4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/signalfd.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
59 #include <linux/kmod.h>
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
66 EXPORT_SYMBOL(suid_dumpable);
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static struct linux_binfmt *formats;
70 static DEFINE_RWLOCK(binfmt_lock);
72 int register_binfmt(struct linux_binfmt * fmt)
74 struct linux_binfmt ** tmp = &formats;
80 write_lock(&binfmt_lock);
83 write_unlock(&binfmt_lock);
90 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(register_binfmt);
96 int unregister_binfmt(struct linux_binfmt * fmt)
98 struct linux_binfmt ** tmp = &formats;
100 write_lock(&binfmt_lock);
105 write_unlock(&binfmt_lock);
110 write_unlock(&binfmt_lock);
114 EXPORT_SYMBOL(unregister_binfmt);
116 static inline void put_binfmt(struct linux_binfmt * fmt)
118 module_put(fmt->module);
122 * Note that a shared library must be both readable and executable due to
125 * Also note that we take the address to load from from the file itself.
127 asmlinkage long sys_uselib(const char __user * library)
133 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
138 if (!S_ISREG(nd.dentry->d_inode->i_mode))
141 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
145 file = nameidata_to_filp(&nd, O_RDONLY);
146 error = PTR_ERR(file);
152 struct linux_binfmt * fmt;
154 read_lock(&binfmt_lock);
155 for (fmt = formats ; fmt ; fmt = fmt->next) {
156 if (!fmt->load_shlib)
158 if (!try_module_get(fmt->module))
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
164 if (error != -ENOEXEC)
167 read_unlock(&binfmt_lock);
173 release_open_intent(&nd);
179 * count() counts the number of strings in array ARGV.
181 static int count(char __user * __user * argv, int max)
189 if (get_user(p, argv))
203 * 'copy_strings()' copies argument/environment strings from user
204 * memory to free pages in kernel mem. These are in a format ready
205 * to be put directly into the top of new user memory.
207 static int copy_strings(int argc, char __user * __user * argv,
208 struct linux_binprm *bprm)
210 struct page *kmapped_page = NULL;
219 if (get_user(str, argv+argc) ||
220 !(len = strnlen_user(str, bprm->p))) {
231 /* XXX: add architecture specific overflow check here. */
236 int offset, bytes_to_copy;
239 offset = pos % PAGE_SIZE;
241 page = bprm->page[i];
244 page = alloc_page(GFP_HIGHUSER);
245 bprm->page[i] = page;
253 if (page != kmapped_page) {
255 kunmap(kmapped_page);
257 kaddr = kmap(kmapped_page);
260 memset(kaddr, 0, offset);
261 bytes_to_copy = PAGE_SIZE - offset;
262 if (bytes_to_copy > len) {
265 memset(kaddr+offset+len, 0,
266 PAGE_SIZE-offset-len);
268 err = copy_from_user(kaddr+offset, str, bytes_to_copy);
274 pos += bytes_to_copy;
275 str += bytes_to_copy;
276 len -= bytes_to_copy;
282 kunmap(kmapped_page);
287 * Like copy_strings, but get argv and its values from kernel memory.
289 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
292 mm_segment_t oldfs = get_fs();
294 r = copy_strings(argc, (char __user * __user *)argv, bprm);
299 EXPORT_SYMBOL(copy_strings_kernel);
303 * This routine is used to map in a page into an address space: needed by
304 * execve() for the initial stack and environment pages.
306 * vma->vm_mm->mmap_sem is held for writing.
