2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
16 * I. Board Compatibility
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
28 * Sample code (2 revisions) is available at Infineon.
30 * II. Board-specific settings
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
37 * Sharing of the PCI interrupt line for this board is possible.
39 * III. Driver operation
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mistery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
69 * - use polling at high irq/s,
70 * - performance analysis,
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
83 #include <linux/module.h>
84 #include <linux/types.h>
85 #include <linux/errno.h>
86 #include <linux/list.h>
87 #include <linux/ioport.h>
88 #include <linux/pci.h>
89 #include <linux/kernel.h>
92 #include <asm/system.h>
93 #include <asm/cache.h>
94 #include <asm/byteorder.h>
95 #include <asm/uaccess.h>
99 #include <linux/init.h>
100 #include <linux/string.h>
102 #include <linux/if_arp.h>
103 #include <linux/netdevice.h>
104 #include <linux/skbuff.h>
105 #include <linux/delay.h>
106 #include <linux/hdlc.h>
107 #include <linux/mutex.h>
110 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
114 #ifdef CONFIG_DSCC4_PCI_RST
115 static DEFINE_MUTEX(dscc4_mutex);
116 static u32 dscc4_pci_config_store[16];
119 #define DRV_NAME "dscc4"
123 /* Module parameters */
125 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
126 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
127 MODULE_LICENSE("GPL");
128 module_param(debug, int, 0);
129 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
130 module_param(quartz, int, 0);
131 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
145 u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
146 /* FWIW, datasheet calls that "dummy" and says that card
147 * never looks at it; neither does the driver */
158 #define DUMMY_SKB_SIZE 64
160 #define TX_RING_SIZE 32
161 #define RX_RING_SIZE 32
162 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
163 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
164 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
165 #define TX_TIMEOUT (HZ/10)
166 #define DSCC4_HZ_MAX 33000000
167 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
168 #define dev_per_card 4
169 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
171 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
172 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
175 * Given the operating range of Linux HDLC, the 2 defines below could be
176 * made simpler. However they are a fine reminder for the limitations of
177 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
179 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
180 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
181 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
182 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
184 struct dscc4_pci_priv {
188 struct pci_dev *pdev;
190 struct dscc4_dev_priv *root;
191 dma_addr_t iqcfg_dma;
195 struct dscc4_dev_priv {
196 struct sk_buff *rx_skbuff[RX_RING_SIZE];
197 struct sk_buff *tx_skbuff[TX_RING_SIZE];
204 /* FIXME: check all the volatile are required */
205 volatile u32 tx_current;
210 volatile u32 tx_dirty;
215 dma_addr_t tx_fd_dma;
216 dma_addr_t rx_fd_dma;
220 u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
222 struct timer_list timer;
224 struct dscc4_pci_priv *pci_priv;
231 unsigned short encoding;
232 unsigned short parity;
233 struct net_device *dev;
234 sync_serial_settings settings;
235 void __iomem *base_addr;
236 u32 __pad __attribute__ ((aligned (4)));
239 /* GLOBAL registers definitions */
260 /* SCC registers definitions */
261 #define SCC_START 0x0100
262 #define SCC_OFFSET 0x80
274 #define GPDATA 0x0404
278 #define EncodingMask 0x00700000
279 #define CrcMask 0x00000003
281 #define IntRxScc0 0x10000000
282 #define IntTxScc0 0x01000000
284 #define TxPollCmd 0x00000400
285 #define RxActivate 0x08000000
286 #define MTFi 0x04000000
287 #define Rdr 0x00400000
288 #define Rdt 0x00200000
289 #define Idr 0x00100000
290 #define Idt 0x00080000
291 #define TxSccRes 0x01000000
292 #define RxSccRes 0x00010000
293 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
294 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
296 #define Ccr0ClockMask 0x0000003f
297 #define Ccr1LoopMask 0x00000200
298 #define IsrMask 0x000fffff
299 #define BrrExpMask 0x00000f00
300 #define BrrMultMask 0x0000003f
301 #define EncodingMask 0x00700000
302 #define Hold cpu_to_le32(0x40000000)
303 #define SccBusy 0x10000000
304 #define PowerUp 0x80000000
305 #define Vis 0x00001000
306 #define FrameOk (FrameVfr | FrameCrc)
307 #define FrameVfr 0x80
308 #define FrameRdo 0x40
309 #define FrameCrc 0x20
310 #define FrameRab 0x10
311 #define FrameAborted cpu_to_le32(0x00000200)
312 #define FrameEnd cpu_to_le32(0x80000000)
313 #define DataComplete cpu_to_le32(0x40000000)
314 #define LengthCheck 0x00008000
315 #define SccEvt 0x02000000
316 #define NoAck 0x00000200
317 #define Action 0x00000001
318 #define HiDesc cpu_to_le32(0x20000000)
321 #define RxEvt 0xf0000000
322 #define TxEvt 0x0f000000
323 #define Alls 0x00040000
324 #define Xdu 0x00010000
325 #define Cts 0x00004000
326 #define Xmr 0x00002000
327 #define Xpr 0x00001000
328 #define Rdo 0x00000080
329 #define Rfs 0x00000040
330 #define Cd 0x00000004
331 #define Rfo 0x00000002
332 #define Flex 0x00000001
334 /* DMA core events */
335 #define Cfg 0x00200000
336 #define Hi 0x00040000
337 #define Fi 0x00020000
338 #define Err 0x00010000
339 #define Arf 0x00000002
340 #define ArAck 0x00000001
343 #define Ready 0x00000000
344 #define NeedIDR 0x00000001
345 #define NeedIDT 0x00000002
346 #define RdoSet 0x00000004
347 #define FakeReset 0x00000008
349 /* Don't mask RDO. Ever. */
351 #define EventsMask 0xfffeef7f
353 #define EventsMask 0xfffa8f7a
356 /* Functions prototypes */
357 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
358 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
359 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
360 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
361 static int dscc4_open(struct net_device *);
362 static int dscc4_start_xmit(struct sk_buff *, struct net_device *);
363 static int dscc4_close(struct net_device *);
364 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
365 static int dscc4_init_ring(struct net_device *);
366 static void dscc4_release_ring(struct dscc4_dev_priv *);
367 static void dscc4_timer(unsigned long);
368 static void dscc4_tx_timeout(struct net_device *);
369 static irqreturn_t dscc4_irq(int irq, void *dev_id);
370 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
371 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
373 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
376 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
378 return dev_to_hdlc(dev)->priv;
381 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
386 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
387 struct net_device *dev, int offset)
391 /* Cf scc_writel for concern regarding thread-safety */
392 state = dpriv->scc_regs[offset >> 2];
395 dpriv->scc_regs[offset >> 2] = state;
396 writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
399 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
400 struct net_device *dev, int offset)
404 * As of 2002/02/16, there are no thread racing for access.
