1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
3 Written 1999-2000 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
25 #define DRV_NAME "sundance"
26 #define DRV_VERSION "1.2"
27 #define DRV_RELDATE "11-Sep-2006"
30 /* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
35 static const int multicast_filter_limit = 32;
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
41 static int rx_copybreak;
42 static int flowctrl=1;
44 /* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
57 static char *media[MAX_UNITS];
60 /* Operational parameters that are set at compile time. */
62 /* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
67 Large receive rings merely waste memory. */
68 #define TX_RING_SIZE 32
69 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70 #define RX_RING_SIZE 64
72 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
75 /* Operational parameters that usually are not changed. */
76 /* Time in jiffies before concluding the transmitter is hung. */
77 #define TX_TIMEOUT (4*HZ)
78 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
80 /* Include files, designed to support most kernel versions 2.0.0 and later. */
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/string.h>
84 #include <linux/timer.h>
85 #include <linux/errno.h>
86 #include <linux/ioport.h>
87 #include <linux/slab.h>
88 #include <linux/interrupt.h>
89 #include <linux/pci.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/skbuff.h>
93 #include <linux/init.h>
94 #include <linux/bitops.h>
95 #include <asm/uaccess.h>
96 #include <asm/processor.h> /* Processor type for cache alignment. */
98 #include <linux/delay.h>
99 #include <linux/spinlock.h>
100 #ifndef _COMPAT_WITH_OLD_KERNEL
101 #include <linux/crc32.h>
102 #include <linux/ethtool.h>
103 #include <linux/mii.h>
111 /* These identify the driver base version and may not be removed. */
112 static char version[] =
113 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
115 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
116 MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
117 MODULE_LICENSE("GPL");
119 module_param(debug, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param_array(media, charp, NULL, 0);
122 module_param(flowctrl, int, 0);
123 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
124 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
125 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
130 I. Board Compatibility
132 This driver is designed for the Sundance Technologies "Alta" ST201 chip.
134 II. Board-specific settings
136 III. Driver operation
140 This driver uses two statically allocated fixed-size descriptor lists
141 formed into rings by a branch from the final descriptor to the beginning of
142 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
143 Some chips explicitly use only 2^N sized rings, while others use a
144 'next descriptor' pointer that the driver forms into rings.
146 IIIb/c. Transmit/Receive Structure
148 This driver uses a zero-copy receive and transmit scheme.
149 The driver allocates full frame size skbuffs for the Rx ring buffers at
150 open() time and passes the skb->data field to the chip as receive data
151 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
152 a fresh skbuff is allocated and the frame is copied to the new skbuff.
153 When the incoming frame is larger, the skbuff is passed directly up the
154 protocol stack. Buffers consumed this way are replaced by newly allocated
155 skbuffs in a later phase of receives.
157 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
158 using a full-sized skbuff for small frames vs. the copying costs of larger
159 frames. New boards are typically used in generously configured machines
160 and the underfilled buffers have negligible impact compared to the benefit of
161 a single allocation size, so the default value of zero results in never
162 copying packets. When copying is done, the cost is usually mitigated by using
163 a combined copy/checksum routine. Copying also preloads the cache, which is
164 most useful with small frames.
166 A subtle aspect of the operation is that the IP header at offset 14 in an
167 ethernet frame isn't longword aligned for further processing.
168 Unaligned buffers are permitted by the Sundance hardware, so
169 frames are received into the skbuff at an offset of "+2", 16-byte aligning
172 IIId. Synchronization
174 The driver runs as two independent, single-threaded flows of control. One
175 is the send-packet routine, which enforces single-threaded use by the
176 dev->tbusy flag. The other thread is the interrupt handler, which is single
177 threaded by the hardware and interrupt handling software.
179 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
180 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
181 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
182 the 'lp->tx_full' flag.
184 The interrupt handler has exclusive control over the Rx ring and records stats
185 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
186 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
187 clears both the tx_full and tbusy flags.
193 The Sundance ST201 datasheet, preliminary version.
194 The Kendin KS8723 datasheet, preliminary version.
195 The ICplus IP100 datasheet, preliminary version.
196 http://www.scyld.com/expert/100mbps.html
197 http://www.scyld.com/expert/NWay.html
203 /* Work-around for Kendin chip bugs. */
204 #ifndef CONFIG_SUNDANCE_MMIO
208 static const struct pci_device_id sundance_pci_tbl[] = {
209 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
210 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
211 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
212 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
213 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
214 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
215 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
218 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
227 static const struct pci_id_info pci_id_tbl[] __devinitdata = {
228 {"D-Link DFE-550TX FAST Ethernet Adapter"},
229 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
230 {"D-Link DFE-580TX 4 port Server Adapter"},
231 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
232 {"D-Link DL10050-based FAST Ethernet Adapter"},
233 {"Sundance Technology Alta"},
234 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
235 { } /* terminate list. */
238 /* This driver was written to use PCI memory space, however x86-oriented
239 hardware often uses I/O space accesses. */
241 /* Offsets to the device registers.
242 Unlike software-only systems, device drivers interact with complex hardware.
243 It's not useful to define symbolic names for every register bit in the
244 device. The name can only partially document the semantics and make
245 the driver longer and more difficult to read.
246 In general, only the important configuration values or bits changed
247 multiple times should be defined symbolically.
