Merge branch 'fix/hda' into for-linus
[linux-2.6] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_key *ins_key,
30                       struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32                           struct btrfs_root *root, struct extent_buffer *dst,
33                           struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35                               struct btrfs_root *root,
36                               struct extent_buffer *dst_buf,
37                               struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39                    struct btrfs_path *path, int level, int slot);
40
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43         struct btrfs_path *path;
44         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45         if (path)
46                 path->reada = 1;
47         return path;
48 }
49
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56         int i;
57         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58                 if (p->nodes[i] && p->locks[i])
59                         btrfs_set_lock_blocking(p->nodes[i]);
60         }
61 }
62
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  *
66  * held is used to keep lockdep happy, when lockdep is enabled
67  * we set held to a blocking lock before we go around and
68  * retake all the spinlocks in the path.  You can safely use NULL
69  * for held
70  */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72                                         struct extent_buffer *held)
73 {
74         int i;
75
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77         /* lockdep really cares that we take all of these spinlocks
78          * in the right order.  If any of the locks in the path are not
79          * currently blocking, it is going to complain.  So, make really
80          * really sure by forcing the path to blocking before we clear
81          * the path blocking.
82          */
83         if (held)
84                 btrfs_set_lock_blocking(held);
85         btrfs_set_path_blocking(p);
86 #endif
87
88         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89                 if (p->nodes[i] && p->locks[i])
90                         btrfs_clear_lock_blocking(p->nodes[i]);
91         }
92
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94         if (held)
95                 btrfs_clear_lock_blocking(held);
96 #endif
97 }
98
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102         btrfs_release_path(NULL, p);
103         kmem_cache_free(btrfs_path_cachep, p);
104 }
105
106 /*
107  * path release drops references on the extent buffers in the path
108  * and it drops any locks held by this path
109  *
110  * It is safe to call this on paths that no locks or extent buffers held.
111  */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114         int i;
115
116         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117                 p->slots[i] = 0;
118                 if (!p->nodes[i])
119                         continue;
120                 if (p->locks[i]) {
121                         btrfs_tree_unlock(p->nodes[i]);
122                         p->locks[i] = 0;
123                 }
124                 free_extent_buffer(p->nodes[i]);
125                 p->nodes[i] = NULL;
126         }
127 }
128
129 /*
130  * safely gets a reference on the root node of a tree.  A lock
131  * is not taken, so a concurrent writer may put a different node
132  * at the root of the tree.  See btrfs_lock_root_node for the
133  * looping required.
134  *
135  * The extent buffer returned by this has a reference taken, so
136  * it won't disappear.  It may stop being the root of the tree
137  * at any time because there are no locks held.
138  */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141         struct extent_buffer *eb;
142         spin_lock(&root->node_lock);
143         eb = root->node;
144         extent_buffer_get(eb);
145         spin_unlock(&root->node_lock);
146         return eb;
147 }
148
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155         struct extent_buffer *eb;
156
157         while (1) {
158                 eb = btrfs_root_node(root);
159                 btrfs_tree_lock(eb);
160
161                 spin_lock(&root->node_lock);
162                 if (eb == root->node) {
163                         spin_unlock(&root->node_lock);
164                         break;
165                 }
166                 spin_unlock(&root->node_lock);
167
168                 btrfs_tree_unlock(eb);
169                 free_extent_buffer(eb);
170         }
171         return eb;
172 }
173
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175  * put onto a simple dirty list.  transaction.c walks this to make sure they
176  * get properly updated on disk.
177  */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180         if (root->track_dirty && list_empty(&root->dirty_list)) {
181                 list_add(&root->dirty_list,
182                          &root->fs_info->dirty_cowonly_roots);
183         }
184 }
185
186 /*
187  * used by snapshot creation to make a copy of a root for a tree with
188  * a given objectid.  The buffer with the new root node is returned in
189  * cow_ret, and this func returns zero on success or a negative error code.
190  */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192                       struct btrfs_root *root,
193                       struct extent_buffer *buf,
194                       struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196         struct extent_buffer *cow;
197         u32 nritems;
198         int ret = 0;
199         int level;
200         struct btrfs_root *new_root;
201
202         new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
203         if (!new_root)
204                 return -ENOMEM;
205
206         memcpy(new_root, root, sizeof(*new_root));
207         new_root->root_key.objectid = new_root_objectid;
208
209         WARN_ON(root->ref_cows && trans->transid !=
210                 root->fs_info->running_transaction->transid);
211         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
212
213         level = btrfs_header_level(buf);
214         nritems = btrfs_header_nritems(buf);
215
216         cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
217                                      new_root_objectid, trans->transid,
218                                      level, buf->start, 0);
219         if (IS_ERR(cow)) {
220                 kfree(new_root);
221                 return PTR_ERR(cow);
222         }
223
224         copy_extent_buffer(cow, buf, 0, 0, cow->len);
225         btrfs_set_header_bytenr(cow, cow->start);
226         btrfs_set_header_generation(cow, trans->transid);
227         btrfs_set_header_owner(cow, new_root_objectid);
228         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
229
230         write_extent_buffer(cow, root->fs_info->fsid,
231                             (unsigned long)btrfs_header_fsid(cow),
232                             BTRFS_FSID_SIZE);
233
234         WARN_ON(btrfs_header_generation(buf) > trans->transid);
235         ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
236         kfree(new_root);
237
238         if (ret)
239                 return ret;
240
241         btrfs_mark_buffer_dirty(cow);
242         *cow_ret = cow;
243         return 0;
244 }
245
246 /*
247  * does the dirty work in cow of a single block.  The parent block (if
248  * supplied) is updated to point to the new cow copy.  The new buffer is marked
249  * dirty and returned locked.  If you modify the block it needs to be marked
250  * dirty again.
251  *
252  * search_start -- an allocation hint for the new block
253  *
254  * empty_size -- a hint that you plan on doing more cow.  This is the size in
255  * bytes the allocator should try to find free next to the block it returns.
256  * This is just a hint and may be ignored by the allocator.
257  */
258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259                              struct btrfs_root *root,
260                              struct extent_buffer *buf,
261                              struct extent_buffer *parent, int parent_slot,
262                              struct extent_buffer **cow_ret,
263                              u64 search_start, u64 empty_size)
264 {
265         u64 parent_start;
266         struct extent_buffer *cow;
267         u32 nritems;
268         int ret = 0;
269         int level;
270         int unlock_orig = 0;
271
272         if (*cow_ret == buf)
273                 unlock_orig = 1;
274
275         btrfs_assert_tree_locked(buf);
276
277         if (parent)
278                 parent_start = parent->start;
279         else
280                 parent_start = 0;
281
282         WARN_ON(root->ref_cows && trans->transid !=
283                 root->fs_info->running_transaction->transid);
284         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
285
286         level = btrfs_header_level(buf);
287         nritems = btrfs_header_nritems(buf);
288
289         cow = btrfs_alloc_free_block(trans, root, buf->len,
290                                      parent_start, root->root_key.objectid,
291                                      trans->transid, level,
292                                      search_start, empty_size);
293         if (IS_ERR(cow))
294                 return PTR_ERR(cow);
295
296         /* cow is set to blocking by btrfs_init_new_buffer */
297
298         copy_extent_buffer(cow, buf, 0, 0, cow->len);
299         btrfs_set_header_bytenr(cow, cow->start);
300         btrfs_set_header_generation(cow, trans->transid);
301         btrfs_set_header_owner(cow, root->root_key.objectid);
302         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
303
304         write_extent_buffer(cow, root->fs_info->fsid,
305                             (unsigned long)btrfs_header_fsid(cow),
306                             BTRFS_FSID_SIZE);
307
308         WARN_ON(btrfs_header_generation(buf) > trans->transid);
309         if (btrfs_header_generation(buf) != trans->transid) {
310                 u32 nr_extents;
311                 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
312                 if (ret)
313                         return ret;
314
315                 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
316                 WARN_ON(ret);
317         } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
318                 /*
319                  * There are only two places that can drop reference to
320                  * tree blocks owned by living reloc trees, one is here,
321                  * the other place is btrfs_drop_subtree. In both places,
322                  * we check reference count while tree block is locked.
323                  * Furthermore, if reference count is one, it won't get
324                  * increased by someone else.
325                  */
326                 u32 refs;
327                 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
328                                               buf->len, &refs);
329                 BUG_ON(ret);
330                 if (refs == 1) {
331                         ret = btrfs_update_ref(trans, root, buf, cow,
332                                                0, nritems);
333                         clean_tree_block(trans, root, buf);
334                 } else {
335                         ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
336                 }
337                 BUG_ON(ret);
338         } else {
339                 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
340                 if (ret)
341                         return ret;
342                 clean_tree_block(trans, root, buf);
343         }
344
345         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
346                 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
347                 WARN_ON(ret);
348         }
349
350         if (buf == root->node) {
351                 WARN_ON(parent && parent != buf);
352
353                 spin_lock(&root->node_lock);
354                 root->node = cow;
355                 extent_buffer_get(cow);
356                 spin_unlock(&root->node_lock);
357
358                 if (buf != root->commit_root) {
359                         btrfs_free_extent(trans, root, buf->start,
360                                           buf->len, buf->start,
361                                           root->root_key.objectid,
362                                           btrfs_header_generation(buf),
363                                           level, 1);
364                 }
365                 free_extent_buffer(buf);
366                 add_root_to_dirty_list(root);
367         } else {
368                 btrfs_set_node_blockptr(parent, parent_slot,
369                                         cow->start);
370                 WARN_ON(trans->transid == 0);
371                 btrfs_set_node_ptr_generation(parent, parent_slot,
372                                               trans->transid);
373                 btrfs_mark_buffer_dirty(parent);
374                 WARN_ON(btrfs_header_generation(parent) != trans->transid);
375                 btrfs_free_extent(trans, root, buf->start, buf->len,
376                                   parent_start, btrfs_header_owner(parent),
377                                   btrfs_header_generation(parent), level, 1);
378         }
379         if (unlock_orig)
380                 btrfs_tree_unlock(buf);
381         free_extent_buffer(buf);
382         btrfs_mark_buffer_dirty(cow);
383         *cow_ret = cow;
384         return 0;
385 }
386
387 /*
388  * cows a single block, see __btrfs_cow_block for the real work.
389  * This version of it has extra checks so that a block isn't cow'd more than
390  * once per transaction, as long as it hasn't been written yet
391  */
392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
393                     struct btrfs_root *root, struct extent_buffer *buf,
394                     struct extent_buffer *parent, int parent_slot,
395                     struct extent_buffer **cow_ret)
396 {
397         u64 search_start;
398         int ret;
399
400         if (trans->transaction != root->fs_info->running_transaction) {
401                 printk(KERN_CRIT "trans %llu running %llu\n",
402                        (unsigned long long)trans->transid,
403                        (unsigned long long)
404                        root->fs_info->running_transaction->transid);
405                 WARN_ON(1);
406         }
407         if (trans->transid != root->fs_info->generation) {
408                 printk(KERN_CRIT "trans %llu running %llu\n",
409                        (unsigned long long)trans->transid,
410                        (unsigned long long)root->fs_info->generation);
411                 WARN_ON(1);
412         }
413
414         if (btrfs_header_generation(buf) == trans->transid &&
415             btrfs_header_owner(buf) == root->root_key.objectid &&
416             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
417                 *cow_ret = buf;
418                 return 0;
419         }
420
421         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
422
423         if (parent)
424                 btrfs_set_lock_blocking(parent);
425         btrfs_set_lock_blocking(buf);
426
427         ret = __btrfs_cow_block(trans, root, buf, parent,
428                                  parent_slot, cow_ret, search_start, 0);
429         return ret;
430 }
431
432 /*
433  * helper function for defrag to decide if two blocks pointed to by a
434  * node are actually close by
435  */
436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
437 {
438         if (blocknr < other && other - (blocknr + blocksize) < 32768)
439                 return 1;
440         if (blocknr > other && blocknr - (other + blocksize) < 32768)
441                 return 1;
442         return 0;
443 }
444
445 /*
446  * compare two keys in a memcmp fashion
447  */
448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
449 {
450         struct btrfs_key k1;
451
452         btrfs_disk_key_to_cpu(&k1, disk);
453
454         if (k1.objectid > k2->objectid)
455                 return 1;
456         if (k1.objectid < k2->objectid)
457                 return -1;
458         if (k1.type > k2->type)
459                 return 1;
460         if (k1.type < k2->type)
461                 return -1;
462         if (k1.offset > k2->offset)
463                 return 1;
464         if (k1.offset < k2->offset)
465                 return -1;
466         return 0;
467 }
468
469 /*
470  * same as comp_keys only with two btrfs_key's
471  */
472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
473 {
474         if (k1->objectid > k2->objectid)
475                 return 1;
476         if (k1->objectid < k2->objectid)
477                 return -1;
478         if (k1->type > k2->type)
479                 return 1;
480         if (k1->type < k2->type)
481                 return -1;
482         if (k1->offset > k2->offset)
483                 return 1;
484         if (k1->offset < k2->offset)
485                 return -1;
486         return 0;
487 }
488
489 /*
490  * this is used by the defrag code to go through all the
491  * leaves pointed to by a node and reallocate them so that
492  * disk order is close to key order
493  */
494 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
495                        struct btrfs_root *root, struct extent_buffer *parent,
496                        int start_slot, int cache_only, u64 *last_ret,
497                        struct btrfs_key *progress)
498 {
499         struct extent_buffer *cur;
500         u64 blocknr;
501         u64 gen;
502         u64 search_start = *last_ret;
503         u64 last_block = 0;
504         u64 other;
505         u32 parent_nritems;
506         int end_slot;
507         int i;
508         int err = 0;
509         int parent_level;
510         int uptodate;
511         u32 blocksize;
512         int progress_passed = 0;
513         struct btrfs_disk_key disk_key;
514
515         parent_level = btrfs_header_level(parent);
516         if (cache_only && parent_level != 1)
517                 return 0;
518
519         if (trans->transaction != root->fs_info->running_transaction)
520                 WARN_ON(1);
521         if (trans->transid != root->fs_info->generation)
522                 WARN_ON(1);
523
524         parent_nritems = btrfs_header_nritems(parent);
525         blocksize = btrfs_level_size(root, parent_level - 1);
526         end_slot = parent_nritems;
527
528         if (parent_nritems == 1)
529                 return 0;
530
531         btrfs_set_lock_blocking(parent);
532
533         for (i = start_slot; i < end_slot; i++) {
534                 int close = 1;
535
536                 if (!parent->map_token) {
537                         map_extent_buffer(parent,
538                                         btrfs_node_key_ptr_offset(i),
539                                         sizeof(struct btrfs_key_ptr),
540                                         &parent->map_token, &parent->kaddr,
541                                         &parent->map_start, &parent->map_len,
542                                         KM_USER1);
543                 }
544                 btrfs_node_key(parent, &disk_key, i);
545                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
546                         continue;
547
548                 progress_passed = 1;
549                 blocknr = btrfs_node_blockptr(parent, i);
550                 gen = btrfs_node_ptr_generation(parent, i);
551                 if (last_block == 0)
552                         last_block = blocknr;
553
554                 if (i > 0) {
555                         other = btrfs_node_blockptr(parent, i - 1);
556                         close = close_blocks(blocknr, other, blocksize);
557                 }
558                 if (!close && i < end_slot - 2) {
559                         other = btrfs_node_blockptr(parent, i + 1);
560                         close = close_blocks(blocknr, other, blocksize);
561                 }
562                 if (close) {
563                         last_block = blocknr;
564                         continue;
565                 }
566                 if (parent->map_token) {
567                         unmap_extent_buffer(parent, parent->map_token,
568                                             KM_USER1);
569                         parent->map_token = NULL;
570                 }
571
572                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
573                 if (cur)
574                         uptodate = btrfs_buffer_uptodate(cur, gen);
575                 else
576                         uptodate = 0;
577                 if (!cur || !uptodate) {
578                         if (cache_only) {
579                                 free_extent_buffer(cur);
580                                 continue;
581                         }
582                         if (!cur) {
583                                 cur = read_tree_block(root, blocknr,
584                                                          blocksize, gen);
585                         } else if (!uptodate) {
586                                 btrfs_read_buffer(cur, gen);
587                         }
588                 }
589                 if (search_start == 0)
590                         search_start = last_block;
591
592                 btrfs_tree_lock(cur);
593                 btrfs_set_lock_blocking(cur);
594                 err = __btrfs_cow_block(trans, root, cur, parent, i,
595                                         &cur, search_start,
596                                         min(16 * blocksize,
597                                             (end_slot - i) * blocksize));
598                 if (err) {
599                         btrfs_tree_unlock(cur);
600                         free_extent_buffer(cur);
601                         break;
602                 }
603                 search_start = cur->start;
604                 last_block = cur->start;
605                 *last_ret = search_start;
606                 btrfs_tree_unlock(cur);
607                 free_extent_buffer(cur);
608         }
609         if (parent->map_token) {
610                 unmap_extent_buffer(parent, parent->map_token,
611                                     KM_USER1);
612                 parent->map_token = NULL;
613         }
614         return err;
615 }
616
617 /*
618  * The leaf data grows from end-to-front in the node.