308 void install_arg_page(struct vm_area_struct *vma,
309 struct page *page, unsigned long address)
311 struct mm_struct *mm = vma->vm_mm;
315 if (unlikely(anon_vma_prepare(vma)))
318 flush_dcache_page(page);
319 pte = get_locked_pte(mm, address, &ptl);
322 if (!pte_none(*pte)) {
323 pte_unmap_unlock(pte, ptl);
326 inc_mm_counter(mm, anon_rss);
327 lru_cache_add_active(page);
328 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
329 page, vma->vm_page_prot))));
330 page_add_new_anon_rmap(page, vma, address);
331 pte_unmap_unlock(pte, ptl);
333 /* no need for flush_tlb */
337 force_sig(SIGKILL, current);
340 #define EXTRA_STACK_VM_PAGES 20 /* random */
342 int setup_arg_pages(struct linux_binprm *bprm,
343 unsigned long stack_top,
344 int executable_stack)
346 unsigned long stack_base;
347 struct vm_area_struct *mpnt;
348 struct mm_struct *mm = current->mm;
352 #ifdef CONFIG_STACK_GROWSUP
353 /* Move the argument and environment strings to the bottom of the
359 /* Start by shifting all the pages down */
361 for (j = 0; j < MAX_ARG_PAGES; j++) {
362 struct page *page = bprm->page[j];
365 bprm->page[i++] = page;
368 /* Now move them within their pages */
369 offset = bprm->p % PAGE_SIZE;
370 to = kmap(bprm->page[0]);
371 for (j = 1; j < i; j++) {
372 memmove(to, to + offset, PAGE_SIZE - offset);
373 from = kmap(bprm->page[j]);
374 memcpy(to + PAGE_SIZE - offset, from, offset);
375 kunmap(bprm->page[j - 1]);
378 memmove(to, to + offset, PAGE_SIZE - offset);
379 kunmap(bprm->page[j - 1]);
381 /* Limit stack size to 1GB */
382 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
383 if (stack_base > (1 << 30))
384 stack_base = 1 << 30;
385 stack_base = PAGE_ALIGN(stack_top - stack_base);
387 /* Adjust bprm->p to point to the end of the strings. */
388 bprm->p = stack_base + PAGE_SIZE * i - offset;
390 mm->arg_start = stack_base;
391 arg_size = i << PAGE_SHIFT;
393 /* zero pages that were copied above */
394 while (i < MAX_ARG_PAGES)
395 bprm->page[i++] = NULL;
397 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
398 stack_base = PAGE_ALIGN(stack_base);
399 bprm->p += stack_base;
400 mm->arg_start = bprm->p;
401 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
404 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
407 bprm->loader += stack_base;
408 bprm->exec += stack_base;
410 mpnt = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
414 down_write(&mm->mmap_sem);
417 #ifdef CONFIG_STACK_GROWSUP
418 mpnt->vm_start = stack_base;
419 mpnt->vm_end = stack_base + arg_size;
421 mpnt->vm_end = stack_top;
422 mpnt->vm_start = mpnt->vm_end - arg_size;
424 /* Adjust stack execute permissions; explicitly enable
425 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
426 * and leave alone (arch default) otherwise. */
427 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
428 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC;
429 else if (executable_stack == EXSTACK_DISABLE_X)
430 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
432 mpnt->vm_flags = VM_STACK_FLAGS;
433 mpnt->vm_flags |= mm->def_flags;
434 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
435 if ((ret = insert_vm_struct(mm, mpnt))) {
436 up_write(&mm->mmap_sem);
437 kmem_cache_free(vm_area_cachep, mpnt);
440 mm->stack_vm = mm->total_vm = vma_pages(mpnt);
443 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
444 struct page *page = bprm->page[i];
446 bprm->page[i] = NULL;
447 install_arg_page(mpnt, page, stack_base);
449 stack_base += PAGE_SIZE;
451 up_write(&mm->mmap_sem);
456 EXPORT_SYMBOL(setup_arg_pages);
458 #define free_arg_pages(bprm) do { } while (0)
462 static inline void free_arg_pages(struct linux_binprm *bprm)
466 for (i = 0; i < MAX_ARG_PAGES; i++) {
468 __free_page(bprm->page[i]);
