Merge master.kernel.org:/pub/scm/linux/kernel/git/tglx/mtd-2.6
[linux-2.6] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45
46 #include <linux/efi.h>
47
48 #define _COMPONENT              ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX          "ACPI: "
51 struct acpi_os_dpc {
52         acpi_osd_exec_callback function;
53         void *context;
54 };
55
56 #ifdef CONFIG_ACPI_CUSTOM_DSDT
57 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
58 #endif
59
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
62
63 /* stuff for debugger support */
64 int acpi_in_debugger;
65 EXPORT_SYMBOL(acpi_in_debugger);
66
67 extern char line_buf[80];
68 #endif                          /*ENABLE_DEBUGGER */
69
70 int acpi_specific_hotkey_enabled = TRUE;
71 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
72
73 static unsigned int acpi_irq_irq;
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77
78 acpi_status acpi_os_initialize(void)
79 {
80         return AE_OK;
81 }
82
83 acpi_status acpi_os_initialize1(void)
84 {
85         /*
86          * Initialize PCI configuration space access, as we'll need to access
87          * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
88          */
89         if (!raw_pci_ops) {
90                 printk(KERN_ERR PREFIX
91                        "Access to PCI configuration space unavailable\n");
92                 return AE_NULL_ENTRY;
93         }
94         kacpid_wq = create_singlethread_workqueue("kacpid");
95         BUG_ON(!kacpid_wq);
96
97         return AE_OK;
98 }
99
100 acpi_status acpi_os_terminate(void)
101 {
102         if (acpi_irq_handler) {
103                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
104                                                  acpi_irq_handler);
105         }
106
107         destroy_workqueue(kacpid_wq);
108
109         return AE_OK;
110 }
111
112 void acpi_os_printf(const char *fmt, ...)
113 {
114         va_list args;
115         va_start(args, fmt);
116         acpi_os_vprintf(fmt, args);
117         va_end(args);
118 }
119
120 EXPORT_SYMBOL(acpi_os_printf);
121
122 void acpi_os_vprintf(const char *fmt, va_list args)
123 {
124         static char buffer[512];
125
126         vsprintf(buffer, fmt, args);
127
128 #ifdef ENABLE_DEBUGGER
129         if (acpi_in_debugger) {
130                 kdb_printf("%s", buffer);
131         } else {
132                 printk("%s", buffer);
133         }
134 #else
135         printk("%s", buffer);
136 #endif
137 }
138
139 extern int acpi_in_resume;
140 void *acpi_os_allocate(acpi_size size)
141 {
142         if (acpi_in_resume)
143                 return kmalloc(size, GFP_ATOMIC);
144         else
145                 return kmalloc(size, GFP_KERNEL);
146 }
147
148 void acpi_os_free(void *ptr)
149 {
150         kfree(ptr);
151 }
152
153 EXPORT_SYMBOL(acpi_os_free);
154
155 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
156 {
157         if (efi_enabled) {
158                 addr->pointer_type = ACPI_PHYSICAL_POINTER;
159                 if (efi.acpi20)
160                         addr->pointer.physical =
161                             (acpi_physical_address) virt_to_phys(efi.acpi20);
162                 else if (efi.acpi)
163                         addr->pointer.physical =
164                             (acpi_physical_address) virt_to_phys(efi.acpi);
165                 else {
166                         printk(KERN_ERR PREFIX
167                                "System description tables not found\n");
168                         return AE_NOT_FOUND;
169                 }
170         } else {
171                 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
172                         printk(KERN_ERR PREFIX
173                                "System description tables not found\n");
174                         return AE_NOT_FOUND;
175                 }
176         }
177
178         return AE_OK;
179 }
180
181 acpi_status
182 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
183                    void __iomem ** virt)
184 {
185         if (efi_enabled) {
186                 if (EFI_MEMORY_WB & efi_mem_attributes(phys)) {
187                         *virt = (void __iomem *)phys_to_virt(phys);
188                 } else {
189                         *virt = ioremap(phys, size);
190                 }
191         } else {
192                 if (phys > ULONG_MAX) {
193                         printk(KERN_ERR PREFIX "Cannot map memory that high\n");
194                         return AE_BAD_PARAMETER;
195                 }
196                 /*
197                  * ioremap checks to ensure this is in reserved space
198                  */
199                 *virt = ioremap((unsigned long)phys, size);
200         }
201
202         if (!*virt)
203                 return AE_NO_MEMORY;
204
205         return AE_OK;
206 }
207
208 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
209 {
210         iounmap(virt);
211 }
212
213 #ifdef ACPI_FUTURE_USAGE
214 acpi_status
215 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
216 {
217         if (!phys || !virt)
218                 return AE_BAD_PARAMETER;
219
220         *phys = virt_to_phys(virt);
221
