[ATM]: [idt77105] should be __devinit not __init
[linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38
39 #include <asm/tlbflush.h>
40 #include <asm/div64.h>
41
42 #include <linux/swapops.h>
43
44 #include "internal.h"
45
46 struct scan_control {
47         /* Incremented by the number of inactive pages that were scanned */
48         unsigned long nr_scanned;
49
50         unsigned long nr_mapped;        /* From page_state */
51
52         /* This context's GFP mask */
53         gfp_t gfp_mask;
54
55         int may_writepage;
56
57         /* Can pages be swapped as part of reclaim? */
58         int may_swap;
59
60         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62          * In this context, it doesn't matter that we scan the
63          * whole list at once. */
64         int swap_cluster_max;
65
66         int swappiness;
67 };
68
69 /*
70  * The list of shrinker callbacks used by to apply pressure to
71  * ageable caches.
72  */
73 struct shrinker {
74         shrinker_t              shrinker;
75         struct list_head        list;
76         int                     seeks;  /* seeks to recreate an obj */
77         long                    nr;     /* objs pending delete */
78 };
79
80 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
81
82 #ifdef ARCH_HAS_PREFETCH
83 #define prefetch_prev_lru_page(_page, _base, _field)                    \
84         do {                                                            \
85                 if ((_page)->lru.prev != _base) {                       \
86                         struct page *prev;                              \
87                                                                         \
88                         prev = lru_to_page(&(_page->lru));              \
89                         prefetch(&prev->_field);                        \
90                 }                                                       \
91         } while (0)
92 #else
93 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
94 #endif
95
96 #ifdef ARCH_HAS_PREFETCHW
97 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
98         do {                                                            \
99                 if ((_page)->lru.prev != _base) {                       \
100                         struct page *prev;                              \
101                                                                         \
102                         prev = lru_to_page(&(_page->lru));              \
103                         prefetchw(&prev->_field);                       \
104                 }                                                       \
105         } while (0)
106 #else
107 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
108 #endif
109
110 /*
111  * From 0 .. 100.  Higher means more swappy.
112  */
113 int vm_swappiness = 60;
114 long vm_total_pages;    /* The total number of pages which the VM controls */
115
116 static LIST_HEAD(shrinker_list);
117 static DECLARE_RWSEM(shrinker_rwsem);
118
119 /*
120  * Add a shrinker callback to be called from the vm
121  */
122 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
123 {
124         struct shrinker *shrinker;
125
126         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
127         if (shrinker) {
128                 shrinker->shrinker = theshrinker;
129                 shrinker->seeks = seeks;
130                 shrinker->nr = 0;
131                 down_write(&shrinker_rwsem);
132                 list_add_tail(&shrinker->list, &shrinker_list);
133                 up_write(&shrinker_rwsem);
134         }
135         return shrinker;
136 }
137 EXPORT_SYMBOL(set_shrinker);
138
139 /*
140  * Remove one
141  */
142 void remove_shrinker(struct shrinker *shrinker)
143 {
144         down_write(&shrinker_rwsem);
145         list_del(&shrinker->list);
146         up_write(&shrinker_rwsem);
147         kfree(shrinker);
148 }
149 EXPORT_SYMBOL(remove_shrinker);
150
151 #define SHRINK_BATCH 128
152 /*
153  * Call the shrink functions to age shrinkable caches
154  *
155  * Here we assume it costs one seek to replace a lru page and that it also
156  * takes a seek to recreate a cache object.  With this in mind we age equal
157  * percentages of the lru and ageable caches.  This should balance the seeks
158  * generated by these structures.
159  *
160  * If the vm encounted mapped pages on the LRU it increase the pressure on
161  * slab to avoid swapping.
162  *
163  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
164  *
165  * `lru_pages' represents the number of on-LRU pages in all the zones which
166  * are eligible for the caller's allocation attempt.  It is used for balancing
167  * slab reclaim versus page reclaim.
168  *
169  * Returns the number of slab objects which we shrunk.
170  */
171 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
172                         unsigned long lru_pages)
173 {
174         struct shrinker *shrinker;
175         unsigned long ret = 0;
176
177         if (scanned == 0)
178                 scanned = SWAP_CLUSTER_MAX;
179
180         if (!down_read_trylock(&shrinker_rwsem))
181                 return 1;       /* Assume we'll be able to shrink next time */
182
183         list_for_each_entry(shrinker, &shrinker_list, list) {
184                 unsigned long long delta;
185                 unsigned long total_scan;
186                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
187
188                 delta = (4 * scanned) / shrinker->seeks;
189                 delta *= max_pass;
190                 do_div(delta, lru_pages + 1);
191                 shrinker->nr += delta;
192                 if (shrinker->nr < 0) {
193                         printk(KERN_ERR "%s: nr=%ld\n",
194                                         __FUNCTION__, shrinker->nr);
195                         shrinker->nr = max_pass;
196                 }
197
198                 /*
199                  * Avoid risking looping forever due to too large nr value:
200                  * never try to free more than twice the estimate number of
201                  * freeable entries.
202                  */
203                 if (shrinker->nr > max_pass * 2)
204                         shrinker->nr = max_pass * 2;
205
206                 total_scan = shrinker->nr;
207                 shrinker->nr = 0;
208
209                 while (total_scan >= SHRINK_BATCH) {
210                         long this_scan = SHRINK_BATCH;
211                         int shrink_ret;
212                         int nr_before;
213
214                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
215                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
216                         if (shrink_ret == -1)
217                                 break;
218                         if (shrink_ret < nr_before)
219                                 ret += nr_before - shrink_ret;
220                         mod_page_state(slabs_scanned, this_scan);
221                         total_scan -= this_scan;
222
223                         cond_resched();
224                 }
225
226                 shrinker->nr += total_scan;
227         }
228         up_read(&shrinker_rwsem);
229         return ret;
230 }
231
232 /* Called without lock on whether page is mapped, so answer is unstable */
233 static inline int page_mapping_inuse(struct page *page)
234 {
235         struct address_space *mapping;
236
237         /* Page is in somebody's page tables. */
238         if (page_mapped(page))
239                 return 1;
240
241         /* Be more reluctant to reclaim swapcache than pagecache */
242         if (PageSwapCache(page))
243                 return 1;
244
245         mapping = page_mapping(page);
246         if (!mapping)
247                 return 0;
248
249         /* File is mmap'd by somebody? */
250         return mapping_mapped(mapping);
251 }
252
253 static inline int is_page_cache_freeable(struct page *page)
254 {
255         return page_count(page) - !!PagePrivate(page) == 2;
256 }
257
258 static int may_write_to_queue(struct backing_dev_info *bdi)
259 {
260         if (current->flags & PF_SWAPWRITE)
261                 return 1;
262         if (!bdi_write_congested(bdi))
263                 return 1;
264         if (bdi == current->backing_dev_info)
265                 return 1;
266         return 0;
267 }
268
269 /*
270  * We detected a synchronous write error writing a page out.  Probably
271  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
272  * fsync(), msync() or close().
