2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
44 #include <asm/processor.h>
47 #include <asm/uaccess.h>
50 MODULE_AUTHOR("Qumranet");
51 MODULE_LICENSE("GPL");
53 static DEFINE_SPINLOCK(kvm_lock);
54 static LIST_HEAD(vm_list);
56 static cpumask_t cpus_hardware_enabled;
58 struct kvm_x86_ops *kvm_x86_ops;
59 struct kmem_cache *kvm_vcpu_cache;
60 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
62 static __read_mostly struct preempt_ops kvm_preempt_ops;
64 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
66 static struct kvm_stats_debugfs_item {
69 struct dentry *dentry;
70 } debugfs_entries[] = {
71 { "pf_fixed", STAT_OFFSET(pf_fixed) },
72 { "pf_guest", STAT_OFFSET(pf_guest) },
73 { "tlb_flush", STAT_OFFSET(tlb_flush) },
74 { "invlpg", STAT_OFFSET(invlpg) },
75 { "exits", STAT_OFFSET(exits) },
76 { "io_exits", STAT_OFFSET(io_exits) },
77 { "mmio_exits", STAT_OFFSET(mmio_exits) },
78 { "signal_exits", STAT_OFFSET(signal_exits) },
79 { "irq_window", STAT_OFFSET(irq_window_exits) },
80 { "halt_exits", STAT_OFFSET(halt_exits) },
81 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
82 { "request_irq", STAT_OFFSET(request_irq_exits) },
83 { "irq_exits", STAT_OFFSET(irq_exits) },
84 { "light_exits", STAT_OFFSET(light_exits) },
85 { "efer_reload", STAT_OFFSET(efer_reload) },
89 static struct dentry *debugfs_dir;
91 #define MAX_IO_MSRS 256
93 #define CR0_RESERVED_BITS \
94 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
95 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
96 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
97 #define CR4_RESERVED_BITS \
98 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
99 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
100 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
101 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
103 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
104 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
107 // LDT or TSS descriptor in the GDT. 16 bytes.
108 struct segment_descriptor_64 {
109 struct segment_descriptor s;
116 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long segment_base(u16 selector)
121 struct descriptor_table gdt;
122 struct segment_descriptor *d;
123 unsigned long table_base;
124 typedef unsigned long ul;
130 asm ("sgdt %0" : "=m"(gdt));
131 table_base = gdt.base;
133 if (selector & 4) { /* from ldt */
136 asm ("sldt %0" : "=g"(ldt_selector));
137 table_base = segment_base(ldt_selector);
139 d = (struct segment_descriptor *)(table_base + (selector & ~7));
140 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
143 && (d->type == 2 || d->type == 9 || d->type == 11))
144 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
148 EXPORT_SYMBOL_GPL(segment_base);
150 static inline int valid_vcpu(int n)
152 return likely(n >= 0 && n < KVM_MAX_VCPUS);
155 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
157 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
160 vcpu->guest_fpu_loaded = 1;
161 fx_save(&vcpu->host_fx_image);
162 fx_restore(&vcpu->guest_fx_image);
164 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
166 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
168 if (!vcpu->guest_fpu_loaded)
171 vcpu->guest_fpu_loaded = 0;
172 fx_save(&vcpu->guest_fx_image);
173 fx_restore(&vcpu->host_fx_image);
175 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
178 * Switches to specified vcpu, until a matching vcpu_put()
180 static void vcpu_load(struct kvm_vcpu *vcpu)
184 mutex_lock(&vcpu->mutex);
186 preempt_notifier_register(&vcpu->preempt_notifier);
187 kvm_x86_ops->vcpu_load(vcpu, cpu);