222         return AE_OK;
223 }
224 #endif
225
226 #define ACPI_MAX_OVERRIDE_LEN 100
227
228 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
229
230 acpi_status
231 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
232                             acpi_string * new_val)
233 {
234         if (!init_val || !new_val)
235                 return AE_BAD_PARAMETER;
236
237         *new_val = NULL;
238         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
239                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
240                        acpi_os_name);
241                 *new_val = acpi_os_name;
242         }
243
244         return AE_OK;
245 }
246
247 acpi_status
248 acpi_os_table_override(struct acpi_table_header * existing_table,
249                        struct acpi_table_header ** new_table)
250 {
251         if (!existing_table || !new_table)
252                 return AE_BAD_PARAMETER;
253
254 #ifdef CONFIG_ACPI_CUSTOM_DSDT
255         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
256                 *new_table = (struct acpi_table_header *)AmlCode;
257         else
258                 *new_table = NULL;
259 #else
260         *new_table = NULL;
261 #endif
262         return AE_OK;
263 }
264
265 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
266 {
267         return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
268 }
269
270 acpi_status
271 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
272                                   void *context)
273 {
274         unsigned int irq;
275
276         /*
277          * Ignore the GSI from the core, and use the value in our copy of the
278          * FADT. It may not be the same if an interrupt source override exists
279          * for the SCI.
280          */
281         gsi = acpi_fadt.sci_int;
282         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
283                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
284                        gsi);
285                 return AE_OK;
286         }
287
288         acpi_irq_handler = handler;
289         acpi_irq_context = context;
290         if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
291                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
292                 return AE_NOT_ACQUIRED;
293         }
294         acpi_irq_irq = irq;
295
296         return AE_OK;
297 }
298
299 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
300 {
301         if (irq) {
302                 free_irq(irq, acpi_irq);
303                 acpi_irq_handler = NULL;
304                 acpi_irq_irq = 0;
305         }
306
307         return AE_OK;
308 }
309
310 /*
311  * Running in interpreter thread context, safe to sleep
312  */
313
314 void acpi_os_sleep(acpi_integer ms)
315 {
316         schedule_timeout_interruptible(msecs_to_jiffies(ms));
317 }
318
319 EXPORT_SYMBOL(acpi_os_sleep);
320
321 void acpi_os_stall(u32 us)
322 {
323         while (us) {
324                 u32 delay = 1000;
325
326                 if (delay > us)
327                         delay = us;
328                 udelay(delay);
329                 touch_nmi_watchdog();
330                 us -= delay;
331         }
332 }
333
334 EXPORT_SYMBOL(acpi_os_stall);
335
336 /*
337  * Support ACPI 3.0 AML Timer operand
338  * Returns 64-bit free-running, monotonically increasing timer
339  * with 100ns granularity
340  */
341 u64 acpi_os_get_timer(void)
342 {
343         static u64 t;
344
345 #ifdef  CONFIG_HPET
346         /* TBD: use HPET if available */
347 #endif
348
349 #ifdef  CONFIG_X86_PM_TIMER
350         /* TBD: default to PM timer if HPET was not available */
351 #endif
352         if (!t)
353                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
354
355         return ++t;
356 }
357
358 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
359 {
360         u32 dummy;
361
362         if (!value)
363                 value = &dummy;
364
365         switch (width) {
366         case 8:
367                 *(u8 *) value = inb(port);
368                 break;
369         case 16:
370                 *(u16 *) value = inw(port);
371                 break;
372         case 32:
373                 *(u32 *) value = inl(port);
374                 break;
375         default:
376                 BUG();
377         }
378
379         return AE_OK;
380 }
381
382 EXPORT_SYMBOL(acpi_os_read_port);
383
384 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
385 {
386         switch (width) {
387         case 8:
388                 outb(value, port);
389                 break;
390         case 16:
391                 outw(value, port);
392                 break;
393         case 32:
394                 outl(value, port);
395                 break;
396         default:
397                 BUG();
398         }
399
400         return AE_OK;
401 }
402
403 EXPORT_SYMBOL(acpi_os_write_port);
404
405 acpi_status
406 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
407 {
408         u32 dummy;
409         void __iomem *virt_addr;
410         int iomem = 0;
411
412         if (efi_enabled) {
413                 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