273  *
274  * The tricky part is that after writepage we cannot touch the mapping: nothing
275  * prevents it from being freed up.  But we have a ref on the page and once
276  * that page is locked, the mapping is pinned.
277  *
278  * We're allowed to run sleeping lock_page() here because we know the caller has
279  * __GFP_FS.
280  */
281 static void handle_write_error(struct address_space *mapping,
282                                 struct page *page, int error)
283 {
284         lock_page(page);
285         if (page_mapping(page) == mapping) {
286                 if (error == -ENOSPC)
287                         set_bit(AS_ENOSPC, &mapping->flags);
288                 else
289                         set_bit(AS_EIO, &mapping->flags);
290         }
291         unlock_page(page);
292 }
293
294 /* possible outcome of pageout() */
295 typedef enum {
296         /* failed to write page out, page is locked */
297         PAGE_KEEP,
298         /* move page to the active list, page is locked */
299         PAGE_ACTIVATE,
300         /* page has been sent to the disk successfully, page is unlocked */
301         PAGE_SUCCESS,
302         /* page is clean and locked */
303         PAGE_CLEAN,
304 } pageout_t;
305
306 /*
307  * pageout is called by shrink_page_list() for each dirty page.
308  * Calls ->writepage().
309  */
310 static pageout_t pageout(struct page *page, struct address_space *mapping)
311 {
312         /*
313          * If the page is dirty, only perform writeback if that write
314          * will be non-blocking.  To prevent this allocation from being
315          * stalled by pagecache activity.  But note that there may be
316          * stalls if we need to run get_block().  We could test
317          * PagePrivate for that.
318          *
319          * If this process is currently in generic_file_write() against
320          * this page's queue, we can perform writeback even if that
321          * will block.
322          *
323          * If the page is swapcache, write it back even if that would
324          * block, for some throttling. This happens by accident, because
325          * swap_backing_dev_info is bust: it doesn't reflect the
326          * congestion state of the swapdevs.  Easy to fix, if needed.
327          * See swapfile.c:page_queue_congested().
328          */
329         if (!is_page_cache_freeable(page))
330                 return PAGE_KEEP;
331         if (!mapping) {
332                 /*
333                  * Some data journaling orphaned pages can have
334                  * page->mapping == NULL while being dirty with clean buffers.
335                  */
336                 if (PagePrivate(page)) {
337                         if (try_to_free_buffers(page)) {
338                                 ClearPageDirty(page);
339                                 printk("%s: orphaned page\n", __FUNCTION__);
340                                 return PAGE_CLEAN;
341                         }
342                 }
343                 return PAGE_KEEP;
344         }
345         if (mapping->a_ops->writepage == NULL)
346                 return PAGE_ACTIVATE;
347         if (!may_write_to_queue(mapping->backing_dev_info))
348                 return PAGE_KEEP;
349
350         if (clear_page_dirty_for_io(page)) {
351                 int res;
352                 struct writeback_control wbc = {
353                         .sync_mode = WB_SYNC_NONE,
354                         .nr_to_write = SWAP_CLUSTER_MAX,
355                         .range_start = 0,
356                         .range_end = LLONG_MAX,
357                         .nonblocking = 1,
358                         .for_reclaim = 1,
359                 };
360
361                 SetPageReclaim(page);
362                 res = mapping->a_ops->writepage(page, &wbc);
363                 if (res < 0)
364                         handle_write_error(mapping, page, res);
365                 if (res == AOP_WRITEPAGE_ACTIVATE) {
366                         ClearPageReclaim(page);
367                         return PAGE_ACTIVATE;
368                 }
369                 if (!PageWriteback(page)) {
370                         /* synchronous write or broken a_ops? */
371                         ClearPageReclaim(page);
372                 }
373
374                 return PAGE_SUCCESS;
375         }
376
377         return PAGE_CLEAN;
378 }
379
380 int remove_mapping(struct address_space *mapping, struct page *page)
381 {
382         if (!mapping)
383                 return 0;               /* truncate got there first */
384
385         write_lock_irq(&mapping->tree_lock);
386
387         /*
388          * The non-racy check for busy page.  It is critical to check
389          * PageDirty _after_ making sure that the page is freeable and
390          * not in use by anybody.       (pagecache + us == 2)
391          */
392         if (unlikely(page_count(page) != 2))
393                 goto cannot_free;
394         smp_rmb();
395         if (unlikely(PageDirty(page)))
396                 goto cannot_free;
397
398         if (PageSwapCache(page)) {
399                 swp_entry_t swap = { .val = page_private(page) };
400                 __delete_from_swap_cache(page);
401                 write_unlock_irq(&mapping->tree_lock);
402                 swap_free(swap);
403                 __put_page(page);       /* The pagecache ref */
404                 return 1;
405         }
406
407         __remove_from_page_cache(page);
408         write_unlock_irq(&mapping->tree_lock);
409         __put_page(page);
410         return 1;
411
412 cannot_free:
413         write_unlock_irq(&mapping->tree_lock);
414         return 0;
415 }
416
417 /*
418  * shrink_page_list() returns the number of reclaimed pages
419  */
420 static unsigned long shrink_page_list(struct list_head *page_list,
421                                         struct scan_control *sc)
422 {
423         LIST_HEAD(ret_pages);
424         struct pagevec freed_pvec;
425         int pgactivate = 0;
426         unsigned long nr_reclaimed = 0;
427
428         cond_resched();
429
430         pagevec_init(&freed_pvec, 1);
431         while (!list_empty(page_list)) {
432                 struct address_space *mapping;
433                 struct page *page;
434                 int may_enter_fs;
435                 int referenced;
436
437                 cond_resched();
438
439                 page = lru_to_page(page_list);
440                 list_del(&page->lru);
441
442                 if (TestSetPageLocked(page))
443                         goto keep;
444
445                 BUG_ON(PageActive(page));
446
447                 sc->nr_scanned++;
448
449                 if (!sc->may_swap && page_mapped(page))
450                         goto keep_locked;
451
452                 /* Double the slab pressure for mapped and swapcache pages */
453                 if (page_mapped(page) || PageSwapCache(page))
454                         sc->nr_scanned++;
455
456                 if (PageWriteback(page))
457                         goto keep_locked;
458
459                 referenced = page_referenced(page, 1);
460                 /* In active use or really unfreeable?  Activate it. */
461                 if (referenced && page_mapping_inuse(page))
462                         goto activate_locked;
463
464 #ifdef CONFIG_SWAP
465                 /*
466                  * Anonymous process memory has backing store?
