2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
45 #include <asm/uaccess.h>
47 #include <asm/hwrpb.h>
48 #include <asm/8253pit.h>
50 #include <linux/mc146818rtc.h>
51 #include <linux/time.h>
52 #include <linux/timex.h>
57 static int set_rtc_mmss(unsigned long);
59 DEFINE_SPINLOCK(rtc_lock);
61 #define TICK_SIZE (tick_nsec / 1000)
64 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
65 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
66 * for large CPU clock rates.
70 /* lump static variables together for more efficient access: */
72 /* cycle counter last time it got invoked */
74 /* ticks/cycle * 2^48 */
75 unsigned long scaled_ticks_per_cycle;
76 /* last time the CMOS clock got updated */
77 time_t last_rtc_update;
78 /* partial unused tick */
79 unsigned long partial_tick;
82 unsigned long est_cycle_freq;
85 static inline __u32 rpcc(void)
88 asm volatile ("rpcc %0" : "=r"(result));
93 * Scheduler clock - returns current time in nanosec units.
95 * Copied from ARM code for expediency... ;-}
97 unsigned long long sched_clock(void)
99 return (unsigned long long)jiffies * (1000000000 / HZ);
104 * timer_interrupt() needs to keep up the real-time clock,
105 * as well as call the "do_timer()" routine every clocktick
107 irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs)
114 /* Not SMP, do kernel PC profiling here. */
115 profile_tick(CPU_PROFILING, regs);
118 write_seqlock(&xtime_lock);
121 * Calculate how many ticks have passed since the last update,
122 * including any previous partial leftover. Save any resulting
123 * fraction for the next pass.
126 delta = now - state.last_time;
127 state.last_time = now;
128 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
129 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
130 nticks = delta >> FIX_SHIFT;
135 update_process_times(user_mode(regs));
141 * If we have an externally synchronized Linux clock, then update
142 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
143 * called as close as possible to 500 ms before the new second starts.
146 && xtime.tv_sec > state.last_rtc_update + 660
147 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
148 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
149 int tmp = set_rtc_mmss(xtime.tv_sec);
150 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
153 write_sequnlock(&xtime_lock);
158 common_init_rtc(void)
162 /* Reset periodic interrupt frequency. */
163 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
164 /* Test includes known working values on various platforms
165 where 0x26 is wrong; we refuse to change those. */
166 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
167 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
168 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
171 /* Turn on periodic interrupts. */
172 x = CMOS_READ(RTC_CONTROL);
173 if (!(x & RTC_PIE)) {
174 printk("Turning on RTC interrupts.\n");
176 x &= ~(RTC_AIE | RTC_UIE);
177 CMOS_WRITE(x, RTC_CONTROL);
179 (void) CMOS_READ(RTC_INTR_FLAGS);
181 outb(0x36, 0x43); /* pit counter 0: system timer */
185 outb(0xb6, 0x43); /* pit counter 2: speaker */
193 /* Validate a computed cycle counter result against the known bounds for
194 the given processor core. There's too much brokenness in the way of
195 timing hardware for any one method to work everywhere. :-(
197 Return 0 if the result cannot be trusted, otherwise return the argument. */
199 static unsigned long __init
200 validate_cc_value(unsigned long cc)
202 static struct bounds {
203 unsigned int min, max;
204 } cpu_hz[] __initdata = {
205 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
206 [EV4_CPU] = { 100000000, 300000000 },
207 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
208 [EV45_CPU] = { 200000000, 300000000 },
209 [EV5_CPU] = { 250000000, 433000000 },
210 [EV56_CPU] = { 333000000, 667000000 },
211 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
212 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
213 [EV6_CPU] = { 466000000, 600000000 },
214 [EV67_CPU] = { 600000000, 750000000 },
215 [EV68AL_CPU] = { 750000000, 940000000 },
216 [EV68CB_CPU] = { 1000000000, 1333333333 },
217 /* None of the following are shipping as of 2001-11-01. */
218 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
219 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
220 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