619  * this returns the address of the start of the last item,
620  * which is the stop of the leaf data stack
621  */
622 static inline unsigned int leaf_data_end(struct btrfs_root *root,
623                                          struct extent_buffer *leaf)
624 {
625         u32 nr = btrfs_header_nritems(leaf);
626         if (nr == 0)
627                 return BTRFS_LEAF_DATA_SIZE(root);
628         return btrfs_item_offset_nr(leaf, nr - 1);
629 }
630
631 /*
632  * extra debugging checks to make sure all the items in a key are
633  * well formed and in the proper order
634  */
635 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
636                       int level)
637 {
638         struct extent_buffer *parent = NULL;
639         struct extent_buffer *node = path->nodes[level];
640         struct btrfs_disk_key parent_key;
641         struct btrfs_disk_key node_key;
642         int parent_slot;
643         int slot;
644         struct btrfs_key cpukey;
645         u32 nritems = btrfs_header_nritems(node);
646
647         if (path->nodes[level + 1])
648                 parent = path->nodes[level + 1];
649
650         slot = path->slots[level];
651         BUG_ON(nritems == 0);
652         if (parent) {
653                 parent_slot = path->slots[level + 1];
654                 btrfs_node_key(parent, &parent_key, parent_slot);
655                 btrfs_node_key(node, &node_key, 0);
656                 BUG_ON(memcmp(&parent_key, &node_key,
657                               sizeof(struct btrfs_disk_key)));
658                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
659                        btrfs_header_bytenr(node));
660         }
661         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
662         if (slot != 0) {
663                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
664                 btrfs_node_key(node, &node_key, slot);
665                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
666         }
667         if (slot < nritems - 1) {
668                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
669                 btrfs_node_key(node, &node_key, slot);
670                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
671         }
672         return 0;
673 }
674
675 /*
676  * extra checking to make sure all the items in a leaf are
677  * well formed and in the proper order
678  */
679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
680                       int level)
681 {
682         struct extent_buffer *leaf = path->nodes[level];
683         struct extent_buffer *parent = NULL;
684         int parent_slot;
685         struct btrfs_key cpukey;
686         struct btrfs_disk_key parent_key;
687         struct btrfs_disk_key leaf_key;
688         int slot = path->slots[0];
689
690         u32 nritems = btrfs_header_nritems(leaf);
691
692         if (path->nodes[level + 1])
693                 parent = path->nodes[level + 1];
694
695         if (nritems == 0)
696                 return 0;
697
698         if (parent) {
699                 parent_slot = path->slots[level + 1];
700                 btrfs_node_key(parent, &parent_key, parent_slot);
701                 btrfs_item_key(leaf, &leaf_key, 0);
702
703                 BUG_ON(memcmp(&parent_key, &leaf_key,
704                        sizeof(struct btrfs_disk_key)));
705                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
706                        btrfs_header_bytenr(leaf));
707         }
708         if (slot != 0 && slot < nritems - 1) {
709                 btrfs_item_key(leaf, &leaf_key, slot);
710                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
711                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
712                         btrfs_print_leaf(root, leaf);
713                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
714                         BUG_ON(1);
715                 }
716                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
717                        btrfs_item_end_nr(leaf, slot)) {
718                         btrfs_print_leaf(root, leaf);
719                         printk(KERN_CRIT "slot %d offset bad\n", slot);
720                         BUG_ON(1);
721                 }
722         }
723         if (slot < nritems - 1) {
724                 btrfs_item_key(leaf, &leaf_key, slot);
725                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
726                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
727                 if (btrfs_item_offset_nr(leaf, slot) !=
728                         btrfs_item_end_nr(leaf, slot + 1)) {
729                         btrfs_print_leaf(root, leaf);
730                         printk(KERN_CRIT "slot %d offset bad\n", slot);
731                         BUG_ON(1);
732                 }
733         }
734         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
735                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
736         return 0;
737 }
738
739 static noinline int check_block(struct btrfs_root *root,
740                                 struct btrfs_path *path, int level)
741 {
742         return 0;
743         if (level == 0)
744                 return check_leaf(root, path, level);
745         return check_node(root, path, level);
746 }
747
748 /*
749  * search for key in the extent_buffer.  The items start at offset p,
750  * and they are item_size apart.  There are 'max' items in p.
751  *
752  * the slot in the array is returned via slot, and it points to
753  * the place where you would insert key if it is not found in
754  * the array.
755  *
756  * slot may point to max if the key is bigger than all of the keys
757  */
758 static noinline int generic_bin_search(struct extent_buffer *eb,
759                                        unsigned long p,
760                                        int item_size, struct btrfs_key *key,
761                                        int max, int *slot)
762 {
763         int low = 0;
764         int high = max;
765         int mid;
766         int ret;
767         struct btrfs_disk_key *tmp = NULL;
768         struct btrfs_disk_key unaligned;
769         unsigned long offset;
770         char *map_token = NULL;
771         char *kaddr = NULL;
772         unsigned long map_start = 0;
773         unsigned long map_len = 0;
774         int err;
775
776         while (low < high) {
777                 mid = (low + high) / 2;
778                 offset = p + mid * item_size;
779
780                 if (!map_token || offset < map_start ||
781                     (offset + sizeof(struct btrfs_disk_key)) >
782                     map_start + map_len) {
783                         if (map_token) {
784                                 unmap_extent_buffer(eb, map_token, KM_USER0);
785                                 map_token = NULL;
786                         }
787
788                         err = map_private_extent_buffer(eb, offset,
789                                                 sizeof(struct btrfs_disk_key),
790                                                 &map_token, &kaddr,
791                                                 &map_start, &map_len, KM_USER0);
792
793                         if (!err) {
794                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
795                                                         map_start);
796                         } else {
797                                 read_extent_buffer(eb, &unaligned,
798                                                    offset, sizeof(unaligned));
799                                 tmp = &unaligned;
800                         }
801
802                 } else {
803                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
804                                                         map_start);
805                 }
806                 ret = comp_keys(tmp, key);
807
808                 if (ret < 0)
809                         low = mid + 1;
810                 else if (ret > 0)
811                         high = mid;
812                 else {
813                         *slot = mid;
814                         if (map_token)
815                                 unmap_extent_buffer(eb, map_token, KM_USER0);
816                         return 0;
817                 }
818         }
819         *slot = low;
820         if (map_token)
821                 unmap_extent_buffer(eb, map_token, KM_USER0);
822         return 1;
823 }
824
825 /*
826  * simple bin_search frontend that does the right thing for
827  * leaves vs nodes
828  */
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830                       int level, int *slot)
831 {
832         if (level == 0) {
833                 return generic_bin_search(eb,
834                                           offsetof(struct btrfs_leaf, items),
835                                           sizeof(struct btrfs_item),
836                                           key, btrfs_header_nritems(eb),
837                                           slot);
838         } else {
839                 return generic_bin_search(eb,
840                                           offsetof(struct btrfs_node, ptrs),
841                                           sizeof(struct btrfs_key_ptr),
842                                           key, btrfs_header_nritems(eb),
843                                           slot);
844         }
845         return -1;
846 }
847
848 /* given a node and slot number, this reads the blocks it points to.  The
849  * extent buffer is returned with a reference taken (but unlocked).
850  * NULL is returned on error.
851  */
852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
853                                    struct extent_buffer *parent, int slot)
854 {
855         int level = btrfs_header_level(parent);
856         if (slot < 0)
857                 return NULL;
858         if (slot >= btrfs_header_nritems(parent))
859                 return NULL;
860
861         BUG_ON(level == 0);
862
863         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
864                        btrfs_level_size(root, level - 1),
865                        btrfs_node_ptr_generation(parent, slot));
866 }
867
868 /*
869  * node level balancing, used to make sure nodes are in proper order for
870  * item deletion.  We balance from the top down, so we have to make sure
871  * that a deletion won't leave an node completely empty later on.
872  */
873 static noinline int balance_level(struct btrfs_trans_handle *trans,
874                          struct btrfs_root *root,
875                          struct btrfs_path *path, int level)
876 {
877         struct extent_buffer *right = NULL;
878         struct extent_buffer *mid;
879         struct extent_buffer *left = NULL;
880         struct extent_buffer *parent = NULL;
881         int ret = 0;
882         int wret;
883         int pslot;
884         int orig_slot = path->slots[level];
885         int err_on_enospc = 0;
886         u64 orig_ptr;
887
888         if (level == 0)
889                 return 0;
890
891         mid = path->nodes[level];
892
893         WARN_ON(!path->locks[level]);
894         WARN_ON(btrfs_header_generation(mid) != trans->transid);
895
896         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
897
898         if (level < BTRFS_MAX_LEVEL - 1)
899                 parent = path->nodes[level + 1];
900         pslot = path->slots[level + 1];
901
902         /*
903          * deal with the case where there is only one pointer in the root
904          * by promoting the node below to a root
905          */
906         if (!parent) {
907                 struct extent_buffer *child;
908
909                 if (btrfs_header_nritems(mid) != 1)
910                         return 0;
911
912                 /* promote the child to a root */
913                 child = read_node_slot(root, mid, 0);
914                 BUG_ON(!child);
915                 btrfs_tree_lock(child);
916                 btrfs_set_lock_blocking(child);
917                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918                 BUG_ON(ret);
919
920                 spin_lock(&root->node_lock);
921                 root->node = child;
922                 spin_unlock(&root->node_lock);
923
924                 ret = btrfs_update_extent_ref(trans, root, child->start,
925                                               child->len,
926                                               mid->start, child->start,
927                                               root->root_key.objectid,
928                                               trans->transid, level - 1);
929                 BUG_ON(ret);
930
931                 add_root_to_dirty_list(root);
932                 btrfs_tree_unlock(child);
933
934                 path->locks[level] = 0;
935                 path->nodes[level] = NULL;
936                 clean_tree_block(trans, root, mid);
937                 btrfs_tree_unlock(mid);
938                 /* once for the path */
939                 free_extent_buffer(mid);
940                 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
941                                         mid->start, root->root_key.objectid,
942                                         btrfs_header_generation(mid),
943                                         level, 1);
944                 /* once for the root ptr */
945                 free_extent_buffer(mid);
946                 return ret;
947         }
948         if (btrfs_header_nritems(mid) >
949             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
950                 return 0;
951
952         if (trans->transaction->delayed_refs.flushing &&
953             btrfs_header_nritems(mid) > 2)
954                 return 0;
955
956         if (btrfs_header_nritems(mid) < 2)
957                 err_on_enospc = 1;
958
959         left = read_node_slot(root, parent, pslot - 1);
960         if (left) {
961                 btrfs_tree_lock(left);
962                 btrfs_set_lock_blocking(left);
963                 wret = btrfs_cow_block(trans, root, left,
964                                        parent, pslot - 1, &left);
965                 if (wret) {
966                         ret = wret;
967                         goto enospc;
968                 }
969         }
970         right = read_node_slot(root, parent, pslot + 1);
971         if (right) {
972                 btrfs_tree_lock(right);
973                 btrfs_set_lock_blocking(right);
974                 wret = btrfs_cow_block(trans, root, right,
975                                        parent, pslot + 1, &right);
976                 if (wret) {
977                         ret = wret;
978                         goto enospc;
979                 }
980         }
981
982         /* first, try to make some room in the middle buffer */
983         if (left) {
984                 orig_slot += btrfs_header_nritems(left);
985                 wret = push_node_left(trans, root, left, mid, 1);
986                 if (wret < 0)
987                         ret = wret;
988                 if (btrfs_header_nritems(mid) < 2)
989                         err_on_enospc = 1;
990         }
991
992         /*
993          * then try to empty the right most buffer into the middle
994          */
995         if (right) {
996                 wret = push_node_left(trans, root, mid, right, 1);
997                 if (wret < 0 && wret != -ENOSPC)
998                         ret = wret;
999                 if (btrfs_header_nritems(right) == 0) {
1000                         u64 bytenr = right->start;
1001                         u64 generation = btrfs_header_generation(parent);
1002                         u32 blocksize = right->len;
1003
1004                         clean_tree_block(trans, root, right);
1005                         btrfs_tree_unlock(right);
1006                         free_extent_buffer(right);
1007                         right = NULL;
1008                         wret = del_ptr(trans, root, path, level + 1, pslot +
1009                                        1);
1010                         if (wret)
1011                                 ret = wret;
1012                         wret = btrfs_free_extent(trans, root, bytenr,
1013                                                  blocksize, parent->start,
1014                                                  btrfs_header_owner(parent),
1015                                                  generation, level, 1);
1016                         if (wret)
1017                                 ret = wret;
1018                 } else {
1019                         struct btrfs_disk_key right_key;
1020                         btrfs_node_key(right, &right_key, 0);
1021                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1022                         btrfs_mark_buffer_dirty(parent);
1023                 }
1024         }
1025         if (btrfs_header_nritems(mid) == 1) {
1026                 /*
1027                  * we're not allowed to leave a node with one item in the
1028                  * tree during a delete.  A deletion from lower in the tree
1029                  * could try to delete the only pointer in this node.
1030                  * So, pull some keys from the left.
1031                  * There has to be a left pointer at this point because
1032                  * otherwise we would have pulled some pointers from the
1033                  * right
1034                  */
1035                 BUG_ON(!left);
1036                 wret = balance_node_right(trans, root, mid, left);
1037                 if (wret < 0) {
1038                         ret = wret;
1039                         goto enospc;
1040                 }
1041                 if (wret == 1) {
1042                         wret = push_node_left(trans, root, left, mid, 1);
1043                         if (wret < 0)
1044                                 ret = wret;
1045                 }
1046                 BUG_ON(wret == 1);
1047         }
1048         if (btrfs_header_nritems(mid) == 0) {
1049                 /* we've managed to empty the middle node, drop it */
1050                 u64 root_gen = btrfs_header_generation(parent);
1051                 u64 bytenr = mid->start;
1052                 u32 blocksize = mid->len;
1053
1054                 clean_tree_block(trans, root, mid);
1055                 btrfs_tree_unlock(mid);
1056                 free_extent_buffer(mid);
1057                 mid = NULL;
1058                 wret = del_ptr(trans, root, path, level + 1, pslot);
1059                 if (wret)
1060                         ret = wret;
1061                 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1062                                          parent->start,
1063                                          btrfs_header_owner(parent),
1064                                          root_gen, level, 1);
1065                 if (wret)
1066                         ret = wret;
1067         } else {
1068                 /* update the parent key to reflect our changes */
1069                 struct btrfs_disk_key mid_key;
1070                 btrfs_node_key(mid, &mid_key, 0);
1071                 btrfs_set_node_key(parent, &mid_key, pslot);
1072                 btrfs_mark_buffer_dirty(parent);
1073         }
1074
1075         /* update the path */
1076         if (left) {
1077                 if (btrfs_header_nritems(left) > orig_slot) {
1078                         extent_buffer_get(left);
1079                         /* left was locked after cow */
1080                         path->nodes[level] = left;
1081                         path->slots[level + 1] -= 1;
1082                         path->slots[level] = orig_slot;
1083                         if (mid) {
1084                                 btrfs_tree_unlock(mid);
1085                                 free_extent_buffer(mid);
1086                         }
1087                 } else {
1088                         orig_slot -= btrfs_header_nritems(left);
1089                         path->slots[level] = orig_slot;
1090                 }
1091         }
1092         /* double check we haven't messed things up */
1093         check_block(root, path, level);
1094         if (orig_ptr !=
1095             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1096                 BUG();
1097 enospc:
1098         if (right) {
1099                 btrfs_tree_unlock(right);
1100                 free_extent_buffer(right);
1101         }
1102         if (left) {
1103                 if (path->nodes[level] != left)
1104                         btrfs_tree_unlock(left);
1105                 free_extent_buffer(left);
1106         }
1107         return ret;
1108 }
1109
1110 /* Node balancing for insertion.  Here we only split or push nodes around
1111  * when they are completely full.  This is also done top down, so we
1112  * have to be pessimistic.