406 dpriv->scc_regs[offset >> 2] = bits;
407 writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
410 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
412 return dpriv->scc_regs[offset >> 2];
415 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
417 /* Cf errata DS5 p.4 */
418 readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
419 return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
422 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
423 struct net_device *dev)
425 dpriv->ltda = dpriv->tx_fd_dma +
426 ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
427 writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
428 /* Flush posted writes *NOW* */
429 readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
432 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
433 struct net_device *dev)
435 dpriv->lrda = dpriv->rx_fd_dma +
436 ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
437 writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
440 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
442 return dpriv->tx_current == dpriv->tx_dirty;
445 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
446 struct net_device *dev)
448 return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
451 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
452 struct net_device *dev, const char *msg)
457 if (SOURCE_ID(state) != dpriv->dev_id) {
458 printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
459 dev->name, msg, SOURCE_ID(state), state );
462 if (state & 0x0df80c00) {
463 printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
464 dev->name, msg, state);
471 static void dscc4_tx_print(struct net_device *dev,
472 struct dscc4_dev_priv *dpriv,
475 printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
476 dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
479 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
481 struct pci_dev *pdev = dpriv->pci_priv->pdev;
482 struct TxFD *tx_fd = dpriv->tx_fd;
483 struct RxFD *rx_fd = dpriv->rx_fd;
484 struct sk_buff **skbuff;
487 pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
488 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
490 skbuff = dpriv->tx_skbuff;
491 for (i = 0; i < TX_RING_SIZE; i++) {
493 pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
494 (*skbuff)->len, PCI_DMA_TODEVICE);
495 dev_kfree_skb(*skbuff);
501 skbuff = dpriv->rx_skbuff;
502 for (i = 0; i < RX_RING_SIZE; i++) {
504 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
505 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
506 dev_kfree_skb(*skbuff);
513 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
514 struct net_device *dev)
516 unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
517 struct RxFD *rx_fd = dpriv->rx_fd + dirty;
518 const int len = RX_MAX(HDLC_MAX_MRU);
522 skb = dev_alloc_skb(len);
523 dpriv->rx_skbuff[dirty] = skb;
525 skb->protocol = hdlc_type_trans(skb, dev);
526 rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
527 skb->data, len, PCI_DMA_FROMDEVICE));
536 * IRQ/thread/whatever safe
538 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
539 struct net_device *dev, char *msg)
544 if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
545 printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
549 schedule_timeout_uninterruptible(10);
552 printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
554 return (i >= 0) ? i : -EAGAIN;
557 static int dscc4_do_action(struct net_device *dev, char *msg)
559 void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
562 writel(Action, ioaddr + GCMDR);
565 u32 state = readl(ioaddr);
568 printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
569 writel(ArAck, ioaddr);
571 } else if (state & Arf) {
572 printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
579 printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
584 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
586 int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
590 if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
591 (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
594 schedule_timeout_uninterruptible(10);
597 return (i >= 0 ) ? i : -EAGAIN;
600 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
601 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
605 spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
606 /* Cf errata DS5 p.6 */
607 writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
608 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
609 readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
610 writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
611 writel(Action, dpriv->base_addr + GCMDR);
612 spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
618 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
622 /* Cf errata DS5 p.7 */
623 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
624 scc_writel(0x00050000, dpriv, dev, CCR2);
626 * Must be longer than the time required to fill the fifo.