469 bprm->page[i] = NULL;
473 #endif /* CONFIG_MMU */
475 struct file *open_exec(const char *name)
481 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
485 struct inode *inode = nd.dentry->d_inode;
486 file = ERR_PTR(-EACCES);
487 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
488 S_ISREG(inode->i_mode)) {
489 int err = vfs_permission(&nd, MAY_EXEC);
492 file = nameidata_to_filp(&nd, O_RDONLY);
494 err = deny_write_access(file);
504 release_open_intent(&nd);
510 EXPORT_SYMBOL(open_exec);
512 int kernel_read(struct file *file, unsigned long offset,
513 char *addr, unsigned long count)
521 /* The cast to a user pointer is valid due to the set_fs() */
522 result = vfs_read(file, (void __user *)addr, count, &pos);
527 EXPORT_SYMBOL(kernel_read);
529 static int exec_mmap(struct mm_struct *mm)
531 struct task_struct *tsk;
532 struct mm_struct * old_mm, *active_mm;
534 /* Notify parent that we're no longer interested in the old VM */
536 old_mm = current->mm;
537 mm_release(tsk, old_mm);
541 * Make sure that if there is a core dump in progress
542 * for the old mm, we get out and die instead of going
543 * through with the exec. We must hold mmap_sem around
544 * checking core_waiters and changing tsk->mm. The
545 * core-inducing thread will increment core_waiters for
546 * each thread whose ->mm == old_mm.
548 down_read(&old_mm->mmap_sem);
549 if (unlikely(old_mm->core_waiters)) {
550 up_read(&old_mm->mmap_sem);
555 active_mm = tsk->active_mm;
558 activate_mm(active_mm, mm);
560 arch_pick_mmap_layout(mm);
562 up_read(&old_mm->mmap_sem);
563 BUG_ON(active_mm != old_mm);
572 * This function makes sure the current process has its own signal table,
573 * so that flush_signal_handlers can later reset the handlers without
574 * disturbing other processes. (Other processes might share the signal
575 * table via the CLONE_SIGHAND option to clone().)
577 static int de_thread(struct task_struct *tsk)
579 struct signal_struct *sig = tsk->signal;
580 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
581 spinlock_t *lock = &oldsighand->siglock;
582 struct task_struct *leader = NULL;
586 * Tell all the sighand listeners that this sighand has
587 * been detached. The signalfd_detach() function grabs the
588 * sighand lock, if signal listeners are present on the sighand.
590 signalfd_detach(tsk);
593 * If we don't share sighandlers, then we aren't sharing anything
594 * and we can just re-use it all.
596 if (atomic_read(&oldsighand->count) <= 1) {
597 BUG_ON(atomic_read(&sig->count) != 1);
602 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
606 if (thread_group_empty(tsk))
607 goto no_thread_group;
610 * Kill all other threads in the thread group.
611 * We must hold tasklist_lock to call zap_other_threads.
613 read_lock(&tasklist_lock);
615 if (sig->flags & SIGNAL_GROUP_EXIT) {
617 * Another group action in progress, just
618 * return so that the signal is processed.
620 spin_unlock_irq(lock);
621 read_unlock(&tasklist_lock);
622 kmem_cache_free(sighand_cachep, newsighand);
627 * child_reaper ignores SIGKILL, change it now.
628 * Reparenting needs write_lock on tasklist_lock,
629 * so it is safe to do it under read_lock.
631 if (unlikely(tsk->group_leader == child_reaper(tsk)))
632 tsk->nsproxy->pid_ns->child_reaper = tsk;
634 zap_other_threads(tsk);
635 read_unlock(&tasklist_lock);
638 * Account for the thread group leader hanging around:
641 if (!thread_group_leader(tsk)) {
644 * The SIGALRM timer survives the exec, but needs to point
645 * at us as the new group leader now. We have a race with
646 * a timer firing now getting the old leader, so we need to
647 * synchronize with any firing (by calling del_timer_sync)
648 * before we can safely let the old group leader die.