191 static void vcpu_put(struct kvm_vcpu *vcpu)
194 kvm_x86_ops->vcpu_put(vcpu);
195 preempt_notifier_unregister(&vcpu->preempt_notifier);
197 mutex_unlock(&vcpu->mutex);
200 static void ack_flush(void *_completed)
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
208 struct kvm_vcpu *vcpu;
211 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
212 vcpu = kvm->vcpus[i];
215 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
218 if (cpu != -1 && cpu != raw_smp_processor_id())
221 smp_call_function_mask(cpus, ack_flush, NULL, 1);
224 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
229 mutex_init(&vcpu->mutex);
231 vcpu->mmu.root_hpa = INVALID_PAGE;
234 if (!irqchip_in_kernel(kvm) || id == 0)
235 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
237 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
238 init_waitqueue_head(&vcpu->wq);
240 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
245 vcpu->run = page_address(page);
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
252 vcpu->pio_data = page_address(page);
254 r = kvm_mmu_create(vcpu);
256 goto fail_free_pio_data;
261 free_page((unsigned long)vcpu->pio_data);
263 free_page((unsigned long)vcpu->run);
267 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 kvm_mmu_destroy(vcpu);
273 hrtimer_cancel(&vcpu->apic->timer.dev);
274 kvm_free_apic(vcpu->apic);
275 free_page((unsigned long)vcpu->pio_data);
276 free_page((unsigned long)vcpu->run);
278 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280 static struct kvm *kvm_create_vm(void)
282 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
285 return ERR_PTR(-ENOMEM);
287 kvm_io_bus_init(&kvm->pio_bus);
288 mutex_init(&kvm->lock);
289 INIT_LIST_HEAD(&kvm->active_mmu_pages);
290 kvm_io_bus_init(&kvm->mmio_bus);
291 spin_lock(&kvm_lock);
292 list_add(&kvm->vm_list, &vm_list);
293 spin_unlock(&kvm_lock);
298 * Free any memory in @free but not in @dont.
300 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
301 struct kvm_memory_slot *dont)
305 if (!dont || free->phys_mem != dont->phys_mem)
306 if (free->phys_mem) {
307 for (i = 0; i < free->npages; ++i)
308 if (free->phys_mem[i])
309 __free_page(free->phys_mem[i]);
310 vfree(free->phys_mem);
313 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
314 vfree(free->dirty_bitmap);
316 free->phys_mem = NULL;
318 free->dirty_bitmap = NULL;
321 static void kvm_free_physmem(struct kvm *kvm)
325 for (i = 0; i < kvm->nmemslots; ++i)
326 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
329 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
333 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
334 if (vcpu->pio.guest_pages[i]) {
335 __free_page(vcpu->pio.guest_pages[i]);
336 vcpu->pio.guest_pages[i] = NULL;
340 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
343 kvm_mmu_unload(vcpu);
347 static void kvm_free_vcpus(struct kvm *kvm)
352 * Unpin any mmu pages first.
354 for (i = 0; i < KVM_MAX_VCPUS; ++i)
356 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
357 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
359 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
360 kvm->vcpus[i] = NULL;
366 static void kvm_destroy_vm(struct kvm *kvm)
368 spin_lock(&kvm_lock);
369 list_del(&kvm->vm_list);
370 spin_unlock(&kvm_lock);
371 kvm_io_bus_destroy(&kvm->pio_bus);
372 kvm_io_bus_destroy(&kvm->mmio_bus);
376 kvm_free_physmem(kvm);
380 static int kvm_vm_release(struct inode *inode, struct file *filp)
382 struct kvm *kvm = filp->private_data;
388 static void inject_gp(struct kvm_vcpu *vcpu)
390 kvm_x86_ops->inject_gp(vcpu, 0);
394 * Load the pae pdptrs. Return true is they are all valid.
