1 #include <linux/types.h>
2 #include <linux/interrupt.h>
3 #include <linux/time.h>
8 #include <asm-generic/rtc.h>
10 #define SNI_CLOCK_TICK_RATE 3686400
11 #define SNI_COUNTER2_DIV 64
12 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
14 static void sni_a20r_timer_ack(void)
16 *(volatile u8 *)A20R_PT_TIM0_ACK = 0x0; wmb();
20 * a20r platform uses 2 counters to divide the input frequency.
21 * Counter 2 output is connected to Counter 0 & 1 input.
23 static void __init sni_a20r_timer_setup(struct irqaction *irq)
25 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34; wmb();
26 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV) & 0xff; wmb();
27 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV >> 8) & 0xff; wmb();
29 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4; wmb();
30 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV) & 0xff; wmb();
31 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV >> 8) & 0xff; wmb();
33 setup_irq(SNI_A20R_IRQ_TIMER, irq);
34 mips_timer_ack = sni_a20r_timer_ack;
37 #define SNI_8254_TICK_RATE 1193182UL
39 #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
41 static __init unsigned long dosample(void)
46 /* Start the counter. */
48 outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
49 outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
51 /* Get initial counter invariant */
52 ct0 = read_c0_count();
54 /* Latch and spin until top byte of counter0 is zero */
59 ct1 = read_c0_count();
62 /* Stop the counter. */
65 * Return the difference, this is how far the r4k counter increments
66 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
67 * clock (= 1000000 / HZ / 2).
69 /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
70 return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
74 * Here we need to calibrate the cycle counter to at least be close.
76 void __init plat_time_init(void)
78 unsigned long r4k_ticks[3];
79 unsigned long r4k_tick;
82 * Figure out the r4k offset, the algorithm is very simple and works in
83 * _all_ cases as long as the 8254 counter register itself works ok (as
84 * an interrupt driving timer it does not because of bug, this is why
85 * we are using the onchip r4k counter/compare register to serve this
86 * purpose, but for r4k_offset calculation it will work ok for us).
87 * There are other very complicated ways of performing this calculation
88 * but this one works just fine so I am not going to futz around. ;-)
90 printk(KERN_INFO "Calibrating system timer... ");
91 dosample(); /* Prime cache. */
92 dosample(); /* Prime cache. */
93 /* Zero is NOT an option. */
95 r4k_ticks[0] = dosample();
96 } while (!r4k_ticks[0]);
98 r4k_ticks[1] = dosample();
99 } while (!r4k_ticks[1]);
101 if (r4k_ticks[0] != r4k_ticks[1]) {
102 printk("warning: timer counts differ, retrying... ");
103 r4k_ticks[2] = dosample();
104 if (r4k_ticks[2] == r4k_ticks[0]
105 || r4k_ticks[2] == r4k_ticks[1])
106 r4k_tick = r4k_ticks[2];
108 printk("disagreement, using average... ");
109 r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
113 r4k_tick = r4k_ticks[0];
115 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
116 (int) (r4k_tick / (500000 / HZ)),
117 (int) (r4k_tick % (500000 / HZ)));
119 mips_hpt_frequency = r4k_tick * HZ;
124 void __init plat_timer_setup(struct irqaction *irq)
126 switch (sni_brd_type) {
129 case SNI_BRD_TOWER_OASIC:
130 case SNI_BRD_MINITOWER:
131 sni_a20r_timer_setup(irq);
136 unsigned long read_persistent_clock(void)