651 spin_unlock_irq(lock);
652 if (hrtimer_cancel(&sig->real_timer))
653 hrtimer_restart(&sig->real_timer);
656 while (atomic_read(&sig->count) > count) {
657 sig->group_exit_task = tsk;
658 sig->notify_count = count;
659 __set_current_state(TASK_UNINTERRUPTIBLE);
660 spin_unlock_irq(lock);
664 sig->group_exit_task = NULL;
665 sig->notify_count = 0;
666 spin_unlock_irq(lock);
669 * At this point all other threads have exited, all we have to
670 * do is to wait for the thread group leader to become inactive,
671 * and to assume its PID:
673 if (!thread_group_leader(tsk)) {
675 * Wait for the thread group leader to be a zombie.
676 * It should already be zombie at this point, most
679 leader = tsk->group_leader;
680 while (leader->exit_state != EXIT_ZOMBIE)
684 * The only record we have of the real-time age of a
685 * process, regardless of execs it's done, is start_time.
686 * All the past CPU time is accumulated in signal_struct
687 * from sister threads now dead. But in this non-leader
688 * exec, nothing survives from the original leader thread,
689 * whose birth marks the true age of this process now.
690 * When we take on its identity by switching to its PID, we
691 * also take its birthdate (always earlier than our own).
693 tsk->start_time = leader->start_time;
695 write_lock_irq(&tasklist_lock);
697 BUG_ON(leader->tgid != tsk->tgid);
698 BUG_ON(tsk->pid == tsk->tgid);
700 * An exec() starts a new thread group with the
701 * TGID of the previous thread group. Rehash the
702 * two threads with a switched PID, and release
703 * the former thread group leader:
706 /* Become a process group leader with the old leader's pid.
707 * The old leader becomes a thread of the this thread group.
708 * Note: The old leader also uses this pid until release_task
709 * is called. Odd but simple and correct.
711 detach_pid(tsk, PIDTYPE_PID);
712 tsk->pid = leader->pid;
713 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid));
714 transfer_pid(leader, tsk, PIDTYPE_PGID);
715 transfer_pid(leader, tsk, PIDTYPE_SID);
716 list_replace_rcu(&leader->tasks, &tsk->tasks);
718 tsk->group_leader = tsk;
719 leader->group_leader = tsk;
721 tsk->exit_signal = SIGCHLD;
723 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
724 leader->exit_state = EXIT_DEAD;
726 write_unlock_irq(&tasklist_lock);
730 * There may be one thread left which is just exiting,
731 * but it's safe to stop telling the group to kill themselves.
738 release_task(leader);
740 BUG_ON(atomic_read(&sig->count) != 1);
742 if (atomic_read(&oldsighand->count) == 1) {
744 * Now that we nuked the rest of the thread group,
745 * it turns out we are not sharing sighand any more either.
746 * So we can just keep it.
748 kmem_cache_free(sighand_cachep, newsighand);
751 * Move our state over to newsighand and switch it in.
753 atomic_set(&newsighand->count, 1);
754 memcpy(newsighand->action, oldsighand->action,
755 sizeof(newsighand->action));
757 write_lock_irq(&tasklist_lock);
758 spin_lock(&oldsighand->siglock);
759 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
761 rcu_assign_pointer(tsk->sighand, newsighand);
764 spin_unlock(&newsighand->siglock);
765 spin_unlock(&oldsighand->siglock);
766 write_unlock_irq(&tasklist_lock);
768 __cleanup_sighand(oldsighand);
771 BUG_ON(!thread_group_leader(tsk));
776 * These functions flushes out all traces of the currently running executable
777 * so that a new one can be started
780 static void flush_old_files(struct files_struct * files)
785 spin_lock(&files->file_lock);
787 unsigned long set, i;
791 fdt = files_fdtable(files);
792 if (i >= fdt->max_fds)
794 set = fdt->close_on_exec->fds_bits[j];
797 fdt->close_on_exec->fds_bits[j] = 0;
798 spin_unlock(&files->file_lock);
799 for ( ; set ; i++,set >>= 1) {
804 spin_lock(&files->file_lock);
807 spin_unlock(&files->file_lock);
810 void get_task_comm(char *buf, struct task_struct *tsk)
812 /* buf must be at least sizeof(tsk->comm) in size */
814 strncpy(buf, tsk->comm, sizeof(tsk->comm));
818 void set_task_comm(struct task_struct *tsk, char *buf)
821 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
825 int flush_old_exec(struct linux_binprm * bprm)
829 struct files_struct *files;
830 char tcomm[sizeof(current->comm)];
833 * Make sure we have a private signal table and that
834 * we are unassociated from the previous thread group.
