2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
40 #include <asm/fixmap.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
50 #include <asm/cacheflush.h>
53 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
54 * The direct mapping extends to max_pfn_mapped, so that we can directly access
55 * apertures, ACPI and other tables without having to play with fixmaps.
57 unsigned long max_low_pfn_mapped;
58 unsigned long max_pfn_mapped;
60 static unsigned long dma_reserve __initdata;
62 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
65 #ifdef CONFIG_DIRECT_GBPAGES
70 static int __init parse_direct_gbpages_off(char *arg)
75 early_param("nogbpages", parse_direct_gbpages_off);
77 static int __init parse_direct_gbpages_on(char *arg)
82 early_param("gbpages", parse_direct_gbpages_on);
85 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
86 * physical space so we can cache the place of the first one and move
87 * around without checking the pgd every time.
92 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
93 EXPORT_SYMBOL_GPL(__supported_pte_mask);
95 static int do_not_nx __cpuinitdata;
99 * Control non-executable mappings for 64-bit processes.
101 * on Enable (default)
104 static int __init nonx_setup(char *str)
108 if (!strncmp(str, "on", 2)) {
109 __supported_pte_mask |= _PAGE_NX;
111 } else if (!strncmp(str, "off", 3)) {
113 __supported_pte_mask &= ~_PAGE_NX;
117 early_param("noexec", nonx_setup);
119 void __cpuinit check_efer(void)
123 rdmsrl(MSR_EFER, efer);
124 if (!(efer & EFER_NX) || do_not_nx)
125 __supported_pte_mask &= ~_PAGE_NX;
128 int force_personality32;
132 * Control non executable heap for 32bit processes.
133 * To control the stack too use noexec=off
135 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
136 * off PROT_READ implies PROT_EXEC
138 static int __init nonx32_setup(char *str)
140 if (!strcmp(str, "on"))
141 force_personality32 &= ~READ_IMPLIES_EXEC;
142 else if (!strcmp(str, "off"))
143 force_personality32 |= READ_IMPLIES_EXEC;
146 __setup("noexec32=", nonx32_setup);
149 * NOTE: This function is marked __ref because it calls __init function
150 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
152 static __ref void *spp_getpage(void)
157 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
159 ptr = alloc_bootmem_pages(PAGE_SIZE);
161 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
162 panic("set_pte_phys: cannot allocate page data %s\n",
163 after_bootmem ? "after bootmem" : "");
166 pr_debug("spp_getpage %p\n", ptr);
172 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
178 pud = pud_page + pud_index(vaddr);
179 if (pud_none(*pud)) {
180 pmd = (pmd_t *) spp_getpage();
181 pud_populate(&init_mm, pud, pmd);
182 if (pmd != pmd_offset(pud, 0)) {
183 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
184 pmd, pmd_offset(pud, 0));
188 pmd = pmd_offset(pud, vaddr);
189 if (pmd_none(*pmd)) {
190 pte = (pte_t *) spp_getpage();
191 pmd_populate_kernel(&init_mm, pmd, pte);
192 if (pte != pte_offset_kernel(pmd, 0)) {
193 printk(KERN_ERR "PAGETABLE BUG #02!\n");
198 pte = pte_offset_kernel(pmd, vaddr);
199 set_pte(pte, new_pte);
202 * It's enough to flush this one mapping.
203 * (PGE mappings get flushed as well)
205 __flush_tlb_one(vaddr);
209 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
214 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
216 pgd = pgd_offset_k(vaddr);
217 if (pgd_none(*pgd)) {
219 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
222 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
223 set_pte_vaddr_pud(pud_page, vaddr, pteval);
227 * Create large page table mappings for a range of physical addresses.
229 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
236 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
237 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
238 pgd = pgd_offset_k((unsigned long)__va(phys));
239 if (pgd_none(*pgd)) {
240 pud = (pud_t *) spp_getpage();
241 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
244 pud = pud_offset(pgd, (unsigned long)__va(phys));
245 if (pud_none(*pud)) {
246 pmd = (pmd_t *) spp_getpage();
247 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
250 pmd = pmd_offset(pud, phys);
251 BUG_ON(!pmd_none(*pmd));
252 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
256 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
258 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
261 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
263 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
267 * The head.S code sets up the kernel high mapping:
269 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
271 * phys_addr holds the negative offset to the kernel, which is added
272 * to the compile time generated pmds. This results in invalid pmds up
273 * to the point where we hit the physaddr 0 mapping.