414                         /* HACK ALERT! We can use readb/w/l on real memory too.. */
415                         virt_addr = (void __iomem *)phys_to_virt(phys_addr);
416                 } else {
417                         iomem = 1;
418                         virt_addr = ioremap(phys_addr, width);
419                 }
420         } else
421                 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
422         if (!value)
423                 value = &dummy;
424
425         switch (width) {
426         case 8:
427                 *(u8 *) value = readb(virt_addr);
428                 break;
429         case 16:
430                 *(u16 *) value = readw(virt_addr);
431                 break;
432         case 32:
433                 *(u32 *) value = readl(virt_addr);
434                 break;
435         default:
436                 BUG();
437         }
438
439         if (efi_enabled) {
440                 if (iomem)
441                         iounmap(virt_addr);
442         }
443
444         return AE_OK;
445 }
446
447 acpi_status
448 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
449 {
450         void __iomem *virt_addr;
451         int iomem = 0;
452
453         if (efi_enabled) {
454                 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
455                         /* HACK ALERT! We can use writeb/w/l on real memory too */
456                         virt_addr = (void __iomem *)phys_to_virt(phys_addr);
457                 } else {
458                         iomem = 1;
459                         virt_addr = ioremap(phys_addr, width);
460                 }
461         } else
462                 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
463
464         switch (width) {
465         case 8:
466                 writeb(value, virt_addr);
467                 break;
468         case 16:
469                 writew(value, virt_addr);
470                 break;
471         case 32:
472                 writel(value, virt_addr);
473                 break;
474         default:
475                 BUG();
476         }
477
478         if (iomem)
479                 iounmap(virt_addr);
480
481         return AE_OK;
482 }
483
484 acpi_status
485 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
486                                void *value, u32 width)
487 {
488         int result, size;
489
490         if (!value)
491                 return AE_BAD_PARAMETER;
492
493         switch (width) {
494         case 8:
495                 size = 1;
496                 break;
497         case 16:
498                 size = 2;
499                 break;
500         case 32:
501                 size = 4;
502                 break;
503         default:
504                 return AE_ERROR;
505         }
506
507         BUG_ON(!raw_pci_ops);
508
509         result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
510                                    PCI_DEVFN(pci_id->device, pci_id->function),
511                                    reg, size, value);
512
513         return (result ? AE_ERROR : AE_OK);
514 }
515
516 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
517
518 acpi_status
519 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
520                                 acpi_integer value, u32 width)
521 {
522         int result, size;
523
524         switch (width) {
525         case 8:
526                 size = 1;
527                 break;
528         case 16:
529                 size = 2;
530                 break;
531         case 32:
532                 size = 4;
533                 break;
534         default:
535                 return AE_ERROR;
536         }
537
538         BUG_ON(!raw_pci_ops);
539
540         result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
541                                     PCI_DEVFN(pci_id->device, pci_id->function),
542                                     reg, size, value);
543
544         return (result ? AE_ERROR : AE_OK);
545 }
546
547 /* TODO: Change code to take advantage of driver model more */
548 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,        /* upper bound  */
549                                     acpi_handle chandle,        /* current node */
550                                     struct acpi_pci_id **id,
551                                     int *is_bridge, u8 * bus_number)
552 {
553         acpi_handle handle;
554         struct acpi_pci_id *pci_id = *id;
555         acpi_status status;
556         unsigned long temp;
557         acpi_object_type type;
558         u8 tu8;
559
560         acpi_get_parent(chandle, &handle);
561         if (handle != rhandle) {
562                 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
563                                         bus_number);
564
565                 status = acpi_get_type(handle, &type);
566                 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
567                         return;
568
569                 status =
570                     acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
571                                           &temp);
572                 if (ACPI_SUCCESS(status)) {
573                         pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