467                  * Try to allocate it some swap space here.
468                  */
469                 if (PageAnon(page) && !PageSwapCache(page))
470                         if (!add_to_swap(page, GFP_ATOMIC))
471                                 goto activate_locked;
472 #endif /* CONFIG_SWAP */
473
474                 mapping = page_mapping(page);
475                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
476                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
477
478                 /*
479                  * The page is mapped into the page tables of one or more
480                  * processes. Try to unmap it here.
481                  */
482                 if (page_mapped(page) && mapping) {
483                         switch (try_to_unmap(page, 0)) {
484                         case SWAP_FAIL:
485                                 goto activate_locked;
486                         case SWAP_AGAIN:
487                                 goto keep_locked;
488                         case SWAP_SUCCESS:
489                                 ; /* try to free the page below */
490                         }
491                 }
492
493                 if (PageDirty(page)) {
494                         if (referenced)
495                                 goto keep_locked;
496                         if (!may_enter_fs)
497                                 goto keep_locked;
498                         if (!sc->may_writepage)
499                                 goto keep_locked;
500
501                         /* Page is dirty, try to write it out here */
502                         switch(pageout(page, mapping)) {
503                         case PAGE_KEEP:
504                                 goto keep_locked;
505                         case PAGE_ACTIVATE:
506                                 goto activate_locked;
507                         case PAGE_SUCCESS:
508                                 if (PageWriteback(page) || PageDirty(page))
509                                         goto keep;
510                                 /*
511                                  * A synchronous write - probably a ramdisk.  Go
512                                  * ahead and try to reclaim the page.
513                                  */
514                                 if (TestSetPageLocked(page))
515                                         goto keep;
516                                 if (PageDirty(page) || PageWriteback(page))
517                                         goto keep_locked;
518                                 mapping = page_mapping(page);
519                         case PAGE_CLEAN:
520                                 ; /* try to free the page below */
521                         }
522                 }
523
524                 /*
525                  * If the page has buffers, try to free the buffer mappings
526                  * associated with this page. If we succeed we try to free
527                  * the page as well.
528                  *
529                  * We do this even if the page is PageDirty().
530                  * try_to_release_page() does not perform I/O, but it is
531                  * possible for a page to have PageDirty set, but it is actually
532                  * clean (all its buffers are clean).  This happens if the
533                  * buffers were written out directly, with submit_bh(). ext3
534                  * will do this, as well as the blockdev mapping. 
535                  * try_to_release_page() will discover that cleanness and will
536                  * drop the buffers and mark the page clean - it can be freed.
537                  *
538                  * Rarely, pages can have buffers and no ->mapping.  These are
539                  * the pages which were not successfully invalidated in
540                  * truncate_complete_page().  We try to drop those buffers here
541                  * and if that worked, and the page is no longer mapped into
542                  * process address space (page_count == 1) it can be freed.
543                  * Otherwise, leave the page on the LRU so it is swappable.
544                  */
545                 if (PagePrivate(page)) {
546                         if (!try_to_release_page(page, sc->gfp_mask))
547                                 goto activate_locked;
548                         if (!mapping && page_count(page) == 1)
549                                 goto free_it;
550                 }
551
552                 if (!remove_mapping(mapping, page))
553                         goto keep_locked;
554
555 free_it:
556                 unlock_page(page);
557                 nr_reclaimed++;
558                 if (!pagevec_add(&freed_pvec, page))
559                         __pagevec_release_nonlru(&freed_pvec);
560                 continue;
561
562 activate_locked:
563                 SetPageActive(page);
564                 pgactivate++;
565 keep_locked:
566                 unlock_page(page);
567 keep:
568                 list_add(&page->lru, &ret_pages);
569                 BUG_ON(PageLRU(page));
570         }
571         list_splice(&ret_pages, page_list);
572         if (pagevec_count(&freed_pvec))
573                 __pagevec_release_nonlru(&freed_pvec);
574         mod_page_state(pgactivate, pgactivate);
575         return nr_reclaimed;
576 }
577
578 /*
579  * zone->lru_lock is heavily contended.  Some of the functions that
580  * shrink the lists perform better by taking out a batch of pages
581  * and working on them outside the LRU lock.
582  *
583  * For pagecache intensive workloads, this function is the hottest
584  * spot in the kernel (apart from copy_*_user functions).
585  *
586  * Appropriate locks must be held before calling this function.
587  *
588  * @nr_to_scan: The number of pages to look through on the list.
589  * @src:        The LRU list to pull pages off.
590  * @dst:        The temp list to put pages on to.
591  * @scanned:    The number of pages that were scanned.
592  *
593  * returns how many pages were moved onto *@dst.
594  */
595 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
596                 struct list_head *src, struct list_head *dst,
597                 unsigned long *scanned)
598 {
599         unsigned long nr_taken = 0;
600         struct page *page;
601         unsigned long scan;
602
603         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
604                 struct list_head *target;
605                 page = lru_to_page(src);
606                 prefetchw_prev_lru_page(page, src, flags);
607
608                 BUG_ON(!PageLRU(page));
609
610                 list_del(&page->lru);
611                 target = src;
612                 if (likely(get_page_unless_zero(page))) {
613                         /*
614                          * Be careful not to clear PageLRU until after we're
615                          * sure the page is not being freed elsewhere -- the
616                          * page release code relies on it.
617                          */
618                         ClearPageLRU(page);
619                         target = dst;
620                         nr_taken++;
621                 } /* else it is being freed elsewhere */
622
623                 list_add(&page->lru, target);
624         }
625
626         *scanned = scan;
627         return nr_taken;
628 }
629
630 /*
631  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
632  * of reclaimed pages
633  */
634 static unsigned long shrink_inactive_list(unsigned long max_scan,
635                                 struct zone *zone, struct scan_control *sc)
636 {
637         LIST_HEAD(page_list);
638         struct pagevec pvec;
639         unsigned long nr_scanned = 0;
640         unsigned long nr_reclaimed = 0;
641
642         pagevec_init(&pvec, 1);
643
644         lru_add_drain();
645         spin_lock_irq(&zone->lru_lock);
646         do {
647                 struct page *page;
648                 unsigned long nr_taken;
649                 unsigned long nr_scan;
650                 unsigned long nr_freed;
651
652                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
653                                              &zone->inactive_list,
654                                              &page_list, &nr_scan);
655                 zone->nr_inactive -= nr_taken;
656                 zone->pages_scanned += nr_scan;
657                 spin_unlock_irq(&zone->lru_lock);
658
659                 nr_scanned += nr_scan;
660                 nr_freed = shrink_page_list(&page_list, sc);
661                 nr_reclaimed += nr_freed;
662                 local_irq_disable();
663                 if (current_is_kswapd()) {
664                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
665                         __mod_page_state(kswapd_steal, nr_freed);
666                 } else
667                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
668                 __mod_page_state_zone(zone, pgsteal, nr_freed);
669
670                 if (nr_taken == 0)
671                         goto done;
672
673                 spin_lock(&zone->lru_lock);
674                 /*
675                  * Put back any unfreeable pages.