275 * We limit the mappings to the region from _text to _end. _end is
276 * rounded up to the 2MB boundary. This catches the invalid pmds as
277 * well, as they are located before _text:
279 void __init cleanup_highmap(void)
281 unsigned long vaddr = __START_KERNEL_map;
282 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
283 pmd_t *pmd = level2_kernel_pgt;
284 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
286 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
289 if (vaddr < (unsigned long) _text || vaddr > end)
290 set_pmd(pmd, __pmd(0));
294 static unsigned long __initdata table_start;
295 static unsigned long __meminitdata table_end;
296 static unsigned long __meminitdata table_top;
298 static __ref void *alloc_low_page(unsigned long *phys)
300 unsigned long pfn = table_end++;
304 adr = (void *)get_zeroed_page(GFP_ATOMIC);
310 if (pfn >= table_top)
311 panic("alloc_low_page: ran out of memory");
313 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
314 memset(adr, 0, PAGE_SIZE);
315 *phys = pfn * PAGE_SIZE;
319 static __ref void unmap_low_page(void *adr)
324 early_iounmap(adr, PAGE_SIZE);
327 static unsigned long __meminit
328 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
332 unsigned long last_map_addr = end;
335 pte_t *pte = pte_page + pte_index(addr);
337 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
340 if (!after_bootmem) {
341 for(; i < PTRS_PER_PTE; i++, pte++)
342 set_pte(pte, __pte(0));
348 * We will re-use the existing mapping.
349 * Xen for example has some special requirements, like mapping
350 * pagetable pages as RO. So assume someone who pre-setup
351 * these mappings are more intelligent.
359 printk(" pte=%p addr=%lx pte=%016lx\n",
360 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
362 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
363 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
366 update_page_count(PG_LEVEL_4K, pages);
368 return last_map_addr;
371 static unsigned long __meminit
372 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
375 pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
377 return phys_pte_init(pte, address, end, prot);
380 static unsigned long __meminit
381 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
382 unsigned long page_size_mask, pgprot_t prot)
384 unsigned long pages = 0;
385 unsigned long last_map_addr = end;
387 int i = pmd_index(address);
389 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
390 unsigned long pte_phys;
391 pmd_t *pmd = pmd_page + pmd_index(address);
393 pgprot_t new_prot = prot;
395 if (address >= end) {
396 if (!after_bootmem) {
397 for (; i < PTRS_PER_PMD; i++, pmd++)
398 set_pmd(pmd, __pmd(0));
404 if (!pmd_large(*pmd)) {
405 spin_lock(&init_mm.page_table_lock);
406 last_map_addr = phys_pte_update(pmd, address,
408 spin_unlock(&init_mm.page_table_lock);
412 * If we are ok with PG_LEVEL_2M mapping, then we will
413 * use the existing mapping,
415 * Otherwise, we will split the large page mapping but
416 * use the same existing protection bits except for
417 * large page, so that we don't violate Intel's TLB
418 * Application note (317080) which says, while changing
419 * the page sizes, new and old translations should
420 * not differ with respect to page frame and
423 if (page_size_mask & (1 << PG_LEVEL_2M)) {
427 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
430 if (page_size_mask & (1<<PG_LEVEL_2M)) {
432 spin_lock(&init_mm.page_table_lock);
433 set_pte((pte_t *)pmd,
434 pfn_pte(address >> PAGE_SHIFT,
435 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
436 spin_unlock(&init_mm.page_table_lock);
437 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
441 pte = alloc_low_page(&pte_phys);
442 last_map_addr = phys_pte_init(pte, address, end, new_prot);
445 spin_lock(&init_mm.page_table_lock);
446 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
447 spin_unlock(&init_mm.page_table_lock);
449 update_page_count(PG_LEVEL_2M, pages);
450 return last_map_addr;
453 static unsigned long __meminit
454 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
455 unsigned long page_size_mask, pgprot_t prot)
457 pmd_t *pmd = pmd_offset(pud, 0);
458 unsigned long last_map_addr;
460 last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
462 return last_map_addr;
465 static unsigned long __meminit
466 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
467 unsigned long page_size_mask)
469 unsigned long pages = 0;
470 unsigned long last_map_addr = end;
471 int i = pud_index(addr);
473 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
474 unsigned long pmd_phys;
475 pud_t *pud = pud_page + pud_index(addr);
477 pgprot_t prot = PAGE_KERNEL;
482 if (!after_bootmem &&
483 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
484 set_pud(pud, __pud(0));
489 if (!pud_large(*pud)) {
490 last_map_addr = phys_pmd_update(pud, addr, end,
491 page_size_mask, prot);
495 * If we are ok with PG_LEVEL_1G mapping, then we will
496 * use the existing mapping.
