Pull osi into release branch
[linux-2.6] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/seq_file.h>
25 #include <linux/kdev_t.h>
26 #include <linux/major.h>
27 #include <linux/root_dev.h>
28 #include <linux/kernel.h>
29
30 #include <asm/processor.h>
31 #include <asm/machdep.h>
32 #include <asm/page.h>
33 #include <asm/mmu.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cputable.h>
37 #include <asm/sections.h>
38 #include <asm/iommu.h>
39 #include <asm/firmware.h>
40 #include <asm/system.h>
41 #include <asm/time.h>
42 #include <asm/paca.h>
43 #include <asm/cache.h>
44 #include <asm/sections.h>
45 #include <asm/abs_addr.h>
46 #include <asm/iseries/hv_lp_config.h>
47 #include <asm/iseries/hv_call_event.h>
48 #include <asm/iseries/hv_call_xm.h>
49 #include <asm/iseries/it_lp_queue.h>
50 #include <asm/iseries/mf.h>
51 #include <asm/iseries/hv_lp_event.h>
52 #include <asm/iseries/lpar_map.h>
53 #include <asm/udbg.h>
54 #include <asm/irq.h>
55
56 #include "naca.h"
57 #include "setup.h"
58 #include "irq.h"
59 #include "vpd_areas.h"
60 #include "processor_vpd.h"
61 #include "it_lp_naca.h"
62 #include "main_store.h"
63 #include "call_sm.h"
64 #include "call_hpt.h"
65
66 #ifdef DEBUG
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
71
72 /* Function Prototypes */
73 static unsigned long build_iSeries_Memory_Map(void);
74 static void iseries_shared_idle(void);
75 static void iseries_dedicated_idle(void);
76 #ifdef CONFIG_PCI
77 extern void iSeries_pci_final_fixup(void);
78 #else
79 static void iSeries_pci_final_fixup(void) { }
80 #endif
81
82
83 struct MemoryBlock {
84         unsigned long absStart;
85         unsigned long absEnd;
86         unsigned long logicalStart;
87         unsigned long logicalEnd;
88 };
89
90 /*
91  * Process the main store vpd to determine where the holes in memory are
92  * and return the number of physical blocks and fill in the array of
93  * block data.
94  */
95 static unsigned long iSeries_process_Condor_mainstore_vpd(
96                 struct MemoryBlock *mb_array, unsigned long max_entries)
97 {
98         unsigned long holeFirstChunk, holeSizeChunks;
99         unsigned long numMemoryBlocks = 1;
100         struct IoHriMainStoreSegment4 *msVpd =
101                 (struct IoHriMainStoreSegment4 *)xMsVpd;
102         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
103         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
104         unsigned long holeSize = holeEnd - holeStart;
105
106         printk("Mainstore_VPD: Condor\n");
107         /*
108          * Determine if absolute memory has any
109          * holes so that we can interpret the
110          * access map we get back from the hypervisor
111          * correctly.
112          */
113         mb_array[0].logicalStart = 0;
114         mb_array[0].logicalEnd = 0x100000000;
115         mb_array[0].absStart = 0;
116         mb_array[0].absEnd = 0x100000000;
117
118         if (holeSize) {
119                 numMemoryBlocks = 2;
120                 holeStart = holeStart & 0x000fffffffffffff;
121                 holeStart = addr_to_chunk(holeStart);
122                 holeFirstChunk = holeStart;
123                 holeSize = addr_to_chunk(holeSize);
124                 holeSizeChunks = holeSize;
125                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
126                                 holeFirstChunk, holeSizeChunks );
127                 mb_array[0].logicalEnd = holeFirstChunk;
128                 mb_array[0].absEnd = holeFirstChunk;
129                 mb_array[1].logicalStart = holeFirstChunk;
130                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
131                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
132                 mb_array[1].absEnd = 0x100000000;
133         }
134         return numMemoryBlocks;
135 }
136
137 #define MaxSegmentAreas                 32
138 #define MaxSegmentAdrRangeBlocks        128
139 #define MaxAreaRangeBlocks              4
140
141 static unsigned long iSeries_process_Regatta_mainstore_vpd(
142                 struct MemoryBlock *mb_array, unsigned long max_entries)
143 {
144         struct IoHriMainStoreSegment5 *msVpdP =
145                 (struct IoHriMainStoreSegment5 *)xMsVpd;
146         unsigned long numSegmentBlocks = 0;
147         u32 existsBits = msVpdP->msAreaExists;
148         unsigned long area_num;
149
150         printk("Mainstore_VPD: Regatta\n");
151
152         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
153                 unsigned long numAreaBlocks;
154                 struct IoHriMainStoreArea4 *currentArea;
155
156                 if (existsBits & 0x80000000) {
157                         unsigned long block_num;
158
159                         currentArea = &msVpdP->msAreaArray[area_num];
160                         numAreaBlocks = currentArea->numAdrRangeBlocks;
161                         printk("ms_vpd: processing area %2ld  blocks=%ld",
162                                         area_num, numAreaBlocks);
163                         for (block_num = 0; block_num < numAreaBlocks;
164                                         ++block_num ) {
165                                 /* Process an address range block */
166                                 struct MemoryBlock tempBlock;
167                                 unsigned long i;
168
169                                 tempBlock.absStart =
170                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
