP mapping (ie. one that is not COWed) may not have any "struct
378  * page" backing, and even if they do, they are not refcounted. COWed pages of
379  * a VM_PFNMAP do always have a struct page, and they are normally refcounted
380  * (they are _normal_ pages).
381  *
382  * So a raw PFNMAP mapping will have each page table entry just pointing
383  * to a page frame number, and as far as the VM layer is concerned, those do
384  * not have pages associated with them - even if the PFN might point to memory
385  * that otherwise is perfectly fine and has a "struct page".
386  *
387  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
388  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
389  * set, and the vm_pgoff will point to the first PFN mapped: thus every
390  * page that is a raw mapping will always honor the rule
391  *
392  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
393  *
394  * A call to vm_normal_page() will return NULL for such a page.
395  *
396  * If the page doesn't follow the "remap_pfn_range()" rule in a VM_PFNMAP
397  * then the page has been COW'ed.  A COW'ed page _does_ have a "struct page"
398  * associated with it even if it is in a VM_PFNMAP range.  Calling
399  * vm_normal_page() on such a page will therefore return the "struct page".
400  *
401  *
402  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
403  * page" backing, however the difference is that _all_ pages with a struct
404  * page (that is, those where pfn_valid is true) are refcounted and considered
405  * normal pages by the VM. The disadvantage is that pages are refcounted
406  * (which can be slower and simply not an option for some PFNMAP users). The
407  * advantage is that we don't have to follow the strict linearity rule of
408  * PFNMAP mappings in order to support COWable mappings.
409  *
410  * A call to vm_normal_page() with a VM_MIXEDMAP mapping will return the
411  * associated "struct page" or NULL for memory not backed by a "struct page".
412  *
413  *
414  * All other mappings should have a valid struct page, which will be
415  * returned by a call to vm_normal_page().
416  */
417 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
418 {
419         unsigned long pfn = pte_pfn(pte);
420
421         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
422                 if (vma->vm_flags & VM_MIXEDMAP) {
423                         if (!pfn_valid(pfn))
424                                 return NULL;
425                         goto out;
426                 } else {
427                         unsigned long off = (addr-vma->vm_start) >> PAGE_SHIFT;
428                         if (pfn == vma->vm_pgoff + off)
429                                 return NULL;
430                         if (!is_cow_mapping(vma->vm_flags))
431                                 return NULL;
432                 }
433         }
434
435 #ifdef CONFIG_DEBUG_VM
436         /*
437          * Add some anal sanity checks for now. Eventually,
438          * we should just do "return pfn_to_page(pfn)", but
439          * in the meantime we check that we get a valid pfn,
440          * and that the resulting page looks ok.
441          */
442         if (unlikely(!pfn_valid(pfn))) {
443                 print_bad_pte(vma, pte, addr);
444                 return NULL;
445         }
446 #endif
447
448         /*
449          * NOTE! We still have PageReserved() pages in the page 
450          * tables. 
451          *
452          * The PAGE_ZERO() pages and various VDSO mappings can
453          * cause them to exist.
454          */
455 out:
456         return pfn_to_page(pfn);
457 }
458
459 /*
460  * copy one vm_area from one task to the other. Assumes the page tables
461  * already present in the new task to be cleared in the whole range
462  * covered by this vma.
463  */
464
465 static inline void
466 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
467                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
468                 unsigned long addr, int *rss)
469 {
470         unsigned long vm_flags = vma->vm_flags;
471         pte_t pte = *src_pte;
472         struct page *page;
473
474         /* pte contains position in swap or file, so copy. */
475         if (unlikely(!pte_present(pte))) {
476                 if (!pte_file(pte)) {
477                         swp_entry_t entry = pte_to_swp_entry(pte);
478
479                         swap_duplicate(entry);
480                         /* make sure dst_mm is on swapoff's mmlist. */
481                         if (unlikely(list_empty(&dst_mm->mmlist))) {
482                                 spin_lock(&mmlist_lock);
483                                 if (list_empty(&dst_mm->mmlist))
484                                         list_add(&dst_mm->mmlist,
485                                                  &src_mm->mmlist);
486                                 spin_unlock(&mmlist_lock);
487                         }
488                         if (is_write_migration_entry(entry) &&
489                                         is_cow_mapping(vm_flags)) {
490                                 /*
491                                  * COW mappings require pages in both parent
492                                  * and child to be set to read.
493                                  */
494                                 make_migration_entry_read(&entry);
495                                 pte = swp_entry_to_pte(entry);
496                                 set_pte_at(src_mm, addr, src_pte, pte);
497                         }
498                 }
499                 goto out_set_pte;
500         }
501
502         /*
503          * If it's a COW mapping, write protect it both
504          * in the parent and the child
505          */
506         if (is_cow_mapping(vm_flags)) {
507                 ptep_set_wrprotect(src_mm, addr, src_pte);
508                 pte = pte_wrprotect(pte);
509         }
510
511         /*
512          * If it's a shared mapping, mark it clean in
513          * the child
514          */
515         if (vm_flags & VM_SHARED)
516                 pte = pte_mkclean(pte);
517         pte = pte_mkold(pte);
518
519         page = vm_normal_page(vma, addr, pte);
520         if (page) {
521                 get_page(page);
522                 page_dup_rmap(page, vma, addr);
523                 rss[!!PageAnon(page)]++;
524         }
525
526 out_set_pte:
527         set_pte_at(dst_mm, addr, dst_pte, pte);
528 }
529
530 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
531                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
532                 unsigned long addr, unsigned long end)
533 {
534         pte_t *src_pte, *dst_pte;
535         spinlock_t *src_ptl, *dst_ptl;
536         int progress = 0;
537         int rss[2];
538
539 again:
540         rss[1] = rss[0] = 0;
541         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
542         if (!dst_pte)
543                 return -ENOMEM;
544         src_pte = pte_offset_map_nested(src_pmd, addr);
545         src_ptl = pte_lockptr(src_mm, src_pmd);
546         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
547         arch_enter_lazy_mmu_mode();
548
549         do {
550                 /*
551                  * We are holding two locks at this point - either of them
552                  * could generate latencies in another task on another CPU.
553                  */
554                 if (progress >= 32) {
555                         progress = 0;
556                         if (need_resched() ||
557                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
558                                 break;
559                 }
560                 if (pte_none(*src_pte)) {
561                         progress++;
562                         continue;
563                 }
564                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
565                 progress += 8;
566         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
567
568         arch_leave_lazy_mmu_mode();
569         spin_unlock(src_ptl);
570         pte_unmap_nested(src_pte - 1);
571         add_mm_rss(dst_mm, rss[0], rss[1]);
572         pte_unmap_unlock(dst_pte - 1, dst_ptl);
573         cond_resched();
574         if (addr != end)
575                 goto again;
576         return 0;
577 }
578
579 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
580                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
581                 unsigned long addr, unsigned long end)
582 {
583         pmd_t *src_pmd, *dst_pmd;
584         unsigned long next;
585
586         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
587         if (!dst_pmd)
588                 return -ENOMEM;
589         src_pmd = pmd_offset(src_pud, addr);
590         do {
591                 next = pmd_addr_end(addr, end);
592                 if (pmd_none_or_clear_bad(src_pmd))
593                         continue;
594                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
595                                                 vma, addr, next))
596                         return -ENOMEM;
597         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
598         return 0;
599 }
600
601 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
603                 unsigned long addr, unsigned long end)
604 {
605         pud_t *src_pud, *dst_pud;
606         unsigned long next;
607
608         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
609         if (!dst_pud)
610                 return -ENOMEM;
611         src_pud = pud_offset(src_pgd, addr);
612         do {
613                 next = pud_addr_end(addr, end);
614                 if (pud_none_or_clear_bad(src_pud))
615                         continue;
616                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
617                                                 vma, addr, next))
618                         return -ENOMEM;
619         } while (dst_pud++, src_pud++, addr = next, addr != end);
620         return 0;
621 }
622
623 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624                 struct vm_area_struct *vma)
625 {
626         pgd_t *src_pgd, *dst_pgd;
627         unsigned long next;
628         unsigned long addr = vma->vm_start;
629         unsigned long end = vma->vm_end;
630
631         /*
632          * Don't copy ptes where a page fault will fill them correctly.
633          * Fork becomes much lighter when there are big shared or private
634          * readonly mappings. The tradeoff is that copy_page_range is more
635          * efficient than faulting.
636          */
637         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
638                 if (!vma->anon_vma)
639                         return 0;
640         }
641
642         if (is_vm_hugetlb_page(vma))
643                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
644
645         dst_pgd = pgd_offset(dst_mm, addr);
646         src_pgd = pgd_offset(src_mm, addr);
647         do {
648                 next = pgd_addr_end(addr, end);
649                 if (pgd_none_or_clear_bad(src_pgd))
650                         continue;
651                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
652                                                 vma, addr, next))
653                         return -ENOMEM;
654         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
655         return 0;
656 }
657
658 static unsigned long zap_pte_range(struct mmu_gather *tlb,
659                                 struct vm_area_struct *vma, pmd_t *pmd,
660                                 unsigned long addr, unsigned long end,
661                                 long *zap_work, struct zap_details *details)
662 {
663         struct mm_struct *mm = tlb->mm;
664         pte_t *pte;
665         spinlock_t *ptl;
666         int file_rss = 0;
667         int anon_rss = 0;
668
669         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
670         arch_enter_lazy_mmu_mode();
671         do {
672                 pte_t ptent = *pte;
673                 if (pte_none(ptent)) {
674                         (*zap_work)--;
675                         continue;
676                 }
677
678                 (*zap_work) -= PAGE_SIZE;
679
680                 if (pte_present(ptent)) {
681                         struct page *page;
682
683                         page = vm_normal_page(vma, addr, ptent);
684                         if (unlikely(details) && page) {
685                                 /*
686                                  * unmap_shared_mapping_pages() wants to
687                                  * invalidate cache without truncating:
688                                  * unmap shared but keep private pages.