1113  */
1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1115                                           struct btrfs_root *root,
1116                                           struct btrfs_path *path, int level)
1117 {
1118         struct extent_buffer *right = NULL;
1119         struct extent_buffer *mid;
1120         struct extent_buffer *left = NULL;
1121         struct extent_buffer *parent = NULL;
1122         int ret = 0;
1123         int wret;
1124         int pslot;
1125         int orig_slot = path->slots[level];
1126         u64 orig_ptr;
1127
1128         if (level == 0)
1129                 return 1;
1130
1131         mid = path->nodes[level];
1132         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1133         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1134
1135         if (level < BTRFS_MAX_LEVEL - 1)
1136                 parent = path->nodes[level + 1];
1137         pslot = path->slots[level + 1];
1138
1139         if (!parent)
1140                 return 1;
1141
1142         left = read_node_slot(root, parent, pslot - 1);
1143
1144         /* first, try to make some room in the middle buffer */
1145         if (left) {
1146                 u32 left_nr;
1147
1148                 btrfs_tree_lock(left);
1149                 btrfs_set_lock_blocking(left);
1150
1151                 left_nr = btrfs_header_nritems(left);
1152                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1153                         wret = 1;
1154                 } else {
1155                         ret = btrfs_cow_block(trans, root, left, parent,
1156                                               pslot - 1, &left);
1157                         if (ret)
1158                                 wret = 1;
1159                         else {
1160                                 wret = push_node_left(trans, root,
1161                                                       left, mid, 0);
1162                         }
1163                 }
1164                 if (wret < 0)
1165                         ret = wret;
1166                 if (wret == 0) {
1167                         struct btrfs_disk_key disk_key;
1168                         orig_slot += left_nr;
1169                         btrfs_node_key(mid, &disk_key, 0);
1170                         btrfs_set_node_key(parent, &disk_key, pslot);
1171                         btrfs_mark_buffer_dirty(parent);
1172                         if (btrfs_header_nritems(left) > orig_slot) {
1173                                 path->nodes[level] = left;
1174                                 path->slots[level + 1] -= 1;
1175                                 path->slots[level] = orig_slot;
1176                                 btrfs_tree_unlock(mid);
1177                                 free_extent_buffer(mid);
1178                         } else {
1179                                 orig_slot -=
1180                                         btrfs_header_nritems(left);
1181                                 path->slots[level] = orig_slot;
1182                                 btrfs_tree_unlock(left);
1183                                 free_extent_buffer(left);
1184                         }
1185                         return 0;
1186                 }
1187                 btrfs_tree_unlock(left);
1188                 free_extent_buffer(left);
1189         }
1190         right = read_node_slot(root, parent, pslot + 1);
1191
1192         /*
1193          * then try to empty the right most buffer into the middle
1194          */
1195         if (right) {
1196                 u32 right_nr;
1197
1198                 btrfs_tree_lock(right);
1199                 btrfs_set_lock_blocking(right);
1200
1201                 right_nr = btrfs_header_nritems(right);
1202                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1203                         wret = 1;
1204                 } else {
1205                         ret = btrfs_cow_block(trans, root, right,
1206                                               parent, pslot + 1,
1207                                               &right);
1208                         if (ret)
1209                                 wret = 1;
1210                         else {
1211                                 wret = balance_node_right(trans, root,
1212                                                           right, mid);
1213                         }
1214                 }
1215                 if (wret < 0)
1216                         ret = wret;
1217                 if (wret == 0) {
1218                         struct btrfs_disk_key disk_key;
1219
1220                         btrfs_node_key(right, &disk_key, 0);
1221                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1222                         btrfs_mark_buffer_dirty(parent);
1223
1224                         if (btrfs_header_nritems(mid) <= orig_slot) {
1225                                 path->nodes[level] = right;
1226                                 path->slots[level + 1] += 1;
1227                                 path->slots[level] = orig_slot -
1228                                         btrfs_header_nritems(mid);
1229                                 btrfs_tree_unlock(mid);
1230                                 free_extent_buffer(mid);
1231                         } else {
1232                                 btrfs_tree_unlock(right);
1233                                 free_extent_buffer(right);
1234                         }
1235                         return 0;
1236                 }
1237                 btrfs_tree_unlock(right);
1238                 free_extent_buffer(right);
1239         }
1240         return 1;
1241 }
1242
1243 /*
1244  * readahead one full node of leaves, finding things that are close
1245  * to the block in 'slot', and triggering ra on them.
1246  */
1247 static void reada_for_search(struct btrfs_root *root,
1248                              struct btrfs_path *path,
1249                              int level, int slot, u64 objectid)
1250 {
1251         struct extent_buffer *node;
1252         struct btrfs_disk_key disk_key;
1253         u32 nritems;
1254         u64 search;
1255         u64 target;
1256         u64 nread = 0;
1257         int direction = path->reada;
1258         struct extent_buffer *eb;
1259         u32 nr;
1260         u32 blocksize;
1261         u32 nscan = 0;
1262
1263         if (level != 1)
1264                 return;
1265
1266         if (!path->nodes[level])
1267                 return;
1268
1269         node = path->nodes[level];
1270
1271         search = btrfs_node_blockptr(node, slot);
1272         blocksize = btrfs_level_size(root, level - 1);
1273         eb = btrfs_find_tree_block(root, search, blocksize);
1274         if (eb) {
1275                 free_extent_buffer(eb);
1276                 return;
1277         }
1278
1279         target = search;
1280
1281         nritems = btrfs_header_nritems(node);
1282         nr = slot;
1283         while (1) {
1284                 if (direction < 0) {
1285                         if (nr == 0)
1286                                 break;
1287                         nr--;
1288                 } else if (direction > 0) {
1289                         nr++;
1290                         if (nr >= nritems)
1291                                 break;
1292                 }
1293                 if (path->reada < 0 && objectid) {
1294                         btrfs_node_key(node, &disk_key, nr);
1295                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1296                                 break;
1297                 }
1298                 search = btrfs_node_blockptr(node, nr);
1299                 if ((search <= target && target - search <= 65536) ||
1300                     (search > target && search - target <= 65536)) {
1301                         readahead_tree_block(root, search, blocksize,
1302                                      btrfs_node_ptr_generation(node, nr));
1303                         nread += blocksize;
1304                 }
1305                 nscan++;
1306                 if ((nread > 65536 || nscan > 32))
1307                         break;
1308         }
1309 }
1310
1311 /*
1312  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1313  * cache
1314  */
1315 static noinline int reada_for_balance(struct btrfs_root *root,
1316                                       struct btrfs_path *path, int level)
1317 {
1318         int slot;
1319         int nritems;
1320         struct extent_buffer *parent;
1321         struct extent_buffer *eb;
1322         u64 gen;
1323         u64 block1 = 0;
1324         u64 block2 = 0;
1325         int ret = 0;
1326         int blocksize;
1327
1328         parent = path->nodes[level + 1];
1329         if (!parent)
1330                 return 0;
1331
1332         nritems = btrfs_header_nritems(parent);
1333         slot = path->slots[level + 1];
1334         blocksize = btrfs_level_size(root, level);
1335
1336         if (slot > 0) {
1337                 block1 = btrfs_node_blockptr(parent, slot - 1);
1338                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1339                 eb = btrfs_find_tree_block(root, block1, blocksize);
1340                 if (eb && btrfs_buffer_uptodate(eb, gen))
1341                         block1 = 0;
1342                 free_extent_buffer(eb);
1343         }
1344         if (slot + 1 < nritems) {
1345                 block2 = btrfs_node_blockptr(parent, slot + 1);
1346                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1347                 eb = btrfs_find_tree_block(root, block2, blocksize);
1348                 if (eb && btrfs_buffer_uptodate(eb, gen))
1349                         block2 = 0;
1350                 free_extent_buffer(eb);
1351         }
1352         if (block1 || block2) {
1353                 ret = -EAGAIN;
1354
1355                 /* release the whole path */
1356                 btrfs_release_path(root, path);
1357
1358                 /* read the blocks */
1359                 if (block1)
1360                         readahead_tree_block(root, block1, blocksize, 0);
1361                 if (block2)
1362                         readahead_tree_block(root, block2, blocksize, 0);
1363
1364                 if (block1) {
1365                         eb = read_tree_block(root, block1, blocksize, 0);
1366                         free_extent_buffer(eb);
1367                 }
1368                 if (block2) {
1369                         eb = read_tree_block(root, block2, blocksize, 0);
1370                         free_extent_buffer(eb);
1371                 }
1372         }
1373         return ret;
1374 }
1375
1376
1377 /*
1378  * when we walk down the tree, it is usually safe to unlock the higher layers
1379  * in the tree.  The exceptions are when our path goes through slot 0, because
1380  * operations on the tree might require changing key pointers higher up in the
1381  * tree.
1382  *
1383  * callers might also have set path->keep_locks, which tells this code to keep
1384  * the lock if the path points to the last slot in the block.  This is part of
1385  * walking through the tree, and selecting the next slot in the higher block.
1386  *
1387  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1388  * if lowest_unlock is 1, level 0 won't be unlocked
1389  */
1390 static noinline void unlock_up(struct btrfs_path *path, int level,
1391                                int lowest_unlock)
1392 {
1393         int i;
1394         int skip_level = level;
1395         int no_skips = 0;
1396         struct extent_buffer *t;
1397
1398         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1399                 if (!path->nodes[i])
1400                         break;
1401                 if (!path->locks[i])
1402                         break;
1403                 if (!no_skips && path->slots[i] == 0) {
1404                         skip_level = i + 1;
1405                         continue;
1406                 }
1407                 if (!no_skips && path->keep_locks) {
1408                         u32 nritems;
1409                         t = path->nodes[i];
1410                         nritems = btrfs_header_nritems(t);
1411                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1412                                 skip_level = i + 1;
1413                                 continue;
1414                         }
1415                 }
1416                 if (skip_level < i && i >= lowest_unlock)
1417                         no_skips = 1;
1418
1419                 t = path->nodes[i];
1420                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1421                         btrfs_tree_unlock(t);
1422                         path->locks[i] = 0;
1423                 }
1424         }
1425 }
1426
1427 /*
1428  * This releases any locks held in the path starting at level and
1429  * going all the way up to the root.
1430  *
1431  * btrfs_search_slot will keep the lock held on higher nodes in a few
1432  * corner cases, such as COW of the block at slot zero in the node.  This
1433  * ignores those rules, and it should only be called when there are no
1434  * more updates to be done higher up in the tree.
1435  */
1436 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1437 {
1438         int i;
1439
1440         if (path->keep_locks || path->lowest_level)
1441                 return;
1442
1443         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1444                 if (!path->nodes[i])
1445                         continue;
1446                 if (!path->locks[i])
1447                         continue;
1448                 btrfs_tree_unlock(path->nodes[i]);
1449                 path->locks[i] = 0;
1450         }
1451 }
1452
1453 /*
1454  * helper function for btrfs_search_slot.  The goal is to find a block
1455  * in cache without setting the path to blocking.  If we find the block
1456  * we return zero and the path is unchanged.
1457  *
1458  * If we can't find the block, we set the path blocking and do some
1459  * reada.  -EAGAIN is returned and the search must be repeated.
1460  */
1461 static int
1462 read_block_for_search(struct btrfs_trans_handle *trans,
1463                        struct btrfs_root *root, struct btrfs_path *p,
1464                        struct extent_buffer **eb_ret, int level, int slot,
1465                        struct btrfs_key *key)
1466 {
1467         u64 blocknr;
1468         u64 gen;
1469         u32 blocksize;
1470         struct extent_buffer *b = *eb_ret;
1471         struct extent_buffer *tmp;
1472
1473         blocknr = btrfs_node_blockptr(b, slot);
1474         gen = btrfs_node_ptr_generation(b, slot);
1475         blocksize = btrfs_level_size(root, level - 1);
1476
1477         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1478         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1479                 *eb_ret = tmp;
1480                 return 0;
1481         }
1482
1483         /*
1484          * reduce lock contention at high levels
1485          * of the btree by dropping locks before
1486          * we read.
1487          */
1488         btrfs_unlock_up_safe(p, level + 1);
1489         btrfs_set_path_blocking(p);
1490
1491         if (tmp)
1492                 free_extent_buffer(tmp);
1493         if (p->reada)
1494                 reada_for_search(root, p, level, slot, key->objectid);
1495
1496         btrfs_release_path(NULL, p);
1497         tmp = read_tree_block(root, blocknr, blocksize, gen);
1498         if (tmp)
1499                 free_extent_buffer(tmp);
1500         return -EAGAIN;
1501 }
1502
1503 /*
1504  * helper function for btrfs_search_slot.  This does all of the checks
1505  * for node-level blocks and does any balancing required based on
1506  * the ins_len.
1507  *
1508  * If no extra work was required, zero is returned.  If we had to
1509  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1510  * start over
1511  */
1512 static int
1513 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1514                        struct btrfs_root *root, struct btrfs_path *p,
1515                        struct extent_buffer *b, int level, int ins_len)
1516 {
1517         int ret;
1518         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1519             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1520                 int sret;
1521
1522                 sret = reada_for_balance(root, p, level);
1523                 if (sret)
1524                         goto again;
1525
1526                 btrfs_set_path_blocking(p);
1527                 sret = split_node(trans, root, p, level);
1528                 btrfs_clear_path_blocking(p, NULL);
1529
1530                 BUG_ON(sret > 0);
1531                 if (sret) {
1532                         ret = sret;
1533                         goto done;
1534                 }
1535                 b = p->nodes[level];
1536         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1537                    BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1538                 int sret;
1539
1540                 sret = reada_for_balance(root, p, level);
1541                 if (sret)
1542                         goto again;
1543
1544                 btrfs_set_path_blocking(p);
1545                 sret = balance_level(trans, root, p, level);
1546                 btrfs_clear_path_blocking(p, NULL);
1547
1548                 if (sret) {
1549                         ret = sret;
1550                         goto done;
1551                 }
1552                 b = p->nodes[level];
1553                 if (!b) {
1554                         btrfs_release_path(NULL, p);
1555                         goto again;
1556                 }
1557                 BUG_ON(btrfs_header_nritems(b) == 1);
1558         }
1559         return 0;
1560
1561 again:
1562         ret = -EAGAIN;
1563 done:
1564         return ret;
1565 }
1566
1567 /*
1568  * look for key in the tree.  path is filled in with nodes along the way
1569  * if key is found, we return zero and you can find the item in the leaf
1570  * level of the path (level 0)
1571  *
1572  * If the key isn't found, the path points to the slot where it should
1573  * be inserted, and 1 is returned.  If there are other errors during the
1574  * search a negative error number is returned.
1575  *
1576  * if ins_len > 0, nodes and leaves will be split as we walk down the
1577  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1578  * possible)
1579  */
1580 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1581                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1582                       ins_len, int cow)
1583 {
1584         struct extent_buffer *b;
1585         int slot;
1586         int ret;
1587         int level;
1588         int lowest_unlock = 1;
1589         u8 lowest_level = 0;
1590
1591         lowest_level = p->lowest_level;
1592         WARN_ON(lowest_level && ins_len > 0);
1593         WARN_ON(p->nodes[0] != NULL);
1594
1595         if (ins_len < 0)
1596                 lowest_unlock = 2;
1597
1598 again:
1599         if (p->skip_locking)
1600                 b = btrfs_root_node(root);
1601         else
1602                 b = btrfs_lock_root_node(root);
1603
1604         while (b) {
1605                 level = btrfs_header_level(b);
1606
1607                 /*
1608                  * setup the path here so we can release it under lock
1609                  * contention with the cow code
1610                  */
1611                 p->nodes[level] = b;
1612                 if (!p->skip_locking)
1613                         p->locks[level] = 1;
1614
1615                 if (cow) {
1616                         int wret;
1617
1618                         /*
1619                          * if we don't really need to cow this block
1620                          * then we don't want to set the path blocking,
1621                          * so we test it here
1622                          */
1623                         if (btrfs_header_generation(b) == trans->transid &&
1624                             btrfs_header_owner(b) == root->root_key.objectid &&
1625                             !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1626                                 goto cow_done;
1627                         }
1628                         btrfs_set_path_blocking(p);
1629
1630                         wret = btrfs_cow_block(trans, root, b,
1631                                                p->nodes[level + 1],
1632                                                p->slots[level + 1], &b);
1633                         if (wret) {
1634                                 free_extent_buffer(b);
1635                                 ret = wret;
1636                                 goto done;
1637                         }
1638                 }
1639 cow_done:
1640                 BUG_ON(!cow && ins_len);
1641                 if (level != btrfs_header_level(b))
1642                         WARN_ON(1);
1643                 level = btrfs_header_level(b);
1644
1645                 p->nodes[level] = b;
1646                 if (!p->skip_locking)
1647                         p->locks[level] = 1;
1648
1649                 btrfs_clear_path_blocking(p, NULL);
1650
1651                 /*
1652                  * we have a lock on b and as long as we aren't changing
1653                  * the tree, there is no way to for the items in b to change.
1654                  * It is safe to drop the lock on our parent before we
1655                  * go through the expensive btree search on b.
1656                  *
1657                  * If cow is true, then we might be changing slot zero,
1658                  * which may require changing the parent.  So, we can't
1659                  * drop the lock until after we know which slot we're
1660                  * operating on.