171                                 tempBlock.absEnd =
172                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
173                                 tempBlock.logicalStart = 0;
174                                 tempBlock.logicalEnd   = 0;
175                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
176                                                 block_num, tempBlock.absStart,
177                                                 tempBlock.absEnd);
178
179                                 for (i = 0; i < numSegmentBlocks; ++i) {
180                                         if (mb_array[i].absStart ==
181                                                         tempBlock.absStart)
182                                                 break;
183                                 }
184                                 if (i == numSegmentBlocks) {
185                                         if (numSegmentBlocks == max_entries)
186                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
187                                         mb_array[numSegmentBlocks] = tempBlock;
188                                         ++numSegmentBlocks;
189                                 } else
190                                         printk(" (duplicate)");
191                         }
192                         printk("\n");
193                 }
194                 existsBits <<= 1;
195         }
196         /* Now sort the blocks found into ascending sequence */
197         if (numSegmentBlocks > 1) {
198                 unsigned long m, n;
199
200                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
201                         for (n = numSegmentBlocks - 1; m < n; --n) {
202                                 if (mb_array[n].absStart <
203                                                 mb_array[n-1].absStart) {
204                                         struct MemoryBlock tempBlock;
205
206                                         tempBlock = mb_array[n];
207                                         mb_array[n] = mb_array[n-1];
208                                         mb_array[n-1] = tempBlock;
209                                 }
210                         }
211                 }
212         }
213         /*
214          * Assign "logical" addresses to each block.  These
215          * addresses correspond to the hypervisor "bitmap" space.
216          * Convert all addresses into units of 256K chunks.
217          */
218         {
219         unsigned long i, nextBitmapAddress;
220
221         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
222         nextBitmapAddress = 0;
223         for (i = 0; i < numSegmentBlocks; ++i) {
224                 unsigned long length = mb_array[i].absEnd -
225                         mb_array[i].absStart;
226
227                 mb_array[i].logicalStart = nextBitmapAddress;
228                 mb_array[i].logicalEnd = nextBitmapAddress + length;
229                 nextBitmapAddress += length;
230                 printk("          Bitmap range: %016lx - %016lx\n"
231                                 "        Absolute range: %016lx - %016lx\n",
232                                 mb_array[i].logicalStart,
233                                 mb_array[i].logicalEnd,
234                                 mb_array[i].absStart, mb_array[i].absEnd);
235                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
236                                 0x000fffffffffffff);
237                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
238                                 0x000fffffffffffff);
239                 mb_array[i].logicalStart =
240                         addr_to_chunk(mb_array[i].logicalStart);
241                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
242         }
243         }
244
245         return numSegmentBlocks;
246 }
247
248 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
249                 unsigned long max_entries)
250 {
251         unsigned long i;
252         unsigned long mem_blocks = 0;
253
254         if (cpu_has_feature(CPU_FTR_SLB))
255                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
256                                 max_entries);
257         else
258                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
259                                 max_entries);
260
261         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
262         for (i = 0; i < mem_blocks; ++i) {
263                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
264                        "                             abs chunks %016lx - %016lx\n",
265                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
266                         mb_array[i].absStart, mb_array[i].absEnd);
267         }
268         return mem_blocks;
269 }
270
271 static void __init iSeries_get_cmdline(void)
272 {
273         char *p, *q;
274
275         /* copy the command line parameter from the primary VSP  */
276         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
277                         HvLpDma_Direction_RemoteToLocal);
278
279         p = cmd_line;
280         q = cmd_line + 255;
281         while(p < q) {
282                 if (!*p || *p == '\n')
283                         break;
284                 ++p;
285         }
286         *p = 0;
287 }
288
289 static void __init iSeries_init_early(void)
290 {
291         DBG(" -> iSeries_init_early()\n");
292