689                                  */
690                                 if (details->check_mapping &&
691                                     details->check_mapping != page->mapping)
692                                         continue;
693                                 /*
694                                  * Each page->index must be checked when
695                                  * invalidating or truncating nonlinear.
696                                  */
697                                 if (details->nonlinear_vma &&
698                                     (page->index < details->first_index ||
699                                      page->index > details->last_index))
700                                         continue;
701                         }
702                         ptent = ptep_get_and_clear_full(mm, addr, pte,
703                                                         tlb->fullmm);
704                         tlb_remove_tlb_entry(tlb, pte, addr);
705                         if (unlikely(!page))
706                                 continue;
707                         if (unlikely(details) && details->nonlinear_vma
708                             && linear_page_index(details->nonlinear_vma,
709                                                 addr) != page->index)
710                                 set_pte_at(mm, addr, pte,
711                                            pgoff_to_pte(page->index));
712                         if (PageAnon(page))
713                                 anon_rss--;
714                         else {
715                                 if (pte_dirty(ptent))
716                                         set_page_dirty(page);
717                                 if (pte_young(ptent))
718                                         SetPageReferenced(page);
719                                 file_rss--;
720                         }
721                         page_remove_rmap(page, vma);
722                         tlb_remove_page(tlb, page);
723                         continue;
724                 }
725                 /*
726                  * If details->check_mapping, we leave swap entries;
727                  * if details->nonlinear_vma, we leave file entries.
728                  */
729                 if (unlikely(details))
730                         continue;
731                 if (!pte_file(ptent))
732                         free_swap_and_cache(pte_to_swp_entry(ptent));
733                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
734         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
735
736         add_mm_rss(mm, file_rss, anon_rss);
737         arch_leave_lazy_mmu_mode();
738         pte_unmap_unlock(pte - 1, ptl);
739
740         return addr;
741 }
742
743 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
744                                 struct vm_area_struct *vma, pud_t *pud,
745                                 unsigned long addr, unsigned long end,
746                                 long *zap_work, struct zap_details *details)
747 {
748         pmd_t *pmd;
749         unsigned long next;
750
751         pmd = pmd_offset(pud, addr);
752         do {
753                 next = pmd_addr_end(addr, end);
754                 if (pmd_none_or_clear_bad(pmd)) {
755                         (*zap_work)--;
756                         continue;
757                 }
758                 next = zap_pte_range(tlb, vma, pmd, addr, next,
759                                                 zap_work, details);
760         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
761
762         return addr;
763 }
764
765 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
766                                 struct vm_area_struct *vma, pgd_t *pgd,
767                                 unsigned long addr, unsigned long end,
768                                 long *zap_work, struct zap_details *details)
769 {
770         pud_t *pud;
771         unsigned long next;
772
773         pud = pud_offset(pgd, addr);
774         do {
775                 next = pud_addr_end(addr, end);
776                 if (pud_none_or_clear_bad(pud)) {
777                         (*zap_work)--;
778                         continue;
779                 }
780                 next = zap_pmd_range(tlb, vma, pud, addr, next,
781                                                 zap_work, details);
782         } while (pud++, addr = next, (addr != end && *zap_work > 0));
783
784         return addr;
785 }
786
787 static unsigned long unmap_page_range(struct mmu_gather *tlb,
788                                 struct vm_area_struct *vma,
789                                 unsigned long addr, unsigned long end,
790                                 long *zap_work, struct zap_details *details)
791 {
792         pgd_t *pgd;
793         unsigned long next;
794
795         if (details && !details->check_mapping && !details->nonlinear_vma)
796                 details = NULL;
797
798         BUG_ON(addr >= end);
799         tlb_start_vma(tlb, vma);
800         pgd = pgd_offset(vma->vm_mm, addr);
801         do {
802                 next = pgd_addr_end(addr, end);
803                 if (pgd_none_or_clear_bad(pgd)) {
804                         (*zap_work)--;
805                         continue;
806                 }
807                 next = zap_pud_range(tlb, vma, pgd, addr, next,
808                                                 zap_work, details);
809         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
810         tlb_end_vma(tlb, vma);
811
812         return addr;
813 }
814
815 #ifdef CONFIG_PREEMPT
816 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
817 #else
818 /* No preempt: go for improved straight-line efficiency */
819 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
820 #endif
821
822 /**
823  * unmap_vmas - unmap a range of memory covered by a list of vma's
824  * @tlbp: address of the caller's struct mmu_gather
825  * @vma: the starting vma
826  * @start_addr: virtual address at which to start unmapping
827  * @end_addr: virtual address at which to end unmapping
828  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
829  * @details: details of nonlinear truncation or shared cache invalidation
830  *
831  * Returns the end address of the unmapping (restart addr if interrupted).
832  *
833  * Unmap all pages in the vma list.
834  *
835  * We aim to not hold locks for too long (for scheduling latency reasons).
836  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
837  * return the ending mmu_gather to the caller.
838  *
839  * Only addresses between `start' and `end' will be unmapped.
840  *
841  * The VMA list must be sorted in ascending virtual address order.
842  *
843  * unmap_vmas() assumes that the caller will flush the whole unmapped address
844  * range after unmap_vmas() returns.  So the only responsibility here is to
845  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
846  * drops the lock and schedules.
847  */
848 unsigned long unmap_vmas(struct mmu_gather **tlbp,
849                 struct vm_area_struct *vma, unsigned long start_addr,
850                 unsigned long end_addr, unsigned long *nr_accounted,
851                 struct zap_details *details)
852 {
853         long zap_work = ZAP_BLOCK_SIZE;
854         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
855         int tlb_start_valid = 0;
856         unsigned long start = start_addr;
857         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
858         int fullmm = (*tlbp)->fullmm;
859
860         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
861                 unsigned long end;
862
863                 start = max(vma->vm_start, start_addr);
864                 if (start >= vma->vm_end)
865                         continue;
866                 end = min(vma->vm_end, end_addr);
867                 if (end <= vma->vm_start)
868                         continue;
869
870                 if (vma->vm_flags & VM_ACCOUNT)
871                         *nr_accounted += (end - start) >> PAGE_SHIFT;
872
873                 while (start != end) {
874                         if (!tlb_start_valid) {
875                                 tlb_start = start;
876                                 tlb_start_valid = 1;
877                         }
878
879                         if (unlikely(is_vm_hugetlb_page(vma))) {
880                                 unmap_hugepage_range(vma, start, end);
881                                 zap_work -= (end - start) /
882                                                 (HPAGE_SIZE / PAGE_SIZE);
883                                 start = end;
884                         } else
885                                 start = unmap_page_range(*tlbp, vma,
886                                                 start, end, &zap_work, details);
887
888                         if (zap_work > 0) {
889                                 BUG_ON(start != end);
890                                 break;
891                         }
892
893                         tlb_finish_mmu(*tlbp, tlb_start, start);
894
895                         if (need_resched() ||
896                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
897                                 if (i_mmap_lock) {
898                                         *tlbp = NULL;
899                                         goto out;
900                                 }
901                                 cond_resched();
902                         }
903
904                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
905                         tlb_start_valid = 0;
906                         zap_work = ZAP_BLOCK_SIZE;
907                 }
908         }
909 out:
910         return start;   /* which is now the end (or restart) address */
911 }
912
913 /**
914  * zap_page_range - remove user pages in a given range
915  * @vma: vm_area_struct holding the applicable pages
916  * @address: starting address of pages to zap
917  * @size: number of bytes to zap
918  * @details: details of nonlinear truncation or shared cache invalidation
919  */
920 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
921                 unsigned long size, struct zap_details *details)
922 {
923         struct mm_struct *mm = vma->vm_mm;
924         struct mmu_gather *tlb;
925         unsigned long end = address + size;
926         unsigned long nr_accounted = 0;
927
928         lru_add_drain();
929         tlb = tlb_gather_mmu(mm, 0);
930         update_hiwater_rss(mm);
931         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
932         if (tlb)
933                 tlb_finish_mmu(tlb, address, end);
934         return end;
935 }
936
937 /*
938  * Do a quick page-table lookup for a single page.
939  */
940 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
941                         unsigned int flags)
942 {
943         pgd_t *pgd;
944         pud_t *pud;
945         pmd_t *pmd;
946         pte_t *ptep, pte;
947         spinlock_t *ptl;
948         struct page *page;
949         struct mm_struct *mm = vma->vm_mm;
950
951         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
952         if (!IS_ERR(page)) {
953                 BUG_ON(flags & FOLL_GET);
954                 goto out;
955         }
956
957         page = NULL;
958         pgd = pgd_offset(mm, address);
959         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
960                 goto no_page_table;
961
962         pud = pud_offset(pgd, address);
963         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
964                 goto no_page_table;
965         
966         pmd = pmd_offset(pud, address);
967         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
968                 goto no_page_table;
969
970         if (pmd_huge(*pmd)) {
971                 BUG_ON(flags & FOLL_GET);
972                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
973                 goto out;
974         }
975
976         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
977         if (!ptep)
978                 goto out;
979
980         pte = *ptep;
981         if (!pte_present(pte))
982                 goto unlock;
983         if ((flags & FOLL_WRITE) && !pte_write(pte))
984                 goto unlock;
985         page = vm_normal_page(vma, address, pte);
986         if (unlikely(!page))
987                 goto unlock;
988
989         if (flags & FOLL_GET)
990                 get_page(page);
991         if (flags & FOLL_TOUCH) {
992                 if ((flags & FOLL_WRITE) &&
993                     !pte_dirty(pte) && !PageDirty(page))
994                         set_page_dirty(page);
995                 mark_page_accessed(page);
996         }
997 unlock:
998         pte_unmap_unlock(ptep, ptl);
999 out:
1000         return page;
1001
1002 no_page_table:
1003         /*
1004          * When core dumping an enormous anonymous area that nobody
1005          * has touched so far, we don't want to allocate page tables.