574                         pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
575
576                         if (*is_bridge)
577                                 pci_id->bus = *bus_number;
578
579                         /* any nicer way to get bus number of bridge ? */
580                         status =
581                             acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
582                                                            8);
583                         if (ACPI_SUCCESS(status)
584                             && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
585                                 status =
586                                     acpi_os_read_pci_configuration(pci_id, 0x18,
587                                                                    &tu8, 8);
588                                 if (!ACPI_SUCCESS(status)) {
589                                         /* Certainly broken...  FIX ME */
590                                         return;
591                                 }
592                                 *is_bridge = 1;
593                                 pci_id->bus = tu8;
594                                 status =
595                                     acpi_os_read_pci_configuration(pci_id, 0x19,
596                                                                    &tu8, 8);
597                                 if (ACPI_SUCCESS(status)) {
598                                         *bus_number = tu8;
599                                 }
600                         } else
601                                 *is_bridge = 0;
602                 }
603         }
604 }
605
606 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound  */
607                            acpi_handle chandle, /* current node */
608                            struct acpi_pci_id **id)
609 {
610         int is_bridge = 1;
611         u8 bus_number = (*id)->bus;
612
613         acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
614 }
615
616 static void acpi_os_execute_deferred(void *context)
617 {
618         struct acpi_os_dpc *dpc = NULL;
619
620         ACPI_FUNCTION_TRACE("os_execute_deferred");
621
622         dpc = (struct acpi_os_dpc *)context;
623         if (!dpc) {
624                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
625                 return_VOID;
626         }
627
628         dpc->function(dpc->context);
629
630         kfree(dpc);
631
632         return_VOID;
633 }
634
635 acpi_status
636 acpi_os_queue_for_execution(u32 priority,
637                             acpi_osd_exec_callback function, void *context)
638 {
639         acpi_status status = AE_OK;
640         struct acpi_os_dpc *dpc;
641         struct work_struct *task;
642
643         ACPI_FUNCTION_TRACE("os_queue_for_execution");
644
645         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
646                           "Scheduling function [%p(%p)] for deferred execution.\n",
647                           function, context));
648
649         if (!function)
650                 return_ACPI_STATUS(AE_BAD_PARAMETER);
651
652         /*
653          * Allocate/initialize DPC structure.  Note that this memory will be
654          * freed by the callee.  The kernel handles the tq_struct list  in a
655          * way that allows us to also free its memory inside the callee.
656          * Because we may want to schedule several tasks with different
657          * parameters we can't use the approach some kernel code uses of
658          * having a static tq_struct.
659          * We can save time and code by allocating the DPC and tq_structs
660          * from the same memory.
661          */
662
663         dpc =
664             kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
665                     GFP_ATOMIC);
666         if (!dpc)
667                 return_ACPI_STATUS(AE_NO_MEMORY);
668
669         dpc->function = function;
670         dpc->context = context;
671
672         task = (void *)(dpc + 1);
673         INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
674
675         if (!queue_work(kacpid_wq, task)) {
676                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
677                                   "Call to queue_work() failed.\n"));
678                 kfree(dpc);
679                 status = AE_ERROR;
680         }
681
682         return_ACPI_STATUS(status);
683 }
684
685 EXPORT_SYMBOL(acpi_os_queue_for_execution);
686
687 void acpi_os_wait_events_complete(void *context)
688 {
689         flush_workqueue(kacpid_wq);
690 }
691
692 EXPORT_SYMBOL(acpi_os_wait_events_complete);
693
694 /*
695  * Allocate the memory for a spinlock and initialize it.
696  */
697 acpi_status acpi_os_create_lock(acpi_handle * out_handle)
698 {
699         spinlock_t *lock_ptr;
700
701         ACPI_FUNCTION_TRACE("os_create_lock");
702
703         lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
704
705         spin_lock_init(lock_ptr);
706
707         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
708
709         *out_handle = lock_ptr;
710
711         return_ACPI_STATUS(AE_OK);
712 }
713
714 /*
715  * Deallocate the memory for a spinlock.