221 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
224 /* Allow for some drift in the crystal. 10MHz is more than enough. */
225 const unsigned int deviation = 10000000;
227 struct percpu_struct *cpu;
230 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
231 index = cpu->type & 0xffffffff;
233 /* If index out of bounds, no way to validate. */
234 if (index >= ARRAY_SIZE(cpu_hz))
237 /* If index contains no data, no way to validate. */
238 if (cpu_hz[index].max == 0)
241 if (cc < cpu_hz[index].min - deviation
242 || cc > cpu_hz[index].max + deviation)
250 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
254 #define CALIBRATE_LATCH 0xffff
255 #define TIMEOUT_COUNT 0x100000
257 static unsigned long __init
258 calibrate_cc_with_pit(void)
262 /* Set the Gate high, disable speaker */
263 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
266 * Now let's take care of CTC channel 2
268 * Set the Gate high, program CTC channel 2 for mode 0,
269 * (interrupt on terminal count mode), binary count,
270 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
272 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
273 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
274 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
279 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
282 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
283 if (count <= 1 || count == TIMEOUT_COUNT)
286 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
289 /* The Linux interpretation of the CMOS clock register contents:
290 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
291 RTC registers show the second which has precisely just started.
292 Let's hope other operating systems interpret the RTC the same way. */
294 static unsigned long __init
295 rpcc_after_update_in_progress(void)
297 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
298 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
306 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
307 unsigned long cycle_freq, tolerance;
310 /* Calibrate CPU clock -- attempt #1. */
312 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
316 /* Calibrate CPU clock -- attempt #2. */
317 if (!est_cycle_freq) {
318 cc1 = rpcc_after_update_in_progress();
319 cc2 = rpcc_after_update_in_progress();
320 est_cycle_freq = validate_cc_value(cc2 - cc1);
324 cycle_freq = hwrpb->cycle_freq;
325 if (est_cycle_freq) {
326 /* If the given value is within 250 PPM of what we calculated,
327 accept it. Otherwise, use what we found. */
328 tolerance = cycle_freq / 4000;
329 diff = cycle_freq - est_cycle_freq;
332 if ((unsigned long)diff > tolerance) {
333 cycle_freq = est_cycle_freq;
334 printk("HWRPB cycle frequency bogus. "
335 "Estimated %lu Hz\n", cycle_freq);
339 } else if (! validate_cc_value (cycle_freq)) {
340 printk("HWRPB cycle frequency bogus, "
341 "and unable to estimate a proper value!\n");
344 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
345 to settle, as the Update-In-Progress bit going low isn't good
346 enough on some hardware. 2ms is our guess; we haven't found
347 bogomips yet, but this is close on a 500Mhz box. */
350 sec = CMOS_READ(RTC_SECONDS);
351 min = CMOS_READ(RTC_MINUTES);
352 hour = CMOS_READ(RTC_HOURS);
353 day = CMOS_READ(RTC_DAY_OF_MONTH);
354 mon = CMOS_READ(RTC_MONTH);
355 year = CMOS_READ(RTC_YEAR);
357 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
366 /* PC-like is standard; used for year >= 70 */
370 else if (year >= 20 && year < 48)
373 else if (year >= 48 && year < 70)
374 /* Digital UNIX epoch */
377 printk(KERN_INFO "Using epoch = %d\n", epoch);
379 if ((year += epoch) < 1970)
382 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
385 wall_to_monotonic.tv_sec -= xtime.tv_sec;
386 wall_to_monotonic.tv_nsec = 0;
389 extern void __you_loose (void);
393 state.last_time = cc1;
394 state.scaled_ticks_per_cycle
395 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
396 state.last_rtc_update = 0;
397 state.partial_tick = 0L;
399 /* Startup the timer source. */
404 * Use the cycle counter to estimate an displacement from the last time
405 * tick. Unfortunately the Alpha designers made only the low 32-bits of
406 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
407 * part. So we can't do the "find absolute time in terms of cycles" thing
408 * that the other ports do.