396 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
398 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
399 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
404 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
406 mutex_lock(&vcpu->kvm->lock);
407 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
413 pdpt = kmap_atomic(page, KM_USER0);
414 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
415 kunmap_atomic(pdpt, KM_USER0);
417 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
418 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
425 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
427 mutex_unlock(&vcpu->kvm->lock);
432 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
434 if (cr0 & CR0_RESERVED_BITS) {
435 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
441 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
442 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
447 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
448 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
449 "and a clear PE flag\n");
454 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
456 if ((vcpu->shadow_efer & EFER_LME)) {
460 printk(KERN_DEBUG "set_cr0: #GP, start paging "
461 "in long mode while PAE is disabled\n");
465 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
467 printk(KERN_DEBUG "set_cr0: #GP, start paging "
468 "in long mode while CS.L == 1\n");
475 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
476 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
484 kvm_x86_ops->set_cr0(vcpu, cr0);
487 mutex_lock(&vcpu->kvm->lock);
488 kvm_mmu_reset_context(vcpu);
489 mutex_unlock(&vcpu->kvm->lock);
492 EXPORT_SYMBOL_GPL(set_cr0);
494 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
496 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
498 EXPORT_SYMBOL_GPL(lmsw);
500 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
502 if (cr4 & CR4_RESERVED_BITS) {
503 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
508 if (is_long_mode(vcpu)) {
509 if (!(cr4 & X86_CR4_PAE)) {
510 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
515 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
516 && !load_pdptrs(vcpu, vcpu->cr3)) {
517 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
522 if (cr4 & X86_CR4_VMXE) {
523 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
527 kvm_x86_ops->set_cr4(vcpu, cr4);
529 mutex_lock(&vcpu->kvm->lock);
530 kvm_mmu_reset_context(vcpu);
531 mutex_unlock(&vcpu->kvm->lock);
533 EXPORT_SYMBOL_GPL(set_cr4);
535 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
537 if (is_long_mode(vcpu)) {
538 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
539 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
545 if (cr3 & CR3_PAE_RESERVED_BITS) {
547 "set_cr3: #GP, reserved bits\n");
551 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
552 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
559 * We don't check reserved bits in nonpae mode, because
560 * this isn't enforced, and VMware depends on this.
564 mutex_lock(&vcpu->kvm->lock);
566 * Does the new cr3 value map to physical memory? (Note, we
567 * catch an invalid cr3 even in real-mode, because it would
568 * cause trouble later on when we turn on paging anyway.)
570 * A real CPU would silently accept an invalid cr3 and would
571 * attempt to use it - with largely undefined (and often hard
572 * to debug) behavior on the guest side.
574 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
578 vcpu->mmu.new_cr3(vcpu);
580 mutex_unlock(&vcpu->kvm->lock);
582 EXPORT_SYMBOL_GPL(set_cr3);
584 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
586 if (cr8 & CR8_RESERVED_BITS) {
587 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
591 if (irqchip_in_kernel(vcpu->kvm))
592 kvm_lapic_set_tpr(vcpu, cr8);
596 EXPORT_SYMBOL_GPL(set_cr8);
598 unsigned long get_cr8(struct kvm_vcpu *vcpu)
600 if (irqchip_in_kernel(vcpu->kvm))
601 return kvm_lapic_get_cr8(vcpu);
605 EXPORT_SYMBOL_GPL(get_cr8);
607 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
609 if (irqchip_in_kernel(vcpu->kvm))
610 return vcpu->apic_base;
612 return vcpu->apic_base;
614 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
616 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
618 /* TODO: reserve bits check */
619 if (irqchip_in_kernel(vcpu->kvm))
620 kvm_lapic_set_base(vcpu, data);
622 vcpu->apic_base = data;
624 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
626 void fx_init(struct kvm_vcpu *vcpu)
628 unsigned after_mxcsr_mask;
630 /* Initialize guest FPU by resetting ours and saving into guest's */
632 fx_save(&vcpu->host_fx_image);
634 fx_save(&vcpu->guest_fx_image);
635 fx_restore(&vcpu->host_fx_image);
638 vcpu->cr0 |= X86_CR0_ET;
639 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
640 vcpu->guest_fx_image.mxcsr = 0x1f80;
641 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
642 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
644 EXPORT_SYMBOL_GPL(fx_init);
647 * Allocate some memory and give it an address in the guest physical address
650 * Discontiguous memory is allowed, mostly for framebuffers.