676                  */
677                 while (!list_empty(&page_list)) {
678                         page = lru_to_page(&page_list);
679                         BUG_ON(PageLRU(page));
680                         SetPageLRU(page);
681                         list_del(&page->lru);
682                         if (PageActive(page))
683                                 add_page_to_active_list(zone, page);
684                         else
685                                 add_page_to_inactive_list(zone, page);
686                         if (!pagevec_add(&pvec, page)) {
687                                 spin_unlock_irq(&zone->lru_lock);
688                                 __pagevec_release(&pvec);
689                                 spin_lock_irq(&zone->lru_lock);
690                         }
691                 }
692         } while (nr_scanned < max_scan);
693         spin_unlock(&zone->lru_lock);
694 done:
695         local_irq_enable();
696         pagevec_release(&pvec);
697         return nr_reclaimed;
698 }
699
700 /*
701  * This moves pages from the active list to the inactive list.
702  *
703  * We move them the other way if the page is referenced by one or more
704  * processes, from rmap.
705  *
706  * If the pages are mostly unmapped, the processing is fast and it is
707  * appropriate to hold zone->lru_lock across the whole operation.  But if
708  * the pages are mapped, the processing is slow (page_referenced()) so we
709  * should drop zone->lru_lock around each page.  It's impossible to balance
710  * this, so instead we remove the pages from the LRU while processing them.
711  * It is safe to rely on PG_active against the non-LRU pages in here because
712  * nobody will play with that bit on a non-LRU page.
713  *
714  * The downside is that we have to touch page->_count against each page.
715  * But we had to alter page->flags anyway.
716  */
717 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
718                                 struct scan_control *sc)
719 {
720         unsigned long pgmoved;
721         int pgdeactivate = 0;
722         unsigned long pgscanned;
723         LIST_HEAD(l_hold);      /* The pages which were snipped off */
724         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
725         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
726         struct page *page;
727         struct pagevec pvec;
728         int reclaim_mapped = 0;
729
730         if (sc->may_swap) {
731                 long mapped_ratio;
732                 long distress;
733                 long swap_tendency;
734
735                 /*
736                  * `distress' is a measure of how much trouble we're having
737                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
738                  */
739                 distress = 100 >> zone->prev_priority;
740
741                 /*
742                  * The point of this algorithm is to decide when to start
743                  * reclaiming mapped memory instead of just pagecache.  Work out
744                  * how much memory
745                  * is mapped.
746                  */
747                 mapped_ratio = (sc->nr_mapped * 100) / vm_total_pages;
748
749                 /*
750                  * Now decide how much we really want to unmap some pages.  The
751                  * mapped ratio is downgraded - just because there's a lot of
752                  * mapped memory doesn't necessarily mean that page reclaim
753                  * isn't succeeding.
754                  *
755                  * The distress ratio is important - we don't want to start
756                  * going oom.
757                  *
758                  * A 100% value of vm_swappiness overrides this algorithm
759                  * altogether.
760                  */
761                 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
762
763                 /*
764                  * Now use this metric to decide whether to start moving mapped
765                  * memory onto the inactive list.
766                  */
767                 if (swap_tendency >= 100)
768                         reclaim_mapped = 1;
769         }
770
771         lru_add_drain();
772         spin_lock_irq(&zone->lru_lock);
773         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
774                                     &l_hold, &pgscanned);
775         zone->pages_scanned += pgscanned;
776         zone->nr_active -= pgmoved;
777         spin_unlock_irq(&zone->lru_lock);
778
779         while (!list_empty(&l_hold)) {
780                 cond_resched();
781                 page = lru_to_page(&l_hold);
782                 list_del(&page->lru);
783                 if (page_mapped(page)) {
784                         if (!reclaim_mapped ||
785                             (total_swap_pages == 0 && PageAnon(page)) ||
786                             page_referenced(page, 0)) {
787                                 list_add(&page->lru, &l_active);
788                                 continue;
789                         }
790                 }
791                 list_add(&page->lru, &l_inactive);
792         }
793
794         pagevec_init(&pvec, 1);
795         pgmoved = 0;
796         spin_lock_irq(&zone->lru_lock);
797         while (!list_empty(&l_inactive)) {
798                 page = lru_to_page(&l_inactive);
799                 prefetchw_prev_lru_page(page, &l_inactive, flags);
800                 BUG_ON(PageLRU(page));
801                 SetPageLRU(page);
802                 BUG_ON(!PageActive(page));
803                 ClearPageActive(page);
804
805                 list_move(&page->lru, &zone->inactive_list);
806                 pgmoved++;
807                 if (!pagevec_add(&pvec, page)) {
808                         zone->nr_inactive += pgmoved;
809                         spin_unlock_irq(&zone->lru_lock);
810                         pgdeactivate += pgmoved;
811                         pgmoved = 0;
812                         if (buffer_heads_over_limit)
813                                 pagevec_strip(&pvec);
814                         __pagevec_release(&pvec);
815                         spin_lock_irq(&zone->lru_lock);
816                 }
817         }
818         zone->nr_inactive += pgmoved;
819         pgdeactivate += pgmoved;
820         if (buffer_heads_over_limit) {
821                 spin_unlock_irq(&zone->lru_lock);
822                 pagevec_strip(&pvec);
823                 spin_lock_irq(&zone->lru_lock);
824         }
825
826         pgmoved = 0;
827         while (!list_empty(&l_active)) {
828                 page = lru_to_page(&l_active);
829                 prefetchw_prev_lru_page(page, &l_active, flags);
830                 BUG_ON(PageLRU(page));
831                 SetPageLRU(page);
832                 BUG_ON(!PageActive(page));
833                 list_move(&page->lru, &zone->active_list);
834                 pgmoved++;
835                 if (!pagevec_add(&pvec, page)) {
836                         zone->nr_active += pgmoved;
837                         pgmoved = 0;
838                         spin_unlock_irq(&zone->lru_lock);
839                         __pagevec_release(&pvec);
840                         spin_lock_irq(&zone->lru_lock);
841                 }
842         }
843         zone->nr_active += pgmoved;
844         spin_unlock(&zone->lru_lock);
845
846         __mod_page_state_zone(zone, pgrefill, pgscanned);
847         __mod_page_state(pgdeactivate, pgdeactivate);
848         local_irq_enable();
849
850         pagevec_release(&pvec);
851 }
852
853 /*
854  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
855  */
856 static unsigned long shrink_zone(int priority, struct zone *zone,
857                                 struct scan_control *sc)
858 {
859         unsigned long nr_active;
860         unsigned long nr_inactive;
861         unsigned long nr_to_scan;
862         unsigned long nr_reclaimed = 0;
863
864         atomic_inc(&zone->reclaim_in_progress);
865
866         /*
867          * Add one to `nr_to_scan' just to make sure that the kernel will
868          * slowly sift through the active list.