836 retval = de_thread(current);
841 * Make sure we have private file handles. Ask the
842 * fork helper to do the work for us and the exit
843 * helper to do the cleanup of the old one.
845 files = current->files; /* refcounted so safe to hold */
846 retval = unshare_files();
850 * Release all of the old mmap stuff
852 retval = exec_mmap(bprm->mm);
856 bprm->mm = NULL; /* We're using it now */
858 /* This is the point of no return */
859 put_files_struct(files);
861 current->sas_ss_sp = current->sas_ss_size = 0;
863 if (current->euid == current->uid && current->egid == current->gid)
864 current->mm->dumpable = 1;
866 current->mm->dumpable = suid_dumpable;
868 name = bprm->filename;
870 /* Copies the binary name from after last slash */
871 for (i=0; (ch = *(name++)) != '\0';) {
873 i = 0; /* overwrite what we wrote */
875 if (i < (sizeof(tcomm) - 1))
879 set_task_comm(current, tcomm);
881 current->flags &= ~PF_RANDOMIZE;
884 /* Set the new mm task size. We have to do that late because it may
885 * depend on TIF_32BIT which is only updated in flush_thread() on
886 * some architectures like powerpc
888 current->mm->task_size = TASK_SIZE;
890 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
891 file_permission(bprm->file, MAY_READ) ||
892 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
894 current->mm->dumpable = suid_dumpable;
897 /* An exec changes our domain. We are no longer part of the thread
900 current->self_exec_id++;
902 flush_signal_handlers(current, 0);
903 flush_old_files(current->files);
908 reset_files_struct(current, files);
913 EXPORT_SYMBOL(flush_old_exec);
916 * Fill the binprm structure from the inode.
917 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
919 int prepare_binprm(struct linux_binprm *bprm)
922 struct inode * inode = bprm->file->f_path.dentry->d_inode;
925 mode = inode->i_mode;
926 if (bprm->file->f_op == NULL)
929 bprm->e_uid = current->euid;
930 bprm->e_gid = current->egid;
932 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
934 if (mode & S_ISUID) {
935 current->personality &= ~PER_CLEAR_ON_SETID;
936 bprm->e_uid = inode->i_uid;
941 * If setgid is set but no group execute bit then this
942 * is a candidate for mandatory locking, not a setgid
945 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
946 current->personality &= ~PER_CLEAR_ON_SETID;
947 bprm->e_gid = inode->i_gid;
951 /* fill in binprm security blob */
952 retval = security_bprm_set(bprm);
956 memset(bprm->buf,0,BINPRM_BUF_SIZE);
957 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
960 EXPORT_SYMBOL(prepare_binprm);
962 static int unsafe_exec(struct task_struct *p)
965 if (p->ptrace & PT_PTRACED) {
966 if (p->ptrace & PT_PTRACE_CAP)
967 unsafe |= LSM_UNSAFE_PTRACE_CAP;
969 unsafe |= LSM_UNSAFE_PTRACE;
971 if (atomic_read(&p->fs->count) > 1 ||
972 atomic_read(&p->files->count) > 1 ||
973 atomic_read(&p->sighand->count) > 1)
974 unsafe |= LSM_UNSAFE_SHARE;
979 void compute_creds(struct linux_binprm *bprm)
983 if (bprm->e_uid != current->uid)
988 unsafe = unsafe_exec(current);
989 security_bprm_apply_creds(bprm, unsafe);
990 task_unlock(current);
991 security_bprm_post_apply_creds(bprm);
993 EXPORT_SYMBOL(compute_creds);
996 * Arguments are '\0' separated strings found at the location bprm->p
997 * points to; chop off the first by relocating brpm->p to right after
998 * the first '\0' encountered.