716  */
717 void acpi_os_delete_lock(acpi_handle handle)
718 {
719         ACPI_FUNCTION_TRACE("os_create_lock");
720
721         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
722
723         acpi_os_free(handle);
724
725         return_VOID;
726 }
727
728 acpi_status
729 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
730 {
731         struct semaphore *sem = NULL;
732
733         ACPI_FUNCTION_TRACE("os_create_semaphore");
734
735         sem = acpi_os_allocate(sizeof(struct semaphore));
736         if (!sem)
737                 return_ACPI_STATUS(AE_NO_MEMORY);
738         memset(sem, 0, sizeof(struct semaphore));
739
740         sema_init(sem, initial_units);
741
742         *handle = (acpi_handle *) sem;
743
744         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
745                           *handle, initial_units));
746
747         return_ACPI_STATUS(AE_OK);
748 }
749
750 EXPORT_SYMBOL(acpi_os_create_semaphore);
751
752 /*
753  * TODO: A better way to delete semaphores?  Linux doesn't have a
754  * 'delete_semaphore()' function -- may result in an invalid
755  * pointer dereference for non-synchronized consumers.  Should
756  * we at least check for blocked threads and signal/cancel them?
757  */
758
759 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
760 {
761         struct semaphore *sem = (struct semaphore *)handle;
762
763         ACPI_FUNCTION_TRACE("os_delete_semaphore");
764
765         if (!sem)
766                 return_ACPI_STATUS(AE_BAD_PARAMETER);
767
768         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
769
770         acpi_os_free(sem);
771         sem = NULL;
772
773         return_ACPI_STATUS(AE_OK);
774 }
775
776 EXPORT_SYMBOL(acpi_os_delete_semaphore);
777
778 /*
779  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
780  * improvise.  The process is to sleep for one scheduler quantum
781  * until the semaphore becomes available.  Downside is that this
782  * may result in starvation for timeout-based waits when there's
783  * lots of semaphore activity.
784  *
785  * TODO: Support for units > 1?
786  */
787 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
788 {
789         acpi_status status = AE_OK;
790         struct semaphore *sem = (struct semaphore *)handle;
791         int ret = 0;
792
793         ACPI_FUNCTION_TRACE("os_wait_semaphore");
794
795         if (!sem || (units < 1))
796                 return_ACPI_STATUS(AE_BAD_PARAMETER);
797
798         if (units > 1)
799                 return_ACPI_STATUS(AE_SUPPORT);
800
801         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
802                           handle, units, timeout));
803
804         if (in_atomic())
805                 timeout = 0;
806
807         switch (timeout) {
808                 /*
809                  * No Wait:
810                  * --------
811                  * A zero timeout value indicates that we shouldn't wait - just
812                  * acquire the semaphore if available otherwise return AE_TIME
813                  * (a.k.a. 'would block').
814                  */
815         case 0:
816                 if (down_trylock(sem))
817                         status = AE_TIME;
818                 break;
819
820                 /*
821                  * Wait Indefinitely:
822                  * ------------------
823                  */
824         case ACPI_WAIT_FOREVER:
825                 down(sem);
826                 break;
827
828                 /*
829                  * Wait w/ Timeout:
830                  * ----------------
831                  */
832         default:
833                 // TODO: A better timeout algorithm?
834                 {
835                         int i = 0;
836                         static const int quantum_ms = 1000 / HZ;
837
838                         ret = down_trylock(sem);
839                         for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) {
840                                 schedule_timeout_interruptible(1);
841                                 ret = down_trylock(sem);
842                         }
843
844                         if (ret != 0)
845                                 status = AE_TIME;
846                 }
847                 break;
848         }
849
850         if (ACPI_FAILURE(status)) {
851                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
852                                   "Failed to acquire semaphore[%p|%d|%d], %s\n",
853                                   handle, units, timeout,
854                                   acpi_format_exception(status)));
855         } else {
856                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
857                                   "Acquired semaphore[%p|%d|%d]\n", handle,
858                                   units, timeout));
859         }
860
861         return_ACPI_STATUS(status);
862 }
863
864 EXPORT_SYMBOL(acpi_os_wait_semaphore);
865
866 /*
867  * TODO: Support for units > 1?