1006          */
1007         if (flags & FOLL_ANON) {
1008                 page = ZERO_PAGE(0);
1009                 if (flags & FOLL_GET)
1010                         get_page(page);
1011                 BUG_ON(flags & FOLL_WRITE);
1012         }
1013         return page;
1014 }
1015
1016 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1017                 unsigned long start, int len, int write, int force,
1018                 struct page **pages, struct vm_area_struct **vmas)
1019 {
1020         int i;
1021         unsigned int vm_flags;
1022
1023         if (len <= 0)
1024                 return 0;
1025         /* 
1026          * Require read or write permissions.
1027          * If 'force' is set, we only require the "MAY" flags.
1028          */
1029         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1030         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1031         i = 0;
1032
1033         do {
1034                 struct vm_area_struct *vma;
1035                 unsigned int foll_flags;
1036
1037                 vma = find_extend_vma(mm, start);
1038                 if (!vma && in_gate_area(tsk, start)) {
1039                         unsigned long pg = start & PAGE_MASK;
1040                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1041                         pgd_t *pgd;
1042                         pud_t *pud;
1043                         pmd_t *pmd;
1044                         pte_t *pte;
1045                         if (write) /* user gate pages are read-only */
1046                                 return i ? : -EFAULT;
1047                         if (pg > TASK_SIZE)
1048                                 pgd = pgd_offset_k(pg);
1049                         else
1050                                 pgd = pgd_offset_gate(mm, pg);
1051                         BUG_ON(pgd_none(*pgd));
1052                         pud = pud_offset(pgd, pg);
1053                         BUG_ON(pud_none(*pud));
1054                         pmd = pmd_offset(pud, pg);
1055                         if (pmd_none(*pmd))
1056                                 return i ? : -EFAULT;
1057                         pte = pte_offset_map(pmd, pg);
1058                         if (pte_none(*pte)) {
1059                                 pte_unmap(pte);
1060                                 return i ? : -EFAULT;
1061                         }
1062                         if (pages) {
1063                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1064                                 pages[i] = page;
1065                                 if (page)
1066                                         get_page(page);
1067                         }
1068                         pte_unmap(pte);
1069                         if (vmas)
1070                                 vmas[i] = gate_vma;
1071                         i++;
1072                         start += PAGE_SIZE;
1073                         len--;
1074                         continue;
1075                 }
1076
1077                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1078                                 || !(vm_flags & vma->vm_flags))
1079                         return i ? : -EFAULT;
1080
1081                 if (is_vm_hugetlb_page(vma)) {
1082                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1083                                                 &start, &len, i, write);
1084                         continue;
1085                 }
1086
1087                 foll_flags = FOLL_TOUCH;
1088                 if (pages)
1089                         foll_flags |= FOLL_GET;
1090                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1091                     (!vma->vm_ops || !vma->vm_ops->fault))
1092                         foll_flags |= FOLL_ANON;
1093
1094                 do {
1095                         struct page *page;
1096
1097                         /*
1098                          * If tsk is ooming, cut off its access to large memory
1099                          * allocations. It has a pending SIGKILL, but it can't
1100                          * be processed until returning to user space.
1101                          */
1102                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1103                                 return -ENOMEM;
1104
1105                         if (write)
1106                                 foll_flags |= FOLL_WRITE;
1107
1108                         cond_resched();
1109                         while (!(page = follow_page(vma, start, foll_flags))) {
1110                                 int ret;
1111                                 ret = handle_mm_fault(mm, vma, start,
1112                                                 foll_flags & FOLL_WRITE);
1113                                 if (ret & VM_FAULT_ERROR) {
1114                                         if (ret & VM_FAULT_OOM)
1115                                                 return i ? i : -ENOMEM;
1116                                         else if (ret & VM_FAULT_SIGBUS)
1117                                                 return i ? i : -EFAULT;
1118                                         BUG();
1119                                 }
1120                                 if (ret & VM_FAULT_MAJOR)
1121                                         tsk->maj_flt++;
1122                                 else
1123                                         tsk->min_flt++;
1124
1125                                 /*
1126                                  * The VM_FAULT_WRITE bit tells us that
1127                                  * do_wp_page has broken COW when necessary,
1128                                  * even if maybe_mkwrite decided not to set
1129                                  * pte_write. We can thus safely do subsequent
1130                                  * page lookups as if they were reads.
1131                                  */
1132                                 if (ret & VM_FAULT_WRITE)
1133                                         foll_flags &= ~FOLL_WRITE;
1134
1135                                 cond_resched();
1136                         }
1137                         if (pages) {
1138                                 pages[i] = page;
1139
1140                                 flush_anon_page(vma, page, start);
1141                                 flush_dcache_page(page);
1142                         }
1143                         if (vmas)
1144                                 vmas[i] = vma;
1145                         i++;
1146                         start += PAGE_SIZE;
1147                         len--;
1148                 } while (len && start < vma->vm_end);
1149         } while (len);
1150         return i;
1151 }
1152 EXPORT_SYMBOL(get_user_pages);
1153
1154 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1155                         spinlock_t **ptl)
1156 {
1157         pgd_t * pgd = pgd_offset(mm, addr);
1158         pud_t * pud = pud_alloc(mm, pgd, addr);
1159         if (pud) {
1160                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1161                 if (pmd)
1162                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1163         }
1164         return NULL;
1165 }
1166
1167 /*
1168  * This is the old fallback for page remapping.
1169  *
1170  * For historical reasons, it only allows reserved pages. Only
1171  * old drivers should use this, and they needed to mark their
1172  * pages reserved for the old functions anyway.
1173  */
1174 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1175 {
1176         int retval;
1177         pte_t *pte;
1178         spinlock_t *ptl;
1179
1180         retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1181         if (retval)
1182                 goto out;
1183
1184         retval = -EINVAL;
1185         if (PageAnon(page))
1186                 goto out_uncharge;
1187         retval = -ENOMEM;
1188         flush_dcache_page(page);
1189         pte = get_locked_pte(mm, addr, &ptl);
1190         if (!pte)
1191                 goto out_uncharge;
1192         retval = -EBUSY;
1193         if (!pte_none(*pte))
1194                 goto out_unlock;
1195
1196         /* Ok, finally just insert the thing.. */
1197         get_page(page);
1198         inc_mm_counter(mm, file_rss);
1199         page_add_file_rmap(page);
1200         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1201
1202         retval = 0;
1203         pte_unmap_unlock(pte, ptl);
1204         return retval;
1205 out_unlock:
1206         pte_unmap_unlock(pte, ptl);
1207 out_uncharge:
1208         mem_cgroup_uncharge_page(page);
1209 out:
1210         return retval;
1211 }
1212
1213 /**
1214  * vm_insert_page - insert single page into user vma
1215  * @vma: user vma to map to
1216  * @addr: target user address of this page
1217  * @page: source kernel page
1218  *
1219  * This allows drivers to insert individual pages they've allocated
1220  * into a user vma.
1221  *
1222  * The page has to be a nice clean _individual_ kernel allocation.
1223  * If you allocate a compound page, you need to have marked it as
1224  * such (__GFP_COMP), or manually just split the page up yourself
1225  * (see split_page()).
1226  *
1227  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1228  * took an arbitrary page protection parameter. This doesn't allow
1229  * that. Your vma protection will have to be set up correctly, which
1230  * means that if you want a shared writable mapping, you'd better
1231  * ask for a shared writable mapping!
1232  *
1233  * The page does not need to be reserved.
1234  */
1235 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1236 {
1237         if (addr < vma->vm_start || addr >= vma->vm_end)
1238                 return -EFAULT;
1239         if (!page_count(page))
1240                 return -EINVAL;
1241         vma->vm_flags |= VM_INSERTPAGE;
1242         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1243 }
1244 EXPORT_SYMBOL(vm_insert_page);
1245
1246 /**
1247  * vm_insert_pfn - insert single pfn into user vma
1248  * @vma: user vma to map to
1249  * @addr: target user address of this page
1250  * @pfn: source kernel pfn
1251  *
1252  * Similar to vm_inert_page, this allows drivers to insert individual pages
1253  * they've allocated into a user vma. Same comments apply.
1254  *
1255  * This function should only be called from a vm_ops->fault handler, and
1256  * in that case the handler should return NULL.