411 do_gettimeofday(struct timeval *tv)
414 unsigned long sec, usec, seq;
415 unsigned long delta_cycles, delta_usec, partial_tick;
418 seq = read_seqbegin_irqsave(&xtime_lock, flags);
420 delta_cycles = rpcc() - state.last_time;
422 usec = (xtime.tv_nsec / 1000);
423 partial_tick = state.partial_tick;
425 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
428 /* Until and unless we figure out how to get cpu cycle counters
429 in sync and keep them there, we can't use the rpcc tricks. */
433 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
434 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
435 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
437 * which, given a 600MHz cycle and a 1024Hz tick, has a
438 * dynamic range of about 1.7e17, which is less than the
439 * 1.8e19 in an unsigned long, so we are safe from overflow.
441 * Round, but with .5 up always, since .5 to even is harder
442 * with no clear gain.
445 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
446 + partial_tick) * 15625;
447 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
451 if (usec >= 1000000) {
460 EXPORT_SYMBOL(do_gettimeofday);
463 do_settimeofday(struct timespec *tv)
465 time_t wtm_sec, sec = tv->tv_sec;
466 long wtm_nsec, nsec = tv->tv_nsec;
467 unsigned long delta_nsec;
469 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
472 write_seqlock_irq(&xtime_lock);
474 /* The offset that is added into time in do_gettimeofday above
475 must be subtracted out here to keep a coherent view of the
476 time. Without this, a full-tick error is possible. */
481 delta_nsec = rpcc() - state.last_time;
482 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
483 + state.partial_tick) * 15625;
484 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
490 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
491 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
493 set_normalized_timespec(&xtime, sec, nsec);
494 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
498 write_sequnlock_irq(&xtime_lock);
503 EXPORT_SYMBOL(do_settimeofday);
507 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
508 * called 500 ms after the second nowtime has started, because when
509 * nowtime is written into the registers of the CMOS clock, it will
510 * jump to the next second precisely 500 ms later. Check the Motorola
511 * MC146818A or Dallas DS12887 data sheet for details.
513 * BUG: This routine does not handle hour overflow properly; it just
514 * sets the minutes. Usually you won't notice until after reboot!
519 set_rtc_mmss(unsigned long nowtime)
522 int real_seconds, real_minutes, cmos_minutes;
523 unsigned char save_control, save_freq_select;
525 /* irq are locally disabled here */
526 spin_lock(&rtc_lock);
527 /* Tell the clock it's being set */
528 save_control = CMOS_READ(RTC_CONTROL);
529 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
531 /* Stop and reset prescaler */
532 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
533 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
535 cmos_minutes = CMOS_READ(RTC_MINUTES);
536 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
537 BCD_TO_BIN(cmos_minutes);
540 * since we're only adjusting minutes and seconds,
541 * don't interfere with hour overflow. This avoids
542 * messing with unknown time zones but requires your
543 * RTC not to be off by more than 15 minutes
545 real_seconds = nowtime % 60;
546 real_minutes = nowtime / 60;
547 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
548 /* correct for half hour time zone */
553 if (abs(real_minutes - cmos_minutes) < 30) {
554 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
555 BIN_TO_BCD(real_seconds);
556 BIN_TO_BCD(real_minutes);
558 CMOS_WRITE(real_seconds,RTC_SECONDS);
559 CMOS_WRITE(real_minutes,RTC_MINUTES);
562 "set_rtc_mmss: can't update from %d to %d\n",
563 cmos_minutes, real_minutes);
567 /* The following flags have to be released exactly in this order,
568 * otherwise the DS12887 (popular MC146818A clone with integrated
569 * battery and quartz) will not reset the oscillator and will not
570 * update precisely 500 ms later. You won't find this mentioned in
571 * the Dallas Semiconductor data sheets, but who believes data
572 * sheets anyway ... -- Markus Kuhn
574 CMOS_WRITE(save_control, RTC_CONTROL);
575 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
576 spin_unlock(&rtc_lock);