868  */
869 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
870 {
871         struct semaphore *sem = (struct semaphore *)handle;
872
873         ACPI_FUNCTION_TRACE("os_signal_semaphore");
874
875         if (!sem || (units < 1))
876                 return_ACPI_STATUS(AE_BAD_PARAMETER);
877
878         if (units > 1)
879                 return_ACPI_STATUS(AE_SUPPORT);
880
881         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
882                           units));
883
884         up(sem);
885
886         return_ACPI_STATUS(AE_OK);
887 }
888
889 EXPORT_SYMBOL(acpi_os_signal_semaphore);
890
891 #ifdef ACPI_FUTURE_USAGE
892 u32 acpi_os_get_line(char *buffer)
893 {
894
895 #ifdef ENABLE_DEBUGGER
896         if (acpi_in_debugger) {
897                 u32 chars;
898
899                 kdb_read(buffer, sizeof(line_buf));
900
901                 /* remove the CR kdb includes */
902                 chars = strlen(buffer) - 1;
903                 buffer[chars] = '\0';
904         }
905 #endif
906
907         return 0;
908 }
909 #endif                          /*  ACPI_FUTURE_USAGE  */
910
911 /* Assumes no unreadable holes inbetween */
912 u8 acpi_os_readable(void *ptr, acpi_size len)
913 {
914 #if defined(__i386__) || defined(__x86_64__)
915         char tmp;
916         return !__get_user(tmp, (char __user *)ptr)
917             && !__get_user(tmp, (char __user *)ptr + len - 1);
918 #endif
919         return 1;
920 }
921
922 #ifdef ACPI_FUTURE_USAGE
923 u8 acpi_os_writable(void *ptr, acpi_size len)
924 {
925         /* could do dummy write (racy) or a kernel page table lookup.
926            The later may be difficult at early boot when kmap doesn't work yet. */
927         return 1;
928 }
929 #endif
930
931 u32 acpi_os_get_thread_id(void)
932 {
933         if (!in_atomic())
934                 return current->pid;
935
936         return 0;
937 }
938
939 acpi_status acpi_os_signal(u32 function, void *info)
940 {
941         switch (function) {
942         case ACPI_SIGNAL_FATAL:
943                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
944                 break;
945         case ACPI_SIGNAL_BREAKPOINT:
946                 /*
947                  * AML Breakpoint
948                  * ACPI spec. says to treat it as a NOP unless
949                  * you are debugging.  So if/when we integrate
950                  * AML debugger into the kernel debugger its
951                  * hook will go here.  But until then it is
952                  * not useful to print anything on breakpoints.
953                  */
954                 break;
955         default:
956                 break;
957         }
958
959         return AE_OK;
960 }
961
962 EXPORT_SYMBOL(acpi_os_signal);
963
964 static int __init acpi_os_name_setup(char *str)
965 {
966         char *p = acpi_os_name;
967         int count = ACPI_MAX_OVERRIDE_LEN - 1;
968
969         if (!str || !*str)
970                 return 0;
971
972         for (; count-- && str && *str; str++) {
973                 if (isalnum(*str) || *str == ' ' || *str == ':')
974                         *p++ = *str;
975                 else if (*str == '\'' || *str == '"')
976                         continue;
977                 else
978                         break;
979         }
980         *p = 0;
981
982         return 1;
983
984 }
985
986 __setup("acpi_os_name=", acpi_os_name_setup);
987
988 /*
989  * _OSI control
990  * empty string disables _OSI
991  * TBD additional string adds to _OSI
992  */
993 static int __init acpi_osi_setup(char *str)
994 {
995         if (str == NULL || *str == '\0') {
996                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
997                 acpi_gbl_create_osi_method = FALSE;
998         } else {
999                 /* TBD */
1000                 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
1001                        str);
1002         }
1003
1004         return 1;
1005 }
1006
1007 __setup("acpi_osi=", acpi_osi_setup);
1008
1009 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1010 static int __init acpi_serialize_setup(char *str)
1011 {
1012         printk(KERN_INFO PREFIX "serialize enabled\n");
1013
1014         acpi_gbl_all_methods_serialized = TRUE;
1015
1016         return 1;
1017 }
1018
1019 __setup("acpi_serialize", acpi_serialize_setup);
1020
1021 /*
1022  * Wake and Run-Time GPES are expected to be separate.
1023  * We disable wake-GPEs at run-time to prevent spurious
1024  * interrupts.
1025  *
1026  * However, if a system exists that shares Wake and
1027  * Run-time events on the same GPE this flag is available
1028  * to tell Linux to keep the wake-time GPEs enabled at run-time.