1257  */
1258 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1259                 unsigned long pfn)
1260 {
1261         struct mm_struct *mm = vma->vm_mm;
1262         int retval;
1263         pte_t *pte, entry;
1264         spinlock_t *ptl;
1265
1266         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1267         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1268                                                 (VM_PFNMAP|VM_MIXEDMAP));
1269         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1270         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1271
1272         retval = -ENOMEM;
1273         pte = get_locked_pte(mm, addr, &ptl);
1274         if (!pte)
1275                 goto out;
1276         retval = -EBUSY;
1277         if (!pte_none(*pte))
1278                 goto out_unlock;
1279
1280         /* Ok, finally just insert the thing.. */
1281         entry = pfn_pte(pfn, vma->vm_page_prot);
1282         set_pte_at(mm, addr, pte, entry);
1283         update_mmu_cache(vma, addr, entry);
1284
1285         retval = 0;
1286 out_unlock:
1287         pte_unmap_unlock(pte, ptl);
1288
1289 out:
1290         return retval;
1291 }
1292 EXPORT_SYMBOL(vm_insert_pfn);
1293
1294 /*
1295  * maps a range of physical memory into the requested pages. the old
1296  * mappings are removed. any references to nonexistent pages results
1297  * in null mappings (currently treated as "copy-on-access")
1298  */
1299 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1300                         unsigned long addr, unsigned long end,
1301                         unsigned long pfn, pgprot_t prot)
1302 {
1303         pte_t *pte;
1304         spinlock_t *ptl;
1305
1306         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1307         if (!pte)
1308                 return -ENOMEM;
1309         arch_enter_lazy_mmu_mode();
1310         do {
1311                 BUG_ON(!pte_none(*pte));
1312                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1313                 pfn++;
1314         } while (pte++, addr += PAGE_SIZE, addr != end);
1315         arch_leave_lazy_mmu_mode();
1316         pte_unmap_unlock(pte - 1, ptl);
1317         return 0;
1318 }
1319
1320 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1321                         unsigned long addr, unsigned long end,
1322                         unsigned long pfn, pgprot_t prot)
1323 {
1324         pmd_t *pmd;
1325         unsigned long next;
1326
1327         pfn -= addr >> PAGE_SHIFT;
1328         pmd = pmd_alloc(mm, pud, addr);
1329         if (!pmd)
1330                 return -ENOMEM;
1331         do {
1332                 next = pmd_addr_end(addr, end);
1333                 if (remap_pte_range(mm, pmd, addr, next,
1334                                 pfn + (addr >> PAGE_SHIFT), prot))
1335                         return -ENOMEM;
1336         } while (pmd++, addr = next, addr != end);
1337         return 0;
1338 }
1339
1340 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1341                         unsigned long addr, unsigned long end,
1342                         unsigned long pfn, pgprot_t prot)
1343 {
1344         pud_t *pud;
1345         unsigned long next;
1346
1347         pfn -= addr >> PAGE_SHIFT;
1348         pud = pud_alloc(mm, pgd, addr);
1349         if (!pud)
1350                 return -ENOMEM;
1351         do {
1352                 next = pud_addr_end(addr, end);
1353                 if (remap_pmd_range(mm, pud, addr, next,
1354                                 pfn + (addr >> PAGE_SHIFT), prot))
1355                         return -ENOMEM;
1356         } while (pud++, addr = next, addr != end);
1357         return 0;
1358 }
1359
1360 /**
1361  * remap_pfn_range - remap kernel memory to userspace
1362  * @vma: user vma to map to
1363  * @addr: target user address to start at
1364  * @pfn: physical address of kernel memory
1365  * @size: size of map area
1366  * @prot: page protection flags for this mapping
1367  *
1368  *  Note: this is only safe if the mm semaphore is held when called.
1369  */
1370 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1371                     unsigned long pfn, unsigned long size, pgprot_t prot)
1372 {
1373         pgd_t *pgd;
1374         unsigned long next;
1375         unsigned long end = addr + PAGE_ALIGN(size);
1376         struct mm_struct *mm = vma->vm_mm;
1377         int err;
1378
1379         /*
1380          * Physically remapped pages are special. Tell the
1381          * rest of the world about it:
1382          *   VM_IO tells people not to look at these pages
1383          *      (accesses can have side effects).
1384          *   VM_RESERVED is specified all over the place, because
1385          *      in 2.4 it kept swapout's vma scan off this vma; but
1386          *      in 2.6 the LRU scan won't even find its pages, so this
1387          *      flag means no more than count its pages in reserved_vm,
1388          *      and omit it from core dump, even when VM_IO turned off.
1389          *   VM_PFNMAP tells the core MM that the base pages are just
1390          *      raw PFN mappings, and do not have a "struct page" associated
1391          *      with them.
1392          *
1393          * There's a horrible special case to handle copy-on-write
1394          * behaviour that some programs depend on. We mark the "original"
1395          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1396          */
1397         if (is_cow_mapping(vma->vm_flags)) {
1398                 if (addr != vma->vm_start || end != vma->vm_end)
1399                         return -EINVAL;
1400                 vma->vm_pgoff = pfn;
1401         }
1402
1403         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1404
1405         BUG_ON(addr >= end);
1406         pfn -= addr >> PAGE_SHIFT;
1407         pgd = pgd_offset(mm, addr);
1408         flush_cache_range(vma, addr, end);
1409         do {
1410                 next = pgd_addr_end(addr, end);
1411                 err = remap_pud_range(mm, pgd, addr, next,
1412                                 pfn + (addr >> PAGE_SHIFT), prot);
1413                 if (err)
1414                         break;
1415         } while (pgd++, addr = next, addr != end);
1416         return err;
1417 }
1418 EXPORT_SYMBOL(remap_pfn_range);
1419
1420 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1421                                      unsigned long addr, unsigned long end,
1422                                      pte_fn_t fn, void *data)
1423 {
1424         pte_t *pte;
1425         int err;
1426         pgtable_t token;
1427         spinlock_t *uninitialized_var(ptl);
1428
1429         pte = (mm == &init_mm) ?
1430                 pte_alloc_kernel(pmd, addr) :
1431                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1432         if (!pte)
1433                 return -ENOMEM;
1434
1435         BUG_ON(pmd_huge(*pmd));
1436
1437         token = pmd_pgtable(*pmd);
1438
1439         do {
1440                 err = fn(pte, token, addr, data);
1441                 if (err)
1442                         break;
1443         } while (pte++, addr += PAGE_SIZE, addr != end);
1444
1445         if (mm != &init_mm)
1446                 pte_unmap_unlock(pte-1, ptl);
1447         return err;
1448 }
1449
1450 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1451                                      unsigned long addr, unsigned long end,
1452                                      pte_fn_t fn, void *data)
1453 {
1454         pmd_t *pmd;
1455         unsigned long next;
1456         int err;
1457
1458         pmd = pmd_alloc(mm, pud, addr);
1459         if (!pmd)
1460                 return -ENOMEM;
1461         do {
1462                 next = pmd_addr_end(addr, end);
1463                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1464                 if (err)
1465                         break;
1466         } while (pmd++, addr = next, addr != end);
1467         return err;
1468 }
1469
1470 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1471                                      unsigned long addr, unsigned long end,
1472                                      pte_fn_t fn, void *data)
1473 {
1474         pud_t *pud;
1475         unsigned long next;
1476         int err;
1477
1478         pud = pud_alloc(mm, pgd, addr);
1479         if (!pud)
1480                 return -ENOMEM;
1481         do {
1482                 next = pud_addr_end(addr, end);
1483                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1484                 if (err)
1485                         break;
1486         } while (pud++, addr = next, addr != end);
1487         return err;
1488 }
1489
1490 /*
1491  * Scan a region of virtual memory, filling in page tables as necessary
1492  * and calling a provided function on each leaf page table.
1493  */
1494 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1495                         unsigned long size, pte_fn_t fn, void *data)
1496 {
1497         pgd_t *pgd;
1498         unsigned long next;
1499         unsigned long end = addr + size;
1500         int err;
1501
1502         BUG_ON(addr >= end);
1503         pgd = pgd_offset(mm, addr);
1504         do {
1505                 next = pgd_addr_end(addr, end);
1506                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1507                 if (err)
1508                         break;
1509         } while (pgd++, addr = next, addr != end);
1510         return err;
1511 }
1512 EXPORT_SYMBOL_GPL(apply_to_page_range);
1513
1514 /*
1515  * handle_pte_fault chooses page fault handler according to an entry
1516  * which was read non-atomically.  Before making any commitment, on
1517  * those architectures or configurations (e.g. i386 with PAE) which
1518  * might give a mix of unmatched parts, do_swap_page and do_file_page
1519  * must check under lock before unmapping the pte and proceeding
1520  * (but do_wp_page is only called after already making such a check;
1521  * and do_anonymous_page and do_no_page can safely check later on).
1522  */
1523 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1524                                 pte_t *page_table, pte_t orig_pte)
1525 {
1526         int same = 1;
1527 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1528         if (sizeof(pte_t) > sizeof(unsigned long)) {
1529                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1530                 spin_lock(ptl);
1531                 same = pte_same(*page_table, orig_pte);
1532                 spin_unlock(ptl);
1533         }
1534 #endif
1535         pte_unmap(page_table);
1536         return same;
1537 }
1538
1539 /*
1540  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1541  * servicing faults for write access.  In the normal case, do always want
1542  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1543  * that do not have writing enabled, when used by access_process_vm.
1544  */
1545 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1546 {
1547         if (likely(vma->vm_flags & VM_WRITE))
1548                 pte = pte_mkwrite(pte);
1549         return pte;
1550 }
1551
1552 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1553 {
1554         /*
1555          * If the source page was a PFN mapping, we don't have
1556          * a "struct page" for it. We do a best-effort copy by
1557          * just copying from the original user address. If that
1558          * fails, we just zero-fill it. Live with it.
1559          */
1560         if (unlikely(!src)) {
1561                 void *kaddr = kmap_atomic(dst, KM_USER0);
1562                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1563
1564                 /*
1565                  * This really shouldn't fail, because the page is there
1566                  * in the page tables. But it might just be unreadable,
1567                  * in which case we just give up and fill the result with
1568                  * zeroes.
1569                  */
1570                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1571                         memset(kaddr, 0, PAGE_SIZE);
1572                 kunmap_atomic(kaddr, KM_USER0);
1573                 flush_dcache_page(dst);
1574         } else
1575                 copy_user_highpage(dst, src, va, vma);
1576 }
1577
1578 /*
1579  * This routine handles present pages, when users try to write
1580  * to a shared page. It is done by copying the page to a new address
1581  * and decrementing the shared-page counter for the old page.
1582  *
1583  * Note that this routine assumes that the protection checks have been
1584  * done by the caller (the low-level page fault routine in most cases).
1585  * Thus we can safely just mark it writable once we've done any necessary
1586  * COW.
1587  *
1588  * We also mark the page dirty at this point even though the page will
1589  * change only once the write actually happens. This avoids a few races,
1590  * and potentially makes it more efficient.