652 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
653 struct kvm_memory_region *mem)
657 unsigned long npages;
659 struct kvm_memory_slot *memslot;
660 struct kvm_memory_slot old, new;
663 /* General sanity checks */
664 if (mem->memory_size & (PAGE_SIZE - 1))
666 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
668 if (mem->slot >= KVM_MEMORY_SLOTS)
670 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
673 memslot = &kvm->memslots[mem->slot];
674 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
675 npages = mem->memory_size >> PAGE_SHIFT;
678 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
680 mutex_lock(&kvm->lock);
682 new = old = *memslot;
684 new.base_gfn = base_gfn;
686 new.flags = mem->flags;
688 /* Disallow changing a memory slot's size. */
690 if (npages && old.npages && npages != old.npages)
693 /* Check for overlaps */
695 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
696 struct kvm_memory_slot *s = &kvm->memslots[i];
700 if (!((base_gfn + npages <= s->base_gfn) ||
701 (base_gfn >= s->base_gfn + s->npages)))
705 /* Deallocate if slot is being removed */
709 /* Free page dirty bitmap if unneeded */
710 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
711 new.dirty_bitmap = NULL;
715 /* Allocate if a slot is being created */
716 if (npages && !new.phys_mem) {
717 new.phys_mem = vmalloc(npages * sizeof(struct page *));
722 memset(new.phys_mem, 0, npages * sizeof(struct page *));
723 for (i = 0; i < npages; ++i) {
724 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
726 if (!new.phys_mem[i])
728 set_page_private(new.phys_mem[i],0);
732 /* Allocate page dirty bitmap if needed */
733 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
734 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
736 new.dirty_bitmap = vmalloc(dirty_bytes);
737 if (!new.dirty_bitmap)
739 memset(new.dirty_bitmap, 0, dirty_bytes);
742 if (mem->slot >= kvm->nmemslots)
743 kvm->nmemslots = mem->slot + 1;
747 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
748 kvm_flush_remote_tlbs(kvm);
750 mutex_unlock(&kvm->lock);
752 kvm_free_physmem_slot(&old, &new);
756 mutex_unlock(&kvm->lock);
757 kvm_free_physmem_slot(&new, &old);
763 * Get (and clear) the dirty memory log for a memory slot.
765 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
766 struct kvm_dirty_log *log)
768 struct kvm_memory_slot *memslot;
771 unsigned long any = 0;
773 mutex_lock(&kvm->lock);
776 if (log->slot >= KVM_MEMORY_SLOTS)
779 memslot = &kvm->memslots[log->slot];
781 if (!memslot->dirty_bitmap)
784 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
786 for (i = 0; !any && i < n/sizeof(long); ++i)
787 any = memslot->dirty_bitmap[i];
790 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
793 /* If nothing is dirty, don't bother messing with page tables. */
795 kvm_mmu_slot_remove_write_access(kvm, log->slot);
796 kvm_flush_remote_tlbs(kvm);
797 memset(memslot->dirty_bitmap, 0, n);
803 mutex_unlock(&kvm->lock);
808 * Set a new alias region. Aliases map a portion of physical memory into
809 * another portion. This is useful for memory windows, for example the PC
812 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
813 struct kvm_memory_alias *alias)
816 struct kvm_mem_alias *p;
819 /* General sanity checks */
820 if (alias->memory_size & (PAGE_SIZE - 1))
822 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
824 if (alias->slot >= KVM_ALIAS_SLOTS)
826 if (alias->guest_phys_addr + alias->memory_size
827 < alias->guest_phys_addr)
829 if (alias->target_phys_addr + alias->memory_size
830 < alias->target_phys_addr)
833 mutex_lock(&kvm->lock);
835 p = &kvm->aliases[alias->slot];
836 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
837 p->npages = alias->memory_size >> PAGE_SHIFT;
838 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
840 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
841 if (kvm->aliases[n - 1].npages)
845 kvm_mmu_zap_all(kvm);
847 mutex_unlock(&kvm->lock);
855 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