1029  */
1030 static int __init acpi_wake_gpes_always_on_setup(char *str)
1031 {
1032         printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1033
1034         acpi_gbl_leave_wake_gpes_disabled = FALSE;
1035
1036         return 1;
1037 }
1038
1039 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1040
1041 static int __init acpi_hotkey_setup(char *str)
1042 {
1043         acpi_specific_hotkey_enabled = FALSE;
1044         return 1;
1045 }
1046
1047 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1048
1049 /*
1050  * max_cstate is defined in the base kernel so modules can
1051  * change it w/o depending on the state of the processor module.
1052  */
1053 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1054
1055 EXPORT_SYMBOL(max_cstate);
1056
1057 /*
1058  * Acquire a spinlock.
1059  *
1060  * handle is a pointer to the spinlock_t.
1061  * flags is *not* the result of save_flags - it is an ACPI-specific flag variable
1062  *   that indicates whether we are at interrupt level.
1063  */
1064
1065 unsigned long acpi_os_acquire_lock(acpi_handle handle)
1066 {
1067         unsigned long flags;
1068         spin_lock_irqsave((spinlock_t *) handle, flags);
1069         return flags;
1070 }
1071
1072 /*
1073  * Release a spinlock. See above.
1074  */
1075
1076 void acpi_os_release_lock(acpi_handle handle, unsigned long flags)
1077 {
1078         spin_unlock_irqrestore((spinlock_t *) handle, flags);
1079 }
1080
1081 #ifndef ACPI_USE_LOCAL_CACHE
1082
1083 /*******************************************************************************
1084  *
1085  * FUNCTION:    acpi_os_create_cache
1086  *
1087  * PARAMETERS:  CacheName       - Ascii name for the cache
1088  *              ObjectSize      - Size of each cached object
1089  *              MaxDepth        - Maximum depth of the cache (in objects)
1090  *              ReturnCache     - Where the new cache object is returned
1091  *
1092  * RETURN:      Status
1093  *
1094  * DESCRIPTION: Create a cache object
1095  *
1096  ******************************************************************************/
1097
1098 acpi_status
1099 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1100 {
1101         *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1102         return AE_OK;
1103 }
1104
1105 /*******************************************************************************
1106  *
1107  * FUNCTION:    acpi_os_purge_cache
1108  *
1109  * PARAMETERS:  Cache           - Handle to cache object
1110  *
1111  * RETURN:      Status
1112  *
1113  * DESCRIPTION: Free all objects within the requested cache.
1114  *
1115  ******************************************************************************/
1116
1117 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1118 {
1119         (void)kmem_cache_shrink(cache);
1120         return (AE_OK);
1121 }
1122
1123 /*******************************************************************************
1124  *
1125  * FUNCTION:    acpi_os_delete_cache
1126  *
1127  * PARAMETERS:  Cache           - Handle to cache object
1128  *
1129  * RETURN:      Status
1130  *
1131  * DESCRIPTION: Free all objects within the requested cache and delete the
1132  *              cache object.
1133  *
1134  ******************************************************************************/
1135
1136 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1137 {
1138         (void)kmem_cache_destroy(cache);
1139         return (AE_OK);
1140 }
1141
1142 /*******************************************************************************
1143  *
1144  * FUNCTION:    acpi_os_release_object
1145  *
1146  * PARAMETERS:  Cache       - Handle to cache object
1147  *              Object      - The object to be released
1148  *
1149  * RETURN:      None
1150  *
1151  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1152  *              the object is deleted.
1153  *
1154  ******************************************************************************/
1155
1156 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1157 {
1158         kmem_cache_free(cache, object);
1159         return (AE_OK);
1160 }
1161
1162 /*******************************************************************************
1163  *
1164  * FUNCTION:    acpi_os_acquire_object
1165  *
1166  * PARAMETERS:  Cache           - Handle to cache object
1167  *              ReturnObject    - Where the object is returned
1168  *
1169  * RETURN:      Status
1170  *
1171  * DESCRIPTION: Get an object from the specified cache.  If cache is empty,
1172  *              the object is allocated.
1173  *
1174  ******************************************************************************/
1175
1176 void *acpi_os_acquire_object(acpi_cache_t * cache)
1177 {
1178         void *object = kmem_cache_alloc(cache, GFP_KERNEL);
1179         WARN_ON(!object);
1180         return object;
1181 }
1182
1183 #endif