498 * Otherwise, we will split the gbpage mapping but use
499 * the same existing protection bits except for large
500 * page, so that we don't violate Intel's TLB
501 * Application note (317080) which says, while changing
502 * the page sizes, new and old translations should
503 * not differ with respect to page frame and
506 if (page_size_mask & (1 << PG_LEVEL_1G)) {
510 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
513 if (page_size_mask & (1<<PG_LEVEL_1G)) {
515 spin_lock(&init_mm.page_table_lock);
516 set_pte((pte_t *)pud,
517 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
518 spin_unlock(&init_mm.page_table_lock);
519 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
523 pmd = alloc_low_page(&pmd_phys);
524 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
528 spin_lock(&init_mm.page_table_lock);
529 pud_populate(&init_mm, pud, __va(pmd_phys));
530 spin_unlock(&init_mm.page_table_lock);
534 update_page_count(PG_LEVEL_1G, pages);
536 return last_map_addr;
539 static unsigned long __meminit
540 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
541 unsigned long page_size_mask)
545 pud = (pud_t *)pgd_page_vaddr(*pgd);
547 return phys_pud_init(pud, addr, end, page_size_mask);
550 static void __init find_early_table_space(unsigned long end, int use_pse,
553 unsigned long puds, pmds, ptes, tables, start;
555 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
556 tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
561 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
562 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
564 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
566 tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
571 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
575 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
577 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
579 tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
583 tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
587 * RED-PEN putting page tables only on node 0 could
588 * cause a hotspot and fill up ZONE_DMA. The page tables
589 * need roughly 0.5KB per GB.
593 table_start = find_e820_area(start, max_pfn_mapped<<PAGE_SHIFT,
595 #else /* CONFIG_X86_64 */
597 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
599 if (table_start == -1UL)
600 panic("Cannot find space for the kernel page tables");
602 table_start >>= PAGE_SHIFT;
603 table_end = table_start;
604 table_top = table_start + (tables >> PAGE_SHIFT);
606 printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
607 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
610 static void __init init_gbpages(void)
612 if (direct_gbpages && cpu_has_gbpages)
613 printk(KERN_INFO "Using GB pages for direct mapping\n");
618 static unsigned long __meminit kernel_physical_mapping_init(unsigned long start,
620 unsigned long page_size_mask)
623 unsigned long next, last_map_addr = end;
625 start = (unsigned long)__va(start);
626 end = (unsigned long)__va(end);
628 for (; start < end; start = next) {
629 pgd_t *pgd = pgd_offset_k(start);
630 unsigned long pud_phys;
633 next = (start + PGDIR_SIZE) & PGDIR_MASK;
638 last_map_addr = phys_pud_update(pgd, __pa(start),
639 __pa(end), page_size_mask);
643 pud = alloc_low_page(&pud_phys);
644 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
648 spin_lock(&init_mm.page_table_lock);
649 pgd_populate(&init_mm, pgd, __va(pud_phys));
650 spin_unlock(&init_mm.page_table_lock);
654 return last_map_addr;
660 unsigned page_size_mask;
664 #define NR_RANGE_MR 3
665 #else /* CONFIG_X86_64 */
666 #define NR_RANGE_MR 5
669 static int save_mr(struct map_range *mr, int nr_range,
670 unsigned long start_pfn, unsigned long end_pfn,
671 unsigned long page_size_mask)
673 if (start_pfn < end_pfn) {
674 if (nr_range >= NR_RANGE_MR)
675 panic("run out of range for init_memory_mapping\n");
676 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
677 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
678 mr[nr_range].page_size_mask = page_size_mask;
686 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
687 * This runs before bootmem is initialized and gets pages directly from
688 * the physical memory. To access them they are temporarily mapped.