628 while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
633 writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
634 if (dscc4_do_action(dev, "Rdt") < 0)
635 printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
639 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
640 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
641 struct net_device *dev)
643 struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
644 struct pci_dev *pdev = dpriv->pci_priv->pdev;
648 skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
650 printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
653 pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
654 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
655 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
656 if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
657 dev->stats.rx_packets++;
658 dev->stats.rx_bytes += pkt_len;
659 skb_put(skb, pkt_len);
660 if (netif_running(dev))
661 skb->protocol = hdlc_type_trans(skb, dev);
664 if (skb->data[pkt_len] & FrameRdo)
665 dev->stats.rx_fifo_errors++;
666 else if (!(skb->data[pkt_len] | ~FrameCrc))
667 dev->stats.rx_crc_errors++;
668 else if (!(skb->data[pkt_len] | ~(FrameVfr | FrameRab)))
669 dev->stats.rx_length_errors++;
671 dev->stats.rx_errors++;
672 dev_kfree_skb_irq(skb);
675 while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
676 if (try_get_rx_skb(dpriv, dev) < 0)
680 dscc4_rx_update(dpriv, dev);
681 rx_fd->state2 = 0x00000000;
682 rx_fd->end = cpu_to_le32(0xbabeface);
685 static void dscc4_free1(struct pci_dev *pdev)
687 struct dscc4_pci_priv *ppriv;
688 struct dscc4_dev_priv *root;
691 ppriv = pci_get_drvdata(pdev);
694 for (i = 0; i < dev_per_card; i++)
695 unregister_hdlc_device(dscc4_to_dev(root + i));
697 pci_set_drvdata(pdev, NULL);
699 for (i = 0; i < dev_per_card; i++)
700 free_netdev(root[i].dev);
705 static int __devinit dscc4_init_one(struct pci_dev *pdev,
706 const struct pci_device_id *ent)
708 struct dscc4_pci_priv *priv;
709 struct dscc4_dev_priv *dpriv;
710 void __iomem *ioaddr;
713 printk(KERN_DEBUG "%s", version);
715 rc = pci_enable_device(pdev);
719 rc = pci_request_region(pdev, 0, "registers");
721 printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
725 rc = pci_request_region(pdev, 1, "LBI interface");
727 printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
729 goto err_free_mmio_region_1;
732 ioaddr = pci_ioremap_bar(pdev, 0);
734 printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
735 DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
736 (unsigned long long)pci_resource_start(pdev, 0));
738 goto err_free_mmio_regions_2;
740 printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
741 (unsigned long long)pci_resource_start(pdev, 0),
742 (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
744 /* Cf errata DS5 p.2 */
745 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
746 pci_set_master(pdev);
748 rc = dscc4_found1(pdev, ioaddr);
752 priv = pci_get_drvdata(pdev);
754 rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
756 printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
760 /* power up/little endian/dma core controlled via lrda/ltda */
761 writel(0x00000001, ioaddr + GMODE);
762 /* Shared interrupt queue */
766 bits = (IRQ_RING_SIZE >> 5) - 1;
770 writel(bits, ioaddr + IQLENR0);
772 /* Global interrupt queue */
773 writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
774 priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
775 IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
778 writel(priv->iqcfg_dma, ioaddr + IQCFG);
783 * SCC 0-3 private rx/tx irq structures
784 * IQRX/TXi needs to be set soon. Learned it the hard way...
786 for (i = 0; i < dev_per_card; i++) {
787 dpriv = priv->root + i;
788 dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
789 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
791 goto err_free_iqtx_6;
792 writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
794 for (i = 0; i < dev_per_card; i++) {
795 dpriv = priv->root + i;
796 dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
797 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
799 goto err_free_iqrx_7;
800 writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
803 /* Cf application hint. Beware of hard-lock condition on threshold. */
804 writel(0x42104000, ioaddr + FIFOCR1);
805 //writel(0x9ce69800, ioaddr + FIFOCR2);
806 writel(0xdef6d800, ioaddr + FIFOCR2);
807 //writel(0x11111111, ioaddr + FIFOCR4);
808 writel(0x18181818, ioaddr + FIFOCR4);
809 // FIXME: should depend on the chipset revision
810 writel(0x0000000e, ioaddr + FIFOCR3);
812 writel(0xff200001, ioaddr + GCMDR);
820 dpriv = priv->root + i;
821 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
822 dpriv->iqrx, dpriv->iqrx_dma);
827 dpriv = priv->root + i;
828 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
829 dpriv->iqtx, dpriv->iqtx_dma);
831 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
834 free_irq(pdev->irq, priv->root);
839 err_free_mmio_regions_2:
840 pci_release_region(pdev, 1);
841 err_free_mmio_region_1:
842 pci_release_region(pdev, 0);
844 pci_disable_device(pdev);
849 * Let's hope the default values are decent enough to protect my
850 * feet from the user's gun - Ueimor
852 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
853 struct net_device *dev)
855 /* No interrupts, SCC core disabled. Let's relax */
856 scc_writel(0x00000000, dpriv, dev, CCR0);
858 scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
861 * No address recognition/crc-CCITT/cts enabled
862 * Shared flags transmission disabled - cf errata DS5 p.11
863 * Carrier detect disabled - cf errata p.14
864 * FIXME: carrier detection/polarity may be handled more gracefully.