252 TxDMABurstThresh = 0x08,
253 TxDMAUrgentThresh = 0x09,
254 TxDMAPollPeriod = 0x0a,
259 RxDMABurstThresh = 0x14,
260 RxDMAUrgentThresh = 0x15,
261 RxDMAPollPeriod = 0x16,
280 MulticastFilter0 = 0x60,
281 MulticastFilter1 = 0x64,
288 StatsCarrierError = 0x74,
289 StatsLateColl = 0x75,
290 StatsMultiColl = 0x76,
294 StatsTxXSDefer = 0x7a,
300 /* Aliased and bogus values! */
303 enum ASICCtrl_HiWord_bit {
304 GlobalReset = 0x0001,
309 NetworkReset = 0x0020,
314 /* Bits in the interrupt status/mask registers. */
315 enum intr_status_bits {
316 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
317 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
319 StatsMax=0x0080, LinkChange=0x0100,
320 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
323 /* Bits in the RxMode register. */
325 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
326 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
328 /* Bits in MACCtrl. */
329 enum mac_ctrl0_bits {
330 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
331 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
333 enum mac_ctrl1_bits {
334 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
335 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
336 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
339 /* The Rx and Tx buffer descriptors. */
340 /* Note that using only 32 bit fields simplifies conversion to big-endian
345 struct desc_frag { u32 addr, length; } frag[1];
348 /* Bits in netdev_desc.status */
349 enum desc_status_bits {
351 DescEndPacket=0x4000,
355 DescIntrOnDMADone=0x80000000,
356 DisableAlign = 0x00000001,
359 #define PRIV_ALIGN 15 /* Required alignment mask */
360 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
361 within the structure. */
363 struct netdev_private {
364 /* Descriptor rings first for alignment. */
365 struct netdev_desc *rx_ring;
366 struct netdev_desc *tx_ring;
367 struct sk_buff* rx_skbuff[RX_RING_SIZE];
368 struct sk_buff* tx_skbuff[TX_RING_SIZE];
369 dma_addr_t tx_ring_dma;
370 dma_addr_t rx_ring_dma;
371 struct net_device_stats stats;
372 struct timer_list timer; /* Media monitoring timer. */
373 /* Frequently used values: keep some adjacent for cache effect. */
375 spinlock_t rx_lock; /* Group with Tx control cache line. */
378 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
379 unsigned int rx_buf_sz; /* Based on MTU+slack. */
380 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
381 unsigned int cur_tx, dirty_tx;
382 /* These values are keep track of the transceiver/media in use. */
383 unsigned int flowctrl:1;
384 unsigned int default_port:4; /* Last dev->if_port value. */
385 unsigned int an_enable:1;
387 struct tasklet_struct rx_tasklet;
388 struct tasklet_struct tx_tasklet;
391 /* Multicast and receive mode. */
392 spinlock_t mcastlock; /* SMP lock multicast updates. */
394 /* MII transceiver section. */
395 struct mii_if_info mii_if;
396 int mii_preamble_required;
397 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
398 struct pci_dev *pci_dev;
402 /* The station address location in the EEPROM. */
403 #define EEPROM_SA_OFFSET 0x10
404 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
405 IntrDrvRqst | IntrTxDone | StatsMax | \
408 static int change_mtu(struct net_device *dev, int new_mtu);
409 static int eeprom_read(void __iomem *ioaddr, int location);
410 static int mdio_read(struct net_device *dev, int phy_id, int location);
411 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
412 static int netdev_open(struct net_device *dev);
413 static void check_duplex(struct net_device *dev);
414 static void netdev_timer(unsigned long data);
415 static void tx_timeout(struct net_device *dev);
416 static void init_ring(struct net_device *dev);
417 static int start_tx(struct sk_buff *skb, struct net_device *dev);
418 static int reset_tx (struct net_device *dev);
419 static irqreturn_t intr_handler(int irq, void *dev_instance);
420 static void rx_poll(unsigned long data);
421 static void tx_poll(unsigned long data);
422 static void refill_rx (struct net_device *dev);
423 static void netdev_error(struct net_device *dev, int intr_status);
424 static void netdev_error(struct net_device *dev, int intr_status);
425 static void set_rx_mode(struct net_device *dev);
426 static int __set_mac_addr(struct net_device *dev);
427 static struct net_device_stats *get_stats(struct net_device *dev);
428 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
429 static int netdev_close(struct net_device *dev);
430 static const struct ethtool_ops ethtool_ops;
432 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
434 struct netdev_private *np = netdev_priv(dev);
435 void __iomem *ioaddr = np->base + ASICCtrl;
438 /* ST201 documentation states ASICCtrl is a 32bit register */
439 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
440 /* ST201 documentation states reset can take up to 1 ms */
442 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
443 if (--countdown == 0) {
444 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
451 static int __devinit sundance_probe1 (struct pci_dev *pdev,
452 const struct pci_device_id *ent)
454 struct net_device *dev;
455 struct netdev_private *np;
457 int chip_idx = ent->driver_data;
460 void __iomem *ioaddr;
469 int phy, phy_idx = 0;
472 /* when built into the kernel, we only print version if device is found */
474 static int printed_version;
475 if (!printed_version++)
479 if (pci_enable_device(pdev))
481 pci_set_master(pdev);
485 dev = alloc_etherdev(sizeof(*np));
488 SET_NETDEV_DEV(dev, &pdev->dev);
490 if (pci_request_regions(pdev, DRV_NAME))
493 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
497 for (i = 0; i < 3; i++)
498 ((u16 *)dev->dev_addr)[i] =
499 le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
500 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
502 dev->base_addr = (unsigned long)ioaddr;
505 np = netdev_priv(dev);
508 np->chip_id = chip_idx;
509 np->msg_enable = (1 << debug) - 1;
510 spin_lock_init(&np->lock);
511 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
512 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
514 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
516 goto err_out_cleardev;
517 np->tx_ring = (struct netdev_desc *)ring_space;
518 np->tx_ring_dma = ring_dma;
520 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
522 goto err_out_unmap_tx;
523 np->rx_ring = (struct netdev_desc *)ring_space;
524 np->rx_ring_dma = ring_dma;
526 np->mii_if.dev = dev;
527 np->mii_if.mdio_read = mdio_read;
528 np->mii_if.mdio_write = mdio_write;
529 np->mii_if.phy_id_mask = 0x1f;
530 np->mii_if.reg_num_mask = 0x1f;
532 /* The chip-specific entries in the device structure. */
533 dev->open = &netdev_open;
534 dev->hard_start_xmit = &start_tx;
535 dev->stop = &netdev_close;
536 dev->get_stats = &get_stats;
537 dev->set_multicast_list = &set_rx_mode;
538 dev->do_ioctl = &netdev_ioctl;
539 SET_ETHTOOL_OPS(dev, ðtool_ops);
540 dev->tx_timeout = &tx_timeout;
541 dev->watchdog_timeo = TX_TIMEOUT;
542 dev->change_mtu = &change_mtu;
543 pci_set_drvdata(pdev, dev);
545 i = register_netdev(dev);
547 goto err_out_unmap_rx;
549 printk(KERN_INFO "%s: %s at %p, ",
550 dev->name, pci_id_tbl[chip_idx].name, ioaddr);
551 for (i = 0; i < 5; i++)
552 printk("%2.2x:", dev->dev_addr[i]);
553 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
555 np->phys[0] = 1; /* Default setting */
556 np->mii_preamble_required++;
558 * It seems some phys doesn't deal well with address 0 being accessed
559 * first, so leave address zero to the end of the loop (32 & 31).