690 unsigned long __init_refok init_memory_mapping(unsigned long start,
693 unsigned long page_size_mask = 0;
694 unsigned long start_pfn, end_pfn;
698 struct map_range mr[NR_RANGE_MR];
700 int use_pse, use_gbpages;
702 printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
707 #ifdef CONFIG_DEBUG_PAGEALLOC
709 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
710 * This will simplify cpa(), which otherwise needs to support splitting
711 * large pages into small in interrupt context, etc.
713 use_pse = use_gbpages = 0;
715 use_pse = cpu_has_pse;
716 use_gbpages = direct_gbpages;
720 #ifdef CONFIG_X86_PAE
723 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
726 /* Enable PSE if available */
728 set_in_cr4(X86_CR4_PSE);
730 /* Enable PGE if available */
732 set_in_cr4(X86_CR4_PGE);
733 __supported_pte_mask |= _PAGE_GLOBAL;
738 page_size_mask |= 1 << PG_LEVEL_1G;
740 page_size_mask |= 1 << PG_LEVEL_2M;
742 memset(mr, 0, sizeof(mr));
745 /* head if not big page alignment ? */
746 start_pfn = start >> PAGE_SHIFT;
747 pos = start_pfn << PAGE_SHIFT;
750 * Don't use a large page for the first 2/4MB of memory
751 * because there are often fixed size MTRRs in there
752 * and overlapping MTRRs into large pages can cause
756 end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
758 end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
759 << (PMD_SHIFT - PAGE_SHIFT);
760 #else /* CONFIG_X86_64 */
761 end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
762 << (PMD_SHIFT - PAGE_SHIFT);
764 if (end_pfn > (end >> PAGE_SHIFT))
765 end_pfn = end >> PAGE_SHIFT;
766 if (start_pfn < end_pfn) {
767 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
768 pos = end_pfn << PAGE_SHIFT;
771 /* big page (2M) range */
772 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
773 << (PMD_SHIFT - PAGE_SHIFT);
775 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
776 #else /* CONFIG_X86_64 */
777 end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
778 << (PUD_SHIFT - PAGE_SHIFT);
779 if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
780 end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
783 if (start_pfn < end_pfn) {
784 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
785 page_size_mask & (1<<PG_LEVEL_2M));
786 pos = end_pfn << PAGE_SHIFT;
790 /* big page (1G) range */
791 start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
792 << (PUD_SHIFT - PAGE_SHIFT);
793 end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
794 if (start_pfn < end_pfn) {
795 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
797 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
798 pos = end_pfn << PAGE_SHIFT;
801 /* tail is not big page (1G) alignment */
802 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
803 << (PMD_SHIFT - PAGE_SHIFT);
804 end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
805 if (start_pfn < end_pfn) {
806 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
807 page_size_mask & (1<<PG_LEVEL_2M));
808 pos = end_pfn << PAGE_SHIFT;
812 /* tail is not big page (2M) alignment */
813 start_pfn = pos>>PAGE_SHIFT;
814 end_pfn = end>>PAGE_SHIFT;
815 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
817 /* try to merge same page size and continuous */
818 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
819 unsigned long old_start;
820 if (mr[i].end != mr[i+1].start ||
821 mr[i].page_size_mask != mr[i+1].page_size_mask)
824 old_start = mr[i].start;
825 memmove(&mr[i], &mr[i+1],
826 (nr_range - 1 - i) * sizeof(struct map_range));
827 mr[i--].start = old_start;
831 for (i = 0; i < nr_range; i++)
832 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
833 mr[i].start, mr[i].end,
834 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
835 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
838 * Find space for the kernel direct mapping tables.