869          */
870         zone->nr_scan_active += (zone->nr_active >> priority) + 1;
871         nr_active = zone->nr_scan_active;
872         if (nr_active >= sc->swap_cluster_max)
873                 zone->nr_scan_active = 0;
874         else
875                 nr_active = 0;
876
877         zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
878         nr_inactive = zone->nr_scan_inactive;
879         if (nr_inactive >= sc->swap_cluster_max)
880                 zone->nr_scan_inactive = 0;
881         else
882                 nr_inactive = 0;
883
884         while (nr_active || nr_inactive) {
885                 if (nr_active) {
886                         nr_to_scan = min(nr_active,
887                                         (unsigned long)sc->swap_cluster_max);
888                         nr_active -= nr_to_scan;
889                         shrink_active_list(nr_to_scan, zone, sc);
890                 }
891
892                 if (nr_inactive) {
893                         nr_to_scan = min(nr_inactive,
894                                         (unsigned long)sc->swap_cluster_max);
895                         nr_inactive -= nr_to_scan;
896                         nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
897                                                                 sc);
898                 }
899         }
900
901         throttle_vm_writeout();
902
903         atomic_dec(&zone->reclaim_in_progress);
904         return nr_reclaimed;
905 }
906
907 /*
908  * This is the direct reclaim path, for page-allocating processes.  We only
909  * try to reclaim pages from zones which will satisfy the caller's allocation
910  * request.
911  *
912  * We reclaim from a zone even if that zone is over pages_high.  Because:
913  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
914  *    allocation or
915  * b) The zones may be over pages_high but they must go *over* pages_high to
916  *    satisfy the `incremental min' zone defense algorithm.
917  *
918  * Returns the number of reclaimed pages.
919  *
920  * If a zone is deemed to be full of pinned pages then just give it a light
921  * scan then give up on it.
922  */
923 static unsigned long shrink_zones(int priority, struct zone **zones,
924                                         struct scan_control *sc)
925 {
926         unsigned long nr_reclaimed = 0;
927         int i;
928
929         for (i = 0; zones[i] != NULL; i++) {
930                 struct zone *zone = zones[i];
931
932                 if (!populated_zone(zone))
933                         continue;
934
935                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
936                         continue;
937
938                 zone->temp_priority = priority;
939                 if (zone->prev_priority > priority)
940                         zone->prev_priority = priority;
941
942                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
943                         continue;       /* Let kswapd poll it */
944
945                 nr_reclaimed += shrink_zone(priority, zone, sc);
946         }
947         return nr_reclaimed;
948 }
949  
950 /*
951  * This is the main entry point to direct page reclaim.
952  *
953  * If a full scan of the inactive list fails to free enough memory then we
954  * are "out of memory" and something needs to be killed.
955  *
956  * If the caller is !__GFP_FS then the probability of a failure is reasonably
957  * high - the zone may be full of dirty or under-writeback pages, which this
958  * caller can't do much about.  We kick pdflush and take explicit naps in the
959  * hope that some of these pages can be written.  But if the allocating task
960  * holds filesystem locks which prevent writeout this might not work, and the
961  * allocation attempt will fail.
962  */
963 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
964 {
965         int priority;
966         int ret = 0;
967         unsigned long total_scanned = 0;
968         unsigned long nr_reclaimed = 0;
969         struct reclaim_state *reclaim_state = current->reclaim_state;
970         unsigned long lru_pages = 0;
971         int i;
972         struct scan_control sc = {
973                 .gfp_mask = gfp_mask,
974                 .may_writepage = !laptop_mode,
975                 .swap_cluster_max = SWAP_CLUSTER_MAX,
976                 .may_swap = 1,
977                 .swappiness = vm_swappiness,
978         };
979
980         inc_page_state(allocstall);
981
982         for (i = 0; zones[i] != NULL; i++) {
983                 struct zone *zone = zones[i];
984
985                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
986                         continue;
987
988                 zone->temp_priority = DEF_PRIORITY;
989                 lru_pages += zone->nr_active + zone->nr_inactive;
990         }
991
992         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
993                 sc.nr_mapped = read_page_state(nr_mapped);
994                 sc.nr_scanned = 0;
995                 if (!priority)
996                         disable_swap_token();
997                 nr_reclaimed += shrink_zones(priority, zones, &sc);
998                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
999                 if (reclaim_state) {
1000                         nr_reclaimed += reclaim_state->reclaimed_slab;
1001                         reclaim_state->reclaimed_slab = 0;
1002                 }
1003                 total_scanned += sc.nr_scanned;
1004                 if (nr_reclaimed >= sc.swap_cluster_max) {
1005                         ret = 1;
1006                         goto out;
1007                 }
1008
1009                 /*
1010                  * Try to write back as many pages as we just scanned.  This
1011                  * tends to cause slow streaming writers to write data to the
1012                  * disk smoothly, at the dirtying rate, which is nice.   But
1013                  * that's undesirable in laptop mode, where we *want* lumpy
1014                  * writeout.  So in laptop mode, write out the whole world.
1015                  */
1016                 if (total_scanned > sc.swap_cluster_max +
1017                                         sc.swap_cluster_max / 2) {
1018                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1019                         sc.may_writepage = 1;
1020                 }
1021
1022                 /* Take a nap, wait for some writeback to complete */
1023                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1024                         blk_congestion_wait(WRITE, HZ/10);
1025         }
1026 out:
1027         for (i = 0; zones[i] != 0; i++) {
1028                 struct zone *zone = zones[i];
1029
1030                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1031                         continue;
1032
1033                 zone->prev_priority = zone->temp_priority;
1034         }
1035         return ret;
1036 }
1037
1038 /*
1039  * For kswapd, balance_pgdat() will work across all this node's zones until
1040  * they are all at pages_high.