1661                  */
1662                 if (!cow)
1663                         btrfs_unlock_up_safe(p, level + 1);
1664
1665                 ret = check_block(root, p, level);
1666                 if (ret) {
1667                         ret = -1;
1668                         goto done;
1669                 }
1670
1671                 ret = bin_search(b, key, level, &slot);
1672
1673                 if (level != 0) {
1674                         if (ret && slot > 0)
1675                                 slot -= 1;
1676                         p->slots[level] = slot;
1677                         ret = setup_nodes_for_search(trans, root, p, b, level,
1678                                                      ins_len);
1679                         if (ret == -EAGAIN)
1680                                 goto again;
1681                         else if (ret)
1682                                 goto done;
1683                         b = p->nodes[level];
1684                         slot = p->slots[level];
1685
1686                         unlock_up(p, level, lowest_unlock);
1687
1688                         /* this is only true while dropping a snapshot */
1689                         if (level == lowest_level) {
1690                                 ret = 0;
1691                                 goto done;
1692                         }
1693
1694                         ret = read_block_for_search(trans, root, p,
1695                                                     &b, level, slot, key);
1696                         if (ret == -EAGAIN)
1697                                 goto again;
1698
1699                         if (!p->skip_locking) {
1700                                 int lret;
1701
1702                                 btrfs_clear_path_blocking(p, NULL);
1703                                 lret = btrfs_try_spin_lock(b);
1704
1705                                 if (!lret) {
1706                                         btrfs_set_path_blocking(p);
1707                                         btrfs_tree_lock(b);
1708                                         btrfs_clear_path_blocking(p, b);
1709                                 }
1710                         }
1711                 } else {
1712                         p->slots[level] = slot;
1713                         if (ins_len > 0 &&
1714                             btrfs_leaf_free_space(root, b) < ins_len) {
1715                                 int sret;
1716
1717                                 btrfs_set_path_blocking(p);
1718                                 sret = split_leaf(trans, root, key,
1719                                                       p, ins_len, ret == 0);
1720                                 btrfs_clear_path_blocking(p, NULL);
1721
1722                                 BUG_ON(sret > 0);
1723                                 if (sret) {
1724                                         ret = sret;
1725                                         goto done;
1726                                 }
1727                         }
1728                         if (!p->search_for_split)
1729                                 unlock_up(p, level, lowest_unlock);
1730                         goto done;
1731                 }
1732         }
1733         ret = 1;
1734 done:
1735         /*
1736          * we don't really know what they plan on doing with the path
1737          * from here on, so for now just mark it as blocking
1738          */
1739         if (!p->leave_spinning)
1740                 btrfs_set_path_blocking(p);
1741         return ret;
1742 }
1743
1744 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1745                      struct btrfs_root *root,
1746                      struct btrfs_key *node_keys,
1747                      u64 *nodes, int lowest_level)
1748 {
1749         struct extent_buffer *eb;
1750         struct extent_buffer *parent;
1751         struct btrfs_key key;
1752         u64 bytenr;
1753         u64 generation;
1754         u32 blocksize;
1755         int level;
1756         int slot;
1757         int key_match;
1758         int ret;
1759
1760         eb = btrfs_lock_root_node(root);
1761         ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
1762         BUG_ON(ret);
1763
1764         btrfs_set_lock_blocking(eb);
1765
1766         parent = eb;
1767         while (1) {
1768                 level = btrfs_header_level(parent);
1769                 if (level == 0 || level <= lowest_level)
1770                         break;
1771
1772                 ret = bin_search(parent, &node_keys[lowest_level], level,
1773                                  &slot);
1774                 if (ret && slot > 0)
1775                         slot--;
1776
1777                 bytenr = btrfs_node_blockptr(parent, slot);
1778                 if (nodes[level - 1] == bytenr)
1779                         break;
1780
1781                 blocksize = btrfs_level_size(root, level - 1);
1782                 generation = btrfs_node_ptr_generation(parent, slot);
1783                 btrfs_node_key_to_cpu(eb, &key, slot);
1784                 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1785
1786                 if (generation == trans->transid) {
1787                         eb = read_tree_block(root, bytenr, blocksize,
1788                                              generation);
1789                         btrfs_tree_lock(eb);
1790                         btrfs_set_lock_blocking(eb);
1791                 }
1792
1793                 /*
1794                  * if node keys match and node pointer hasn't been modified
1795                  * in the running transaction, we can merge the path. for
1796                  * blocks owened by reloc trees, the node pointer check is
1797                  * skipped, this is because these blocks are fully controlled
1798                  * by the space balance code, no one else can modify them.
1799                  */
1800                 if (!nodes[level - 1] || !key_match ||
1801                     (generation == trans->transid &&
1802                      btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1803                         if (level == 1 || level == lowest_level + 1) {
1804                                 if (generation == trans->transid) {
1805                                         btrfs_tree_unlock(eb);
1806                                         free_extent_buffer(eb);
1807                                 }
1808                                 break;
1809                         }
1810
1811                         if (generation != trans->transid) {
1812                                 eb = read_tree_block(root, bytenr, blocksize,
1813                                                 generation);
1814                                 btrfs_tree_lock(eb);
1815                                 btrfs_set_lock_blocking(eb);
1816                         }
1817
1818                         ret = btrfs_cow_block(trans, root, eb, parent, slot,
1819                                               &eb);
1820                         BUG_ON(ret);
1821
1822                         if (root->root_key.objectid ==
1823                             BTRFS_TREE_RELOC_OBJECTID) {
1824                                 if (!nodes[level - 1]) {
1825                                         nodes[level - 1] = eb->start;
1826                                         memcpy(&node_keys[level - 1], &key,
1827                                                sizeof(node_keys[0]));
1828                                 } else {
1829                                         WARN_ON(1);
1830                                 }
1831                         }
1832
1833                         btrfs_tree_unlock(parent);
1834                         free_extent_buffer(parent);
1835                         parent = eb;
1836                         continue;
1837                 }
1838
1839                 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1840                 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1841                 btrfs_mark_buffer_dirty(parent);
1842
1843                 ret = btrfs_inc_extent_ref(trans, root,
1844                                         nodes[level - 1],
1845                                         blocksize, parent->start,
1846                                         btrfs_header_owner(parent),
1847                                         btrfs_header_generation(parent),
1848                                         level - 1);
1849                 BUG_ON(ret);
1850
1851                 /*
1852                  * If the block was created in the running transaction,
1853                  * it's possible this is the last reference to it, so we
1854                  * should drop the subtree.
1855                  */
1856                 if (generation == trans->transid) {
1857                         ret = btrfs_drop_subtree(trans, root, eb, parent);
1858                         BUG_ON(ret);
1859                         btrfs_tree_unlock(eb);
1860                         free_extent_buffer(eb);
1861                 } else {
1862                         ret = btrfs_free_extent(trans, root, bytenr,
1863                                         blocksize, parent->start,
1864                                         btrfs_header_owner(parent),
1865                                         btrfs_header_generation(parent),
1866                                         level - 1, 1);
1867                         BUG_ON(ret);
1868                 }
1869                 break;
1870         }
1871         btrfs_tree_unlock(parent);
1872         free_extent_buffer(parent);
1873         return 0;
1874 }
1875
1876 /*
1877  * adjust the pointers going up the tree, starting at level
1878  * making sure the right key of each node is points to 'key'.
1879  * This is used after shifting pointers to the left, so it stops
1880  * fixing up pointers when a given leaf/node is not in slot 0 of the
1881  * higher levels
1882  *
1883  * If this fails to write a tree block, it returns -1, but continues
1884  * fixing up the blocks in ram so the tree is consistent.
1885  */
1886 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1887                           struct btrfs_root *root, struct btrfs_path *path,
1888                           struct btrfs_disk_key *key, int level)
1889 {
1890         int i;
1891         int ret = 0;
1892         struct extent_buffer *t;
1893
1894         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1895                 int tslot = path->slots[i];
1896                 if (!path->nodes[i])
1897                         break;
1898                 t = path->nodes[i];
1899                 btrfs_set_node_key(t, key, tslot);
1900                 btrfs_mark_buffer_dirty(path->nodes[i]);
1901                 if (tslot != 0)
1902                         break;
1903         }
1904         return ret;
1905 }
1906
1907 /*
1908  * update item key.
1909  *
1910  * This function isn't completely safe. It's the caller's responsibility
1911  * that the new key won't break the order
1912  */
1913 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1914                             struct btrfs_root *root, struct btrfs_path *path,
1915                             struct btrfs_key *new_key)
1916 {
1917         struct btrfs_disk_key disk_key;
1918         struct extent_buffer *eb;
1919         int slot;
1920
1921         eb = path->nodes[0];
1922         slot = path->slots[0];
1923         if (slot > 0) {
1924                 btrfs_item_key(eb, &disk_key, slot - 1);
1925                 if (comp_keys(&disk_key, new_key) >= 0)
1926                         return -1;
1927         }
1928         if (slot < btrfs_header_nritems(eb) - 1) {
1929                 btrfs_item_key(eb, &disk_key, slot + 1);
1930                 if (comp_keys(&disk_key, new_key) <= 0)
1931                         return -1;
1932         }
1933
1934         btrfs_cpu_key_to_disk(&disk_key, new_key);
1935         btrfs_set_item_key(eb, &disk_key, slot);
1936         btrfs_mark_buffer_dirty(eb);
1937         if (slot == 0)
1938                 fixup_low_keys(trans, root, path, &disk_key, 1);
1939         return 0;
1940 }
1941
1942 /*
1943  * try to push data from one node into the next node left in the
1944  * tree.
1945  *
1946  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1947  * error, and > 0 if there was no room in the left hand block.
1948  */
1949 static int push_node_left(struct btrfs_trans_handle *trans,
1950                           struct btrfs_root *root, struct extent_buffer *dst,
1951                           struct extent_buffer *src, int empty)
1952 {
1953         int push_items = 0;
1954         int src_nritems;
1955         int dst_nritems;
1956         int ret = 0;
1957
1958         src_nritems = btrfs_header_nritems(src);
1959         dst_nritems = btrfs_header_nritems(dst);
1960         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1961         WARN_ON(btrfs_header_generation(src) != trans->transid);
1962         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1963
1964         if (!empty && src_nritems <= 8)
1965                 return 1;
1966
1967         if (push_items <= 0)
1968                 return 1;
1969
1970         if (empty) {
1971                 push_items = min(src_nritems, push_items);
1972                 if (push_items < src_nritems) {
1973                         /* leave at least 8 pointers in the node if
1974                          * we aren't going to empty it
1975                          */
1976                         if (src_nritems - push_items < 8) {
1977                                 if (push_items <= 8)
1978                                         return 1;
1979                                 push_items -= 8;
1980                         }
1981                 }
1982         } else
1983                 push_items = min(src_nritems - 8, push_items);
1984
1985         copy_extent_buffer(dst, src,
1986                            btrfs_node_key_ptr_offset(dst_nritems),
1987                            btrfs_node_key_ptr_offset(0),
1988                            push_items * sizeof(struct btrfs_key_ptr));
1989
1990         if (push_items < src_nritems) {
1991                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1992                                       btrfs_node_key_ptr_offset(push_items),
1993                                       (src_nritems - push_items) *
1994                                       sizeof(struct btrfs_key_ptr));
1995         }
1996         btrfs_set_header_nritems(src, src_nritems - push_items);
1997         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1998         btrfs_mark_buffer_dirty(src);
1999         btrfs_mark_buffer_dirty(dst);
2000
2001         ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
2002         BUG_ON(ret);
2003
2004         return ret;
2005 }
2006
2007 /*
2008  * try to push data from one node into the next node right in the
2009  * tree.
2010  *
2011  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2012  * error, and > 0 if there was no room in the right hand block.
2013  *
2014  * this will  only push up to 1/2 the contents of the left node over
2015  */
2016 static int balance_node_right(struct btrfs_trans_handle *trans,
2017                               struct btrfs_root *root,
2018                               struct extent_buffer *dst,
2019                               struct extent_buffer *src)
2020 {
2021         int push_items = 0;
2022         int max_push;
2023         int src_nritems;
2024         int dst_nritems;
2025         int ret = 0;
2026
2027         WARN_ON(btrfs_header_generation(src) != trans->transid);
2028         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2029
2030         src_nritems = btrfs_header_nritems(src);
2031         dst_nritems = btrfs_header_nritems(dst);
2032         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2033         if (push_items <= 0)
2034                 return 1;
2035
2036         if (src_nritems < 4)
2037                 return 1;
2038
2039         max_push = src_nritems / 2 + 1;
2040         /* don't try to empty the node */
2041         if (max_push >= src_nritems)
2042                 return 1;
2043
2044         if (max_push < push_items)
2045                 push_items = max_push;
2046
2047         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2048                                       btrfs_node_key_ptr_offset(0),
2049                                       (dst_nritems) *
2050                                       sizeof(struct btrfs_key_ptr));
2051
2052         copy_extent_buffer(dst, src,
2053                            btrfs_node_key_ptr_offset(0),
2054                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2055                            push_items * sizeof(struct btrfs_key_ptr));
2056
2057         btrfs_set_header_nritems(src, src_nritems - push_items);
2058         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2059
2060         btrfs_mark_buffer_dirty(src);
2061         btrfs_mark_buffer_dirty(dst);
2062
2063         ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2064         BUG_ON(ret);
2065
2066         return ret;
2067 }
2068
2069 /*
2070  * helper function to insert a new root level in the tree.
2071  * A new node is allocated, and a single item is inserted to
2072  * point to the existing root
2073  *
2074  * returns zero on success or < 0 on failure.
2075  */
2076 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2077                            struct btrfs_root *root,
2078                            struct btrfs_path *path, int level)
2079 {
2080         u64 lower_gen;
2081         struct extent_buffer *lower;
2082         struct extent_buffer *c;
2083         struct extent_buffer *old;
2084         struct btrfs_disk_key lower_key;
2085         int ret;
2086
2087         BUG_ON(path->nodes[level]);
2088         BUG_ON(path->nodes[level-1] != root->node);
2089
2090         lower = path->nodes[level-1];
2091         if (level == 1)
2092                 btrfs_item_key(lower, &lower_key, 0);
2093         else
2094                 btrfs_node_key(lower, &lower_key, 0);
2095
2096         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2097                                    root->root_key.objectid, trans->transid,
2098                                    level, root->node->start, 0);
2099         if (IS_ERR(c))
2100                 return PTR_ERR(c);
2101
2102         memset_extent_buffer(c, 0, 0, root->nodesize);
2103         btrfs_set_header_nritems(c, 1);
2104         btrfs_set_header_level(c, level);
2105         btrfs_set_header_bytenr(c, c->start);
2106         btrfs_set_header_generation(c, trans->transid);
2107         btrfs_set_header_owner(c, root->root_key.objectid);
2108
2109         write_extent_buffer(c, root->fs_info->fsid,
2110                             (unsigned long)btrfs_header_fsid(c),
2111                             BTRFS_FSID_SIZE);
2112
2113         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2114                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2115                             BTRFS_UUID_SIZE);
2116
2117         btrfs_set_node_key(c, &lower_key, 0);
2118         btrfs_set_node_blockptr(c, 0, lower->start);
2119         lower_gen = btrfs_header_generation(lower);
2120         WARN_ON(lower_gen != trans->transid);
2121
2122         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2123
2124         btrfs_mark_buffer_dirty(c);
2125
2126         spin_lock(&root->node_lock);
2127         old = root->node;
2128         root->node = c;
2129         spin_unlock(&root->node_lock);
2130
2131         ret = btrfs_update_extent_ref(trans, root, lower->start,
2132                                       lower->len, lower->start, c->start,
2133                                       root->root_key.objectid,
2134                                       trans->transid, level - 1);
2135         BUG_ON(ret);
2136
2137         /* the super has an extra ref to root->node */
2138         free_extent_buffer(old);
2139
2140         add_root_to_dirty_list(root);
2141         extent_buffer_get(c);
2142         path->nodes[level] = c;
2143         path->locks[level] = 1;
2144         path->slots[level] = 0;
2145         return 0;
2146 }
2147
2148 /*
2149  * worker function to insert a single pointer in a node.
2150  * the node should have enough room for the pointer already
2151  *
2152  * slot and level indicate where you want the key to go, and
2153  * blocknr is the block the key points to.
2154  *
2155  * returns zero on success and < 0 on any error
2156  */
2157 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2158                       *root, struct btrfs_path *path, struct btrfs_disk_key
2159                       *key, u64 bytenr, int slot, int level)
2160 {
2161         struct extent_buffer *lower;
2162         int nritems;
2163
2164         BUG_ON(!path->nodes[level]);
2165         lower = path->nodes[level];
2166         nritems = btrfs_header_nritems(lower);
2167         BUG_ON(slot > nritems);
2168         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2169                 BUG();
2170         if (slot != nritems) {
2171                 memmove_extent_buffer(lower,
2172                               btrfs_node_key_ptr_offset(slot + 1),
2173                               btrfs_node_key_ptr_offset(slot),
2174                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2175         }
2176         btrfs_set_node_key(lower, key, slot);
2177         btrfs_set_node_blockptr(lower, slot, bytenr);
2178         WARN_ON(trans->transid == 0);
2179         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2180         btrfs_set_header_nritems(lower, nritems + 1);
2181         btrfs_mark_buffer_dirty(lower);
2182         return 0;
2183 }
2184
2185 /*
2186  * split the node at the specified level in path in two.
2187  * The path is corrected to point to the appropriate node after the split
2188  *
2189  * Before splitting this tries to make some room in the node by pushing
2190  * left and right, if either one works, it returns right away.