561 for (phy = 1; phy <= 32 && phy_idx < MII_CNT; phy++) {
562 int phyx = phy & 0x1f;
563 int mii_status = mdio_read(dev, phyx, MII_BMSR);
564 if (mii_status != 0xffff && mii_status != 0x0000) {
565 np->phys[phy_idx++] = phyx;
566 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
567 if ((mii_status & 0x0040) == 0)
568 np->mii_preamble_required++;
569 printk(KERN_INFO "%s: MII PHY found at address %d, status "
570 "0x%4.4x advertising %4.4x.\n",
571 dev->name, phyx, mii_status, np->mii_if.advertising);
574 np->mii_preamble_required--;
577 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
578 dev->name, ioread32(ioaddr + ASICCtrl));
579 goto err_out_unregister;
582 np->mii_if.phy_id = np->phys[0];
584 /* Parse override configuration */
586 if (card_idx < MAX_UNITS) {
587 if (media[card_idx] != NULL) {
589 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
590 strcmp (media[card_idx], "4") == 0) {
592 np->mii_if.full_duplex = 1;
593 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
594 || strcmp (media[card_idx], "3") == 0) {
596 np->mii_if.full_duplex = 0;
597 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
598 strcmp (media[card_idx], "2") == 0) {
600 np->mii_if.full_duplex = 1;
601 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
602 strcmp (media[card_idx], "1") == 0) {
604 np->mii_if.full_duplex = 0;
614 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
615 /* Default 100Mbps Full */
618 np->mii_if.full_duplex = 1;
623 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
625 /* If flow control enabled, we need to advertise it.*/
627 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
628 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
629 /* Force media type */
630 if (!np->an_enable) {
632 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
633 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
634 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
635 printk (KERN_INFO "Override speed=%d, %s duplex\n",
636 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
640 /* Perhaps move the reset here? */
641 /* Reset the chip to erase previous misconfiguration. */
642 if (netif_msg_hw(np))
643 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
644 sundance_reset(dev, 0x00ff << 16);
645 if (netif_msg_hw(np))
646 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
652 unregister_netdev(dev);
654 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
656 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
658 pci_set_drvdata(pdev, NULL);
659 pci_iounmap(pdev, ioaddr);
661 pci_release_regions(pdev);
667 static int change_mtu(struct net_device *dev, int new_mtu)
669 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
671 if (netif_running(dev))
677 #define eeprom_delay(ee_addr) ioread32(ee_addr)
678 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
679 static int __devinit eeprom_read(void __iomem *ioaddr, int location)
681 int boguscnt = 10000; /* Typical 1900 ticks. */
682 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
684 eeprom_delay(ioaddr + EECtrl);
685 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
686 return ioread16(ioaddr + EEData);
688 } while (--boguscnt > 0);
692 /* MII transceiver control section.