866 scc_writel(0x02408000, dpriv, dev, CCR1);
868 /* crc not forwarded - Cf errata DS5 p.11 */
869 scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
871 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
874 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
878 if ((hz < 0) || (hz > DSCC4_HZ_MAX))
881 dpriv->pci_priv->xtal_hz = hz;
886 static const struct net_device_ops dscc4_ops = {
887 .ndo_open = dscc4_open,
888 .ndo_stop = dscc4_close,
889 .ndo_change_mtu = hdlc_change_mtu,
890 .ndo_start_xmit = hdlc_start_xmit,
891 .ndo_do_ioctl = dscc4_ioctl,
892 .ndo_tx_timeout = dscc4_tx_timeout,
895 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
897 struct dscc4_pci_priv *ppriv;
898 struct dscc4_dev_priv *root;
899 int i, ret = -ENOMEM;
901 root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
903 printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
907 for (i = 0; i < dev_per_card; i++) {
908 root[i].dev = alloc_hdlcdev(root + i);
913 ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
915 printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
920 spin_lock_init(&ppriv->lock);
922 for (i = 0; i < dev_per_card; i++) {
923 struct dscc4_dev_priv *dpriv = root + i;
924 struct net_device *d = dscc4_to_dev(dpriv);
925 hdlc_device *hdlc = dev_to_hdlc(d);
927 d->base_addr = (unsigned long)ioaddr;
929 d->netdev_ops = &dscc4_ops;
930 d->watchdog_timeo = TX_TIMEOUT;
931 SET_NETDEV_DEV(d, &pdev->dev);
934 dpriv->pci_priv = ppriv;
935 dpriv->base_addr = ioaddr;
936 spin_lock_init(&dpriv->lock);
938 hdlc->xmit = dscc4_start_xmit;
939 hdlc->attach = dscc4_hdlc_attach;
941 dscc4_init_registers(dpriv, d);
942 dpriv->parity = PARITY_CRC16_PR0_CCITT;
943 dpriv->encoding = ENCODING_NRZ;
945 ret = dscc4_init_ring(d);
949 ret = register_hdlc_device(d);
951 printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
952 dscc4_release_ring(dpriv);
957 ret = dscc4_set_quartz(root, quartz);
961 pci_set_drvdata(pdev, ppriv);
966 dscc4_release_ring(root + i);
967 unregister_hdlc_device(dscc4_to_dev(root + i));
973 free_netdev(root[i].dev);
979 /* FIXME: get rid of the unneeded code */
980 static void dscc4_timer(unsigned long data)
982 struct net_device *dev = (struct net_device *)data;
983 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
984 // struct dscc4_pci_priv *ppriv;
988 dpriv->timer.expires = jiffies + TX_TIMEOUT;
989 add_timer(&dpriv->timer);
992 static void dscc4_tx_timeout(struct net_device *dev)
994 /* FIXME: something is missing there */
997 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
999 sync_serial_settings *settings = &dpriv->settings;
1001 if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
1002 struct net_device *dev = dscc4_to_dev(dpriv);
1004 printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
1010 #ifdef CONFIG_DSCC4_PCI_RST
1012 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1013 * so as to provide a safe way to reset the asic while not the whole machine
1016 * This code doesn't need to be efficient. Keep It Simple
1018 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1022 mutex_lock(&dscc4_mutex);
1023 for (i = 0; i < 16; i++)
1024 pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1026 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1027 writel(0x001c0000, ioaddr + GMODE);
1028 /* Configure GPIO port as output */
1029 writel(0x0000ffff, ioaddr + GPDIR);
1030 /* Disable interruption */
1031 writel(0x0000ffff, ioaddr + GPIM);
1033 writel(0x0000ffff, ioaddr + GPDATA);
1034 writel(0x00000000, ioaddr + GPDATA);
1036 /* Flush posted writes */
1037 readl(ioaddr + GSTAR);
1039 schedule_timeout_uninterruptible(10);
1041 for (i = 0; i < 16; i++)
1042 pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1043 mutex_unlock(&dscc4_mutex);
1046 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1047 #endif /* CONFIG_DSCC4_PCI_RST */
1049 static int dscc4_open(struct net_device *dev)
1051 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1052 struct dscc4_pci_priv *ppriv;
1055 if ((dscc4_loopback_check(dpriv) < 0))
1058 if ((ret = hdlc_open(dev)))
1061 ppriv = dpriv->pci_priv;
1064 * Due to various bugs, there is no way to reliably reset a
1065 * specific port (manufacturer's dependant special PCI #RST wiring
1066 * apart: it affects all ports). Thus the device goes in the best
1067 * silent mode possible at dscc4_close() time and simply claims to
1068 * be up if it's opened again. It still isn't possible to change
1069 * the HDLC configuration without rebooting but at least the ports
1070 * can be up/down ifconfig'ed without killing the host.
1072 if (dpriv->flags & FakeReset) {
1073 dpriv->flags &= ~FakeReset;
1074 scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1075 scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1076 scc_writel(EventsMask, dpriv, dev, IMR);
1077 printk(KERN_INFO "%s: up again.\n", dev->name);
1081 /* IDT+IDR during XPR */
1082 dpriv->flags = NeedIDR | NeedIDT;
1084 scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1087 * The following is a bit paranoid...
1089 * NB: the datasheet "...CEC will stay active if the SCC is in
1090 * power-down mode or..." and CCR2.RAC = 1 are two different
1093 if (scc_readl_star(dpriv, dev) & SccBusy) {
1094 printk(KERN_ERR "%s busy. Try later\n", dev->name);
1098 printk(KERN_INFO "%s: available. Good\n", dev->name);
1100 scc_writel(EventsMask, dpriv, dev, IMR);
1102 /* Posted write is flushed in the wait_ack loop */
1103 scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1105 if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1106 goto err_disable_scc_events;
1109 * I would expect XPR near CE completion (before ? after ?).
1110 * At worst, this code won't see a late XPR and people
1111 * will have to re-issue an ifconfig (this is harmless).
1112 * WARNING, a really missing XPR usually means a hardware
1113 * reset is needed. Suggestions anyone ?