293         /* Snapshot the timebase, for use in later recalibration */
294         iSeries_time_init_early();
295
296         /*
297          * Initialize the DMA/TCE management
298          */
299         iommu_init_early_iSeries();
300
301         /* Initialize machine-dependency vectors */
302 #ifdef CONFIG_SMP
303         smp_init_iSeries();
304 #endif
305
306         /* Associate Lp Event Queue 0 with processor 0 */
307         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
308
309         mf_init();
310
311         DBG(" <- iSeries_init_early()\n");
312 }
313
314 struct mschunks_map mschunks_map = {
315         /* XXX We don't use these, but Piranha might need them. */
316         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
317         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
318         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
319 };
320 EXPORT_SYMBOL(mschunks_map);
321
322 void mschunks_alloc(unsigned long num_chunks)
323 {
324         klimit = _ALIGN(klimit, sizeof(u32));
325         mschunks_map.mapping = (u32 *)klimit;
326         klimit += num_chunks * sizeof(u32);
327         mschunks_map.num_chunks = num_chunks;
328 }
329
330 /*
331  * The iSeries may have very large memories ( > 128 GB ) and a partition
332  * may get memory in "chunks" that may be anywhere in the 2**52 real
333  * address space.  The chunks are 256K in size.  To map this to the
334  * memory model Linux expects, the AS/400 specific code builds a
335  * translation table to translate what Linux thinks are "physical"
336  * addresses to the actual real addresses.  This allows us to make
337  * it appear to Linux that we have contiguous memory starting at
338  * physical address zero while in fact this could be far from the truth.
339  * To avoid confusion, I'll let the words physical and/or real address
340  * apply to the Linux addresses while I'll use "absolute address" to
341  * refer to the actual hardware real address.
342  *
343  * build_iSeries_Memory_Map gets information from the Hypervisor and
344  * looks at the Main Store VPD to determine the absolute addresses
345  * of the memory that has been assigned to our partition and builds
346  * a table used to translate Linux's physical addresses to these
347  * absolute addresses.  Absolute addresses are needed when
348  * communicating with the hypervisor (e.g. to build HPT entries)
349  *
350  * Returns the physical memory size
351  */
352
353 static unsigned long __init build_iSeries_Memory_Map(void)
354 {
355         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
356         u32 nextPhysChunk;
357         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
358         u32 totalChunks,moreChunks;
359         u32 currChunk, thisChunk, absChunk;
360         u32 currDword;
361         u32 chunkBit;
362         u64 map;
363         struct MemoryBlock mb[32];
364         unsigned long numMemoryBlocks, curBlock;
365
366         /* Chunk size on iSeries is 256K bytes */
367         totalChunks = (u32)HvLpConfig_getMsChunks();
368         mschunks_alloc(totalChunks);
369
370         /*
371          * Get absolute address of our load area
372          * and map it to physical address 0
373          * This guarantees that the loadarea ends up at physical 0
374          * otherwise, it might not be returned by PLIC as the first
375          * chunks
376          */
377
378         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
379         loadAreaSize =  itLpNaca.xLoadAreaChunks;
380
381         /*
382          * Only add the pages already mapped here.
383          * Otherwise we might add the hpt pages
384          * The rest of the pages of the load area
385          * aren't in the HPT yet and can still
386          * be assigned an arbitrary physical address
387          */
388         if ((loadAreaSize * 64) > HvPagesToMap)
389                 loadAreaSize = HvPagesToMap / 64;
390
391         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
392
393         /*
394          * TODO Do we need to do something if the HPT is in the 64MB load area?
395          * This would be required if the itLpNaca.xLoadAreaChunks includes
396          * the HPT size
397          */
398
399         printk("Mapping load area - physical addr = 0000000000000000\n"
400                 "                    absolute addr = %016lx\n",
401                 chunk_to_addr(loadAreaFirstChunk));
402         printk("Load area size %dK\n", loadAreaSize * 256);
403
404         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
405                 mschunks_map.mapping[nextPhysChunk] =
406                         loadAreaFirstChunk + nextPhysChunk;
407
408         /*
409          * Get absolute address of our HPT and remember it so
410          * we won't map it to any physical address
411          */
412         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
413         hptSizePages = (u32)HvCallHpt_getHptPages();
414         hptSizeChunks = hptSizePages >>
415                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
416         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
417
418         printk("HPT absolute addr = %016lx, size = %dK\n",
419                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
420
421         /*
422          * Determine if absolute memory has any
423          * holes so that we can interpret the
424          * access map we get back from the hypervisor
425          * correctly.