693 Read and write the MII registers using software-generated serial
694 MDIO protocol. See the MII specifications or DP83840A data sheet
697 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
698 met by back-to-back 33Mhz PCI cycles. */
699 #define mdio_delay() ioread8(mdio_addr)
702 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
704 #define MDIO_EnbIn (0)
705 #define MDIO_WRITE0 (MDIO_EnbOutput)
706 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
708 /* Generate the preamble required for initial synchronization and
709 a few older transceivers. */
710 static void mdio_sync(void __iomem *mdio_addr)
714 /* Establish sync by sending at least 32 logic ones. */
715 while (--bits >= 0) {
716 iowrite8(MDIO_WRITE1, mdio_addr);
718 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
723 static int mdio_read(struct net_device *dev, int phy_id, int location)
725 struct netdev_private *np = netdev_priv(dev);
726 void __iomem *mdio_addr = np->base + MIICtrl;
727 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
730 if (np->mii_preamble_required)
731 mdio_sync(mdio_addr);
733 /* Shift the read command bits out. */
734 for (i = 15; i >= 0; i--) {
735 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
737 iowrite8(dataval, mdio_addr);
739 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
742 /* Read the two transition, 16 data, and wire-idle bits. */
743 for (i = 19; i > 0; i--) {
744 iowrite8(MDIO_EnbIn, mdio_addr);
746 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
747 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
750 return (retval>>1) & 0xffff;
753 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
755 struct netdev_private *np = netdev_priv(dev);
756 void __iomem *mdio_addr = np->base + MIICtrl;
757 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
760 if (np->mii_preamble_required)
761 mdio_sync(mdio_addr);
763 /* Shift the command bits out. */
764 for (i = 31; i >= 0; i--) {
765 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
767 iowrite8(dataval, mdio_addr);
769 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
772 /* Clear out extra bits. */
773 for (i = 2; i > 0; i--) {
774 iowrite8(MDIO_EnbIn, mdio_addr);
776 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
782 static int netdev_open(struct net_device *dev)
784 struct netdev_private *np = netdev_priv(dev);
785 void __iomem *ioaddr = np->base;
789 /* Do we need to reset the chip??? */
791 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
795 if (netif_msg_ifup(np))
796 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
797 dev->name, dev->irq);
800 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
801 /* The Tx list pointer is written as packets are queued. */
803 /* Initialize other registers. */
805 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
806 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
808 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
811 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
813 /* Configure the PCI bus bursts and FIFO thresholds. */
815 if (dev->if_port == 0)
816 dev->if_port = np->default_port;
818 spin_lock_init(&np->mcastlock);
821 iowrite16(0, ioaddr + IntrEnable);
822 iowrite16(0, ioaddr + DownCounter);
823 /* Set the chip to poll every N*320nsec. */
824 iowrite8(100, ioaddr + RxDMAPollPeriod);
825 iowrite8(127, ioaddr + TxDMAPollPeriod);
826 /* Fix DFE-580TX packet drop issue */
827 if (np->pci_dev->revision >= 0x14)
828 iowrite8(0x01, ioaddr + DebugCtrl1);
829 netif_start_queue(dev);
831 spin_lock_irqsave(&np->lock, flags);
833 spin_unlock_irqrestore(&np->lock, flags);
835 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
837 if (netif_msg_ifup(np))
838 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
839 "MAC Control %x, %4.4x %4.4x.\n",
840 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
841 ioread32(ioaddr + MACCtrl0),
842 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
844 /* Set the timer to check for link beat. */
845 init_timer(&np->timer);
846 np->timer.expires = jiffies + 3*HZ;
847 np->timer.data = (unsigned long)dev;
848 np->timer.function = &netdev_timer; /* timer handler */
849 add_timer(&np->timer);
851 /* Enable interrupts by setting the interrupt mask. */
852 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
857 static void check_duplex(struct net_device *dev)
859 struct netdev_private *np = netdev_priv(dev);
860 void __iomem *ioaddr = np->base;
861 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
862 int negotiated = mii_lpa & np->mii_if.advertising;
866 if (!np->an_enable || mii_lpa == 0xffff) {
867 if (np->mii_if.full_duplex)
868 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
873 /* Autonegotiation */
874 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
875 if (np->mii_if.full_duplex != duplex) {
876 np->mii_if.full_duplex = duplex;
877 if (netif_msg_link(np))
878 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
879 "negotiated capability %4.4x.\n", dev->name,
880 duplex ? "full" : "half", np->phys[0], negotiated);
881 iowrite16(ioread16(ioaddr + MACCtrl0) | duplex ? 0x20 : 0, ioaddr + MACCtrl0);
885 static void netdev_timer(unsigned long data)
887 struct net_device *dev = (struct net_device *)data;
888 struct netdev_private *np = netdev_priv(dev);
889 void __iomem *ioaddr = np->base;
890 int next_tick = 10*HZ;
892 if (netif_msg_timer(np)) {
893 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
895 dev->name, ioread16(ioaddr + IntrEnable),
896 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
899 np->timer.expires = jiffies + next_tick;
900 add_timer(&np->timer);
903 static void tx_timeout(struct net_device *dev)
905 struct netdev_private *np = netdev_priv(dev);
906 void __iomem *ioaddr = np->base;
909 netif_stop_queue(dev);
910 tasklet_disable(&np->tx_tasklet);
911 iowrite16(0, ioaddr + IntrEnable);
912 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
914 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
915 ioread8(ioaddr + TxFrameId));
919 for (i=0; i<TX_RING_SIZE; i++) {
920 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
921 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
922 le32_to_cpu(np->tx_ring[i].next_desc),
923 le32_to_cpu(np->tx_ring[i].status),
924 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
925 le32_to_cpu(np->tx_ring[i].frag[0].addr),