1591  *
1592  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1593  * but allow concurrent faults), with pte both mapped and locked.
1594  * We return with mmap_sem still held, but pte unmapped and unlocked.
1595  */
1596 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1597                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1598                 spinlock_t *ptl, pte_t orig_pte)
1599 {
1600         struct page *old_page, *new_page;
1601         pte_t entry;
1602         int reuse = 0, ret = 0;
1603         int page_mkwrite = 0;
1604         struct page *dirty_page = NULL;
1605
1606         old_page = vm_normal_page(vma, address, orig_pte);
1607         if (!old_page)
1608                 goto gotten;
1609
1610         /*
1611          * Take out anonymous pages first, anonymous shared vmas are
1612          * not dirty accountable.
1613          */
1614         if (PageAnon(old_page)) {
1615                 if (!TestSetPageLocked(old_page)) {
1616                         reuse = can_share_swap_page(old_page);
1617                         unlock_page(old_page);
1618                 }
1619         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1620                                         (VM_WRITE|VM_SHARED))) {
1621                 /*
1622                  * Only catch write-faults on shared writable pages,
1623                  * read-only shared pages can get COWed by
1624                  * get_user_pages(.write=1, .force=1).
1625                  */
1626                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1627                         /*
1628                          * Notify the address space that the page is about to
1629                          * become writable so that it can prohibit this or wait
1630                          * for the page to get into an appropriate state.
1631                          *
1632                          * We do this without the lock held, so that it can
1633                          * sleep if it needs to.
1634                          */
1635                         page_cache_get(old_page);
1636                         pte_unmap_unlock(page_table, ptl);
1637
1638                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1639                                 goto unwritable_page;
1640
1641                         /*
1642                          * Since we dropped the lock we need to revalidate
1643                          * the PTE as someone else may have changed it.  If
1644                          * they did, we just return, as we can count on the
1645                          * MMU to tell us if they didn't also make it writable.
1646                          */
1647                         page_table = pte_offset_map_lock(mm, pmd, address,
1648                                                          &ptl);
1649                         page_cache_release(old_page);
1650                         if (!pte_same(*page_table, orig_pte))
1651                                 goto unlock;
1652
1653                         page_mkwrite = 1;
1654                 }
1655                 dirty_page = old_page;
1656                 get_page(dirty_page);
1657                 reuse = 1;
1658         }
1659
1660         if (reuse) {
1661                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1662                 entry = pte_mkyoung(orig_pte);
1663                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1664                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1665                         update_mmu_cache(vma, address, entry);
1666                 ret |= VM_FAULT_WRITE;
1667                 goto unlock;
1668         }
1669
1670         /*
1671          * Ok, we need to copy. Oh, well..
1672          */
1673         page_cache_get(old_page);
1674 gotten:
1675         pte_unmap_unlock(page_table, ptl);
1676
1677         if (unlikely(anon_vma_prepare(vma)))
1678                 goto oom;
1679         VM_BUG_ON(old_page == ZERO_PAGE(0));
1680         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1681         if (!new_page)
1682                 goto oom;
1683         cow_user_page(new_page, old_page, address, vma);
1684         __SetPageUptodate(new_page);
1685
1686         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1687                 goto oom_free_new;
1688
1689         /*
1690          * Re-check the pte - we dropped the lock
1691          */
1692         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1693         if (likely(pte_same(*page_table, orig_pte))) {
1694                 if (old_page) {
1695                         page_remove_rmap(old_page, vma);
1696                         if (!PageAnon(old_page)) {
1697                                 dec_mm_counter(mm, file_rss);
1698                                 inc_mm_counter(mm, anon_rss);
1699                         }
1700                 } else
1701                         inc_mm_counter(mm, anon_rss);
1702                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1703                 entry = mk_pte(new_page, vma->vm_page_prot);
1704                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1705                 /*
1706                  * Clear the pte entry and flush it first, before updating the
1707                  * pte with the new entry. This will avoid a race condition
1708                  * seen in the presence of one thread doing SMC and another
1709                  * thread doing COW.
1710                  */
1711                 ptep_clear_flush(vma, address, page_table);
1712                 set_pte_at(mm, address, page_table, entry);
1713                 update_mmu_cache(vma, address, entry);
1714                 lru_cache_add_active(new_page);
1715                 page_add_new_anon_rmap(new_page, vma, address);
1716
1717                 /* Free the old page.. */
1718                 new_page = old_page;
1719                 ret |= VM_FAULT_WRITE;
1720         } else
1721                 mem_cgroup_uncharge_page(new_page);
1722
1723         if (new_page)
1724                 page_cache_release(new_page);
1725         if (old_page)
1726                 page_cache_release(old_page);
1727 unlock:
1728         pte_unmap_unlock(page_table, ptl);
1729         if (dirty_page) {
1730                 if (vma->vm_file)
1731                         file_update_time(vma->vm_file);
1732
1733                 /*
1734                  * Yes, Virginia, this is actually required to prevent a race
1735                  * with clear_page_dirty_for_io() from clearing the page dirty
1736                  * bit after it clear all dirty ptes, but before a racing
1737                  * do_wp_page installs a dirty pte.
1738                  *
1739                  * do_no_page is protected similarly.
1740                  */
1741                 wait_on_page_locked(dirty_page);
1742                 set_page_dirty_balance(dirty_page, page_mkwrite);
1743                 put_page(dirty_page);
1744         }
1745         return ret;
1746 oom_free_new:
1747         page_cache_release(new_page);
1748 oom:
1749         if (old_page)
1750                 page_cache_release(old_page);
1751         return VM_FAULT_OOM;
1752
1753 unwritable_page:
1754         page_cache_release(old_page);
1755         return VM_FAULT_SIGBUS;
1756 }
1757
1758 /*
1759  * Helper functions for unmap_mapping_range().
1760  *
1761  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1762  *
1763  * We have to restart searching the prio_tree whenever we drop the lock,
1764  * since the iterator is only valid while the lock is held, and anyway
1765  * a later vma might be split and reinserted earlier while lock dropped.
1766  *
1767  * The list of nonlinear vmas could be handled more efficiently, using
1768  * a placeholder, but handle it in the same way until a need is shown.
1769  * It is important to search the prio_tree before nonlinear list: a vma
1770  * may become nonlinear and be shifted from prio_tree to nonlinear list
1771  * while the lock is dropped; but never shifted from list to prio_tree.
1772  *
1773  * In order to make forward progress despite restarting the search,
1774  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1775  * quickly skip it next time around.  Since the prio_tree search only
1776  * shows us those vmas affected by unmapping the range in question, we
1777  * can't efficiently keep all vmas in step with mapping->truncate_count:
1778  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1779  * mapping->truncate_count and vma->vm_truncate_count are protected by
1780  * i_mmap_lock.
1781  *
1782  * In order to make forward progress despite repeatedly restarting some
1783  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1784  * and restart from that address when we reach that vma again.  It might
1785  * have been split or merged, shrunk or extended, but never shifted: so
1786  * restart_addr remains valid so long as it remains in the vma's range.
1787  * unmap_mapping_range forces truncate_count to leap over page-aligned
1788  * values so we can save vma's restart_addr in its truncate_count field.
1789  */
1790 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1791
1792 static void reset_vma_truncate_counts(struct address_space *mapping)
1793 {
1794         struct vm_area_struct *vma;
1795         struct prio_tree_iter iter;
1796
1797         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1798                 vma->vm_truncate_count = 0;
1799         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1800                 vma->vm_truncate_count = 0;
1801 }
1802
1803 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1804                 unsigned long start_addr, unsigned long end_addr,
1805                 struct zap_details *details)
1806 {
1807         unsigned long restart_addr;
1808         int need_break;
1809
1810         /*
1811          * files that support invalidating or truncating portions of the
1812          * file from under mmaped areas must have their ->fault function
1813          * return a locked page (and set VM_FAULT_LOCKED in the return).
1814          * This provides synchronisation against concurrent unmapping here.
1815          */
1816
1817 again:
1818         restart_addr = vma->vm_truncate_count;
1819         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1820                 start_addr = restart_addr;
1821                 if (start_addr >= end_addr) {
1822                         /* Top of vma has been split off since last time */
1823                         vma->vm_truncate_count = details->truncate_count;
1824                         return 0;
1825                 }
1826         }
1827
1828         restart_addr = zap_page_range(vma, start_addr,
1829                                         end_addr - start_addr, details);
1830         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1831
1832         if (restart_addr >= end_addr) {
1833                 /* We have now completed this vma: mark it so */
1834                 vma->vm_truncate_count = details->truncate_count;
1835                 if (!need_break)
1836                         return 0;
1837         } else {
1838                 /* Note restart_addr in vma's truncate_count field */
1839                 vma->vm_truncate_count = restart_addr;
1840                 if (!need_break)
1841                         goto again;
1842         }
1843
1844         spin_unlock(details->i_mmap_lock);
1845         cond_resched();
1846         spin_lock(details->i_mmap_lock);
1847         return -EINTR;
1848 }
1849
1850 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1851                                             struct zap_details *details)
1852 {
1853         struct vm_area_struct *vma;
1854         struct prio_tree_iter iter;
1855         pgoff_t vba, vea, zba, zea;
1856
1857 restart:
1858         vma_prio_tree_foreach(vma, &iter, root,
1859                         details->first_index, details->last_index) {
1860                 /* Skip quickly over those we have already dealt with */
1861                 if (vma->vm_truncate_count == details->truncate_count)
1862                         continue;
1863
1864                 vba = vma->vm_pgoff;
1865                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1866                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1867                 zba = details->first_index;
1868                 if (zba < vba)
1869                         zba = vba;
1870                 zea = details->last_index;
1871                 if (zea > vea)
1872                         zea = vea;
1873
1874                 if (unmap_mapping_range_vma(vma,
1875                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1876                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1877                                 details) < 0)
1878                         goto restart;
1879         }
1880 }
1881
1882 static inline void unmap_mapping_range_list(struct list_head *head,
1883                                             struct zap_details *details)
1884 {
1885         struct vm_area_struct *vma;
1886
1887         /*
1888          * In nonlinear VMAs there is no correspondence between virtual address
1889          * offset and file offset.  So we must perform an exhaustive search
1890          * across *all* the pages in each nonlinear VMA, not just the pages
1891          * whose virtual address lies outside the file truncation point.