426          */
427         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
428
429         /*
430          * Process the main store access map from the hypervisor
431          * to build up our physical -> absolute translation table
432          */
433         curBlock = 0;
434         currChunk = 0;
435         currDword = 0;
436         moreChunks = totalChunks;
437
438         while (moreChunks) {
439                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
440                                 currDword);
441                 thisChunk = currChunk;
442                 while (map) {
443                         chunkBit = map >> 63;
444                         map <<= 1;
445                         if (chunkBit) {
446                                 --moreChunks;
447                                 while (thisChunk >= mb[curBlock].logicalEnd) {
448                                         ++curBlock;
449                                         if (curBlock >= numMemoryBlocks)
450                                                 panic("out of memory blocks");
451                                 }
452                                 if (thisChunk < mb[curBlock].logicalStart)
453                                         panic("memory block error");
454
455                                 absChunk = mb[curBlock].absStart +
456                                         (thisChunk - mb[curBlock].logicalStart);
457                                 if (((absChunk < hptFirstChunk) ||
458                                      (absChunk > hptLastChunk)) &&
459                                     ((absChunk < loadAreaFirstChunk) ||
460                                      (absChunk > loadAreaLastChunk))) {
461                                         mschunks_map.mapping[nextPhysChunk] =
462                                                 absChunk;
463                                         ++nextPhysChunk;
464                                 }
465                         }
466                         ++thisChunk;
467                 }
468                 ++currDword;
469                 currChunk += 64;
470         }
471
472         /*
473          * main store size (in chunks) is
474          *   totalChunks - hptSizeChunks
475          * which should be equal to
476          *   nextPhysChunk
477          */
478         return chunk_to_addr(nextPhysChunk);
479 }
480
481 /*
482  * Document me.
483  */
484 static void __init iSeries_setup_arch(void)
485 {
486         if (get_lppaca()->shared_proc) {
487                 ppc_md.idle_loop = iseries_shared_idle;
488                 printk(KERN_DEBUG "Using shared processor idle loop\n");
489         } else {
490                 ppc_md.idle_loop = iseries_dedicated_idle;
491                 printk(KERN_DEBUG "Using dedicated idle loop\n");
492         }
493
494         /* Setup the Lp Event Queue */
495         setup_hvlpevent_queue();
496
497         printk("Max  logical processors = %d\n",
498                         itVpdAreas.xSlicMaxLogicalProcs);
499         printk("Max physical processors = %d\n",
500                         itVpdAreas.xSlicMaxPhysicalProcs);
501 }
502
503 static void iSeries_show_cpuinfo(struct seq_file *m)
504 {
505         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
506 }
507
508 static void __init iSeries_progress(char * st, unsigned short code)
509 {
510         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
511         mf_display_progress(code);
512 }
513
514 static void __init iSeries_fixup_klimit(void)
515 {
516         /*
517          * Change klimit to take into account any ram disk
518          * that may be included
519          */
520         if (naca.xRamDisk)
521                 klimit = KERNELBASE + (u64)naca.xRamDisk +
522                         (naca.xRamDiskSize * HW_PAGE_SIZE);
523 }
524
525 static int __init iSeries_src_init(void)
526 {
527         /* clear the progress line */
528         if (firmware_has_feature(FW_FEATURE_ISERIES))
529                 ppc_md.progress(" ", 0xffff);
530         return 0;
531 }
532
533 late_initcall(iSeries_src_init);
534
535 static inline void process_iSeries_events(void)
536 {
537         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
538 }
539
540 static void yield_shared_processor(void)
541 {
542         unsigned long tb;
543
544         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
545                                     HvCall_MaskLpEvent |
546                                     HvCall_MaskLpProd |
547                                     HvCall_MaskTimeout);
548
549         tb = get_tb();
550         /* Compute future tb value when yield should expire */
551         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
552
553         /*
554          * The decrementer stops during the yield.  Force a fake decrementer
555          * here and let the timer_interrupt code sort out the actual time.