1000 void remove_arg_zero(struct linux_binprm *bprm)
1006 unsigned long offset;
1007 unsigned long index;
1011 offset = bprm->p & ~PAGE_MASK;
1012 index = bprm->p >> PAGE_SHIFT;
1014 page = bprm->page[index];
1015 kaddr = kmap_atomic(page, KM_USER0);
1017 /* run through page until we reach end or find NUL */
1019 ch = *(kaddr + offset);
1021 /* discard that character... */
1024 } while (offset < PAGE_SIZE && ch != '\0');
1026 kunmap_atomic(kaddr, KM_USER0);
1028 /* free the old page */
1029 if (offset == PAGE_SIZE) {
1031 bprm->page[index] = NULL;
1033 } while (ch != '\0');
1038 EXPORT_SYMBOL(remove_arg_zero);
1041 * cycle the list of binary formats handler, until one recognizes the image
1043 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1046 struct linux_binfmt *fmt;
1048 /* handle /sbin/loader.. */
1050 struct exec * eh = (struct exec *) bprm->buf;
1052 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1053 (eh->fh.f_flags & 0x3000) == 0x3000)
1056 unsigned long loader;
1058 allow_write_access(bprm->file);
1062 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1064 file = open_exec("/sbin/loader");
1065 retval = PTR_ERR(file);
1069 /* Remember if the application is TASO. */
1070 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1073 bprm->loader = loader;
1074 retval = prepare_binprm(bprm);
1077 /* should call search_binary_handler recursively here,
1078 but it does not matter */
1082 retval = security_bprm_check(bprm);
1086 /* kernel module loader fixup */
1087 /* so we don't try to load run modprobe in kernel space. */
1090 retval = audit_bprm(bprm);
1095 for (try=0; try<2; try++) {
1096 read_lock(&binfmt_lock);
1097 for (fmt = formats ; fmt ; fmt = fmt->next) {
1098 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1101 if (!try_module_get(fmt->module))
1103 read_unlock(&binfmt_lock);
1104 retval = fn(bprm, regs);
1107 allow_write_access(bprm->file);
1111 current->did_exec = 1;
1112 proc_exec_connector(current);
1115 read_lock(&binfmt_lock);
1117 if (retval != -ENOEXEC || bprm->mm == NULL)
1120 read_unlock(&binfmt_lock);
1124 read_unlock(&binfmt_lock);
1125 if (retval != -ENOEXEC || bprm->mm == NULL) {
1129 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1130 if (printable(bprm->buf[0]) &&
1131 printable(bprm->buf[1]) &&
1132 printable(bprm->buf[2]) &&
1133 printable(bprm->buf[3]))
1134 break; /* -ENOEXEC */
1135 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1142 EXPORT_SYMBOL(search_binary_handler);
1145 * sys_execve() executes a new program.