926 le32_to_cpu(np->tx_ring[i].frag[0].length));
928 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
929 ioread32(np->base + TxListPtr),
930 netif_queue_stopped(dev));
931 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
932 np->cur_tx, np->cur_tx % TX_RING_SIZE,
933 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
934 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
935 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
937 spin_lock_irqsave(&np->lock, flag);
939 /* Stop and restart the chip's Tx processes . */
941 spin_unlock_irqrestore(&np->lock, flag);
945 dev->trans_start = jiffies;
946 np->stats.tx_errors++;
947 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
948 netif_wake_queue(dev);
950 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
951 tasklet_enable(&np->tx_tasklet);
955 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
956 static void init_ring(struct net_device *dev)
958 struct netdev_private *np = netdev_priv(dev);
961 np->cur_rx = np->cur_tx = 0;
962 np->dirty_rx = np->dirty_tx = 0;
965 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
967 /* Initialize all Rx descriptors. */
968 for (i = 0; i < RX_RING_SIZE; i++) {
969 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
970 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
971 np->rx_ring[i].status = 0;
972 np->rx_ring[i].frag[0].length = 0;
973 np->rx_skbuff[i] = NULL;
976 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
977 for (i = 0; i < RX_RING_SIZE; i++) {
978 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
979 np->rx_skbuff[i] = skb;
982 skb->dev = dev; /* Mark as being used by this device. */
983 skb_reserve(skb, 2); /* 16 byte align the IP header. */
984 np->rx_ring[i].frag[0].addr = cpu_to_le32(
985 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz,
986 PCI_DMA_FROMDEVICE));
987 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
989 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
991 for (i = 0; i < TX_RING_SIZE; i++) {
992 np->tx_skbuff[i] = NULL;
993 np->tx_ring[i].status = 0;
998 static void tx_poll (unsigned long data)
1000 struct net_device *dev = (struct net_device *)data;
1001 struct netdev_private *np = netdev_priv(dev);
1002 unsigned head = np->cur_task % TX_RING_SIZE;
1003 struct netdev_desc *txdesc =
1004 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1006 /* Chain the next pointer */
1007 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1008 int entry = np->cur_task % TX_RING_SIZE;
1009 txdesc = &np->tx_ring[entry];
1011 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1012 entry*sizeof(struct netdev_desc));
1014 np->last_tx = txdesc;
1016 /* Indicate the latest descriptor of tx ring */
1017 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1019 if (ioread32 (np->base + TxListPtr) == 0)
1020 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1021 np->base + TxListPtr);
1026 start_tx (struct sk_buff *skb, struct net_device *dev)
1028 struct netdev_private *np = netdev_priv(dev);
1029 struct netdev_desc *txdesc;
1032 /* Calculate the next Tx descriptor entry. */
1033 entry = np->cur_tx % TX_RING_SIZE;
1034 np->tx_skbuff[entry] = skb;
1035 txdesc = &np->tx_ring[entry];
1037 txdesc->next_desc = 0;
1038 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1039 txdesc->frag[0].addr = cpu_to_le32 (pci_map_single (np->pci_dev, skb->data,
1042 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1044 /* Increment cur_tx before tasklet_schedule() */
1047 /* Schedule a tx_poll() task */
1048 tasklet_schedule(&np->tx_tasklet);
1050 /* On some architectures: explicitly flush cache lines here. */
1051 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1
1052 && !netif_queue_stopped(dev)) {
1055 netif_stop_queue (dev);
1057 dev->trans_start = jiffies;
1058 if (netif_msg_tx_queued(np)) {
1060 "%s: Transmit frame #%d queued in slot %d.\n",
1061 dev->name, np->cur_tx, entry);
1066 /* Reset hardware tx and free all of tx buffers */
1068 reset_tx (struct net_device *dev)
1070 struct netdev_private *np = netdev_priv(dev);
1071 void __iomem *ioaddr = np->base;
1072 struct sk_buff *skb;
1074 int irq = in_interrupt();
1076 /* Reset tx logic, TxListPtr will be cleaned */
1077 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1078 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1080 /* free all tx skbuff */
1081 for (i = 0; i < TX_RING_SIZE; i++) {
1082 np->tx_ring[i].next_desc = 0;
1084 skb = np->tx_skbuff[i];
1086 pci_unmap_single(np->pci_dev,
1087 np->tx_ring[i].frag[0].addr, skb->len,
1090 dev_kfree_skb_irq (skb);
1092 dev_kfree_skb (skb);
1093 np->tx_skbuff[i] = NULL;
1094 np->stats.tx_dropped++;
1097 np->cur_tx = np->dirty_tx = 0;
1101 iowrite8(127, ioaddr + TxDMAPollPeriod);
1103 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1107 /* The interrupt handler cleans up after the Tx thread,
1108 and schedule a Rx thread work */
1109 static irqreturn_t intr_handler(int irq, void *dev_instance)
1111 struct net_device *dev = (struct net_device *)dev_instance;
1112 struct netdev_private *np = netdev_priv(dev);
1113 void __iomem *ioaddr = np->base;
1122 int intr_status = ioread16(ioaddr + IntrStatus);
1123 iowrite16(intr_status, ioaddr + IntrStatus);
1125 if (netif_msg_intr(np))
1126 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1127 dev->name, intr_status);
1129 if (!(intr_status & DEFAULT_INTR))
1134 if (intr_status & (IntrRxDMADone)) {
1135 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1136 ioaddr + IntrEnable);
1138 np->budget = RX_BUDGET;
1139 tasklet_schedule(&np->rx_tasklet);
1141 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1142 tx_status = ioread16 (ioaddr + TxStatus);
1143 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1144 if (netif_msg_tx_done(np))
1146 ("%s: Transmit status is %2.2x.\n",
1147 dev->name, tx_status);
1148 if (tx_status & 0x1e) {
1149 if (netif_msg_tx_err(np))
1150 printk("%s: Transmit error status %4.4x.\n",
1151 dev->name, tx_status);
1152 np->stats.tx_errors++;
1153 if (tx_status & 0x10)
1154 np->stats.tx_fifo_errors++;
1155 if (tx_status & 0x08)
1156 np->stats.collisions++;
1157 if (tx_status & 0x04)
1158 np->stats.tx_fifo_errors++;
1159 if (tx_status & 0x02)
1160 np->stats.tx_window_errors++;
1163 ** This reset has been verified on
1164 ** DFE-580TX boards ! phdm@macqel.be.