840 * Later we should allocate these tables in the local node of the
841 * memory mapped. Unfortunately this is done currently before the
842 * nodes are discovered.
845 find_early_table_space(end, use_pse, use_gbpages);
848 for (i = 0; i < nr_range; i++)
849 kernel_physical_mapping_init(
850 mr[i].start >> PAGE_SHIFT,
851 mr[i].end >> PAGE_SHIFT,
852 mr[i].page_size_mask == (1<<PG_LEVEL_2M));
854 #else /* CONFIG_X86_64 */
855 for (i = 0; i < nr_range; i++)
856 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
857 mr[i].page_size_mask);
861 early_ioremap_page_table_range_init();
863 load_cr3(swapper_pg_dir);
868 mmu_cr4_features = read_cr4();
872 if (!after_bootmem && table_end > table_start)
873 reserve_early(table_start << PAGE_SHIFT,
874 table_end << PAGE_SHIFT, "PGTABLE");
877 early_memtest(start, end);
879 return ret >> PAGE_SHIFT;
883 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
885 unsigned long bootmap_size, bootmap;
887 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
888 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
891 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
892 /* don't touch min_low_pfn */
893 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
895 e820_register_active_regions(0, start_pfn, end_pfn);
896 free_bootmem_with_active_regions(0, end_pfn);
897 early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
898 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
901 void __init paging_init(void)
903 unsigned long max_zone_pfns[MAX_NR_ZONES];
905 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
906 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
907 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
908 max_zone_pfns[ZONE_NORMAL] = max_pfn;
910 memory_present(0, 0, max_pfn);
912 free_area_init_nodes(max_zone_pfns);
917 * Memory hotplug specific functions
919 #ifdef CONFIG_MEMORY_HOTPLUG
921 * Memory is added always to NORMAL zone. This means you will never get
922 * additional DMA/DMA32 memory.
924 int arch_add_memory(int nid, u64 start, u64 size)
926 struct pglist_data *pgdat = NODE_DATA(nid);
927 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
928 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
929 unsigned long nr_pages = size >> PAGE_SHIFT;
932 last_mapped_pfn = init_memory_mapping(start, start + size);
933 if (last_mapped_pfn > max_pfn_mapped)
934 max_pfn_mapped = last_mapped_pfn;
936 ret = __add_pages(nid, zone, start_pfn, nr_pages);
941 EXPORT_SYMBOL_GPL(arch_add_memory);
943 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
944 int memory_add_physaddr_to_nid(u64 start)
948 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
951 #endif /* CONFIG_MEMORY_HOTPLUG */
953 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
954 kcore_modules, kcore_vsyscall;
956 void __init mem_init(void)
958 long codesize, reservedpages, datasize, initsize;
959 unsigned long absent_pages;
963 /* clear_bss() already clear the empty_zero_page */
967 /* this will put all low memory onto the freelists */
969 totalram_pages = numa_free_all_bootmem();
971 totalram_pages = free_all_bootmem();
974 absent_pages = absent_pages_in_range(0, max_pfn);
975 reservedpages = max_pfn - totalram_pages - absent_pages;
978 codesize = (unsigned long) &_etext - (unsigned long) &_text;
979 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
980 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
982 /* Register memory areas for /proc/kcore */
983 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
984 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
985 VMALLOC_END-VMALLOC_START);
986 kclist_add(&kcore_kernel, &_stext, _end - _stext);
987 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
988 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
989 VSYSCALL_END - VSYSCALL_START);
991 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
992 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
993 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
994 max_pfn << (PAGE_SHIFT-10),
996 absent_pages << (PAGE_SHIFT-10),
997 reservedpages << (PAGE_SHIFT-10),
1002 #ifdef CONFIG_DEBUG_RODATA
1003 const int rodata_test_data = 0xC3;
1004 EXPORT_SYMBOL_GPL(rodata_test_data);
1006 void mark_rodata_ro(void)
1008 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
1009 unsigned long rodata_start =
1010 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