1892          */
1893 restart:
1894         list_for_each_entry(vma, head, shared.vm_set.list) {
1895                 /* Skip quickly over those we have already dealt with */
1896                 if (vma->vm_truncate_count == details->truncate_count)
1897                         continue;
1898                 details->nonlinear_vma = vma;
1899                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1900                                         vma->vm_end, details) < 0)
1901                         goto restart;
1902         }
1903 }
1904
1905 /**
1906  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1907  * @mapping: the address space containing mmaps to be unmapped.
1908  * @holebegin: byte in first page to unmap, relative to the start of
1909  * the underlying file.  This will be rounded down to a PAGE_SIZE
1910  * boundary.  Note that this is different from vmtruncate(), which
1911  * must keep the partial page.  In contrast, we must get rid of
1912  * partial pages.
1913  * @holelen: size of prospective hole in bytes.  This will be rounded
1914  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1915  * end of the file.
1916  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1917  * but 0 when invalidating pagecache, don't throw away private data.
1918  */
1919 void unmap_mapping_range(struct address_space *mapping,
1920                 loff_t const holebegin, loff_t const holelen, int even_cows)
1921 {
1922         struct zap_details details;
1923         pgoff_t hba = holebegin >> PAGE_SHIFT;
1924         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1925
1926         /* Check for overflow. */
1927         if (sizeof(holelen) > sizeof(hlen)) {
1928                 long long holeend =
1929                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1930                 if (holeend & ~(long long)ULONG_MAX)
1931                         hlen = ULONG_MAX - hba + 1;
1932         }
1933
1934         details.check_mapping = even_cows? NULL: mapping;
1935         details.nonlinear_vma = NULL;
1936         details.first_index = hba;
1937         details.last_index = hba + hlen - 1;
1938         if (details.last_index < details.first_index)
1939                 details.last_index = ULONG_MAX;
1940         details.i_mmap_lock = &mapping->i_mmap_lock;
1941
1942         spin_lock(&mapping->i_mmap_lock);
1943
1944         /* Protect against endless unmapping loops */
1945         mapping->truncate_count++;
1946         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1947                 if (mapping->truncate_count == 0)
1948                         reset_vma_truncate_counts(mapping);
1949                 mapping->truncate_count++;
1950         }
1951         details.truncate_count = mapping->truncate_count;
1952
1953         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1954                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1955         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1956                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1957         spin_unlock(&mapping->i_mmap_lock);
1958 }
1959 EXPORT_SYMBOL(unmap_mapping_range);
1960
1961 /**
1962  * vmtruncate - unmap mappings "freed" by truncate() syscall
1963  * @inode: inode of the file used
1964  * @offset: file offset to start truncating
1965  *
1966  * NOTE! We have to be ready to update the memory sharing
1967  * between the file and the memory map for a potential last
1968  * incomplete page.  Ugly, but necessary.
1969  */
1970 int vmtruncate(struct inode * inode, loff_t offset)
1971 {
1972         if (inode->i_size < offset) {
1973                 unsigned long limit;
1974
1975                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1976                 if (limit != RLIM_INFINITY && offset > limit)
1977                         goto out_sig;
1978                 if (offset > inode->i_sb->s_maxbytes)
1979                         goto out_big;
1980                 i_size_write(inode, offset);
1981         } else {
1982                 struct address_space *mapping = inode->i_mapping;
1983
1984                 /*
1985                  * truncation of in-use swapfiles is disallowed - it would
1986                  * cause subsequent swapout to scribble on the now-freed
1987                  * blocks.
1988                  */
1989                 if (IS_SWAPFILE(inode))
1990                         return -ETXTBSY;
1991                 i_size_write(inode, offset);
1992
1993                 /*
1994                  * unmap_mapping_range is called twice, first simply for
1995                  * efficiency so that truncate_inode_pages does fewer
1996                  * single-page unmaps.  However after this first call, and
1997                  * before truncate_inode_pages finishes, it is possible for
1998                  * private pages to be COWed, which remain after
1999                  * truncate_inode_pages finishes, hence the second
2000                  * unmap_mapping_range call must be made for correctness.
2001                  */
2002                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2003                 truncate_inode_pages(mapping, offset);
2004                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2005         }
2006
2007         if (inode->i_op && inode->i_op->truncate)
2008                 inode->i_op->truncate(inode);
2009         return 0;
2010
2011 out_sig:
2012         send_sig(SIGXFSZ, current, 0);
2013 out_big:
2014         return -EFBIG;
2015 }
2016 EXPORT_SYMBOL(vmtruncate);
2017
2018 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2019 {
2020         struct address_space *mapping = inode->i_mapping;
2021
2022         /*
2023          * If the underlying filesystem is not going to provide
2024          * a way to truncate a range of blocks (punch a hole) -
2025          * we should return failure right now.
2026          */
2027         if (!inode->i_op || !inode->i_op->truncate_range)
2028                 return -ENOSYS;
2029
2030         mutex_lock(&inode->i_mutex);
2031         down_write(&inode->i_alloc_sem);
2032         unmap_mapping_range(mapping, offset, (end - offset), 1);
2033         truncate_inode_pages_range(mapping, offset, end);
2034         unmap_mapping_range(mapping, offset, (end - offset), 1);
2035         inode->i_op->truncate_range(inode, offset, end);
2036         up_write(&inode->i_alloc_sem);
2037         mutex_unlock(&inode->i_mutex);
2038
2039         return 0;
2040 }
2041
2042 /*
2043  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2044  * but allow concurrent faults), and pte mapped but not yet locked.
2045  * We return with mmap_sem still held, but pte unmapped and unlocked.
2046  */
2047 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2048                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2049                 int write_access, pte_t orig_pte)
2050 {
2051         spinlock_t *ptl;
2052         struct page *page;
2053         swp_entry_t entry;
2054         pte_t pte;
2055         int ret = 0;
2056
2057         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2058                 goto out;
2059
2060         entry = pte_to_swp_entry(orig_pte);
2061         if (is_migration_entry(entry)) {
2062                 migration_entry_wait(mm, pmd, address);
2063                 goto out;
2064         }
2065         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2066         page = lookup_swap_cache(entry);
2067         if (!page) {
2068                 grab_swap_token(); /* Contend for token _before_ read-in */
2069                 page = swapin_readahead(entry,
2070                                         GFP_HIGHUSER_MOVABLE, vma, address);
2071                 if (!page) {
2072                         /*
2073                          * Back out if somebody else faulted in this pte
2074                          * while we released the pte lock.
2075                          */
2076                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2077                         if (likely(pte_same(*page_table, orig_pte)))
2078                                 ret = VM_FAULT_OOM;
2079                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2080                         goto unlock;
2081                 }
2082
2083                 /* Had to read the page from swap area: Major fault */
2084                 ret = VM_FAULT_MAJOR;
2085                 count_vm_event(PGMAJFAULT);
2086         }
2087
2088         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2089                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2090                 ret = VM_FAULT_OOM;
2091                 goto out;
2092         }
2093
2094         mark_page_accessed(page);
2095         lock_page(page);
2096         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2097
2098         /*
2099          * Back out if somebody else already faulted in this pte.
2100          */
2101         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2102         if (unlikely(!pte_same(*page_table, orig_pte)))
2103                 goto out_nomap;
2104
2105         if (unlikely(!PageUptodate(page))) {
2106                 ret = VM_FAULT_SIGBUS;
2107                 goto out_nomap;
2108         }
2109
2110         /* The page isn't present yet, go ahead with the fault. */
2111
2112         inc_mm_counter(mm, anon_rss);
2113         pte = mk_pte(page, vma->vm_page_prot);
2114         if (write_access && can_share_swap_page(page)) {
2115                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2116                 write_access = 0;
2117         }
2118
2119         flush_icache_page(vma, page);
2120         set_pte_at(mm, address, page_table, pte);
2121         page_add_anon_rmap(page, vma, address);
2122
2123         swap_free(entry);
2124         if (vm_swap_full())
2125                 remove_exclusive_swap_page(page);
2126         unlock_page(page);
2127
2128         if (write_access) {
2129                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2130                 if (ret & VM_FAULT_ERROR)
2131                         ret &= VM_FAULT_ERROR;
2132                 goto out;
2133         }
2134
2135         /* No need to invalidate - it was non-present before */
2136         update_mmu_cache(vma, address, pte);
2137 unlock:
2138         pte_unmap_unlock(page_table, ptl);
2139 out:
2140         return ret;
2141 out_nomap:
2142         mem_cgroup_uncharge_page(page);
2143         pte_unmap_unlock(page_table, ptl);
2144         unlock_page(page);
2145         page_cache_release(page);
2146         return ret;
2147 }
2148
2149 /*
2150  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2151  * but allow concurrent faults), and pte mapped but not yet locked.
2152  * We return with mmap_sem still held, but pte unmapped and unlocked.