1166 if (tx_status & 0x10) { /* TxUnderrun */
1167 /* Restart Tx FIFO and transmitter */
1168 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1169 /* No need to reset the Tx pointer here */
1171 /* Restart the Tx. Need to make sure tx enabled */
1174 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1175 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1180 /* Yup, this is a documentation bug. It cost me *hours*. */
1181 iowrite16 (0, ioaddr + TxStatus);
1183 iowrite32(5000, ioaddr + DownCounter);
1186 tx_status = ioread16 (ioaddr + TxStatus);
1188 hw_frame_id = (tx_status >> 8) & 0xff;
1190 hw_frame_id = ioread8(ioaddr + TxFrameId);
1193 if (np->pci_dev->revision >= 0x14) {
1194 spin_lock(&np->lock);
1195 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1196 int entry = np->dirty_tx % TX_RING_SIZE;
1197 struct sk_buff *skb;
1199 sw_frame_id = (le32_to_cpu(
1200 np->tx_ring[entry].status) >> 2) & 0xff;
1201 if (sw_frame_id == hw_frame_id &&
1202 !(le32_to_cpu(np->tx_ring[entry].status)
1205 if (sw_frame_id == (hw_frame_id + 1) %
1208 skb = np->tx_skbuff[entry];
1209 /* Free the original skb. */
1210 pci_unmap_single(np->pci_dev,
1211 np->tx_ring[entry].frag[0].addr,
1212 skb->len, PCI_DMA_TODEVICE);
1213 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1214 np->tx_skbuff[entry] = NULL;
1215 np->tx_ring[entry].frag[0].addr = 0;
1216 np->tx_ring[entry].frag[0].length = 0;
1218 spin_unlock(&np->lock);
1220 spin_lock(&np->lock);
1221 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1222 int entry = np->dirty_tx % TX_RING_SIZE;
1223 struct sk_buff *skb;
1224 if (!(le32_to_cpu(np->tx_ring[entry].status)
1227 skb = np->tx_skbuff[entry];
1228 /* Free the original skb. */
1229 pci_unmap_single(np->pci_dev,
1230 np->tx_ring[entry].frag[0].addr,
1231 skb->len, PCI_DMA_TODEVICE);
1232 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1233 np->tx_skbuff[entry] = NULL;
1234 np->tx_ring[entry].frag[0].addr = 0;
1235 np->tx_ring[entry].frag[0].length = 0;
1237 spin_unlock(&np->lock);
1240 if (netif_queue_stopped(dev) &&
1241 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1242 /* The ring is no longer full, clear busy flag. */
1243 netif_wake_queue (dev);
1245 /* Abnormal error summary/uncommon events handlers. */
1246 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1247 netdev_error(dev, intr_status);
1249 if (netif_msg_intr(np))
1250 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1251 dev->name, ioread16(ioaddr + IntrStatus));
1252 return IRQ_RETVAL(handled);
1255 static void rx_poll(unsigned long data)
1257 struct net_device *dev = (struct net_device *)data;
1258 struct netdev_private *np = netdev_priv(dev);
1259 int entry = np->cur_rx % RX_RING_SIZE;
1260 int boguscnt = np->budget;
1261 void __iomem *ioaddr = np->base;
1264 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1266 struct netdev_desc *desc = &(np->rx_ring[entry]);
1267 u32 frame_status = le32_to_cpu(desc->status);
1270 if (--boguscnt < 0) {
1273 if (!(frame_status & DescOwn))
1275 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1276 if (netif_msg_rx_status(np))
1277 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1279 if (frame_status & 0x001f4000) {
1280 /* There was a error. */
1281 if (netif_msg_rx_err(np))
1282 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1284 np->stats.rx_errors++;
1285 if (frame_status & 0x00100000) np->stats.rx_length_errors++;
1286 if (frame_status & 0x00010000) np->stats.rx_fifo_errors++;
1287 if (frame_status & 0x00060000) np->stats.rx_frame_errors++;
1288 if (frame_status & 0x00080000) np->stats.rx_crc_errors++;
1289 if (frame_status & 0x00100000) {
1290 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1292 dev->name, frame_status);
1295 struct sk_buff *skb;
1296 #ifndef final_version
1297 if (netif_msg_rx_status(np))
1298 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1299 ", bogus_cnt %d.\n",
1302 /* Check if the packet is long enough to accept without copying
1303 to a minimally-sized skbuff. */
1304 if (pkt_len < rx_copybreak
1305 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1306 skb_reserve(skb, 2); /* 16 byte align the IP header */
1307 pci_dma_sync_single_for_cpu(np->pci_dev,
1310 PCI_DMA_FROMDEVICE);
1312 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1313 pci_dma_sync_single_for_device(np->pci_dev,
1316 PCI_DMA_FROMDEVICE);
1317 skb_put(skb, pkt_len);
1319 pci_unmap_single(np->pci_dev,
1322 PCI_DMA_FROMDEVICE);
1323 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1324 np->rx_skbuff[entry] = NULL;
1326 skb->protocol = eth_type_trans(skb, dev);
1327 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1329 dev->last_rx = jiffies;
1331 entry = (entry + 1) % RX_RING_SIZE;
1336 np->budget -= received;
1337 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1345 np->budget -= received;
1346 if (np->budget <= 0)
1347 np->budget = RX_BUDGET;
1348 tasklet_schedule(&np->rx_tasklet);
1352 static void refill_rx (struct net_device *dev)
1354 struct netdev_private *np = netdev_priv(dev);
1358 /* Refill the Rx ring buffers. */
1359 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1360 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1361 struct sk_buff *skb;
1362 entry = np->dirty_rx % RX_RING_SIZE;
1363 if (np->rx_skbuff[entry] == NULL) {
1364 skb = dev_alloc_skb(np->rx_buf_sz);
1365 np->rx_skbuff[entry] = skb;
1367 break; /* Better luck next round. */
1368 skb->dev = dev; /* Mark as being used by this device. */