1012 #ifdef CONFIG_DYNAMIC_FTRACE
1013 /* Dynamic tracing modifies the kernel text section */
1014 start = rodata_start;
1017 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1018 (end - start) >> 10);
1019 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1022 * The rodata section (but not the kernel text!) should also be
1025 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
1029 #ifdef CONFIG_CPA_DEBUG
1030 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1031 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1033 printk(KERN_INFO "Testing CPA: again\n");
1034 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1040 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1047 unsigned long pfn = phys >> PAGE_SHIFT;
1049 if (pfn >= max_pfn) {
1051 * This can happen with kdump kernels when accessing
1054 if (pfn < max_pfn_mapped)
1057 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1062 /* Should check here against the e820 map to avoid double free */
1064 nid = phys_to_nid(phys);
1065 next_nid = phys_to_nid(phys + len - 1);
1066 if (nid == next_nid)
1067 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1069 ret = reserve_bootmem(phys, len, flags);
1075 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1078 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1079 dma_reserve += len / PAGE_SIZE;
1080 set_dma_reserve(dma_reserve);
1086 int kern_addr_valid(unsigned long addr)
1088 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1094 if (above != 0 && above != -1UL)
1097 pgd = pgd_offset_k(addr);
1101 pud = pud_offset(pgd, addr);
1105 pmd = pmd_offset(pud, addr);
1109 if (pmd_large(*pmd))
1110 return pfn_valid(pmd_pfn(*pmd));
1112 pte = pte_offset_kernel(pmd, addr);
1116 return pfn_valid(pte_pfn(*pte));
1120 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
1121 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1122 * not need special handling anymore:
1124 static struct vm_area_struct gate_vma = {
1125 .vm_start = VSYSCALL_START,
1126 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1127 .vm_page_prot = PAGE_READONLY_EXEC,
1128 .vm_flags = VM_READ | VM_EXEC
1131 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1133 #ifdef CONFIG_IA32_EMULATION
1134 if (test_tsk_thread_flag(tsk, TIF_IA32))
1140 int in_gate_area(struct task_struct *task, unsigned long addr)
1142 struct vm_area_struct *vma = get_gate_vma(task);
1147 return (addr >= vma->vm_start) && (addr < vma->vm_end);
1151 * Use this when you have no reliable task/vma, typically from interrupt
1152 * context. It is less reliable than using the task's vma and may give
1155 int in_gate_area_no_task(unsigned long addr)
1157 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1160 const char *arch_vma_name(struct vm_area_struct *vma)
1162 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1164 if (vma == &gate_vma)
1165 return "[vsyscall]";
1169 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1171 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1173 static long __meminitdata addr_start, addr_end;
1174 static void __meminitdata *p_start, *p_end;
1175 static int __meminitdata node_start;
1178 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1180 unsigned long addr = (unsigned long)start_page;
1181 unsigned long end = (unsigned long)(start_page + size);
1187 for (; addr < end; addr = next) {
1190 pgd = vmemmap_pgd_populate(addr, node);
1194 pud = vmemmap_pud_populate(pgd, addr, node);
1199 next = (addr + PAGE_SIZE) & PAGE_MASK;
1200 pmd = vmemmap_pmd_populate(pud, addr, node);
1205 p = vmemmap_pte_populate(pmd, addr, node);
1210 addr_end = addr + PAGE_SIZE;
1211 p_end = p + PAGE_SIZE;
1213 next = pmd_addr_end(addr, end);
1215 pmd = pmd_offset(pud, addr);
1216 if (pmd_none(*pmd)) {
1219 p = vmemmap_alloc_block(PMD_SIZE, node);
1223 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1225 set_pmd(pmd, __pmd(pte_val(entry)));
1227 /* check to see if we have contiguous blocks */
1228 if (p_end != p || node_start != node) {
1230 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1231 addr_start, addr_end-1, p_start, p_end-1, node_start);
1237 addr_end = addr + PMD_SIZE;
1238 p_end = p + PMD_SIZE;
1240 vmemmap_verify((pte_t *)pmd, node, addr, next);
1247 void __meminit vmemmap_populate_print_last(void)
1250 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1251 addr_start, addr_end-1, p_start, p_end-1, node_start);