1115 if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1116 printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
1117 goto err_disable_scc_events;
1121 dscc4_tx_print(dev, dpriv, "Open");
1124 netif_start_queue(dev);
1126 init_timer(&dpriv->timer);
1127 dpriv->timer.expires = jiffies + 10*HZ;
1128 dpriv->timer.data = (unsigned long)dev;
1129 dpriv->timer.function = &dscc4_timer;
1130 add_timer(&dpriv->timer);
1131 netif_carrier_on(dev);
1135 err_disable_scc_events:
1136 scc_writel(0xffffffff, dpriv, dev, IMR);
1137 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1144 #ifdef DSCC4_POLLING
1145 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1147 /* FIXME: it's gonna be easy (TM), for sure */
1149 #endif /* DSCC4_POLLING */
1151 static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev)
1153 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1154 struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1158 next = dpriv->tx_current%TX_RING_SIZE;
1159 dpriv->tx_skbuff[next] = skb;
1160 tx_fd = dpriv->tx_fd + next;
1161 tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1162 tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1164 tx_fd->complete = 0x00000000;
1165 tx_fd->jiffies = jiffies;
1168 #ifdef DSCC4_POLLING
1169 spin_lock(&dpriv->lock);
1170 while (dscc4_tx_poll(dpriv, dev));
1171 spin_unlock(&dpriv->lock);
1174 dev->trans_start = jiffies;
1177 dscc4_tx_print(dev, dpriv, "Xmit");
1178 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1179 if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1180 netif_stop_queue(dev);
1182 if (dscc4_tx_quiescent(dpriv, dev))
1183 dscc4_do_tx(dpriv, dev);
1188 static int dscc4_close(struct net_device *dev)
1190 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1192 del_timer_sync(&dpriv->timer);
1193 netif_stop_queue(dev);
1195 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1196 scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1197 scc_writel(0xffffffff, dpriv, dev, IMR);
1199 dpriv->flags |= FakeReset;
1206 static inline int dscc4_check_clock_ability(int port)
1210 #ifdef CONFIG_DSCC4_PCISYNC
1218 * DS1 p.137: "There are a total of 13 different clocking modes..."
1221 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1222 * Clock mode 3b _should_ work but the testing seems to make this point
1223 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1224 * This is supposed to provide least surprise "DTE like" behavior.
1225 * - if line rate is specified, clocks are assumed to be locally generated.
1226 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1227 * between these it automagically done according on the required frequency
1228 * scaling. Of course some rounding may take place.
1229 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1230 * appropriate external clocking device for testing.
1231 * - no time-slot/clock mode 5: shameless lazyness.
1233 * The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
1235 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1236 * won't pass the init sequence. For example, straight back-to-back DTE without
1237 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1240 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1243 * Clock mode related bits of CCR0:
1244 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1245 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1246 * | | +-------- High Speed: say 0
1247 * | | | +-+-+-- Clock Mode: 0..7
1250 * x|x|5|4|3|2|1|0| lower bits
1252 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1253 * +-+-+-+------------------ M (0..15)
1254 * | | | | +-+-+-+-+-+-- N (0..63)
1255 * 0 0 0 0 | | | | 0 0 | | | | | |
1256 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1257 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1260 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1262 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1266 *state &= ~Ccr0ClockMask;
1267 if (*bps) { /* Clock generated - required for DCE */
1268 u32 n = 0, m = 0, divider;
1271 xtal = dpriv->pci_priv->xtal_hz;
1274 if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1276 divider = xtal / *bps;
1277 if (divider > BRR_DIVIDER_MAX) {
1279 *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1281 *state |= 0x00000037; /* Clock mode 7b (BRG) */
1282 if (divider >> 22) {
1285 } else if (divider) {
1286 /* Extraction of the 6 highest weighted bits */
1288 while (0xffffffc0 & divider) {
1296 if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1298 *bps = xtal / divider;
1301 * External clock - DTE
1302 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1303 * Nothing more to be done
1307 scc_writel(brr, dpriv, dev, BRR);
1313 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1315 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1316 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1317 const size_t size = sizeof(dpriv->settings);
1320 if (dev->flags & IFF_UP)
1323 if (cmd != SIOCWANDEV)
1326 switch(ifr->ifr_settings.type) {
1328 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1329 if (ifr->ifr_settings.size < size) {
1330 ifr->ifr_settings.size = size; /* data size wanted */
1333 if (copy_to_user(line, &dpriv->settings, size))
1337 case IF_IFACE_SYNC_SERIAL:
1338 if (!capable(CAP_NET_ADMIN))
1341 if (dpriv->flags & FakeReset) {
1342 printk(KERN_INFO "%s: please reset the device"
1343 " before this command\n", dev->name);
1346 if (copy_from_user(&dpriv->settings, line, size))
1348 ret = dscc4_set_iface(dpriv, dev);
1352 ret = hdlc_ioctl(dev, ifr, cmd);
1359 static int dscc4_match(struct thingie *p, int value)
1363 for (i = 0; p[i].define != -1; i++) {