1041  *
1042  * Returns the number of pages which were actually freed.
1043  *
1044  * There is special handling here for zones which are full of pinned pages.
1045  * This can happen if the pages are all mlocked, or if they are all used by
1046  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1047  * What we do is to detect the case where all pages in the zone have been
1048  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1049  * dead and from now on, only perform a short scan.  Basically we're polling
1050  * the zone for when the problem goes away.
1051  *
1052  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1053  * zones which have free_pages > pages_high, but once a zone is found to have
1054  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1055  * of the number of free pages in the lower zones.  This interoperates with
1056  * the page allocator fallback scheme to ensure that aging of pages is balanced
1057  * across the zones.
1058  */
1059 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1060 {
1061         int all_zones_ok;
1062         int priority;
1063         int i;
1064         unsigned long total_scanned;
1065         unsigned long nr_reclaimed;
1066         struct reclaim_state *reclaim_state = current->reclaim_state;
1067         struct scan_control sc = {
1068                 .gfp_mask = GFP_KERNEL,
1069                 .may_swap = 1,
1070                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1071                 .swappiness = vm_swappiness,
1072         };
1073
1074 loop_again:
1075         total_scanned = 0;
1076         nr_reclaimed = 0;
1077         sc.may_writepage = !laptop_mode;
1078         sc.nr_mapped = read_page_state(nr_mapped);
1079
1080         inc_page_state(pageoutrun);
1081
1082         for (i = 0; i < pgdat->nr_zones; i++) {
1083                 struct zone *zone = pgdat->node_zones + i;
1084
1085                 zone->temp_priority = DEF_PRIORITY;
1086         }
1087
1088         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1089                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1090                 unsigned long lru_pages = 0;
1091
1092                 /* The swap token gets in the way of swapout... */
1093                 if (!priority)
1094                         disable_swap_token();
1095
1096                 all_zones_ok = 1;
1097
1098                 /*
1099                  * Scan in the highmem->dma direction for the highest
1100                  * zone which needs scanning
1101                  */
1102                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1103                         struct zone *zone = pgdat->node_zones + i;
1104
1105                         if (!populated_zone(zone))
1106                                 continue;
1107
1108                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1109                                 continue;
1110
1111                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1112                                                0, 0)) {
1113                                 end_zone = i;
1114                                 goto scan;
1115                         }
1116                 }
1117                 goto out;
1118 scan:
1119                 for (i = 0; i <= end_zone; i++) {
1120                         struct zone *zone = pgdat->node_zones + i;
1121
1122                         lru_pages += zone->nr_active + zone->nr_inactive;
1123                 }
1124
1125                 /*
1126                  * Now scan the zone in the dma->highmem direction, stopping
1127                  * at the last zone which needs scanning.
1128                  *
1129                  * We do this because the page allocator works in the opposite
1130                  * direction.  This prevents the page allocator from allocating
1131                  * pages behind kswapd's direction of progress, which would
1132                  * cause too much scanning of the lower zones.
1133                  */
1134                 for (i = 0; i <= end_zone; i++) {
1135                         struct zone *zone = pgdat->node_zones + i;
1136                         int nr_slab;
1137
1138                         if (!populated_zone(zone))
1139                                 continue;
1140
1141                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1142                                 continue;
1143
1144                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1145                                                end_zone, 0))
1146                                 all_zones_ok = 0;
1147                         zone->temp_priority = priority;
1148                         if (zone->prev_priority > priority)
1149                                 zone->prev_priority = priority;
1150                         sc.nr_scanned = 0;
1151                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1152                         reclaim_state->reclaimed_slab = 0;
1153                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1154                                                 lru_pages);
1155                         nr_reclaimed += reclaim_state->reclaimed_slab;
1156                         total_scanned += sc.nr_scanned;
1157                         if (zone->all_unreclaimable)
1158                                 continue;
1159                         if (nr_slab == 0 && zone->pages_scanned >=
1160                                     (zone->nr_active + zone->nr_inactive) * 4)
1161                                 zone->all_unreclaimable = 1;
1162                         /*
1163                          * If we've done a decent amount of scanning and
1164                          * the reclaim ratio is low, start doing writepage
1165                          * even in laptop mode
1166                          */
1167                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1168                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1169                                 sc.may_writepage = 1;
1170                 }
1171                 if (all_zones_ok)
1172                         break;          /* kswapd: all done */
1173                 /*
1174                  * OK, kswapd is getting into trouble.  Take a nap, then take
1175                  * another pass across the zones.
1176                  */
1177                 if (total_scanned && priority < DEF_PRIORITY - 2)
1178                         blk_congestion_wait(WRITE, HZ/10);
1179
1180                 /*
1181                  * We do this so kswapd doesn't build up large priorities for
1182                  * example when it is freeing in parallel with allocators. It
1183                  * matches the direct reclaim path behaviour in terms of impact
1184                  * on zone->*_priority.
1185                  */
1186                 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1187                         break;
1188         }
1189 out:
1190         for (i = 0; i < pgdat->nr_zones; i++) {
1191                 struct zone *zone = pgdat->node_zones + i;
1192
1193                 zone->prev_priority = zone->temp_priority;
1194         }
1195         if (!all_zones_ok) {
1196                 cond_resched();
1197                 goto loop_again;
1198         }
1199
1200         return nr_reclaimed;
1201 }
1202
1203 /*
1204  * The background pageout daemon, started as a kernel thread
1205  * from the init process. 
1206  *
1207  * This basically trickles out pages so that we have _some_
1208  * free memory available even if there is no other activity
1209  * that frees anything up. This is needed for things like routing
1210  * etc, where we otherwise might have all activity going on in
1211  * asynchronous contexts that cannot page things out.
1212  *
1213  * If there are applications that are active memory-allocators
1214  * (most normal use), this basically shouldn't matter.
1215  */
1216 static int kswapd(void *p)
1217 {
1218         unsigned long order;
1219         pg_data_t *pgdat = (pg_data_t*)p;
1220         struct task_struct *tsk = current;
1221         DEFINE_WAIT(wait);
1222         struct reclaim_state reclaim_state = {
1223                 .reclaimed_slab = 0,
1224         };
1225         cpumask_t cpumask;
1226
1227         cpumask = node_to_cpumask(pgdat->node_id);
1228         if (!cpus_empty(cpumask))
1229                 set_cpus_allowed(tsk, cpumask);
1230         current->reclaim_state = &reclaim_state;
1231
1232         /*
1233          * Tell the memory management that we're a "memory allocator",
1234          * and that if we need more memory we should get access to it
1235          * regardless (see "__alloc_pages()"). "kswapd" should
1236          * never get caught in the normal page freeing logic.