2153  */
2154 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2155                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2156                 int write_access)
2157 {
2158         struct page *page;
2159         spinlock_t *ptl;
2160         pte_t entry;
2161
2162         /* Allocate our own private page. */
2163         pte_unmap(page_table);
2164
2165         if (unlikely(anon_vma_prepare(vma)))
2166                 goto oom;
2167         page = alloc_zeroed_user_highpage_movable(vma, address);
2168         if (!page)
2169                 goto oom;
2170         __SetPageUptodate(page);
2171
2172         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2173                 goto oom_free_page;
2174
2175         entry = mk_pte(page, vma->vm_page_prot);
2176         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2177
2178         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2179         if (!pte_none(*page_table))
2180                 goto release;
2181         inc_mm_counter(mm, anon_rss);
2182         lru_cache_add_active(page);
2183         page_add_new_anon_rmap(page, vma, address);
2184         set_pte_at(mm, address, page_table, entry);
2185
2186         /* No need to invalidate - it was non-present before */
2187         update_mmu_cache(vma, address, entry);
2188 unlock:
2189         pte_unmap_unlock(page_table, ptl);
2190         return 0;
2191 release:
2192         mem_cgroup_uncharge_page(page);
2193         page_cache_release(page);
2194         goto unlock;
2195 oom_free_page:
2196         page_cache_release(page);
2197 oom:
2198         return VM_FAULT_OOM;
2199 }
2200
2201 /*
2202  * __do_fault() tries to create a new page mapping. It aggressively
2203  * tries to share with existing pages, but makes a separate copy if
2204  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2205  * the next page fault.
2206  *
2207  * As this is called only for pages that do not currently exist, we
2208  * do not need to flush old virtual caches or the TLB.
2209  *
2210  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2211  * but allow concurrent faults), and pte neither mapped nor locked.
2212  * We return with mmap_sem still held, but pte unmapped and unlocked.
2213  */
2214 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2215                 unsigned long address, pmd_t *pmd,
2216                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2217 {
2218         pte_t *page_table;
2219         spinlock_t *ptl;
2220         struct page *page;
2221         pte_t entry;
2222         int anon = 0;
2223         struct page *dirty_page = NULL;
2224         struct vm_fault vmf;
2225         int ret;
2226         int page_mkwrite = 0;
2227
2228         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2229         vmf.pgoff = pgoff;
2230         vmf.flags = flags;
2231         vmf.page = NULL;
2232
2233         BUG_ON(vma->vm_flags & VM_PFNMAP);
2234
2235         ret = vma->vm_ops->fault(vma, &vmf);
2236         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2237                 return ret;
2238
2239         /*
2240          * For consistency in subsequent calls, make the faulted page always
2241          * locked.
2242          */
2243         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2244                 lock_page(vmf.page);
2245         else
2246                 VM_BUG_ON(!PageLocked(vmf.page));
2247
2248         /*
2249          * Should we do an early C-O-W break?
2250          */
2251         page = vmf.page;
2252         if (flags & FAULT_FLAG_WRITE) {
2253                 if (!(vma->vm_flags & VM_SHARED)) {
2254                         anon = 1;
2255                         if (unlikely(anon_vma_prepare(vma))) {
2256                                 ret = VM_FAULT_OOM;
2257                                 goto out;
2258                         }
2259                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2260                                                 vma, address);
2261                         if (!page) {
2262                                 ret = VM_FAULT_OOM;
2263                                 goto out;
2264                         }
2265                         copy_user_highpage(page, vmf.page, address, vma);
2266                         __SetPageUptodate(page);
2267                 } else {
2268                         /*
2269                          * If the page will be shareable, see if the backing
2270                          * address space wants to know that the page is about
2271                          * to become writable
2272                          */
2273                         if (vma->vm_ops->page_mkwrite) {
2274                                 unlock_page(page);
2275                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2276                                         ret = VM_FAULT_SIGBUS;
2277                                         anon = 1; /* no anon but release vmf.page */
2278                                         goto out_unlocked;
2279                                 }
2280                                 lock_page(page);
2281                                 /*
2282                                  * XXX: this is not quite right (racy vs
2283                                  * invalidate) to unlock and relock the page
2284                                  * like this, however a better fix requires
2285                                  * reworking page_mkwrite locking API, which
2286                                  * is better done later.
2287                                  */
2288                                 if (!page->mapping) {
2289                                         ret = 0;
2290                                         anon = 1; /* no anon but release vmf.page */
2291                                         goto out;
2292                                 }
2293                                 page_mkwrite = 1;
2294                         }
2295                 }
2296
2297         }
2298
2299         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2300                 ret = VM_FAULT_OOM;
2301                 goto out;
2302         }
2303
2304         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2305
2306         /*
2307          * This silly early PAGE_DIRTY setting removes a race
2308          * due to the bad i386 page protection. But it's valid
2309          * for other architectures too.
2310          *
2311          * Note that if write_access is true, we either now have
2312          * an exclusive copy of the page, or this is a shared mapping,
2313          * so we can make it writable and dirty to avoid having to
2314          * handle that later.
2315          */
2316         /* Only go through if we didn't race with anybody else... */
2317         if (likely(pte_same(*page_table, orig_pte))) {
2318                 flush_icache_page(vma, page);
2319                 entry = mk_pte(page, vma->vm_page_prot);
2320                 if (flags & FAULT_FLAG_WRITE)
2321                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2322                 set_pte_at(mm, address, page_table, entry);
2323                 if (anon) {
2324                         inc_mm_counter(mm, anon_rss);
2325                         lru_cache_add_active(page);
2326                         page_add_new_anon_rmap(page, vma, address);
2327                 } else {
2328                         inc_mm_counter(mm, file_rss);
2329                         page_add_file_rmap(page);
2330                         if (flags & FAULT_FLAG_WRITE) {
2331                                 dirty_page = page;
2332                                 get_page(dirty_page);
2333                         }
2334                 }
2335
2336                 /* no need to invalidate: a not-present page won't be cached */
2337                 update_mmu_cache(vma, address, entry);
2338         } else {
2339                 mem_cgroup_uncharge_page(page);
2340                 if (anon)
2341                         page_cache_release(page);
2342                 else
2343                         anon = 1; /* no anon but release faulted_page */
2344         }
2345
2346         pte_unmap_unlock(page_table, ptl);
2347
2348 out:
2349         unlock_page(vmf.page);
2350 out_unlocked:
2351         if (anon)
2352                 page_cache_release(vmf.page);
2353         else if (dirty_page) {
2354                 if (vma->vm_file)
2355                         file_update_time(vma->vm_file);
2356
2357                 set_page_dirty_balance(dirty_page, page_mkwrite);
2358                 put_page(dirty_page);
2359         }
2360
2361         return ret;
2362 }
2363
2364 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2365                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2366                 int write_access, pte_t orig_pte)
2367 {
2368         pgoff_t pgoff = (((address & PAGE_MASK)
2369                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2370         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2371
2372         pte_unmap(page_table);
2373         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2374 }
2375
2376
2377 /*
2378  * do_no_pfn() tries to create a new page mapping for a page without
2379  * a struct_page backing it
2380  *
2381  * As this is called only for pages that do not currently exist, we
2382  * do not need to flush old virtual caches or the TLB.
2383  *
2384  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2385  * but allow concurrent faults), and pte mapped but not yet locked.
2386  * We return with mmap_sem still held, but pte unmapped and unlocked.
2387  *
2388  * It is expected that the ->nopfn handler always returns the same pfn
2389  * for a given virtual mapping.
2390  *
2391  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2392  */
2393 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2394                      unsigned long address, pte_t *page_table, pmd_t *pmd,
2395                      int write_access)
2396 {
2397         spinlock_t *ptl;
2398         pte_t entry;
2399         unsigned long pfn;
2400
2401         pte_unmap(page_table);
2402         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2403         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2404
2405         pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2406
2407         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2408
2409         if (unlikely(pfn == NOPFN_OOM))
2410                 return VM_FAULT_OOM;
2411         else if (unlikely(pfn == NOPFN_SIGBUS))
2412                 return VM_FAULT_SIGBUS;
2413         else if (unlikely(pfn == NOPFN_REFAULT))
2414                 return 0;
2415
2416         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2417
2418         /* Only go through if we didn't race with anybody else... */
2419         if (pte_none(*page_table)) {
2420                 entry = pfn_pte(pfn, vma->vm_page_prot);
2421                 if (write_access)
2422                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2423                 set_pte_at(mm, address, page_table, entry);
2424         }
2425         pte_unmap_unlock(page_table, ptl);
2426         return 0;
2427 }
2428
2429 /*
2430  * Fault of a previously existing named mapping. Repopulate the pte
2431  * from the encoded file_pte if possible. This enables swappable
2432  * nonlinear vmas.
2433  *
2434  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2435  * but allow concurrent faults), and pte mapped but not yet locked.
2436  * We return with mmap_sem still held, but pte unmapped and unlocked.
2437  */
2438 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2439                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2440                 int write_access, pte_t orig_pte)
2441 {
2442         unsigned int flags = FAULT_FLAG_NONLINEAR |
2443                                 (write_access ? FAULT_FLAG_WRITE : 0);
2444         pgoff_t pgoff;
2445
2446         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2447                 return 0;
2448
2449         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2450                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2451                 /*
2452                  * Page table corrupted: show pte and kill process.
2453                  */
2454                 print_bad_pte(vma, orig_pte, address);
2455                 return VM_FAULT_OOM;
2456         }
2457
2458         pgoff = pte_to_pgoff(orig_pte);
2459         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2460 }
2461
2462 /*
2463  * These routines also need to handle stuff like marking pages dirty
2464  * and/or accessed for architectures that don't do it in hardware (most
2465  * RISC architectures).  The early dirtying is also good on the i386.
2466  *
2467  * There is also a hook called "update_mmu_cache()" that architectures
2468  * with external mmu caches can use to update those (ie the Sparc or
2469  * PowerPC hashed page tables that act as extended TLBs).
2470  *
2471  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2472  * but allow concurrent faults), and pte mapped but not yet locked.
2473  * We return with mmap_sem still held, but pte unmapped and unlocked.