2191  *
2192  * returns 0 on success and < 0 on failure
2193  */
2194 static noinline int split_node(struct btrfs_trans_handle *trans,
2195                                struct btrfs_root *root,
2196                                struct btrfs_path *path, int level)
2197 {
2198         struct extent_buffer *c;
2199         struct extent_buffer *split;
2200         struct btrfs_disk_key disk_key;
2201         int mid;
2202         int ret;
2203         int wret;
2204         u32 c_nritems;
2205
2206         c = path->nodes[level];
2207         WARN_ON(btrfs_header_generation(c) != trans->transid);
2208         if (c == root->node) {
2209                 /* trying to split the root, lets make a new one */
2210                 ret = insert_new_root(trans, root, path, level + 1);
2211                 if (ret)
2212                         return ret;
2213         } else if (!trans->transaction->delayed_refs.flushing) {
2214                 ret = push_nodes_for_insert(trans, root, path, level);
2215                 c = path->nodes[level];
2216                 if (!ret && btrfs_header_nritems(c) <
2217                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2218                         return 0;
2219                 if (ret < 0)
2220                         return ret;
2221         }
2222
2223         c_nritems = btrfs_header_nritems(c);
2224
2225         split = btrfs_alloc_free_block(trans, root, root->nodesize,
2226                                         path->nodes[level + 1]->start,
2227                                         root->root_key.objectid,
2228                                         trans->transid, level, c->start, 0);
2229         if (IS_ERR(split))
2230                 return PTR_ERR(split);
2231
2232         btrfs_set_header_flags(split, btrfs_header_flags(c));
2233         btrfs_set_header_level(split, btrfs_header_level(c));
2234         btrfs_set_header_bytenr(split, split->start);
2235         btrfs_set_header_generation(split, trans->transid);
2236         btrfs_set_header_owner(split, root->root_key.objectid);
2237         btrfs_set_header_flags(split, 0);
2238         write_extent_buffer(split, root->fs_info->fsid,
2239                             (unsigned long)btrfs_header_fsid(split),
2240                             BTRFS_FSID_SIZE);
2241         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2242                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2243                             BTRFS_UUID_SIZE);
2244
2245         mid = (c_nritems + 1) / 2;
2246
2247         copy_extent_buffer(split, c,
2248                            btrfs_node_key_ptr_offset(0),
2249                            btrfs_node_key_ptr_offset(mid),
2250                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2251         btrfs_set_header_nritems(split, c_nritems - mid);
2252         btrfs_set_header_nritems(c, mid);
2253         ret = 0;
2254
2255         btrfs_mark_buffer_dirty(c);
2256         btrfs_mark_buffer_dirty(split);
2257
2258         btrfs_node_key(split, &disk_key, 0);
2259         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2260                           path->slots[level + 1] + 1,
2261                           level + 1);
2262         if (wret)
2263                 ret = wret;
2264
2265         ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2266         BUG_ON(ret);
2267
2268         if (path->slots[level] >= mid) {
2269                 path->slots[level] -= mid;
2270                 btrfs_tree_unlock(c);
2271                 free_extent_buffer(c);
2272                 path->nodes[level] = split;
2273                 path->slots[level + 1] += 1;
2274         } else {
2275                 btrfs_tree_unlock(split);
2276                 free_extent_buffer(split);
2277         }
2278         return ret;
2279 }
2280
2281 /*
2282  * how many bytes are required to store the items in a leaf.  start
2283  * and nr indicate which items in the leaf to check.  This totals up the
2284  * space used both by the item structs and the item data
2285  */
2286 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2287 {
2288         int data_len;
2289         int nritems = btrfs_header_nritems(l);
2290         int end = min(nritems, start + nr) - 1;
2291
2292         if (!nr)
2293                 return 0;
2294         data_len = btrfs_item_end_nr(l, start);
2295         data_len = data_len - btrfs_item_offset_nr(l, end);
2296         data_len += sizeof(struct btrfs_item) * nr;
2297         WARN_ON(data_len < 0);
2298         return data_len;
2299 }
2300
2301 /*
2302  * The space between the end of the leaf items and
2303  * the start of the leaf data.  IOW, how much room
2304  * the leaf has left for both items and data
2305  */
2306 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2307                                    struct extent_buffer *leaf)
2308 {
2309         int nritems = btrfs_header_nritems(leaf);
2310         int ret;
2311         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2312         if (ret < 0) {
2313                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2314                        "used %d nritems %d\n",
2315                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2316                        leaf_space_used(leaf, 0, nritems), nritems);
2317         }
2318         return ret;
2319 }
2320
2321 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2322                                       struct btrfs_root *root,
2323                                       struct btrfs_path *path,
2324                                       int data_size, int empty,
2325                                       struct extent_buffer *right,
2326                                       int free_space, u32 left_nritems)
2327 {
2328         struct extent_buffer *left = path->nodes[0];
2329         struct extent_buffer *upper = path->nodes[1];
2330         struct btrfs_disk_key disk_key;
2331         int slot;
2332         u32 i;
2333         int push_space = 0;
2334         int push_items = 0;
2335         struct btrfs_item *item;
2336         u32 nr;
2337         u32 right_nritems;
2338         u32 data_end;
2339         u32 this_item_size;
2340         int ret;
2341
2342         if (empty)
2343                 nr = 0;
2344         else
2345                 nr = 1;
2346
2347         if (path->slots[0] >= left_nritems)
2348                 push_space += data_size;
2349
2350         slot = path->slots[1];
2351         i = left_nritems - 1;
2352         while (i >= nr) {
2353                 item = btrfs_item_nr(left, i);
2354
2355                 if (!empty && push_items > 0) {
2356                         if (path->slots[0] > i)
2357                                 break;
2358                         if (path->slots[0] == i) {
2359                                 int space = btrfs_leaf_free_space(root, left);
2360                                 if (space + push_space * 2 > free_space)
2361                                         break;
2362                         }
2363                 }
2364
2365                 if (path->slots[0] == i)
2366                         push_space += data_size;
2367
2368                 if (!left->map_token) {
2369                         map_extent_buffer(left, (unsigned long)item,
2370                                         sizeof(struct btrfs_item),
2371                                         &left->map_token, &left->kaddr,
2372                                         &left->map_start, &left->map_len,
2373                                         KM_USER1);
2374                 }
2375
2376                 this_item_size = btrfs_item_size(left, item);
2377                 if (this_item_size + sizeof(*item) + push_space > free_space)
2378                         break;
2379
2380                 push_items++;
2381                 push_space += this_item_size + sizeof(*item);
2382                 if (i == 0)
2383                         break;
2384                 i--;
2385         }
2386         if (left->map_token) {
2387                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2388                 left->map_token = NULL;
2389         }
2390
2391         if (push_items == 0)
2392                 goto out_unlock;
2393
2394         if (!empty && push_items == left_nritems)
2395                 WARN_ON(1);
2396
2397         /* push left to right */
2398         right_nritems = btrfs_header_nritems(right);
2399
2400         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2401         push_space -= leaf_data_end(root, left);
2402
2403         /* make room in the right data area */
2404         data_end = leaf_data_end(root, right);
2405         memmove_extent_buffer(right,
2406                               btrfs_leaf_data(right) + data_end - push_space,
2407                               btrfs_leaf_data(right) + data_end,
2408                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2409
2410         /* copy from the left data area */
2411         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2412                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2413                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2414                      push_space);
2415
2416         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2417                               btrfs_item_nr_offset(0),
2418                               right_nritems * sizeof(struct btrfs_item));
2419
2420         /* copy the items from left to right */
2421         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2422                    btrfs_item_nr_offset(left_nritems - push_items),
2423                    push_items * sizeof(struct btrfs_item));
2424
2425         /* update the item pointers */
2426         right_nritems += push_items;
2427         btrfs_set_header_nritems(right, right_nritems);
2428         push_space = BTRFS_LEAF_DATA_SIZE(root);
2429         for (i = 0; i < right_nritems; i++) {
2430                 item = btrfs_item_nr(right, i);
2431                 if (!right->map_token) {
2432                         map_extent_buffer(right, (unsigned long)item,
2433                                         sizeof(struct btrfs_item),
2434                                         &right->map_token, &right->kaddr,
2435                                         &right->map_start, &right->map_len,
2436                                         KM_USER1);
2437                 }
2438                 push_space -= btrfs_item_size(right, item);
2439                 btrfs_set_item_offset(right, item, push_space);
2440         }
2441
2442         if (right->map_token) {
2443                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2444                 right->map_token = NULL;
2445         }
2446         left_nritems -= push_items;
2447         btrfs_set_header_nritems(left, left_nritems);
2448
2449         if (left_nritems)
2450                 btrfs_mark_buffer_dirty(left);
2451         btrfs_mark_buffer_dirty(right);
2452
2453         ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2454         BUG_ON(ret);
2455
2456         btrfs_item_key(right, &disk_key, 0);
2457         btrfs_set_node_key(upper, &disk_key, slot + 1);
2458         btrfs_mark_buffer_dirty(upper);
2459
2460         /* then fixup the leaf pointer in the path */
2461         if (path->slots[0] >= left_nritems) {
2462                 path->slots[0] -= left_nritems;
2463                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2464                         clean_tree_block(trans, root, path->nodes[0]);
2465                 btrfs_tree_unlock(path->nodes[0]);
2466                 free_extent_buffer(path->nodes[0]);
2467                 path->nodes[0] = right;
2468                 path->slots[1] += 1;
2469         } else {
2470                 btrfs_tree_unlock(right);
2471                 free_extent_buffer(right);
2472         }
2473         return 0;
2474
2475 out_unlock:
2476         btrfs_tree_unlock(right);
2477         free_extent_buffer(right);
2478         return 1;
2479 }
2480
2481 /*
2482  * push some data in the path leaf to the right, trying to free up at
2483  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2484  *
2485  * returns 1 if the push failed because the other node didn't have enough
2486  * room, 0 if everything worked out and < 0 if there were major errors.
2487  */
2488 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2489                            *root, struct btrfs_path *path, int data_size,
2490                            int empty)
2491 {
2492         struct extent_buffer *left = path->nodes[0];
2493         struct extent_buffer *right;
2494         struct extent_buffer *upper;
2495         int slot;
2496         int free_space;
2497         u32 left_nritems;
2498         int ret;
2499
2500         if (!path->nodes[1])
2501                 return 1;
2502
2503         slot = path->slots[1];
2504         upper = path->nodes[1];
2505         if (slot >= btrfs_header_nritems(upper) - 1)
2506                 return 1;
2507
2508         btrfs_assert_tree_locked(path->nodes[1]);
2509
2510         right = read_node_slot(root, upper, slot + 1);
2511         btrfs_tree_lock(right);
2512         btrfs_set_lock_blocking(right);
2513
2514         free_space = btrfs_leaf_free_space(root, right);
2515         if (free_space < data_size)
2516                 goto out_unlock;
2517
2518         /* cow and double check */
2519         ret = btrfs_cow_block(trans, root, right, upper,
2520                               slot + 1, &right);
2521         if (ret)
2522                 goto out_unlock;
2523
2524         free_space = btrfs_leaf_free_space(root, right);
2525         if (free_space < data_size)
2526                 goto out_unlock;
2527
2528         left_nritems = btrfs_header_nritems(left);
2529         if (left_nritems == 0)
2530                 goto out_unlock;
2531
2532         return __push_leaf_right(trans, root, path, data_size, empty,
2533                                 right, free_space, left_nritems);
2534 out_unlock:
2535         btrfs_tree_unlock(right);
2536         free_extent_buffer(right);
2537         return 1;
2538 }
2539
2540 /*
2541  * push some data in the path leaf to the left, trying to free up at
2542  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2543  */
2544 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2545                                      struct btrfs_root *root,
2546                                      struct btrfs_path *path, int data_size,
2547                                      int empty, struct extent_buffer *left,
2548                                      int free_space, int right_nritems)
2549 {
2550         struct btrfs_disk_key disk_key;
2551         struct extent_buffer *right = path->nodes[0];
2552         int slot;
2553         int i;
2554         int push_space = 0;
2555         int push_items = 0;
2556         struct btrfs_item *item;
2557         u32 old_left_nritems;
2558         u32 nr;
2559         int ret = 0;
2560         int wret;
2561         u32 this_item_size;
2562         u32 old_left_item_size;
2563
2564         slot = path->slots[1];
2565
2566         if (empty)
2567                 nr = right_nritems;
2568         else
2569                 nr = right_nritems - 1;
2570
2571         for (i = 0; i < nr; i++) {
2572                 item = btrfs_item_nr(right, i);
2573                 if (!right->map_token) {
2574                         map_extent_buffer(right, (unsigned long)item,
2575                                         sizeof(struct btrfs_item),
2576                                         &right->map_token, &right->kaddr,
2577                                         &right->map_start, &right->map_len,
2578                                         KM_USER1);
2579                 }
2580
2581                 if (!empty && push_items > 0) {
2582                         if (path->slots[0] < i)
2583                                 break;
2584                         if (path->slots[0] == i) {
2585                                 int space = btrfs_leaf_free_space(root, right);
2586                                 if (space + push_space * 2 > free_space)
2587                                         break;
2588                         }
2589                 }
2590
2591                 if (path->slots[0] == i)
2592                         push_space += data_size;
2593
2594                 this_item_size = btrfs_item_size(right, item);
2595                 if (this_item_size + sizeof(*item) + push_space > free_space)
2596                         break;
2597
2598                 push_items++;
2599                 push_space += this_item_size + sizeof(*item);
2600         }
2601
2602         if (right->map_token) {
2603                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2604                 right->map_token = NULL;
2605         }
2606
2607         if (push_items == 0) {
2608                 ret = 1;
2609                 goto out;
2610         }
2611         if (!empty && push_items == btrfs_header_nritems(right))
2612                 WARN_ON(1);
2613
2614         /* push data from right to left */
2615         copy_extent_buffer(left, right,
2616                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2617                            btrfs_item_nr_offset(0),
2618                            push_items * sizeof(struct btrfs_item));
2619
2620         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2621                      btrfs_item_offset_nr(right, push_items - 1);
2622
2623         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2624                      leaf_data_end(root, left) - push_space,
2625                      btrfs_leaf_data(right) +
2626                      btrfs_item_offset_nr(right, push_items - 1),
2627                      push_space);
2628         old_left_nritems = btrfs_header_nritems(left);
2629         BUG_ON(old_left_nritems <= 0);
2630
2631         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2632         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2633                 u32 ioff;
2634
2635                 item = btrfs_item_nr(left, i);
2636                 if (!left->map_token) {
2637                         map_extent_buffer(left, (unsigned long)item,
2638                                         sizeof(struct btrfs_item),
2639                                         &left->map_token, &left->kaddr,
2640                                         &left->map_start, &left->map_len,
2641                                         KM_USER1);
2642                 }
2643
2644                 ioff = btrfs_item_offset(left, item);
2645                 btrfs_set_item_offset(left, item,
2646                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2647         }
2648         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2649         if (left->map_token) {
2650                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2651                 left->map_token = NULL;
2652         }
2653
2654         /* fixup right node */
2655         if (push_items > right_nritems) {
2656                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2657                        right_nritems);
2658                 WARN_ON(1);
2659         }
2660
2661         if (push_items < right_nritems) {
2662                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2663                                                   leaf_data_end(root, right);
2664                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2665                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2666                                       btrfs_leaf_data(right) +
2667                                       leaf_data_end(root, right), push_space);
2668
2669                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2670                               btrfs_item_nr_offset(push_items),
2671                              (btrfs_header_nritems(right) - push_items) *
2672                              sizeof(struct btrfs_item));
2673         }
2674         right_nritems -= push_items;
2675         btrfs_set_header_nritems(right, right_nritems);
2676         push_space = BTRFS_LEAF_DATA_SIZE(root);
2677         for (i = 0; i < right_nritems; i++) {
2678                 item = btrfs_item_nr(right, i);
2679
2680                 if (!right->map_token) {
2681                         map_extent_buffer(right, (unsigned long)item,
2682                                         sizeof(struct btrfs_item),
2683                                         &right->map_token, &right->kaddr,
2684                                         &right->map_start, &right->map_len,
2685                                         KM_USER1);
2686                 }
2687
2688                 push_space = push_space - btrfs_item_size(right, item);
2689                 btrfs_set_item_offset(right, item, push_space);
2690         }
2691         if (right->map_token) {
2692                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2693                 right->map_token = NULL;
2694         }
2695
2696         btrfs_mark_buffer_dirty(left);
2697         if (right_nritems)
2698                 btrfs_mark_buffer_dirty(right);
2699
2700         ret = btrfs_update_ref(trans, root, right, left,
2701                                old_left_nritems, push_items);
2702         BUG_ON(ret);
2703
2704         btrfs_item_key(right, &disk_key, 0);
2705         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2706         if (wret)
2707                 ret = wret;
2708
2709         /* then fixup the leaf pointer in the path */
2710         if (path->slots[0] < push_items) {
2711                 path->slots[0] += old_left_nritems;
2712                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2713                         clean_tree_block(trans, root, path->nodes[0]);
2714                 btrfs_tree_unlock(path->nodes[0]);
2715                 free_extent_buffer(path->nodes[0]);
2716                 path->nodes[0] = left;
2717                 path->slots[1] -= 1;
2718         } else {
2719                 btrfs_tree_unlock(left);
2720                 free_extent_buffer(left);
2721                 path->slots[0] -= push_items;
2722         }
2723         BUG_ON(path->slots[0] < 0);
2724         return ret;
2725 out:
2726         btrfs_tree_unlock(left);
2727         free_extent_buffer(left);
2728         return ret;
2729 }
2730
2731 /*
2732  * push some data in the path leaf to the left, trying to free up at
2733  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2734  */
2735 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2736                           *root, struct btrfs_path *path, int data_size,
2737                           int empty)
2738 {
2739         struct extent_buffer *right = path->nodes[0];
2740         struct extent_buffer *left;
2741         int slot;
2742         int free_space;
2743         u32 right_nritems;
2744         int ret = 0;
2745
2746         slot = path->slots[1];
2747         if (slot == 0)
2748                 return 1;
2749         if (!path->nodes[1])
2750                 return 1;
2751
2752         right_nritems = btrfs_header_nritems(right);
2753         if (right_nritems == 0)
2754                 return 1;
2755
2756         btrfs_assert_tree_locked(path->nodes[1]);
2757
2758         left = read_node_slot(root, path->nodes[1], slot - 1);
2759         btrfs_tree_lock(left);
2760         btrfs_set_lock_blocking(left);
2761
2762         free_space = btrfs_leaf_free_space(root, left);
2763         if (free_space < data_size) {
2764                 ret = 1;
2765                 goto out;
2766         }
2767
2768         /* cow and double check */
2769         ret = btrfs_cow_block(trans, root, left,
2770                               path->nodes[1], slot - 1, &left);
2771         if (ret) {
2772                 /* we hit -ENOSPC, but it isn't fatal here */
2773                 ret = 1;
2774                 goto out;
2775         }
2776
2777         free_space = btrfs_leaf_free_space(root, left);
2778         if (free_space < data_size) {
2779                 ret = 1;
2780                 goto out;
2781         }
2782
2783         return __push_leaf_left(trans, root, path, data_size,
2784                                empty, left, free_space, right_nritems);
2785 out:
2786         btrfs_tree_unlock(left);
2787         free_extent_buffer(left);
2788         return ret;
2789 }
2790
2791 /*
2792  * split the path's leaf in two, making sure there is at least data_size
2793  * available for the resulting leaf level of the path.