1147 int do_execve(char * filename,
1148 char __user *__user *argv,
1149 char __user *__user *envp,
1150 struct pt_regs * regs)
1152 struct linux_binprm *bprm;
1158 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1162 file = open_exec(filename);
1163 retval = PTR_ERR(file);
1169 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1172 bprm->filename = filename;
1173 bprm->interp = filename;
1174 bprm->mm = mm_alloc();
1179 retval = init_new_context(current, bprm->mm);
1183 bprm->argc = count(argv, bprm->p / sizeof(void *));
1184 if ((retval = bprm->argc) < 0)
1187 bprm->envc = count(envp, bprm->p / sizeof(void *));
1188 if ((retval = bprm->envc) < 0)
1191 retval = security_bprm_alloc(bprm);
1195 retval = prepare_binprm(bprm);
1199 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1203 bprm->exec = bprm->p;
1204 retval = copy_strings(bprm->envc, envp, bprm);
1208 retval = copy_strings(bprm->argc, argv, bprm);
1212 retval = search_binary_handler(bprm,regs);
1214 free_arg_pages(bprm);
1216 /* execve success */
1217 security_bprm_free(bprm);
1218 acct_update_integrals(current);
1224 /* Something went wrong, return the inode and free the argument pages*/
1225 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1226 struct page * page = bprm->page[i];
1232 security_bprm_free(bprm);
1240 allow_write_access(bprm->file);
1251 int set_binfmt(struct linux_binfmt *new)
1253 struct linux_binfmt *old = current->binfmt;
1256 if (!try_module_get(new->module))
1259 current->binfmt = new;
1261 module_put(old->module);
1265 EXPORT_SYMBOL(set_binfmt);
1267 /* format_corename will inspect the pattern parameter, and output a
1268 * name into corename, which must have space for at least
1269 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1271 static int format_corename(char *corename, const char *pattern, long signr)
1273 const char *pat_ptr = pattern;
1274 char *out_ptr = corename;
1275 char *const out_end = corename + CORENAME_MAX_SIZE;
1277 int pid_in_pattern = 0;
1280 if (*pattern == '|')
1283 /* Repeat as long as we have more pattern to process and more output
1286 if (*pat_ptr != '%') {
1287 if (out_ptr == out_end)
1289 *out_ptr++ = *pat_ptr++;
1291 switch (*++pat_ptr) {
1294 /* Double percent, output one percent */
1296 if (out_ptr == out_end)
1303 rc = snprintf(out_ptr, out_end - out_ptr,
1304 "%d", current->tgid);
1305 if (rc > out_end - out_ptr)
1311 rc = snprintf(out_ptr, out_end - out_ptr,
1312 "%d", current->uid);
1313 if (rc > out_end - out_ptr)
1319 rc = snprintf(out_ptr, out_end - out_ptr,
1320 "%d", current->gid);
1321 if (rc > out_end - out_ptr)
1325 /* signal that caused the coredump */
1327 rc = snprintf(out_ptr, out_end - out_ptr,
1329 if (rc > out_end - out_ptr)
1333 /* UNIX time of coredump */
1336 do_gettimeofday(&tv);
1337 rc = snprintf(out_ptr, out_end - out_ptr,
1339 if (rc > out_end - out_ptr)
1346 down_read(&uts_sem);
1347 rc = snprintf(out_ptr, out_end - out_ptr,
1348 "%s", utsname()->nodename);
1350 if (rc > out_end - out_ptr)
1356 rc = snprintf(out_ptr, out_end - out_ptr,
1357 "%s", current->comm);
1358 if (rc > out_end - out_ptr)
1368 /* Backward compatibility with core_uses_pid:
1370 * If core_pattern does not include a %p (as is the default)
1371 * and core_uses_pid is set, then .%pid will be appended to
1372 * the filename. Do not do this for piped commands. */
1373 if (!ispipe && !pid_in_pattern
1374 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) {
1375 rc = snprintf(out_ptr, out_end - out_ptr,
1376 ".%d", current->tgid);
1377 if (rc > out_end - out_ptr)
1386 static void zap_process(struct task_struct *start)
1388 struct task_struct *t;
1390 start->signal->flags = SIGNAL_GROUP_EXIT;