1364 if (value == p[i].define)
1367 if (p[i].define == -1)
1373 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1374 struct net_device *dev)
1376 sync_serial_settings *settings = &dpriv->settings;
1377 int ret = -EOPNOTSUPP;
1380 bps = settings->clock_rate;
1381 state = scc_readl(dpriv, CCR0);
1382 if (dscc4_set_clock(dev, &bps, &state) < 0)
1384 if (bps) { /* DCE */
1385 printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1386 if (settings->clock_rate != bps) {
1387 printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1388 dev->name, settings->clock_rate, bps);
1389 settings->clock_rate = bps;
1392 state |= PowerUp | Vis;
1393 printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1395 scc_writel(state, dpriv, dev, CCR0);
1401 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1402 struct net_device *dev)
1404 struct thingie encoding[] = {
1405 { ENCODING_NRZ, 0x00000000 },
1406 { ENCODING_NRZI, 0x00200000 },
1407 { ENCODING_FM_MARK, 0x00400000 },
1408 { ENCODING_FM_SPACE, 0x00500000 },
1409 { ENCODING_MANCHESTER, 0x00600000 },
1414 i = dscc4_match(encoding, dpriv->encoding);
1416 scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1422 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1423 struct net_device *dev)
1425 sync_serial_settings *settings = &dpriv->settings;
1428 state = scc_readl(dpriv, CCR1);
1429 if (settings->loopback) {
1430 printk(KERN_DEBUG "%s: loopback\n", dev->name);
1431 state |= 0x00000100;
1433 printk(KERN_DEBUG "%s: normal\n", dev->name);
1434 state &= ~0x00000100;
1436 scc_writel(state, dpriv, dev, CCR1);
1440 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1441 struct net_device *dev)
1443 struct thingie crc[] = {
1444 { PARITY_CRC16_PR0_CCITT, 0x00000010 },
1445 { PARITY_CRC16_PR1_CCITT, 0x00000000 },
1446 { PARITY_CRC32_PR0_CCITT, 0x00000011 },
1447 { PARITY_CRC32_PR1_CCITT, 0x00000001 }
1451 i = dscc4_match(crc, dpriv->parity);
1453 scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1459 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1462 int (*action)(struct dscc4_dev_priv *, struct net_device *);
1463 } *p, do_setting[] = {
1464 { dscc4_encoding_setting },
1465 { dscc4_clock_setting },
1466 { dscc4_loopback_setting },
1467 { dscc4_crc_setting },
1472 for (p = do_setting; p->action; p++) {
1473 if ((ret = p->action(dpriv, dev)) < 0)
1479 static irqreturn_t dscc4_irq(int irq, void *token)
1481 struct dscc4_dev_priv *root = token;
1482 struct dscc4_pci_priv *priv;
1483 struct net_device *dev;
1484 void __iomem *ioaddr;
1486 unsigned long flags;
1489 priv = root->pci_priv;
1490 dev = dscc4_to_dev(root);
1492 spin_lock_irqsave(&priv->lock, flags);
1494 ioaddr = root->base_addr;
1496 state = readl(ioaddr + GSTAR);
1502 printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1503 writel(state, ioaddr + GSTAR);
1506 printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
1513 printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1514 if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1515 printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
1516 if (!(state &= ~Cfg))
1519 if (state & RxEvt) {
1520 i = dev_per_card - 1;
1522 dscc4_rx_irq(priv, root + i);
1526 if (state & TxEvt) {
1527 i = dev_per_card - 1;
1529 dscc4_tx_irq(priv, root + i);
1534 spin_unlock_irqrestore(&priv->lock, flags);
1535 return IRQ_RETVAL(handled);
1538 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1539 struct dscc4_dev_priv *dpriv)
1541 struct net_device *dev = dscc4_to_dev(dpriv);
1546 cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1547 state = le32_to_cpu(dpriv->iqtx[cur]);
1550 printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1552 if ((debug > 1) && (loop > 1))
1553 printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1554 if (loop && netif_queue_stopped(dev))
1555 if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1556 netif_wake_queue(dev);
1558 if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1559 !dscc4_tx_done(dpriv))
1560 dscc4_do_tx(dpriv, dev);
1564 dpriv->iqtx[cur] = 0;
1565 dpriv->iqtx_current++;
1567 if (state_check(state, dpriv, dev, "Tx") < 0)
1570 if (state & SccEvt) {
1572 struct sk_buff *skb;
1576 dscc4_tx_print(dev, dpriv, "Alls");
1578 * DataComplete can't be trusted for Tx completion.
1581 cur = dpriv->tx_dirty%TX_RING_SIZE;
1582 tx_fd = dpriv->tx_fd + cur;
1583 skb = dpriv->tx_skbuff[cur];
1585 pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1586 skb->len, PCI_DMA_TODEVICE);
1587 if (tx_fd->state & FrameEnd) {
1588 dev->stats.tx_packets++;
1589 dev->stats.tx_bytes += skb->len;
1591 dev_kfree_skb_irq(skb);
1592 dpriv->tx_skbuff[cur] = NULL;
1596 printk(KERN_ERR "%s Tx: NULL skb %d\n",
1600 * If the driver ends sending crap on the wire, it
1601 * will be way easier to diagnose than the (not so)
1602 * random freeze induced by null sized tx frames.
1604 tx_fd->data = tx_fd->next;
1605 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1606 tx_fd->complete = 0x00000000;
1609 if (!(state &= ~Alls))
1613 * Transmit Data Underrun
1616 printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
1617 dpriv->flags = NeedIDT;
1620 dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1621 writel(Action, dpriv->base_addr + GCMDR);
1625 printk(KERN_INFO "%s: CTS transition\n", dev->name);
1626 if (!(state &= ~Cts)) /* DEBUG */
1630 /* Frame needs to be sent again - FIXME */
1631 printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
1632 if (!(state &= ~Xmr)) /* DEBUG */
1636 void __iomem *scc_addr;
1641 * - the busy condition happens (sometimes);
1642 * - it doesn't seem to make the handler unreliable.