2794  *
2795  * returns 0 if all went well and < 0 on failure.
2796  */
2797 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2798                                struct btrfs_root *root,
2799                                struct btrfs_path *path,
2800                                struct extent_buffer *l,
2801                                struct extent_buffer *right,
2802                                int slot, int mid, int nritems)
2803 {
2804         int data_copy_size;
2805         int rt_data_off;
2806         int i;
2807         int ret = 0;
2808         int wret;
2809         struct btrfs_disk_key disk_key;
2810
2811         nritems = nritems - mid;
2812         btrfs_set_header_nritems(right, nritems);
2813         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2814
2815         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2816                            btrfs_item_nr_offset(mid),
2817                            nritems * sizeof(struct btrfs_item));
2818
2819         copy_extent_buffer(right, l,
2820                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2821                      data_copy_size, btrfs_leaf_data(l) +
2822                      leaf_data_end(root, l), data_copy_size);
2823
2824         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2825                       btrfs_item_end_nr(l, mid);
2826
2827         for (i = 0; i < nritems; i++) {
2828                 struct btrfs_item *item = btrfs_item_nr(right, i);
2829                 u32 ioff;
2830
2831                 if (!right->map_token) {
2832                         map_extent_buffer(right, (unsigned long)item,
2833                                         sizeof(struct btrfs_item),
2834                                         &right->map_token, &right->kaddr,
2835                                         &right->map_start, &right->map_len,
2836                                         KM_USER1);
2837                 }
2838
2839                 ioff = btrfs_item_offset(right, item);
2840                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2841         }
2842
2843         if (right->map_token) {
2844                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2845                 right->map_token = NULL;
2846         }
2847
2848         btrfs_set_header_nritems(l, mid);
2849         ret = 0;
2850         btrfs_item_key(right, &disk_key, 0);
2851         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2852                           path->slots[1] + 1, 1);
2853         if (wret)
2854                 ret = wret;
2855
2856         btrfs_mark_buffer_dirty(right);
2857         btrfs_mark_buffer_dirty(l);
2858         BUG_ON(path->slots[0] != slot);
2859
2860         ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2861         BUG_ON(ret);
2862
2863         if (mid <= slot) {
2864                 btrfs_tree_unlock(path->nodes[0]);
2865                 free_extent_buffer(path->nodes[0]);
2866                 path->nodes[0] = right;
2867                 path->slots[0] -= mid;
2868                 path->slots[1] += 1;
2869         } else {
2870                 btrfs_tree_unlock(right);
2871                 free_extent_buffer(right);
2872         }
2873
2874         BUG_ON(path->slots[0] < 0);
2875
2876         return ret;
2877 }
2878
2879 /*
2880  * split the path's leaf in two, making sure there is at least data_size
2881  * available for the resulting leaf level of the path.
2882  *
2883  * returns 0 if all went well and < 0 on failure.
2884  */
2885 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2886                                struct btrfs_root *root,
2887                                struct btrfs_key *ins_key,
2888                                struct btrfs_path *path, int data_size,
2889                                int extend)
2890 {
2891         struct extent_buffer *l;
2892         u32 nritems;
2893         int mid;
2894         int slot;
2895         struct extent_buffer *right;
2896         int ret = 0;
2897         int wret;
2898         int double_split;
2899         int num_doubles = 0;
2900
2901         /* first try to make some room by pushing left and right */
2902         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
2903             !trans->transaction->delayed_refs.flushing) {
2904                 wret = push_leaf_right(trans, root, path, data_size, 0);
2905                 if (wret < 0)
2906                         return wret;
2907                 if (wret) {
2908                         wret = push_leaf_left(trans, root, path, data_size, 0);
2909                         if (wret < 0)
2910                                 return wret;
2911                 }
2912                 l = path->nodes[0];
2913
2914                 /* did the pushes work? */
2915                 if (btrfs_leaf_free_space(root, l) >= data_size)
2916                         return 0;
2917         }
2918
2919         if (!path->nodes[1]) {
2920                 ret = insert_new_root(trans, root, path, 1);
2921                 if (ret)
2922                         return ret;
2923         }
2924 again:
2925         double_split = 0;
2926         l = path->nodes[0];
2927         slot = path->slots[0];
2928         nritems = btrfs_header_nritems(l);
2929         mid = (nritems + 1) / 2;
2930
2931         right = btrfs_alloc_free_block(trans, root, root->leafsize,
2932                                         path->nodes[1]->start,
2933                                         root->root_key.objectid,
2934                                         trans->transid, 0, l->start, 0);
2935         if (IS_ERR(right)) {
2936                 BUG_ON(1);
2937                 return PTR_ERR(right);
2938         }
2939
2940         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2941         btrfs_set_header_bytenr(right, right->start);
2942         btrfs_set_header_generation(right, trans->transid);
2943         btrfs_set_header_owner(right, root->root_key.objectid);
2944         btrfs_set_header_level(right, 0);
2945         write_extent_buffer(right, root->fs_info->fsid,
2946                             (unsigned long)btrfs_header_fsid(right),
2947                             BTRFS_FSID_SIZE);
2948
2949         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2950                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
2951                             BTRFS_UUID_SIZE);
2952
2953         if (mid <= slot) {
2954                 if (nritems == 1 ||
2955                     leaf_space_used(l, mid, nritems - mid) + data_size >
2956                         BTRFS_LEAF_DATA_SIZE(root)) {
2957                         if (slot >= nritems) {
2958                                 struct btrfs_disk_key disk_key;
2959
2960                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2961                                 btrfs_set_header_nritems(right, 0);
2962                                 wret = insert_ptr(trans, root, path,
2963                                                   &disk_key, right->start,
2964                                                   path->slots[1] + 1, 1);
2965                                 if (wret)
2966                                         ret = wret;
2967
2968                                 btrfs_tree_unlock(path->nodes[0]);
2969                                 free_extent_buffer(path->nodes[0]);
2970                                 path->nodes[0] = right;
2971                                 path->slots[0] = 0;
2972                                 path->slots[1] += 1;
2973                                 btrfs_mark_buffer_dirty(right);
2974                                 return ret;
2975                         }
2976                         mid = slot;
2977                         if (mid != nritems &&
2978                             leaf_space_used(l, mid, nritems - mid) +
2979                             data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2980                                 double_split = 1;
2981                         }
2982                 }
2983         } else {
2984                 if (leaf_space_used(l, 0, mid) + data_size >
2985                         BTRFS_LEAF_DATA_SIZE(root)) {
2986                         if (!extend && data_size && slot == 0) {
2987                                 struct btrfs_disk_key disk_key;
2988
2989                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2990                                 btrfs_set_header_nritems(right, 0);
2991                                 wret = insert_ptr(trans, root, path,
2992                                                   &disk_key,
2993                                                   right->start,
2994                                                   path->slots[1], 1);
2995                                 if (wret)
2996                                         ret = wret;
2997                                 btrfs_tree_unlock(path->nodes[0]);
2998                                 free_extent_buffer(path->nodes[0]);
2999                                 path->nodes[0] = right;
3000                                 path->slots[0] = 0;
3001                                 if (path->slots[1] == 0) {
3002                                         wret = fixup_low_keys(trans, root,
3003                                                       path, &disk_key, 1);
3004                                         if (wret)
3005                                                 ret = wret;
3006                                 }
3007                                 btrfs_mark_buffer_dirty(right);
3008                                 return ret;
3009                         } else if ((extend || !data_size) && slot == 0) {
3010                                 mid = 1;
3011                         } else {
3012                                 mid = slot;
3013                                 if (mid != nritems &&
3014                                     leaf_space_used(l, mid, nritems - mid) +
3015                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3016                                         double_split = 1;
3017                                 }
3018                         }
3019                 }
3020         }
3021
3022         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3023         BUG_ON(ret);
3024
3025         if (double_split) {
3026                 BUG_ON(num_doubles != 0);
3027                 num_doubles++;
3028                 goto again;
3029         }
3030
3031         return ret;
3032 }
3033
3034 /*
3035  * This function splits a single item into two items,
3036  * giving 'new_key' to the new item and splitting the
3037  * old one at split_offset (from the start of the item).
3038  *
3039  * The path may be released by this operation.  After
3040  * the split, the path is pointing to the old item.  The
3041  * new item is going to be in the same node as the old one.
3042  *
3043  * Note, the item being split must be smaller enough to live alone on
3044  * a tree block with room for one extra struct btrfs_item
3045  *
3046  * This allows us to split the item in place, keeping a lock on the
3047  * leaf the entire time.
3048  */
3049 int btrfs_split_item(struct btrfs_trans_handle *trans,
3050                      struct btrfs_root *root,
3051                      struct btrfs_path *path,
3052                      struct btrfs_key *new_key,
3053                      unsigned long split_offset)
3054 {
3055         u32 item_size;
3056         struct extent_buffer *leaf;
3057         struct btrfs_key orig_key;
3058         struct btrfs_item *item;
3059         struct btrfs_item *new_item;
3060         int ret = 0;
3061         int slot;
3062         u32 nritems;
3063         u32 orig_offset;
3064         struct btrfs_disk_key disk_key;
3065         char *buf;
3066
3067         leaf = path->nodes[0];
3068         btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3069         if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3070                 goto split;
3071
3072         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3073         btrfs_release_path(root, path);
3074
3075         path->search_for_split = 1;
3076         path->keep_locks = 1;
3077
3078         ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3079         path->search_for_split = 0;
3080
3081         /* if our item isn't there or got smaller, return now */
3082         if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3083                                                         path->slots[0])) {
3084                 path->keep_locks = 0;
3085                 return -EAGAIN;
3086         }
3087
3088         btrfs_set_path_blocking(path);
3089         ret = split_leaf(trans, root, &orig_key, path,
3090                          sizeof(struct btrfs_item), 1);
3091         path->keep_locks = 0;
3092         BUG_ON(ret);
3093
3094         btrfs_unlock_up_safe(path, 1);
3095         leaf = path->nodes[0];
3096         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3097
3098 split:
3099         /*
3100          * make sure any changes to the path from split_leaf leave it
3101          * in a blocking state
3102          */
3103         btrfs_set_path_blocking(path);
3104
3105         item = btrfs_item_nr(leaf, path->slots[0]);
3106         orig_offset = btrfs_item_offset(leaf, item);
3107         item_size = btrfs_item_size(leaf, item);
3108
3109         buf = kmalloc(item_size, GFP_NOFS);
3110         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3111                             path->slots[0]), item_size);
3112         slot = path->slots[0] + 1;
3113         leaf = path->nodes[0];
3114
3115         nritems = btrfs_header_nritems(leaf);
3116
3117         if (slot != nritems) {
3118                 /* shift the items */
3119                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3120                               btrfs_item_nr_offset(slot),
3121                               (nritems - slot) * sizeof(struct btrfs_item));
3122
3123         }
3124
3125         btrfs_cpu_key_to_disk(&disk_key, new_key);
3126         btrfs_set_item_key(leaf, &disk_key, slot);
3127
3128         new_item = btrfs_item_nr(leaf, slot);
3129
3130         btrfs_set_item_offset(leaf, new_item, orig_offset);
3131         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3132
3133         btrfs_set_item_offset(leaf, item,
3134                               orig_offset + item_size - split_offset);
3135         btrfs_set_item_size(leaf, item, split_offset);
3136
3137         btrfs_set_header_nritems(leaf, nritems + 1);
3138
3139         /* write the data for the start of the original item */
3140         write_extent_buffer(leaf, buf,
3141                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3142                             split_offset);
3143
3144         /* write the data for the new item */
3145         write_extent_buffer(leaf, buf + split_offset,
3146                             btrfs_item_ptr_offset(leaf, slot),
3147                             item_size - split_offset);
3148         btrfs_mark_buffer_dirty(leaf);
3149
3150         ret = 0;
3151         if (btrfs_leaf_free_space(root, leaf) < 0) {
3152                 btrfs_print_leaf(root, leaf);
3153                 BUG();
3154         }
3155         kfree(buf);
3156         return ret;
3157 }
3158
3159 /*
3160  * make the item pointed to by the path smaller.  new_size indicates
3161  * how small to make it, and from_end tells us if we just chop bytes
3162  * off the end of the item or if we shift the item to chop bytes off
3163  * the front.
3164  */
3165 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3166                         struct btrfs_root *root,
3167                         struct btrfs_path *path,
3168                         u32 new_size, int from_end)
3169 {
3170         int ret = 0;
3171         int slot;
3172         int slot_orig;
3173         struct extent_buffer *leaf;
3174         struct btrfs_item *item;
3175         u32 nritems;
3176         unsigned int data_end;
3177         unsigned int old_data_start;
3178         unsigned int old_size;
3179         unsigned int size_diff;
3180         int i;
3181
3182         slot_orig = path->slots[0];
3183         leaf = path->nodes[0];
3184         slot = path->slots[0];
3185
3186         old_size = btrfs_item_size_nr(leaf, slot);
3187         if (old_size == new_size)
3188                 return 0;
3189
3190         nritems = btrfs_header_nritems(leaf);
3191         data_end = leaf_data_end(root, leaf);
3192
3193         old_data_start = btrfs_item_offset_nr(leaf, slot);
3194
3195         size_diff = old_size - new_size;
3196
3197         BUG_ON(slot < 0);
3198         BUG_ON(slot >= nritems);
3199
3200         /*
3201          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3202          */
3203         /* first correct the data pointers */
3204         for (i = slot; i < nritems; i++) {
3205                 u32 ioff;
3206                 item = btrfs_item_nr(leaf, i);
3207
3208                 if (!leaf->map_token) {
3209                         map_extent_buffer(leaf, (unsigned long)item,
3210                                         sizeof(struct btrfs_item),
3211                                         &leaf->map_token, &leaf->kaddr,
3212                                         &leaf->map_start, &leaf->map_len,
3213                                         KM_USER1);
3214                 }
3215
3216                 ioff = btrfs_item_offset(leaf, item);
3217                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3218         }
3219
3220         if (leaf->map_token) {
3221                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3222                 leaf->map_token = NULL;
3223         }
3224
3225         /* shift the data */
3226         if (from_end) {
3227                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3228                               data_end + size_diff, btrfs_leaf_data(leaf) +
3229                               data_end, old_data_start + new_size - data_end);
3230         } else {
3231                 struct btrfs_disk_key disk_key;
3232                 u64 offset;
3233
3234                 btrfs_item_key(leaf, &disk_key, slot);
3235
3236                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3237                         unsigned long ptr;
3238                         struct btrfs_file_extent_item *fi;
3239
3240                         fi = btrfs_item_ptr(leaf, slot,
3241                                             struct btrfs_file_extent_item);
3242                         fi = (struct btrfs_file_extent_item *)(
3243                              (unsigned long)fi - size_diff);
3244
3245                         if (btrfs_file_extent_type(leaf, fi) ==
3246                             BTRFS_FILE_EXTENT_INLINE) {
3247                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3248                                 memmove_extent_buffer(leaf, ptr,
3249                                       (unsigned long)fi,
3250                                       offsetof(struct btrfs_file_extent_item,
3251                                                  disk_bytenr));
3252                         }
3253                 }
3254
3255                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3256                               data_end + size_diff, btrfs_leaf_data(leaf) +
3257                               data_end, old_data_start - data_end);
3258
3259                 offset = btrfs_disk_key_offset(&disk_key);
3260                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3261                 btrfs_set_item_key(leaf, &disk_key, slot);
3262                 if (slot == 0)
3263                         fixup_low_keys(trans, root, path, &disk_key, 1);
3264         }
3265
3266         item = btrfs_item_nr(leaf, slot);
3267         btrfs_set_item_size(leaf, item, new_size);
3268         btrfs_mark_buffer_dirty(leaf);
3269
3270         ret = 0;
3271         if (btrfs_leaf_free_space(root, leaf) < 0) {
3272                 btrfs_print_leaf(root, leaf);
3273                 BUG();
3274         }
3275         return ret;
3276 }
3277
3278 /*
3279  * make the item pointed to by the path bigger, data_size is the new size.