1369 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1370 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1371 pci_map_single(np->pci_dev, skb->data,
1372 np->rx_buf_sz, PCI_DMA_FROMDEVICE));
1374 /* Perhaps we need not reset this field. */
1375 np->rx_ring[entry].frag[0].length =
1376 cpu_to_le32(np->rx_buf_sz | LastFrag);
1377 np->rx_ring[entry].status = 0;
1382 static void netdev_error(struct net_device *dev, int intr_status)
1384 struct netdev_private *np = netdev_priv(dev);
1385 void __iomem *ioaddr = np->base;
1386 u16 mii_ctl, mii_advertise, mii_lpa;
1389 if (intr_status & LinkChange) {
1390 if (np->an_enable) {
1391 mii_advertise = mdio_read (dev, np->phys[0], MII_ADVERTISE);
1392 mii_lpa= mdio_read (dev, np->phys[0], MII_LPA);
1393 mii_advertise &= mii_lpa;
1394 printk (KERN_INFO "%s: Link changed: ", dev->name);
1395 if (mii_advertise & ADVERTISE_100FULL) {
1397 printk ("100Mbps, full duplex\n");
1398 } else if (mii_advertise & ADVERTISE_100HALF) {
1400 printk ("100Mbps, half duplex\n");
1401 } else if (mii_advertise & ADVERTISE_10FULL) {
1403 printk ("10Mbps, full duplex\n");
1404 } else if (mii_advertise & ADVERTISE_10HALF) {
1406 printk ("10Mbps, half duplex\n");
1411 mii_ctl = mdio_read (dev, np->phys[0], MII_BMCR);
1412 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1414 printk (KERN_INFO "%s: Link changed: %dMbps ,",
1416 printk ("%s duplex.\n", (mii_ctl & BMCR_FULLDPLX) ?
1420 if (np->flowctrl && np->mii_if.full_duplex) {
1421 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1422 ioaddr + MulticastFilter1+2);
1423 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1427 if (intr_status & StatsMax) {
1430 if (intr_status & IntrPCIErr) {
1431 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1432 dev->name, intr_status);
1433 /* We must do a global reset of DMA to continue. */
1437 static struct net_device_stats *get_stats(struct net_device *dev)
1439 struct netdev_private *np = netdev_priv(dev);
1440 void __iomem *ioaddr = np->base;
1443 /* We should lock this segment of code for SMP eventually, although
1444 the vulnerability window is very small and statistics are
1446 /* The chip only need report frame silently dropped. */
1447 np->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1448 np->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1449 np->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1450 np->stats.collisions += ioread8(ioaddr + StatsLateColl);
1451 np->stats.collisions += ioread8(ioaddr + StatsMultiColl);
1452 np->stats.collisions += ioread8(ioaddr + StatsOneColl);
1453 np->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1454 ioread8(ioaddr + StatsTxDefer);
1455 for (i = StatsTxDefer; i <= StatsMcastRx; i++)
1456 ioread8(ioaddr + i);
1457 np->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1458 np->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1459 np->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1460 np->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1465 static void set_rx_mode(struct net_device *dev)
1467 struct netdev_private *np = netdev_priv(dev);
1468 void __iomem *ioaddr = np->base;
1469 u16 mc_filter[4]; /* Multicast hash filter */
1473 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1474 memset(mc_filter, 0xff, sizeof(mc_filter));
1475 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1476 } else if ((dev->mc_count > multicast_filter_limit)
1477 || (dev->flags & IFF_ALLMULTI)) {
1478 /* Too many to match, or accept all multicasts. */
1479 memset(mc_filter, 0xff, sizeof(mc_filter));
1480 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1481 } else if (dev->mc_count) {
1482 struct dev_mc_list *mclist;
1486 memset (mc_filter, 0, sizeof (mc_filter));
1487 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1488 i++, mclist = mclist->next) {
1489 crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1490 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1491 if (crc & 0x80000000) index |= 1 << bit;
1492 mc_filter[index/16] |= (1 << (index % 16));
1494 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1496 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1499 if (np->mii_if.full_duplex && np->flowctrl)
1500 mc_filter[3] |= 0x0200;
1502 for (i = 0; i < 4; i++)
1503 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1504 iowrite8(rx_mode, ioaddr + RxMode);
1507 static int __set_mac_addr(struct net_device *dev)
1509 struct netdev_private *np = netdev_priv(dev);
1512 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1513 iowrite16(addr16, np->base + StationAddr);
1514 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1515 iowrite16(addr16, np->base + StationAddr+2);
1516 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1517 iowrite16(addr16, np->base + StationAddr+4);
1521 static int check_if_running(struct net_device *dev)
1523 if (!netif_running(dev))
1528 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1530 struct netdev_private *np = netdev_priv(dev);
1531 strcpy(info->driver, DRV_NAME);
1532 strcpy(info->version, DRV_VERSION);
1533 strcpy(info->bus_info, pci_name(np->pci_dev));
1536 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1538 struct netdev_private *np = netdev_priv(dev);
1539 spin_lock_irq(&np->lock);
1540 mii_ethtool_gset(&np->mii_if, ecmd);
1541 spin_unlock_irq(&np->lock);
1545 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1547 struct netdev_private *np = netdev_priv(dev);
1549 spin_lock_irq(&np->lock);
1550 res = mii_ethtool_sset(&np->mii_if, ecmd);