1644 for (i = 1; i; i <<= 1) {
1645 if (!(scc_readl_star(dpriv, dev) & SccBusy))
1649 printk(KERN_INFO "%s busy in irq\n", dev->name);
1651 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1652 /* Keep this order: IDT before IDR */
1653 if (dpriv->flags & NeedIDT) {
1655 dscc4_tx_print(dev, dpriv, "Xpr");
1656 ring = dpriv->tx_fd_dma +
1657 (dpriv->tx_dirty%TX_RING_SIZE)*
1658 sizeof(struct TxFD);
1659 writel(ring, scc_addr + CH0BTDA);
1660 dscc4_do_tx(dpriv, dev);
1661 writel(MTFi | Idt, scc_addr + CH0CFG);
1662 if (dscc4_do_action(dev, "IDT") < 0)
1664 dpriv->flags &= ~NeedIDT;
1666 if (dpriv->flags & NeedIDR) {
1667 ring = dpriv->rx_fd_dma +
1668 (dpriv->rx_current%RX_RING_SIZE)*
1669 sizeof(struct RxFD);
1670 writel(ring, scc_addr + CH0BRDA);
1671 dscc4_rx_update(dpriv, dev);
1672 writel(MTFi | Idr, scc_addr + CH0CFG);
1673 if (dscc4_do_action(dev, "IDR") < 0)
1675 dpriv->flags &= ~NeedIDR;
1677 /* Activate receiver and misc */
1678 scc_writel(0x08050008, dpriv, dev, CCR2);
1681 if (!(state &= ~Xpr))
1686 printk(KERN_INFO "%s: CD transition\n", dev->name);
1687 if (!(state &= ~Cd)) /* DEBUG */
1690 } else { /* ! SccEvt */
1692 #ifdef DSCC4_POLLING
1693 while (!dscc4_tx_poll(dpriv, dev));
1695 printk(KERN_INFO "%s: Tx Hi\n", dev->name);
1699 printk(KERN_INFO "%s: Tx ERR\n", dev->name);
1700 dev->stats.tx_errors++;
1707 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1708 struct dscc4_dev_priv *dpriv)
1710 struct net_device *dev = dscc4_to_dev(dpriv);
1715 cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1716 state = le32_to_cpu(dpriv->iqrx[cur]);
1719 dpriv->iqrx[cur] = 0;
1720 dpriv->iqrx_current++;
1722 if (state_check(state, dpriv, dev, "Rx") < 0)
1725 if (!(state & SccEvt)){
1729 printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1731 state &= 0x00ffffff;
1732 if (state & Err) { /* Hold or reset */
1733 printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1734 cur = dpriv->rx_current%RX_RING_SIZE;
1735 rx_fd = dpriv->rx_fd + cur;
1737 * Presume we're not facing a DMAC receiver reset.
1738 * As We use the rx size-filtering feature of the
1739 * DSCC4, the beginning of a new frame is waiting in
1740 * the rx fifo. I bet a Receive Data Overflow will
1741 * happen most of time but let's try and avoid it.
1742 * Btw (as for RDO) if one experiences ERR whereas
1743 * the system looks rather idle, there may be a
1744 * problem with latency. In this case, increasing
1745 * RX_RING_SIZE may help.
1747 //while (dpriv->rx_needs_refill) {
1748 while (!(rx_fd->state1 & Hold)) {
1751 if (!(cur = cur%RX_RING_SIZE))
1752 rx_fd = dpriv->rx_fd;
1754 //dpriv->rx_needs_refill--;
1755 try_get_rx_skb(dpriv, dev);
1758 rx_fd->state1 &= ~Hold;
1759 rx_fd->state2 = 0x00000000;
1760 rx_fd->end = cpu_to_le32(0xbabeface);
1765 dscc4_rx_skb(dpriv, dev);
1768 if (state & Hi ) { /* HI bit */
1769 printk(KERN_INFO "%s: Rx Hi\n", dev->name);
1773 } else { /* SccEvt */
1775 //FIXME: verifier la presence de tous les evenements
1778 const char *irq_name;
1780 { 0x00008000, "TIN"},
1781 { 0x00000020, "RSC"},
1782 { 0x00000010, "PCE"},
1783 { 0x00000008, "PLLA"},
1787 for (evt = evts; evt->irq_name; evt++) {
1788 if (state & evt->mask) {
1789 printk(KERN_DEBUG "%s: %s\n",
1790 dev->name, evt->irq_name);
1791 if (!(state &= ~evt->mask))
1796 if (!(state &= ~0x0000c03c))
1800 printk(KERN_INFO "%s: CTS transition\n", dev->name);
1801 if (!(state &= ~Cts)) /* DEBUG */
1805 * Receive Data Overflow (FIXME: fscked)
1809 void __iomem *scc_addr;
1813 // dscc4_rx_dump(dpriv);
1814 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1816 scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1818 * This has no effect. Why ?
1819 * ORed with TxSccRes, one sees the CFG ack (for
1820 * the TX part only).
1822 scc_writel(RxSccRes, dpriv, dev, CMDR);
1823 dpriv->flags |= RdoSet;
1826 * Let's try and save something in the received data.
1827 * rx_current must be incremented at least once to
1828 * avoid HOLD in the BRDA-to-be-pointed desc.
1831 cur = dpriv->rx_current++%RX_RING_SIZE;
1832 rx_fd = dpriv->rx_fd + cur;
1833 if (!(rx_fd->state2 & DataComplete))
1835 if (rx_fd->state2 & FrameAborted) {
1836 dev->stats.rx_over_errors++;
1837 rx_fd->state1 |= Hold;
1838 rx_fd->state2 = 0x00000000;
1839 rx_fd->end = cpu_to_le32(0xbabeface);
1841 dscc4_rx_skb(dpriv, dev);
1845 if (dpriv->flags & RdoSet)
1847 "%s: no RDO in Rx data\n", DRV_NAME);
1849 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1851 * FIXME: must the reset be this violent ?