3280  */
3281 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3282                       struct btrfs_root *root, struct btrfs_path *path,
3283                       u32 data_size)
3284 {
3285         int ret = 0;
3286         int slot;
3287         int slot_orig;
3288         struct extent_buffer *leaf;
3289         struct btrfs_item *item;
3290         u32 nritems;
3291         unsigned int data_end;
3292         unsigned int old_data;
3293         unsigned int old_size;
3294         int i;
3295
3296         slot_orig = path->slots[0];
3297         leaf = path->nodes[0];
3298
3299         nritems = btrfs_header_nritems(leaf);
3300         data_end = leaf_data_end(root, leaf);
3301
3302         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3303                 btrfs_print_leaf(root, leaf);
3304                 BUG();
3305         }
3306         slot = path->slots[0];
3307         old_data = btrfs_item_end_nr(leaf, slot);
3308
3309         BUG_ON(slot < 0);
3310         if (slot >= nritems) {
3311                 btrfs_print_leaf(root, leaf);
3312                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3313                        slot, nritems);
3314                 BUG_ON(1);
3315         }
3316
3317         /*
3318          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3319          */
3320         /* first correct the data pointers */
3321         for (i = slot; i < nritems; i++) {
3322                 u32 ioff;
3323                 item = btrfs_item_nr(leaf, i);
3324
3325                 if (!leaf->map_token) {
3326                         map_extent_buffer(leaf, (unsigned long)item,
3327                                         sizeof(struct btrfs_item),
3328                                         &leaf->map_token, &leaf->kaddr,
3329                                         &leaf->map_start, &leaf->map_len,
3330                                         KM_USER1);
3331                 }
3332                 ioff = btrfs_item_offset(leaf, item);
3333                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3334         }
3335
3336         if (leaf->map_token) {
3337                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3338                 leaf->map_token = NULL;
3339         }
3340
3341         /* shift the data */
3342         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3343                       data_end - data_size, btrfs_leaf_data(leaf) +
3344                       data_end, old_data - data_end);
3345
3346         data_end = old_data;
3347         old_size = btrfs_item_size_nr(leaf, slot);
3348         item = btrfs_item_nr(leaf, slot);
3349         btrfs_set_item_size(leaf, item, old_size + data_size);
3350         btrfs_mark_buffer_dirty(leaf);
3351
3352         ret = 0;
3353         if (btrfs_leaf_free_space(root, leaf) < 0) {
3354                 btrfs_print_leaf(root, leaf);
3355                 BUG();
3356         }
3357         return ret;
3358 }
3359
3360 /*
3361  * Given a key and some data, insert items into the tree.
3362  * This does all the path init required, making room in the tree if needed.
3363  * Returns the number of keys that were inserted.
3364  */
3365 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3366                             struct btrfs_root *root,
3367                             struct btrfs_path *path,
3368                             struct btrfs_key *cpu_key, u32 *data_size,
3369                             int nr)
3370 {
3371         struct extent_buffer *leaf;
3372         struct btrfs_item *item;
3373         int ret = 0;
3374         int slot;
3375         int i;
3376         u32 nritems;
3377         u32 total_data = 0;
3378         u32 total_size = 0;
3379         unsigned int data_end;
3380         struct btrfs_disk_key disk_key;
3381         struct btrfs_key found_key;
3382
3383         for (i = 0; i < nr; i++) {
3384                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3385                     BTRFS_LEAF_DATA_SIZE(root)) {
3386                         break;
3387                         nr = i;
3388                 }
3389                 total_data += data_size[i];
3390                 total_size += data_size[i] + sizeof(struct btrfs_item);
3391         }
3392         BUG_ON(nr == 0);
3393
3394         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3395         if (ret == 0)
3396                 return -EEXIST;
3397         if (ret < 0)
3398                 goto out;
3399
3400         leaf = path->nodes[0];
3401
3402         nritems = btrfs_header_nritems(leaf);
3403         data_end = leaf_data_end(root, leaf);
3404
3405         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3406                 for (i = nr; i >= 0; i--) {
3407                         total_data -= data_size[i];
3408                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3409                         if (total_size < btrfs_leaf_free_space(root, leaf))
3410                                 break;
3411                 }
3412                 nr = i;
3413         }
3414
3415         slot = path->slots[0];
3416         BUG_ON(slot < 0);
3417
3418         if (slot != nritems) {
3419                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3420
3421                 item = btrfs_item_nr(leaf, slot);
3422                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3423
3424                 /* figure out how many keys we can insert in here */
3425                 total_data = data_size[0];
3426                 for (i = 1; i < nr; i++) {
3427                         if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3428                                 break;
3429                         total_data += data_size[i];
3430                 }
3431                 nr = i;
3432
3433                 if (old_data < data_end) {
3434                         btrfs_print_leaf(root, leaf);
3435                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3436                                slot, old_data, data_end);
3437                         BUG_ON(1);
3438                 }
3439                 /*
3440                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3441                  */
3442                 /* first correct the data pointers */
3443                 WARN_ON(leaf->map_token);
3444                 for (i = slot; i < nritems; i++) {
3445                         u32 ioff;
3446
3447                         item = btrfs_item_nr(leaf, i);
3448                         if (!leaf->map_token) {
3449                                 map_extent_buffer(leaf, (unsigned long)item,
3450                                         sizeof(struct btrfs_item),
3451                                         &leaf->map_token, &leaf->kaddr,
3452                                         &leaf->map_start, &leaf->map_len,
3453                                         KM_USER1);
3454                         }
3455
3456                         ioff = btrfs_item_offset(leaf, item);
3457                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3458                 }
3459                 if (leaf->map_token) {
3460                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3461                         leaf->map_token = NULL;
3462                 }
3463
3464                 /* shift the items */
3465                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3466                               btrfs_item_nr_offset(slot),
3467                               (nritems - slot) * sizeof(struct btrfs_item));
3468
3469                 /* shift the data */
3470                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3471                               data_end - total_data, btrfs_leaf_data(leaf) +
3472                               data_end, old_data - data_end);
3473                 data_end = old_data;
3474         } else {
3475                 /*
3476                  * this sucks but it has to be done, if we are inserting at
3477                  * the end of the leaf only insert 1 of the items, since we
3478                  * have no way of knowing whats on the next leaf and we'd have
3479                  * to drop our current locks to figure it out
3480                  */
3481                 nr = 1;
3482         }
3483
3484         /* setup the item for the new data */
3485         for (i = 0; i < nr; i++) {
3486                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3487                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3488                 item = btrfs_item_nr(leaf, slot + i);
3489                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3490                 data_end -= data_size[i];
3491                 btrfs_set_item_size(leaf, item, data_size[i]);
3492         }
3493         btrfs_set_header_nritems(leaf, nritems + nr);
3494         btrfs_mark_buffer_dirty(leaf);
3495
3496         ret = 0;
3497         if (slot == 0) {
3498                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3499                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3500         }
3501
3502         if (btrfs_leaf_free_space(root, leaf) < 0) {
3503                 btrfs_print_leaf(root, leaf);
3504                 BUG();
3505         }
3506 out:
3507         if (!ret)
3508                 ret = nr;
3509         return ret;
3510 }
3511
3512 /*
3513  * this is a helper for btrfs_insert_empty_items, the main goal here is
3514  * to save stack depth by doing the bulk of the work in a function
3515  * that doesn't call btrfs_search_slot
3516  */
3517 static noinline_for_stack int
3518 setup_items_for_insert(struct btrfs_trans_handle *trans,
3519                       struct btrfs_root *root, struct btrfs_path *path,
3520                       struct btrfs_key *cpu_key, u32 *data_size,
3521                       u32 total_data, u32 total_size, int nr)
3522 {
3523         struct btrfs_item *item;
3524         int i;
3525         u32 nritems;
3526         unsigned int data_end;
3527         struct btrfs_disk_key disk_key;
3528         int ret;
3529         struct extent_buffer *leaf;
3530         int slot;
3531
3532         leaf = path->nodes[0];
3533         slot = path->slots[0];
3534
3535         nritems = btrfs_header_nritems(leaf);
3536         data_end = leaf_data_end(root, leaf);
3537
3538         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3539                 btrfs_print_leaf(root, leaf);
3540                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3541                        total_size, btrfs_leaf_free_space(root, leaf));
3542                 BUG();
3543         }
3544
3545         if (slot != nritems) {
3546                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3547
3548                 if (old_data < data_end) {
3549                         btrfs_print_leaf(root, leaf);
3550                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3551                                slot, old_data, data_end);
3552                         BUG_ON(1);
3553                 }
3554                 /*
3555                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3556                  */
3557                 /* first correct the data pointers */
3558                 WARN_ON(leaf->map_token);
3559                 for (i = slot; i < nritems; i++) {
3560                         u32 ioff;
3561
3562                         item = btrfs_item_nr(leaf, i);
3563                         if (!leaf->map_token) {
3564                                 map_extent_buffer(leaf, (unsigned long)item,
3565                                         sizeof(struct btrfs_item),
3566                                         &leaf->map_token, &leaf->kaddr,
3567                                         &leaf->map_start, &leaf->map_len,
3568                                         KM_USER1);
3569                         }
3570
3571                         ioff = btrfs_item_offset(leaf, item);
3572                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3573                 }
3574                 if (leaf->map_token) {
3575                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3576                         leaf->map_token = NULL;
3577                 }
3578
3579                 /* shift the items */
3580                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3581                               btrfs_item_nr_offset(slot),
3582                               (nritems - slot) * sizeof(struct btrfs_item));
3583
3584                 /* shift the data */
3585                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3586                               data_end - total_data, btrfs_leaf_data(leaf) +
3587                               data_end, old_data - data_end);
3588                 data_end = old_data;
3589         }
3590
3591         /* setup the item for the new data */
3592         for (i = 0; i < nr; i++) {
3593                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3594                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3595                 item = btrfs_item_nr(leaf, slot + i);
3596                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3597                 data_end -= data_size[i];
3598                 btrfs_set_item_size(leaf, item, data_size[i]);
3599         }
3600
3601         btrfs_set_header_nritems(leaf, nritems + nr);
3602
3603         ret = 0;
3604         if (slot == 0) {
3605                 struct btrfs_disk_key disk_key;
3606                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3607                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3608         }
3609         btrfs_unlock_up_safe(path, 1);
3610         btrfs_mark_buffer_dirty(leaf);
3611
3612         if (btrfs_leaf_free_space(root, leaf) < 0) {
3613                 btrfs_print_leaf(root, leaf);
3614                 BUG();
3615         }
3616         return ret;
3617 }
3618
3619 /*
3620  * Given a key and some data, insert items into the tree.
3621  * This does all the path init required, making room in the tree if needed.
3622  */
3623 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3624                             struct btrfs_root *root,
3625                             struct btrfs_path *path,
3626                             struct btrfs_key *cpu_key, u32 *data_size,
3627                             int nr)
3628 {
3629         struct extent_buffer *leaf;
3630         int ret = 0;
3631         int slot;
3632         int i;
3633         u32 total_size = 0;
3634         u32 total_data = 0;
3635
3636         for (i = 0; i < nr; i++)
3637                 total_data += data_size[i];
3638
3639         total_size = total_data + (nr * sizeof(struct btrfs_item));
3640         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3641         if (ret == 0)
3642                 return -EEXIST;
3643         if (ret < 0)
3644                 goto out;
3645
3646         leaf = path->nodes[0];
3647         slot = path->slots[0];
3648         BUG_ON(slot < 0);
3649
3650         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3651                                total_data, total_size, nr);
3652
3653 out:
3654         return ret;
3655 }
3656
3657 /*
3658  * Given a key and some data, insert an item into the tree.
3659  * This does all the path init required, making room in the tree if needed.
3660  */
3661 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3662                       *root, struct btrfs_key *cpu_key, void *data, u32
3663                       data_size)
3664 {
3665         int ret = 0;
3666         struct btrfs_path *path;
3667         struct extent_buffer *leaf;
3668         unsigned long ptr;
3669
3670         path = btrfs_alloc_path();
3671         BUG_ON(!path);
3672         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3673         if (!ret) {
3674                 leaf = path->nodes[0];
3675                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3676                 write_extent_buffer(leaf, data, ptr, data_size);
3677                 btrfs_mark_buffer_dirty(leaf);
3678         }
3679         btrfs_free_path(path);
3680         return ret;
3681 }
3682
3683 /*
3684  * delete the pointer from a given node.
3685  *
3686  * the tree should have been previously balanced so the deletion does not
3687  * empty a node.
3688  */
3689 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3690                    struct btrfs_path *path, int level, int slot)
3691 {
3692         struct extent_buffer *parent = path->nodes[level];
3693         u32 nritems;
3694         int ret = 0;
3695         int wret;
3696
3697         nritems = btrfs_header_nritems(parent);
3698         if (slot != nritems - 1) {
3699                 memmove_extent_buffer(parent,
3700                               btrfs_node_key_ptr_offset(slot),
3701                               btrfs_node_key_ptr_offset(slot + 1),
3702                               sizeof(struct btrfs_key_ptr) *
3703                               (nritems - slot - 1));
3704         }
3705         nritems--;
3706         btrfs_set_header_nritems(parent, nritems);
3707         if (nritems == 0 && parent == root->node) {
3708                 BUG_ON(btrfs_header_level(root->node) != 1);
3709                 /* just turn the root into a leaf and break */
3710                 btrfs_set_header_level(root->node, 0);
3711         } else if (slot == 0) {
3712                 struct btrfs_disk_key disk_key;
3713
3714                 btrfs_node_key(parent, &disk_key, 0);
3715                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3716                 if (wret)
3717                         ret = wret;
3718         }
3719         btrfs_mark_buffer_dirty(parent);
3720         return ret;
3721 }
3722
3723 /*
3724  * a helper function to delete the leaf pointed to by path->slots[1] and
3725  * path->nodes[1].  bytenr is the node block pointer, but since the callers
3726  * already know it, it is faster to have them pass it down than to
3727  * read it out of the node again.
3728  *
3729  * This deletes the pointer in path->nodes[1] and frees the leaf
3730  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3731  *
3732  * The path must have already been setup for deleting the leaf, including
3733  * all the proper balancing.  path->nodes[1] must be locked.