1551 spin_unlock_irq(&np->lock);
1555 static int nway_reset(struct net_device *dev)
1557 struct netdev_private *np = netdev_priv(dev);
1558 return mii_nway_restart(&np->mii_if);
1561 static u32 get_link(struct net_device *dev)
1563 struct netdev_private *np = netdev_priv(dev);
1564 return mii_link_ok(&np->mii_if);
1567 static u32 get_msglevel(struct net_device *dev)
1569 struct netdev_private *np = netdev_priv(dev);
1570 return np->msg_enable;
1573 static void set_msglevel(struct net_device *dev, u32 val)
1575 struct netdev_private *np = netdev_priv(dev);
1576 np->msg_enable = val;
1579 static const struct ethtool_ops ethtool_ops = {
1580 .begin = check_if_running,
1581 .get_drvinfo = get_drvinfo,
1582 .get_settings = get_settings,
1583 .set_settings = set_settings,
1584 .nway_reset = nway_reset,
1585 .get_link = get_link,
1586 .get_msglevel = get_msglevel,
1587 .set_msglevel = set_msglevel,
1590 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1592 struct netdev_private *np = netdev_priv(dev);
1593 void __iomem *ioaddr = np->base;
1597 if (!netif_running(dev))
1600 spin_lock_irq(&np->lock);
1601 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1602 spin_unlock_irq(&np->lock);
1604 case SIOCDEVPRIVATE:
1605 for (i=0; i<TX_RING_SIZE; i++) {
1606 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
1607 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
1608 le32_to_cpu(np->tx_ring[i].next_desc),
1609 le32_to_cpu(np->tx_ring[i].status),
1610 (le32_to_cpu(np->tx_ring[i].status) >> 2)
1612 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1613 le32_to_cpu(np->tx_ring[i].frag[0].length));
1615 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
1616 ioread32(np->base + TxListPtr),
1617 netif_queue_stopped(dev));
1618 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1619 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1620 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1621 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1622 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1623 printk(KERN_DEBUG "TxStatus=%04x\n", ioread16(ioaddr + TxStatus));
1631 static int netdev_close(struct net_device *dev)
1633 struct netdev_private *np = netdev_priv(dev);
1634 void __iomem *ioaddr = np->base;
1635 struct sk_buff *skb;
1638 /* Wait and kill tasklet */
1639 tasklet_kill(&np->rx_tasklet);
1640 tasklet_kill(&np->tx_tasklet);
1646 netif_stop_queue(dev);
1648 if (netif_msg_ifdown(np)) {
1649 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1650 "Rx %4.4x Int %2.2x.\n",
1651 dev->name, ioread8(ioaddr + TxStatus),
1652 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1653 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1654 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1657 /* Disable interrupts by clearing the interrupt mask. */
1658 iowrite16(0x0000, ioaddr + IntrEnable);
1660 /* Disable Rx and Tx DMA for safely release resource */
1661 iowrite32(0x500, ioaddr + DMACtrl);
1663 /* Stop the chip's Tx and Rx processes. */
1664 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1666 for (i = 2000; i > 0; i--) {
1667 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1672 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1673 ioaddr +ASICCtrl + 2);
1675 for (i = 2000; i > 0; i--) {
1676 if ((ioread16(ioaddr + ASICCtrl +2) & ResetBusy) == 0)
1682 if (netif_msg_hw(np)) {
1683 printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n",
1684 (int)(np->tx_ring_dma));
1685 for (i = 0; i < TX_RING_SIZE; i++)
1686 printk(" #%d desc. %4.4x %8.8x %8.8x.\n",
1687 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1688 np->tx_ring[i].frag[0].length);
1689 printk("\n"KERN_DEBUG " Rx ring %8.8x:\n",
1690 (int)(np->rx_ring_dma));
1691 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1692 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1693 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1694 np->rx_ring[i].frag[0].length);
1697 #endif /* __i386__ debugging only */
1699 free_irq(dev->irq, dev);
1701 del_timer_sync(&np->timer);
1703 /* Free all the skbuffs in the Rx queue. */
1704 for (i = 0; i < RX_RING_SIZE; i++) {
1705 np->rx_ring[i].status = 0;
1706 np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
1707 skb = np->rx_skbuff[i];
1709 pci_unmap_single(np->pci_dev,
1710 np->rx_ring[i].frag[0].addr, np->rx_buf_sz,
1711 PCI_DMA_FROMDEVICE);
1713 np->rx_skbuff[i] = NULL;
1716 for (i = 0; i < TX_RING_SIZE; i++) {
1717 np->tx_ring[i].next_desc = 0;
1718 skb = np->tx_skbuff[i];
1720 pci_unmap_single(np->pci_dev,
1721 np->tx_ring[i].frag[0].addr, skb->len,
1724 np->tx_skbuff[i] = NULL;
1731 static void __devexit sundance_remove1 (struct pci_dev *pdev)
1733 struct net_device *dev = pci_get_drvdata(pdev);
1736 struct netdev_private *np = netdev_priv(dev);
1738 unregister_netdev(dev);
1739 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
1741 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
1743 pci_iounmap(pdev, np->base);
1744 pci_release_regions(pdev);
1746 pci_set_drvdata(pdev, NULL);
1750 static struct pci_driver sundance_driver = {
1752 .id_table = sundance_pci_tbl,
1753 .probe = sundance_probe1,
1754 .remove = __devexit_p(sundance_remove1),
1757 static int __init sundance_init(void)
1759 /* when a module, this is printed whether or not devices are found in probe */
1763 return pci_register_driver(&sundance_driver);
1766 static void __exit sundance_exit(void)
1768 pci_unregister_driver(&sundance_driver);
1771 module_init(sundance_init);
1772 module_exit(sundance_exit);