1853 #warning "FIXME: CH0BRDA"
1854 writel(dpriv->rx_fd_dma +
1855 (dpriv->rx_current%RX_RING_SIZE)*
1856 sizeof(struct RxFD), scc_addr + CH0BRDA);
1857 writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1858 if (dscc4_do_action(dev, "RDR") < 0) {
1859 printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1863 writel(MTFi|Idr, scc_addr + CH0CFG);
1864 if (dscc4_do_action(dev, "IDR") < 0) {
1865 printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1871 scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1875 printk(KERN_INFO "%s: CD transition\n", dev->name);
1876 if (!(state &= ~Cd)) /* DEBUG */
1880 printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1881 if (!(state &= ~Flex))
1888 * I had expected the following to work for the first descriptor
1889 * (tx_fd->state = 0xc0000000)
1890 * - Hold=1 (don't try and branch to the next descripto);
1891 * - No=0 (I want an empty data section, i.e. size=0);
1892 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1893 * It failed and locked solid. Thus the introduction of a dummy skb.
1894 * Problem is acknowledged in errata sheet DS5. Joy :o/
1896 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1898 struct sk_buff *skb;
1900 skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1902 int last = dpriv->tx_dirty%TX_RING_SIZE;
1903 struct TxFD *tx_fd = dpriv->tx_fd + last;
1905 skb->len = DUMMY_SKB_SIZE;
1906 skb_copy_to_linear_data(skb, version,
1907 strlen(version) % DUMMY_SKB_SIZE);
1908 tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1909 tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1910 skb->data, DUMMY_SKB_SIZE,
1912 dpriv->tx_skbuff[last] = skb;
1917 static int dscc4_init_ring(struct net_device *dev)
1919 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1920 struct pci_dev *pdev = dpriv->pci_priv->pdev;
1926 ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1929 dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1931 ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1933 goto err_free_dma_rx;
1934 dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1936 memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1937 dpriv->tx_dirty = 0xffffffff;
1938 i = dpriv->tx_current = 0;
1940 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1941 tx_fd->complete = 0x00000000;
1942 /* FIXME: NULL should be ok - to be tried */
1943 tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1944 (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1945 (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1946 } while (i < TX_RING_SIZE);
1948 if (!dscc4_init_dummy_skb(dpriv))
1949 goto err_free_dma_tx;
1951 memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1952 i = dpriv->rx_dirty = dpriv->rx_current = 0;
1954 /* size set by the host. Multiple of 4 bytes please */
1955 rx_fd->state1 = HiDesc;
1956 rx_fd->state2 = 0x00000000;
1957 rx_fd->end = cpu_to_le32(0xbabeface);
1958 rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1959 // FIXME: return value verifiee mais traitement suspect
1960 if (try_get_rx_skb(dpriv, dev) >= 0)
1962 (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1963 (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1964 } while (i < RX_RING_SIZE);
1969 pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1971 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1976 static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1978 struct dscc4_pci_priv *ppriv;
1979 struct dscc4_dev_priv *root;
1980 void __iomem *ioaddr;
1983 ppriv = pci_get_drvdata(pdev);
1986 ioaddr = root->base_addr;
1988 dscc4_pci_reset(pdev, ioaddr);
1990 free_irq(pdev->irq, root);
1991 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1993 for (i = 0; i < dev_per_card; i++) {
1994 struct dscc4_dev_priv *dpriv = root + i;
1996 dscc4_release_ring(dpriv);
1997 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1998 dpriv->iqrx, dpriv->iqrx_dma);
1999 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
2000 dpriv->iqtx, dpriv->iqtx_dma);
2007 pci_release_region(pdev, 1);
2008 pci_release_region(pdev, 0);
2010 pci_disable_device(pdev);
2013 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2014 unsigned short parity)
2016 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2018 if (encoding != ENCODING_NRZ &&
2019 encoding != ENCODING_NRZI &&
2020 encoding != ENCODING_FM_MARK &&
2021 encoding != ENCODING_FM_SPACE &&
2022 encoding != ENCODING_MANCHESTER)
2025 if (parity != PARITY_NONE &&
2026 parity != PARITY_CRC16_PR0_CCITT &&
2027 parity != PARITY_CRC16_PR1_CCITT &&
2028 parity != PARITY_CRC32_PR0_CCITT &&
2029 parity != PARITY_CRC32_PR1_CCITT)
2032 dpriv->encoding = encoding;
2033 dpriv->parity = parity;
2038 static int __init dscc4_setup(char *str)
2040 int *args[] = { &debug, &quartz, NULL }, **p = args;
2042 while (*p && (get_option(&str, *p) == 2))
2047 __setup("dscc4.setup=", dscc4_setup);
2050 static struct pci_device_id dscc4_pci_tbl[] = {
2051 { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2052 PCI_ANY_ID, PCI_ANY_ID, },
2055 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2057 static struct pci_driver dscc4_driver = {
2059 .id_table = dscc4_pci_tbl,
2060 .probe = dscc4_init_one,
2061 .remove = __devexit_p(dscc4_remove_one),
2064 static int __init dscc4_init_module(void)
2066 return pci_register_driver(&dscc4_driver);
2069 static void __exit dscc4_cleanup_module(void)
2071 pci_unregister_driver(&dscc4_driver);
2074 module_init(dscc4_init_module);
2075 module_exit(dscc4_cleanup_module);