1237          *
1238          * (Kswapd normally doesn't need memory anyway, but sometimes
1239          * you need a small amount of memory in order to be able to
1240          * page out something else, and this flag essentially protects
1241          * us from recursively trying to free more memory as we're
1242          * trying to free the first piece of memory in the first place).
1243          */
1244         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1245
1246         order = 0;
1247         for ( ; ; ) {
1248                 unsigned long new_order;
1249
1250                 try_to_freeze();
1251
1252                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1253                 new_order = pgdat->kswapd_max_order;
1254                 pgdat->kswapd_max_order = 0;
1255                 if (order < new_order) {
1256                         /*
1257                          * Don't sleep if someone wants a larger 'order'
1258                          * allocation
1259                          */
1260                         order = new_order;
1261                 } else {
1262                         schedule();
1263                         order = pgdat->kswapd_max_order;
1264                 }
1265                 finish_wait(&pgdat->kswapd_wait, &wait);
1266
1267                 balance_pgdat(pgdat, order);
1268         }
1269         return 0;
1270 }
1271
1272 /*
1273  * A zone is low on free memory, so wake its kswapd task to service it.
1274  */
1275 void wakeup_kswapd(struct zone *zone, int order)
1276 {
1277         pg_data_t *pgdat;
1278
1279         if (!populated_zone(zone))
1280                 return;
1281
1282         pgdat = zone->zone_pgdat;
1283         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1284                 return;
1285         if (pgdat->kswapd_max_order < order)
1286                 pgdat->kswapd_max_order = order;
1287         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1288                 return;
1289         if (!waitqueue_active(&pgdat->kswapd_wait))
1290                 return;
1291         wake_up_interruptible(&pgdat->kswapd_wait);
1292 }
1293
1294 #ifdef CONFIG_PM
1295 /*
1296  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1297  * from LRU lists system-wide, for given pass and priority, and returns the
1298  * number of reclaimed pages
1299  *
1300  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1301  */
1302 static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
1303                                       int prio, struct scan_control *sc)
1304 {
1305         struct zone *zone;
1306         unsigned long nr_to_scan, ret = 0;
1307
1308         for_each_zone(zone) {
1309
1310                 if (!populated_zone(zone))
1311                         continue;
1312
1313                 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1314                         continue;
1315
1316                 /* For pass = 0 we don't shrink the active list */
1317                 if (pass > 0) {
1318                         zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1319                         if (zone->nr_scan_active >= nr_pages || pass > 3) {
1320                                 zone->nr_scan_active = 0;
1321                                 nr_to_scan = min(nr_pages, zone->nr_active);
1322                                 shrink_active_list(nr_to_scan, zone, sc);
1323                         }
1324                 }
1325
1326                 zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1327                 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1328                         zone->nr_scan_inactive = 0;
1329                         nr_to_scan = min(nr_pages, zone->nr_inactive);
1330                         ret += shrink_inactive_list(nr_to_scan, zone, sc);
1331                         if (ret >= nr_pages)
1332                                 return ret;
1333                 }
1334         }
1335
1336         return ret;
1337 }
1338
1339 /*
1340  * Try to free `nr_pages' of memory, system-wide, and return the number of
1341  * freed pages.
1342  *
1343  * Rather than trying to age LRUs the aim is to preserve the overall
1344  * LRU order by reclaiming preferentially
1345  * inactive > active > active referenced > active mapped
1346  */
1347 unsigned long shrink_all_memory(unsigned long nr_pages)
1348 {
1349         unsigned long lru_pages, nr_slab;
1350         unsigned long ret = 0;
1351         int pass;
1352         struct reclaim_state reclaim_state;
1353         struct zone *zone;
1354         struct scan_control sc = {
1355                 .gfp_mask = GFP_KERNEL,
1356                 .may_swap = 0,
1357                 .swap_cluster_max = nr_pages,
1358                 .may_writepage = 1,
1359                 .swappiness = vm_swappiness,
1360         };
1361
1362         current->reclaim_state = &reclaim_state;
1363
1364         lru_pages = 0;
1365         for_each_zone(zone)
1366                 lru_pages += zone->nr_active + zone->nr_inactive;
1367
1368         nr_slab = read_page_state(nr_slab);
1369         /* If slab caches are huge, it's better to hit them first */
1370         while (nr_slab >= lru_pages) {
1371                 reclaim_state.reclaimed_slab = 0;
1372                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1373                 if (!reclaim_state.reclaimed_slab)
1374                         break;
1375
1376                 ret += reclaim_state.reclaimed_slab;
1377                 if (ret >= nr_pages)
1378                         goto out;
1379
1380                 nr_slab -= reclaim_state.reclaimed_slab;
1381         }
1382
1383         /*
1384          * We try to shrink LRUs in 5 passes:
1385          * 0 = Reclaim from inactive_list only
1386          * 1 = Reclaim from active list but don't reclaim mapped
1387          * 2 = 2nd pass of type 1
1388          * 3 = Reclaim mapped (normal reclaim)
1389          * 4 = 2nd pass of type 3
1390          */
1391         for (pass = 0; pass < 5; pass++) {
1392                 int prio;
1393
1394                 /* Needed for shrinking slab caches later on */
1395                 if (!lru_pages)
1396                         for_each_zone(zone) {
1397                                 lru_pages += zone->nr_active;
1398                                 lru_pages += zone->nr_inactive;
1399                         }
1400
1401                 /* Force reclaiming mapped pages in the passes #3 and #4 */
1402                 if (pass > 2) {
1403                         sc.may_swap = 1;
1404                         sc.swappiness = 100;
1405                 }
1406
1407                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1408                         unsigned long nr_to_scan = nr_pages - ret;
1409
1410                         sc.nr_mapped = read_page_state(nr_mapped);
1411                         sc.nr_scanned = 0;
1412
1413                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1414                         if (ret >= nr_pages)
1415                                 goto out;
1416
1417                         reclaim_state.reclaimed_slab = 0;
1418                         shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1419                         ret += reclaim_state.reclaimed_slab;
1420                         if (ret >= nr_pages)
1421                                 goto out;
1422
1423                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1424                                 blk_congestion_wait(WRITE, HZ / 10);
1425                 }
1426
1427                 lru_pages = 0;
1428         }
1429
1430         /*
1431          * If ret = 0, we could not shrink LRUs, but there may be something
1432          * in slab caches
1433          */
1434         if (!ret)
1435                 do {
1436                         reclaim_state.reclaimed_slab = 0;
1437                         shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1438                         ret += reclaim_state.reclaimed_slab;
1439                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1440
1441 out:
1442         current->reclaim_state = NULL;
1443
1444         return ret;
1445 }
1446 #endif
1447
1448 #ifdef CONFIG_HOTPLUG_CPU
1449 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1450    not required for correctness.  So if the last cpu in a node goes
1451    away, we get changed to run anywhere: as the first one comes back,
1452    restore their cpu bindings. */
1453 static int __devinit cpu_callback(struct notifier_block *nfb,
1454                                   unsigned long action, void *hcpu)
1455 {
1456         pg_data_t *pgdat;
1457         cpumask_t mask;
1458
1459         if (action == CPU_ONLINE) {
1460                 for_each_online_pgdat(pgdat) {
1461                         mask = node_to_cpumask(pgdat->node_id);
1462                         if (any_online_cpu(mask) != NR_CPUS)
1463                                 /* One of our CPUs online: restore mask */
1464                                 set_cpus_allowed(pgdat->kswapd, mask);
1465                 }
1466         }
1467         return NOTIFY_OK;
1468 }
1469 #endif /* CONFIG_HOTPLUG_CPU */
1470
1471 /*
1472  * This kswapd start function will be called by init and node-hot-add.