3734  */
3735 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3736                             struct btrfs_root *root,
3737                             struct btrfs_path *path, u64 bytenr)
3738 {
3739         int ret;
3740         u64 root_gen = btrfs_header_generation(path->nodes[1]);
3741         u64 parent_start = path->nodes[1]->start;
3742         u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3743
3744         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3745         if (ret)
3746                 return ret;
3747
3748         /*
3749          * btrfs_free_extent is expensive, we want to make sure we
3750          * aren't holding any locks when we call it
3751          */
3752         btrfs_unlock_up_safe(path, 0);
3753
3754         ret = btrfs_free_extent(trans, root, bytenr,
3755                                 btrfs_level_size(root, 0),
3756                                 parent_start, parent_owner,
3757                                 root_gen, 0, 1);
3758         return ret;
3759 }
3760 /*
3761  * delete the item at the leaf level in path.  If that empties
3762  * the leaf, remove it from the tree
3763  */
3764 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3765                     struct btrfs_path *path, int slot, int nr)
3766 {
3767         struct extent_buffer *leaf;
3768         struct btrfs_item *item;
3769         int last_off;
3770         int dsize = 0;
3771         int ret = 0;
3772         int wret;
3773         int i;
3774         u32 nritems;
3775
3776         leaf = path->nodes[0];
3777         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3778
3779         for (i = 0; i < nr; i++)
3780                 dsize += btrfs_item_size_nr(leaf, slot + i);
3781
3782         nritems = btrfs_header_nritems(leaf);
3783
3784         if (slot + nr != nritems) {
3785                 int data_end = leaf_data_end(root, leaf);
3786
3787                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3788                               data_end + dsize,
3789                               btrfs_leaf_data(leaf) + data_end,
3790                               last_off - data_end);
3791
3792                 for (i = slot + nr; i < nritems; i++) {
3793                         u32 ioff;
3794
3795                         item = btrfs_item_nr(leaf, i);
3796                         if (!leaf->map_token) {
3797                                 map_extent_buffer(leaf, (unsigned long)item,
3798                                         sizeof(struct btrfs_item),
3799                                         &leaf->map_token, &leaf->kaddr,
3800                                         &leaf->map_start, &leaf->map_len,
3801                                         KM_USER1);
3802                         }
3803                         ioff = btrfs_item_offset(leaf, item);
3804                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3805                 }
3806
3807                 if (leaf->map_token) {
3808                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3809                         leaf->map_token = NULL;
3810                 }
3811
3812                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3813                               btrfs_item_nr_offset(slot + nr),
3814                               sizeof(struct btrfs_item) *
3815                               (nritems - slot - nr));
3816         }
3817         btrfs_set_header_nritems(leaf, nritems - nr);
3818         nritems -= nr;
3819
3820         /* delete the leaf if we've emptied it */
3821         if (nritems == 0) {
3822                 if (leaf == root->node) {
3823                         btrfs_set_header_level(leaf, 0);
3824                 } else {
3825                         ret = btrfs_del_leaf(trans, root, path, leaf->start);
3826                         BUG_ON(ret);
3827                 }
3828         } else {
3829                 int used = leaf_space_used(leaf, 0, nritems);
3830                 if (slot == 0) {
3831                         struct btrfs_disk_key disk_key;
3832
3833                         btrfs_item_key(leaf, &disk_key, 0);
3834                         wret = fixup_low_keys(trans, root, path,
3835                                               &disk_key, 1);
3836                         if (wret)
3837                                 ret = wret;
3838                 }
3839
3840                 /* delete the leaf if it is mostly empty */
3841                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
3842                     !trans->transaction->delayed_refs.flushing) {
3843                         /* push_leaf_left fixes the path.
3844                          * make sure the path still points to our leaf
3845                          * for possible call to del_ptr below
3846                          */
3847                         slot = path->slots[1];
3848                         extent_buffer_get(leaf);
3849
3850                         btrfs_set_path_blocking(path);
3851                         wret = push_leaf_left(trans, root, path, 1, 1);
3852                         if (wret < 0 && wret != -ENOSPC)
3853                                 ret = wret;
3854
3855                         if (path->nodes[0] == leaf &&
3856                             btrfs_header_nritems(leaf)) {
3857                                 wret = push_leaf_right(trans, root, path, 1, 1);
3858                                 if (wret < 0 && wret != -ENOSPC)
3859                                         ret = wret;
3860                         }
3861
3862                         if (btrfs_header_nritems(leaf) == 0) {
3863                                 path->slots[1] = slot;
3864                                 ret = btrfs_del_leaf(trans, root, path,
3865                                                      leaf->start);
3866                                 BUG_ON(ret);
3867                                 free_extent_buffer(leaf);
3868                         } else {
3869                                 /* if we're still in the path, make sure
3870                                  * we're dirty.  Otherwise, one of the
3871                                  * push_leaf functions must have already
3872                                  * dirtied this buffer
3873                                  */
3874                                 if (path->nodes[0] == leaf)
3875                                         btrfs_mark_buffer_dirty(leaf);
3876                                 free_extent_buffer(leaf);
3877                         }
3878                 } else {
3879                         btrfs_mark_buffer_dirty(leaf);
3880                 }
3881         }
3882         return ret;
3883 }
3884
3885 /*
3886  * search the tree again to find a leaf with lesser keys
3887  * returns 0 if it found something or 1 if there are no lesser leaves.
3888  * returns < 0 on io errors.
3889  *
3890  * This may release the path, and so you may lose any locks held at the
3891  * time you call it.
3892  */
3893 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3894 {
3895         struct btrfs_key key;
3896         struct btrfs_disk_key found_key;
3897         int ret;
3898
3899         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3900
3901         if (key.offset > 0)
3902                 key.offset--;
3903         else if (key.type > 0)
3904                 key.type--;
3905         else if (key.objectid > 0)
3906                 key.objectid--;
3907         else
3908                 return 1;
3909
3910         btrfs_release_path(root, path);
3911         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912         if (ret < 0)
3913                 return ret;
3914         btrfs_item_key(path->nodes[0], &found_key, 0);
3915         ret = comp_keys(&found_key, &key);
3916         if (ret < 0)
3917                 return 0;
3918         return 1;
3919 }
3920
3921 /*
3922  * A helper function to walk down the tree starting at min_key, and looking
3923  * for nodes or leaves that are either in cache or have a minimum
3924  * transaction id.  This is used by the btree defrag code, and tree logging
3925  *
3926  * This does not cow, but it does stuff the starting key it finds back
3927  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928  * key and get a writable path.
3929  *
3930  * This does lock as it descends, and path->keep_locks should be set
3931  * to 1 by the caller.
3932  *
3933  * This honors path->lowest_level to prevent descent past a given level
3934  * of the tree.
3935  *
3936  * min_trans indicates the oldest transaction that you are interested
3937  * in walking through.  Any nodes or leaves older than min_trans are
3938  * skipped over (without reading them).
3939  *
3940  * returns zero if something useful was found, < 0 on error and 1 if there
3941  * was nothing in the tree that matched the search criteria.
3942  */
3943 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944                          struct btrfs_key *max_key,
3945                          struct btrfs_path *path, int cache_only,
3946                          u64 min_trans)
3947 {
3948         struct extent_buffer *cur;
3949         struct btrfs_key found_key;
3950         int slot;
3951         int sret;
3952         u32 nritems;
3953         int level;
3954         int ret = 1;
3955
3956         WARN_ON(!path->keep_locks);
3957 again:
3958         cur = btrfs_lock_root_node(root);
3959         level = btrfs_header_level(cur);
3960         WARN_ON(path->nodes[level]);
3961         path->nodes[level] = cur;
3962         path->locks[level] = 1;
3963
3964         if (btrfs_header_generation(cur) < min_trans) {
3965                 ret = 1;
3966                 goto out;
3967         }
3968         while (1) {
3969                 nritems = btrfs_header_nritems(cur);
3970                 level = btrfs_header_level(cur);
3971                 sret = bin_search(cur, min_key, level, &slot);
3972
3973                 /* at the lowest level, we're done, setup the path and exit */
3974                 if (level == path->lowest_level) {
3975                         if (slot >= nritems)
3976                                 goto find_next_key;
3977                         ret = 0;
3978                         path->slots[level] = slot;
3979                         btrfs_item_key_to_cpu(cur, &found_key, slot);
3980                         goto out;
3981                 }
3982                 if (sret && slot > 0)
3983                         slot--;
3984                 /*
3985                  * check this node pointer against the cache_only and
3986                  * min_trans parameters.  If it isn't in cache or is too
3987                  * old, skip to the next one.
3988                  */
3989                 while (slot < nritems) {
3990                         u64 blockptr;
3991                         u64 gen;
3992                         struct extent_buffer *tmp;
3993                         struct btrfs_disk_key disk_key;
3994
3995                         blockptr = btrfs_node_blockptr(cur, slot);
3996                         gen = btrfs_node_ptr_generation(cur, slot);
3997                         if (gen < min_trans) {
3998                                 slot++;
3999                                 continue;
4000                         }
4001                         if (!cache_only)
4002                                 break;
4003
4004                         if (max_key) {
4005                                 btrfs_node_key(cur, &disk_key, slot);
4006                                 if (comp_keys(&disk_key, max_key) >= 0) {
4007                                         ret = 1;
4008                                         goto out;
4009                                 }
4010                         }
4011
4012                         tmp = btrfs_find_tree_block(root, blockptr,
4013                                             btrfs_level_size(root, level - 1));
4014
4015                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016                                 free_extent_buffer(tmp);
4017                                 break;
4018                         }
4019                         if (tmp)
4020                                 free_extent_buffer(tmp);
4021                         slot++;
4022                 }
4023 find_next_key:
4024                 /*
4025                  * we didn't find a candidate key in this node, walk forward
4026                  * and find another one
4027                  */
4028                 if (slot >= nritems) {
4029                         path->slots[level] = slot;
4030                         btrfs_set_path_blocking(path);
4031                         sret = btrfs_find_next_key(root, path, min_key, level,
4032                                                   cache_only, min_trans);
4033                         if (sret == 0) {
4034                                 btrfs_release_path(root, path);
4035                                 goto again;
4036                         } else {
4037                                 goto out;
4038                         }
4039                 }
4040                 /* save our key for returning back */
4041                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4042                 path->slots[level] = slot;
4043                 if (level == path->lowest_level) {
4044                         ret = 0;
4045                         unlock_up(path, level, 1);
4046                         goto out;
4047                 }
4048                 btrfs_set_path_blocking(path);
4049                 cur = read_node_slot(root, cur, slot);
4050
4051                 btrfs_tree_lock(cur);
4052
4053                 path->locks[level - 1] = 1;
4054                 path->nodes[level - 1] = cur;
4055                 unlock_up(path, level, 1);
4056                 btrfs_clear_path_blocking(path, NULL);
4057         }
4058 out:
4059         if (ret == 0)
4060                 memcpy(min_key, &found_key, sizeof(found_key));
4061         btrfs_set_path_blocking(path);
4062         return ret;
4063 }
4064
4065 /*
4066  * this is similar to btrfs_next_leaf, but does not try to preserve
4067  * and fixup the path.  It looks for and returns the next key in the
4068  * tree based on the current path and the cache_only and min_trans
4069  * parameters.
4070  *
4071  * 0 is returned if another key is found, < 0 if there are any errors
4072  * and 1 is returned if there are no higher keys in the tree
4073  *
4074  * path->keep_locks should be set to 1 on the search made before
4075  * calling this function.
4076  */
4077 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4078                         struct btrfs_key *key, int lowest_level,
4079                         int cache_only, u64 min_trans)
4080 {
4081         int level = lowest_level;
4082         int slot;
4083         struct extent_buffer *c;
4084
4085         WARN_ON(!path->keep_locks);
4086         while (level < BTRFS_MAX_LEVEL) {
4087                 if (!path->nodes[level])
4088                         return 1;
4089
4090                 slot = path->slots[level] + 1;
4091                 c = path->nodes[level];
4092 next:
4093                 if (slot >= btrfs_header_nritems(c)) {
4094                         level++;
4095                         if (level == BTRFS_MAX_LEVEL)
4096                                 return 1;
4097                         continue;
4098                 }
4099                 if (level == 0)
4100                         btrfs_item_key_to_cpu(c, key, slot);
4101                 else {
4102                         u64 blockptr = btrfs_node_blockptr(c, slot);
4103                         u64 gen = btrfs_node_ptr_generation(c, slot);
4104
4105                         if (cache_only) {
4106                                 struct extent_buffer *cur;
4107                                 cur = btrfs_find_tree_block(root, blockptr,
4108                                             btrfs_level_size(root, level - 1));
4109                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4110                                         slot++;
4111                                         if (cur)
4112                                                 free_extent_buffer(cur);
4113                                         goto next;
4114                                 }
4115                                 free_extent_buffer(cur);
4116                         }
4117                         if (gen < min_trans) {
4118                                 slot++;
4119                                 goto next;
4120                         }
4121                         btrfs_node_key_to_cpu(c, key, slot);
4122                 }
4123                 return 0;
4124         }
4125         return 1;
4126 }
4127
4128 /*
4129  * search the tree again to find a leaf with greater keys
4130  * returns 0 if it found something or 1 if there are no greater leaves.
4131  * returns < 0 on io errors.
4132  */
4133 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4134 {
4135         int slot;
4136         int level;
4137         struct extent_buffer *c;
4138         struct extent_buffer *next;
4139         struct btrfs_key key;
4140         u32 nritems;
4141         int ret;
4142         int old_spinning = path->leave_spinning;
4143         int force_blocking = 0;
4144
4145         nritems = btrfs_header_nritems(path->nodes[0]);
4146         if (nritems == 0)
4147                 return 1;
4148
4149         /*
4150          * we take the blocks in an order that upsets lockdep.  Using
4151          * blocking mode is the only way around it.
4152          */
4153 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4154         force_blocking = 1;
4155 #endif
4156
4157         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4158 again:
4159         level = 1;
4160         next = NULL;
4161         btrfs_release_path(root, path);
4162
4163         path->keep_locks = 1;
4164
4165         if (!force_blocking)
4166                 path->leave_spinning = 1;
4167
4168         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4169         path->keep_locks = 0;
4170
4171         if (ret < 0)
4172                 return ret;
4173
4174         nritems = btrfs_header_nritems(path->nodes[0]);
4175         /*
4176          * by releasing the path above we dropped all our locks.  A balance
4177          * could have added more items next to the key that used to be
4178          * at the very end of the block.  So, check again here and
4179          * advance the path if there are now more items available.
4180          */
4181         if (nritems > 0 && path->slots[0] < nritems - 1) {
4182                 path->slots[0]++;
4183                 ret = 0;
4184                 goto done;
4185         }
4186
4187         while (level < BTRFS_MAX_LEVEL) {
4188                 if (!path->nodes[level]) {
4189                         ret = 1;
4190                         goto done;
4191                 }
4192
4193                 slot = path->slots[level] + 1;
4194                 c = path->nodes[level];
4195                 if (slot >= btrfs_header_nritems(c)) {
4196                         level++;
4197                         if (level == BTRFS_MAX_LEVEL) {
4198                                 ret = 1;
4199                                 goto done;
4200                         }
4201                         continue;
4202                 }
4203
4204                 if (next) {
4205                         btrfs_tree_unlock(next);
4206                         free_extent_buffer(next);
4207                 }
4208
4209                 next = c;
4210                 ret = read_block_for_search(NULL, root, path, &next, level,
4211                                             slot, &key);
4212                 if (ret == -EAGAIN)
4213                         goto again;
4214
4215                 if (!path->skip_locking) {
4216                         ret = btrfs_try_spin_lock(next);
4217                         if (!ret) {
4218                                 btrfs_set_path_blocking(path);
4219                                 btrfs_tree_lock(next);
4220                                 if (!force_blocking)
4221                                         btrfs_clear_path_blocking(path, next);
4222                         }
4223                         if (force_blocking)
4224                                 btrfs_set_lock_blocking(next);
4225                 }
4226                 break;
4227         }
4228         path->slots[level] = slot;
4229         while (1) {
4230                 level--;
4231                 c = path->nodes[level];
4232                 if (path->locks[level])
4233                         btrfs_tree_unlock(c);
4234
4235                 free_extent_buffer(c);
4236                 path->nodes[level] = next;
4237                 path->slots[level] = 0;
4238                 if (!path->skip_locking)
4239                         path->locks[level] = 1;
4240
4241                 if (!level)
4242                         break;
4243
4244                 ret = read_block_for_search(NULL, root, path, &next, level,
4245                                             0, &key);
4246                 if (ret == -EAGAIN)
4247                         goto again;
4248
4249                 if (!path->skip_locking) {
4250                         btrfs_assert_tree_locked(path->nodes[level]);
4251                         ret = btrfs_try_spin_lock(next);
4252                         if (!ret) {
4253                                 btrfs_set_path_blocking(path);
4254                                 btrfs_tree_lock(next);
4255                                 if (!force_blocking)
4256                                         btrfs_clear_path_blocking(path, next);
4257                         }
4258                         if (force_blocking)
4259                                 btrfs_set_lock_blocking(next);
4260                 }
4261         }
4262         ret = 0;
4263 done:
4264         unlock_up(path, 0, 1);
4265         path->leave_spinning = old_spinning;
4266         if (!old_spinning)
4267                 btrfs_set_path_blocking(path);
4268
4269         return ret;
4270 }
4271
4272 /*
4273  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4274  * searching until it gets past min_objectid or finds an item of 'type'
4275  *
4276  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4277  */
4278 int btrfs_previous_item(struct btrfs_root *root,
4279                         struct btrfs_path *path, u64 min_objectid,
4280                         int type)
4281 {
4282         struct btrfs_key found_key;
4283         struct extent_buffer *leaf;
4284         u32 nritems;
4285         int ret;
4286
4287         while (1) {
4288                 if (path->slots[0] == 0) {
4289                         btrfs_set_path_blocking(path);
4290                         ret = btrfs_prev_leaf(root, path);
4291                         if (ret != 0)
4292                                 return ret;
4293                 } else {
4294                         path->slots[0]--;
4295                 }
4296                 leaf = path->nodes[0];
4297                 nritems = btrfs_header_nritems(leaf);
4298                 if (nritems == 0)
4299                         return 1;
4300                 if (path->slots[0] == nritems)
4301                         path->slots[0]--;
4302
4303                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4304                 if (found_key.type == type)
4305                         return 0;
4306                 if (found_key.objectid < min_objectid)
4307                         break;
4308                 if (found_key.objectid == min_objectid &&
4309                     found_key.type < type)
4310                         break;
4311         }
4312         return 1;
4313 }