1391 start->signal->group_stop_count = 0;
1395 if (t != current && t->mm) {
1396 t->mm->core_waiters++;
1397 sigaddset(&t->pending.signal, SIGKILL);
1398 signal_wake_up(t, 1);
1400 } while ((t = next_thread(t)) != start);
1403 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1406 struct task_struct *g, *p;
1407 unsigned long flags;
1410 spin_lock_irq(&tsk->sighand->siglock);
1411 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1412 tsk->signal->group_exit_code = exit_code;
1416 spin_unlock_irq(&tsk->sighand->siglock);
1420 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1424 for_each_process(g) {
1425 if (g == tsk->group_leader)
1433 * p->sighand can't disappear, but
1434 * may be changed by de_thread()
1436 lock_task_sighand(p, &flags);
1438 unlock_task_sighand(p, &flags);
1442 } while ((p = next_thread(p)) != g);
1446 return mm->core_waiters;
1449 static int coredump_wait(int exit_code)
1451 struct task_struct *tsk = current;
1452 struct mm_struct *mm = tsk->mm;
1453 struct completion startup_done;
1454 struct completion *vfork_done;
1457 init_completion(&mm->core_done);
1458 init_completion(&startup_done);
1459 mm->core_startup_done = &startup_done;
1461 core_waiters = zap_threads(tsk, mm, exit_code);
1462 up_write(&mm->mmap_sem);
1464 if (unlikely(core_waiters < 0))
1468 * Make sure nobody is waiting for us to release the VM,
1469 * otherwise we can deadlock when we wait on each other
1471 vfork_done = tsk->vfork_done;
1473 tsk->vfork_done = NULL;
1474 complete(vfork_done);
1478 wait_for_completion(&startup_done);
1480 BUG_ON(mm->core_waiters);
1481 return core_waiters;
1484 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1486 char corename[CORENAME_MAX_SIZE + 1];
1487 struct mm_struct *mm = current->mm;
1488 struct linux_binfmt * binfmt;
1489 struct inode * inode;
1492 int fsuid = current->fsuid;
1496 audit_core_dumps(signr);
1498 binfmt = current->binfmt;
1499 if (!binfmt || !binfmt->core_dump)
1501 down_write(&mm->mmap_sem);
1502 if (!mm->dumpable) {
1503 up_write(&mm->mmap_sem);
1508 * We cannot trust fsuid as being the "true" uid of the
1509 * process nor do we know its entire history. We only know it
1510 * was tainted so we dump it as root in mode 2.
1512 if (mm->dumpable == 2) { /* Setuid core dump mode */
1513 flag = O_EXCL; /* Stop rewrite attacks */
1514 current->fsuid = 0; /* Dump root private */
1518 retval = coredump_wait(exit_code);
1523 * Clear any false indication of pending signals that might
1524 * be seen by the filesystem code called to write the core file.
1526 clear_thread_flag(TIF_SIGPENDING);
1528 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1532 * lock_kernel() because format_corename() is controlled by sysctl, which
1533 * uses lock_kernel()
1536 ispipe = format_corename(corename, core_pattern, signr);
1539 /* SIGPIPE can happen, but it's just never processed */
1540 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1541 printk(KERN_INFO "Core dump to %s pipe failed\n",
1546 file = filp_open(corename,
1547 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1551 inode = file->f_path.dentry->d_inode;
1552 if (inode->i_nlink > 1)
1553 goto close_fail; /* multiple links - don't dump */
1554 if (!ispipe && d_unhashed(file->f_path.dentry))
1557 /* AK: actually i see no reason to not allow this for named pipes etc.,
1558 but keep the previous behaviour for now. */
1559 if (!ispipe && !S_ISREG(inode->i_mode))
1563 if (!file->f_op->write)
1565 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1568 retval = binfmt->core_dump(signr, regs, file);
1571 current->signal->group_exit_code |= 0x80;
1573 filp_close(file, NULL);
1575 current->fsuid = fsuid;
1576 complete_all(&mm->core_done);