1473  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1474  */
1475 int kswapd_run(int nid)
1476 {
1477         pg_data_t *pgdat = NODE_DATA(nid);
1478         int ret = 0;
1479
1480         if (pgdat->kswapd)
1481                 return 0;
1482
1483         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1484         if (IS_ERR(pgdat->kswapd)) {
1485                 /* failure at boot is fatal */
1486                 BUG_ON(system_state == SYSTEM_BOOTING);
1487                 printk("Failed to start kswapd on node %d\n",nid);
1488                 ret = -1;
1489         }
1490         return ret;
1491 }
1492
1493 static int __init kswapd_init(void)
1494 {
1495         int nid;
1496
1497         swap_setup();
1498         for_each_online_node(nid)
1499                 kswapd_run(nid);
1500         hotcpu_notifier(cpu_callback, 0);
1501         return 0;
1502 }
1503
1504 module_init(kswapd_init)
1505
1506 #ifdef CONFIG_NUMA
1507 /*
1508  * Zone reclaim mode
1509  *
1510  * If non-zero call zone_reclaim when the number of free pages falls below
1511  * the watermarks.
1512  *
1513  * In the future we may add flags to the mode. However, the page allocator
1514  * should only have to check that zone_reclaim_mode != 0 before calling
1515  * zone_reclaim().
1516  */
1517 int zone_reclaim_mode __read_mostly;
1518
1519 #define RECLAIM_OFF 0
1520 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1521 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1522 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1523 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1524
1525 /*
1526  * Mininum time between zone reclaim scans
1527  */
1528 int zone_reclaim_interval __read_mostly = 30*HZ;
1529
1530 /*
1531  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1532  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1533  * a zone.
1534  */
1535 #define ZONE_RECLAIM_PRIORITY 4
1536
1537 /*
1538  * Try to free up some pages from this zone through reclaim.
1539  */
1540 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1541 {
1542         /* Minimum pages needed in order to stay on node */
1543         const unsigned long nr_pages = 1 << order;
1544         struct task_struct *p = current;
1545         struct reclaim_state reclaim_state;
1546         int priority;
1547         unsigned long nr_reclaimed = 0;
1548         struct scan_control sc = {
1549                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1550                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1551                 .nr_mapped = read_page_state(nr_mapped),
1552                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1553                                         SWAP_CLUSTER_MAX),
1554                 .gfp_mask = gfp_mask,
1555                 .swappiness = vm_swappiness,
1556         };
1557
1558         disable_swap_token();
1559         cond_resched();
1560         /*
1561          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1562          * and we also need to be able to write out pages for RECLAIM_WRITE
1563          * and RECLAIM_SWAP.
1564          */
1565         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1566         reclaim_state.reclaimed_slab = 0;
1567         p->reclaim_state = &reclaim_state;
1568
1569         /*
1570          * Free memory by calling shrink zone with increasing priorities
1571          * until we have enough memory freed.
1572          */
1573         priority = ZONE_RECLAIM_PRIORITY;
1574         do {
1575                 nr_reclaimed += shrink_zone(priority, zone, &sc);
1576                 priority--;
1577         } while (priority >= 0 && nr_reclaimed < nr_pages);
1578
1579         if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1580                 /*
1581                  * shrink_slab() does not currently allow us to determine how
1582                  * many pages were freed in this zone. So we just shake the slab
1583                  * a bit and then go off node for this particular allocation
1584                  * despite possibly having freed enough memory to allocate in
1585                  * this zone.  If we freed local memory then the next
1586                  * allocations will be local again.
1587                  *
1588                  * shrink_slab will free memory on all zones and may take
1589                  * a long time.
1590                  */
1591                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1592         }
1593
1594         p->reclaim_state = NULL;
1595         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1596
1597         if (nr_reclaimed == 0) {
1598                 /*
1599                  * We were unable to reclaim enough pages to stay on node.  We
1600                  * now allow off node accesses for a certain time period before
1601                  * trying again to reclaim pages from the local zone.
1602                  */
1603                 zone->last_unsuccessful_zone_reclaim = jiffies;
1604         }
1605
1606         return nr_reclaimed >= nr_pages;
1607 }
1608
1609 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1610 {
1611         cpumask_t mask;
1612         int node_id;
1613
1614         /*
1615          * Do not reclaim if there was a recent unsuccessful attempt at zone
1616          * reclaim.  In that case we let allocations go off node for the
1617          * zone_reclaim_interval.  Otherwise we would scan for each off-node
1618          * page allocation.
1619          */
1620         if (time_before(jiffies,
1621                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1622                         return 0;
1623
1624         /*
1625          * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1626          * not have reclaimable pages and if we should not delay the allocation
1627          * then do not scan.
1628          */
1629         if (!(gfp_mask & __GFP_WAIT) ||
1630                 zone->all_unreclaimable ||
1631                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1632                 (current->flags & PF_MEMALLOC))
1633                         return 0;
1634
1635         /*
1636          * Only run zone reclaim on the local zone or on zones that do not
1637          * have associated processors. This will favor the local processor
1638          * over remote processors and spread off node memory allocations
1639          * as wide as possible.
1640          */
1641         node_id = zone->zone_pgdat->node_id;
1642         mask = node_to_cpumask(node_id);
1643         if (!cpus_empty(mask) && node_id != numa_node_id())
1644                 return 0;
1645         return __zone_reclaim(zone, gfp_mask, order);
1646 }
1647 #endif