556          */
557         get_lppaca()->int_dword.fields.decr_int = 1;
558         ppc64_runlatch_on();
559         process_iSeries_events();
560 }
561
562 static void iseries_shared_idle(void)
563 {
564         while (1) {
565                 while (!need_resched() && !hvlpevent_is_pending()) {
566                         local_irq_disable();
567                         ppc64_runlatch_off();
568
569                         /* Recheck with irqs off */
570                         if (!need_resched() && !hvlpevent_is_pending())
571                                 yield_shared_processor();
572
573                         HMT_medium();
574                         local_irq_enable();
575                 }
576
577                 ppc64_runlatch_on();
578
579                 if (hvlpevent_is_pending())
580                         process_iSeries_events();
581
582                 preempt_enable_no_resched();
583                 schedule();
584                 preempt_disable();
585         }
586 }
587
588 static void iseries_dedicated_idle(void)
589 {
590         set_thread_flag(TIF_POLLING_NRFLAG);
591
592         while (1) {
593                 if (!need_resched()) {
594                         while (!need_resched()) {
595                                 ppc64_runlatch_off();
596                                 HMT_low();
597
598                                 if (hvlpevent_is_pending()) {
599                                         HMT_medium();
600                                         ppc64_runlatch_on();
601                                         process_iSeries_events();
602                                 }
603                         }
604
605                         HMT_medium();
606                 }
607
608                 ppc64_runlatch_on();
609                 preempt_enable_no_resched();
610                 schedule();
611                 preempt_disable();
612         }
613 }
614
615 #ifndef CONFIG_PCI
616 void __init iSeries_init_IRQ(void) { }
617 #endif
618
619 static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
620                                      unsigned long flags)
621 {
622         return (void __iomem *)address;
623 }
624
625 static void iseries_iounmap(volatile void __iomem *token)
626 {
627 }
628
629 static int __init iseries_probe(void)
630 {
631         unsigned long root = of_get_flat_dt_root();
632         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
633                 return 0;
634
635         hpte_init_iSeries();
636         /* iSeries does not support 16M pages */
637         cur_cpu_spec->cpu_features &= ~CPU_FTR_16M_PAGE;
638
639         return 1;
640 }
641
642 define_machine(iseries) {
643         .name           = "iSeries",
644         .setup_arch     = iSeries_setup_arch,
645         .show_cpuinfo   = iSeries_show_cpuinfo,
646         .init_IRQ       = iSeries_init_IRQ,
647         .get_irq        = iSeries_get_irq,
648         .init_early     = iSeries_init_early,
649         .pcibios_fixup  = iSeries_pci_final_fixup,
650         .restart        = mf_reboot,
651         .power_off      = mf_power_off,
652         .halt           = mf_power_off,
653         .get_boot_time  = iSeries_get_boot_time,
654         .set_rtc_time   = iSeries_set_rtc_time,
655         .get_rtc_time   = iSeries_get_rtc_time,
656         .calibrate_decr = generic_calibrate_decr,
657         .progress       = iSeries_progress,
658         .probe          = iseries_probe,
659         .ioremap        = iseries_ioremap,
660         .iounmap        = iseries_iounmap,
661         /* XXX Implement enable_pmcs for iSeries */
662 };
663
664 void * __init iSeries_early_setup(void)
665 {
666         unsigned long phys_mem_size;
667
668         /* Identify CPU type. This is done again by the common code later
669          * on but calling this function multiple times is fine.
670          */
671         identify_cpu(0, mfspr(SPRN_PVR));
672
673         powerpc_firmware_features |= FW_FEATURE_ISERIES;
674         powerpc_firmware_features |= FW_FEATURE_LPAR;
675
676         iSeries_fixup_klimit();
677
678         /*
679          * Initialize the table which translate Linux physical addresses to
680          * AS/400 absolute addresses
681          */
682         phys_mem_size = build_iSeries_Memory_Map();
683
684         iSeries_get_cmdline();
685
686         return (void *) __pa(build_flat_dt(phys_mem_size));
687 }
688
689 static void hvputc(char c)
690 {
691         if (c == '\n')
692                 hvputc('\r');
693
694         HvCall_writeLogBuffer(&c, 1);
695 }
696
697 void __init udbg_init_iseries(void)
698 {
699         udbg_putc = hvputc;
700 }