2474  */
2475 static inline int handle_pte_fault(struct mm_struct *mm,
2476                 struct vm_area_struct *vma, unsigned long address,
2477                 pte_t *pte, pmd_t *pmd, int write_access)
2478 {
2479         pte_t entry;
2480         spinlock_t *ptl;
2481
2482         entry = *pte;
2483         if (!pte_present(entry)) {
2484                 if (pte_none(entry)) {
2485                         if (vma->vm_ops) {
2486                                 if (likely(vma->vm_ops->fault))
2487                                         return do_linear_fault(mm, vma, address,
2488                                                 pte, pmd, write_access, entry);
2489                                 if (unlikely(vma->vm_ops->nopfn))
2490                                         return do_no_pfn(mm, vma, address, pte,
2491                                                          pmd, write_access);
2492                         }
2493                         return do_anonymous_page(mm, vma, address,
2494                                                  pte, pmd, write_access);
2495                 }
2496                 if (pte_file(entry))
2497                         return do_nonlinear_fault(mm, vma, address,
2498                                         pte, pmd, write_access, entry);
2499                 return do_swap_page(mm, vma, address,
2500                                         pte, pmd, write_access, entry);
2501         }
2502
2503         ptl = pte_lockptr(mm, pmd);
2504         spin_lock(ptl);
2505         if (unlikely(!pte_same(*pte, entry)))
2506                 goto unlock;
2507         if (write_access) {
2508                 if (!pte_write(entry))
2509                         return do_wp_page(mm, vma, address,
2510                                         pte, pmd, ptl, entry);
2511                 entry = pte_mkdirty(entry);
2512         }
2513         entry = pte_mkyoung(entry);
2514         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2515                 update_mmu_cache(vma, address, entry);
2516         } else {
2517                 /*
2518                  * This is needed only for protection faults but the arch code
2519                  * is not yet telling us if this is a protection fault or not.
2520                  * This still avoids useless tlb flushes for .text page faults
2521                  * with threads.
2522                  */
2523                 if (write_access)
2524                         flush_tlb_page(vma, address);
2525         }
2526 unlock:
2527         pte_unmap_unlock(pte, ptl);
2528         return 0;
2529 }
2530
2531 /*
2532  * By the time we get here, we already hold the mm semaphore
2533  */
2534 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2535                 unsigned long address, int write_access)
2536 {
2537         pgd_t *pgd;
2538         pud_t *pud;
2539         pmd_t *pmd;
2540         pte_t *pte;
2541
2542         __set_current_state(TASK_RUNNING);
2543
2544         count_vm_event(PGFAULT);
2545
2546         if (unlikely(is_vm_hugetlb_page(vma)))
2547                 return hugetlb_fault(mm, vma, address, write_access);
2548
2549         pgd = pgd_offset(mm, address);
2550         pud = pud_alloc(mm, pgd, address);
2551         if (!pud)
2552                 return VM_FAULT_OOM;
2553         pmd = pmd_alloc(mm, pud, address);
2554         if (!pmd)
2555                 return VM_FAULT_OOM;
2556         pte = pte_alloc_map(mm, pmd, address);
2557         if (!pte)
2558                 return VM_FAULT_OOM;
2559
2560         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2561 }
2562
2563 #ifndef __PAGETABLE_PUD_FOLDED
2564 /*
2565  * Allocate page upper directory.
2566  * We've already handled the fast-path in-line.
2567  */
2568 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2569 {
2570         pud_t *new = pud_alloc_one(mm, address);
2571         if (!new)
2572                 return -ENOMEM;
2573
2574         spin_lock(&mm->page_table_lock);
2575         if (pgd_present(*pgd))          /* Another has populated it */
2576                 pud_free(mm, new);
2577         else
2578                 pgd_populate(mm, pgd, new);
2579         spin_unlock(&mm->page_table_lock);
2580         return 0;
2581 }
2582 #endif /* __PAGETABLE_PUD_FOLDED */
2583
2584 #ifndef __PAGETABLE_PMD_FOLDED
2585 /*
2586  * Allocate page middle directory.
2587  * We've already handled the fast-path in-line.
2588  */
2589 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2590 {
2591         pmd_t *new = pmd_alloc_one(mm, address);
2592         if (!new)
2593                 return -ENOMEM;
2594
2595         spin_lock(&mm->page_table_lock);
2596 #ifndef __ARCH_HAS_4LEVEL_HACK
2597         if (pud_present(*pud))          /* Another has populated it */
2598                 pmd_free(mm, new);
2599         else
2600                 pud_populate(mm, pud, new);
2601 #else
2602         if (pgd_present(*pud))          /* Another has populated it */
2603                 pmd_free(mm, new);
2604         else
2605                 pgd_populate(mm, pud, new);
2606 #endif /* __ARCH_HAS_4LEVEL_HACK */
2607         spin_unlock(&mm->page_table_lock);
2608         return 0;
2609 }
2610 #endif /* __PAGETABLE_PMD_FOLDED */
2611
2612 int make_pages_present(unsigned long addr, unsigned long end)
2613 {
2614         int ret, len, write;
2615         struct vm_area_struct * vma;
2616
2617         vma = find_vma(current->mm, addr);
2618         if (!vma)
2619                 return -1;
2620         write = (vma->vm_flags & VM_WRITE) != 0;
2621         BUG_ON(addr >= end);
2622         BUG_ON(end > vma->vm_end);
2623         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2624         ret = get_user_pages(current, current->mm, addr,
2625                         len, write, 0, NULL, NULL);
2626         if (ret < 0)
2627                 return ret;
2628         return ret == len ? 0 : -1;
2629 }
2630
2631 #if !defined(__HAVE_ARCH_GATE_AREA)
2632
2633 #if defined(AT_SYSINFO_EHDR)
2634 static struct vm_area_struct gate_vma;
2635
2636 static int __init gate_vma_init(void)
2637 {
2638         gate_vma.vm_mm = NULL;
2639         gate_vma.vm_start = FIXADDR_USER_START;
2640         gate_vma.vm_end = FIXADDR_USER_END;
2641         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2642         gate_vma.vm_page_prot = __P101;
2643         /*
2644          * Make sure the vDSO gets into every core dump.
2645          * Dumping its contents makes post-mortem fully interpretable later
2646          * without matching up the same kernel and hardware config to see
2647          * what PC values meant.
2648          */
2649         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2650         return 0;
2651 }
2652 __initcall(gate_vma_init);
2653 #endif
2654
2655 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2656 {
2657 #ifdef AT_SYSINFO_EHDR
2658         return &gate_vma;
2659 #else
2660         return NULL;
2661 #endif
2662 }
2663
2664 int in_gate_area_no_task(unsigned long addr)
2665 {
2666 #ifdef AT_SYSINFO_EHDR
2667         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2668                 return 1;
2669 #endif
2670         return 0;
2671 }
2672
2673 #endif  /* __HAVE_ARCH_GATE_AREA */
2674
2675 /*
2676  * Access another process' address space.
2677  * Source/target buffer must be kernel space,
2678  * Do not walk the page table directly, use get_user_pages
2679  */
2680 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2681 {
2682         struct mm_struct *mm;
2683         struct vm_area_struct *vma;
2684         struct page *page;
2685         void *old_buf = buf;
2686
2687         mm = get_task_mm(tsk);
2688         if (!mm)
2689                 return 0;
2690
2691         down_read(&mm->mmap_sem);
2692         /* ignore errors, just check how much was successfully transferred */
2693         while (len) {
2694                 int bytes, ret, offset;
2695                 void *maddr;
2696
2697                 ret = get_user_pages(tsk, mm, addr, 1,
2698                                 write, 1, &page, &vma);
2699                 if (ret <= 0)
2700                         break;
2701
2702                 bytes = len;
2703                 offset = addr & (PAGE_SIZE-1);
2704                 if (bytes > PAGE_SIZE-offset)
2705                         bytes = PAGE_SIZE-offset;
2706
2707                 maddr = kmap(page);
2708                 if (write) {
2709                         copy_to_user_page(vma, page, addr,
2710                                           maddr + offset, buf, bytes);
2711                         set_page_dirty_lock(page);
2712                 } else {
2713                         copy_from_user_page(vma, page, addr,
2714                                             buf, maddr + offset, bytes);
2715                 }
2716                 kunmap(page);
2717                 page_cache_release(page);
2718                 len -= bytes;
2719                 buf += bytes;
2720                 addr += bytes;
2721         }
2722         up_read(&mm->mmap_sem);
2723         mmput(mm);
2724
2725         return buf - old_buf;
2726 }
2727
2728 /*
2729  * Print the name of a VMA.
2730  */
2731 void print_vma_addr(char *prefix, unsigned long ip)
2732 {
2733         struct mm_struct *mm = current->mm;
2734         struct vm_area_struct *vma;
2735
2736         /*
2737          * Do not print if we are in atomic
2738          * contexts (in exception stacks, etc.):
2739          */
2740         if (preempt_count())
2741                 return;
2742
2743         down_read(&mm->mmap_sem);
2744         vma = find_vma(mm, ip);
2745         if (vma && vma->vm_file) {
2746                 struct file *f = vma->vm_file;
2747                 char *buf = (char *)__get_free_page(GFP_KERNEL);
2748                 if (buf) {
2749                         char *p, *s;
2750
2751                         p = d_path(&f->f_path, buf, PAGE_SIZE);
2752                         if (IS_ERR(p))
2753                                 p = "?";
2754                         s = strrchr(p, '/');
2755                         if (s)
2756                                 p = s+1;
2757                         printk("%s%s[%lx+%lx]", prefix, p,
2758                                         vma->vm_start,
2759                                         vma->vm_end - vma->vm_start);
2760                         free_page((unsigned long)buf);
2761                 }
2762         }
2763         up_read(&current->mm->mmap_sem);
2764 }