860 switch (chip->chip_id) {
861 case KVM_IRQCHIP_PIC_MASTER:
862 memcpy (&chip->chip.pic,
863 &pic_irqchip(kvm)->pics[0],
864 sizeof(struct kvm_pic_state));
866 case KVM_IRQCHIP_PIC_SLAVE:
867 memcpy (&chip->chip.pic,
868 &pic_irqchip(kvm)->pics[1],
869 sizeof(struct kvm_pic_state));
871 case KVM_IRQCHIP_IOAPIC:
872 memcpy (&chip->chip.ioapic,
874 sizeof(struct kvm_ioapic_state));
883 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
888 switch (chip->chip_id) {
889 case KVM_IRQCHIP_PIC_MASTER:
890 memcpy (&pic_irqchip(kvm)->pics[0],
892 sizeof(struct kvm_pic_state));
894 case KVM_IRQCHIP_PIC_SLAVE:
895 memcpy (&pic_irqchip(kvm)->pics[1],
897 sizeof(struct kvm_pic_state));
899 case KVM_IRQCHIP_IOAPIC:
900 memcpy (ioapic_irqchip(kvm),
902 sizeof(struct kvm_ioapic_state));
908 kvm_pic_update_irq(pic_irqchip(kvm));
912 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
915 struct kvm_mem_alias *alias;
917 for (i = 0; i < kvm->naliases; ++i) {
918 alias = &kvm->aliases[i];
919 if (gfn >= alias->base_gfn
920 && gfn < alias->base_gfn + alias->npages)
921 return alias->target_gfn + gfn - alias->base_gfn;
926 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
930 for (i = 0; i < kvm->nmemslots; ++i) {
931 struct kvm_memory_slot *memslot = &kvm->memslots[i];
933 if (gfn >= memslot->base_gfn
934 && gfn < memslot->base_gfn + memslot->npages)
940 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
942 gfn = unalias_gfn(kvm, gfn);
943 return __gfn_to_memslot(kvm, gfn);
946 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
948 struct kvm_memory_slot *slot;
950 gfn = unalias_gfn(kvm, gfn);
951 slot = __gfn_to_memslot(kvm, gfn);
954 return slot->phys_mem[gfn - slot->base_gfn];
956 EXPORT_SYMBOL_GPL(gfn_to_page);
958 /* WARNING: Does not work on aliased pages. */
959 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
961 struct kvm_memory_slot *memslot;
963 memslot = __gfn_to_memslot(kvm, gfn);
964 if (memslot && memslot->dirty_bitmap) {
965 unsigned long rel_gfn = gfn - memslot->base_gfn;
968 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
969 set_bit(rel_gfn, memslot->dirty_bitmap);
973 int emulator_read_std(unsigned long addr,
976 struct kvm_vcpu *vcpu)
981 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
982 unsigned offset = addr & (PAGE_SIZE-1);
983 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
988 if (gpa == UNMAPPED_GVA)
989 return X86EMUL_PROPAGATE_FAULT;
990 pfn = gpa >> PAGE_SHIFT;
991 page = gfn_to_page(vcpu->kvm, pfn);
993 return X86EMUL_UNHANDLEABLE;
994 page_virt = kmap_atomic(page, KM_USER0);
996 memcpy(data, page_virt + offset, tocopy);
998 kunmap_atomic(page_virt, KM_USER0);
1005 return X86EMUL_CONTINUE;
1007 EXPORT_SYMBOL_GPL(emulator_read_std);
1009 static int emulator_write_std(unsigned long addr,
1012 struct kvm_vcpu *vcpu)
1014 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1015 return X86EMUL_UNHANDLEABLE;
1019 * Only apic need an MMIO device hook, so shortcut now..
1021 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1024 struct kvm_io_device *dev;
1027 dev = &vcpu->apic->dev;
1028 if (dev->in_range(dev, addr))
1034 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1037 struct kvm_io_device *dev;
1039 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1041 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1045 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1048 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1051 static int emulator_read_emulated(unsigned long addr,
1054 struct kvm_vcpu *vcpu)
1056 struct kvm_io_device *mmio_dev;
1059 if (vcpu->mmio_read_completed) {
1060 memcpy(val, vcpu->mmio_data, bytes);
1061 vcpu->mmio_read_completed = 0;
1062 return X86EMUL_CONTINUE;
1063 } else if (emulator_read_std(addr, val, bytes, vcpu)
1064 == X86EMUL_CONTINUE)
1065 return X86EMUL_CONTINUE;
1067 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1068 if (gpa == UNMAPPED_GVA)
1069 return X86EMUL_PROPAGATE_FAULT;
1072 * Is this MMIO handled locally?
1074 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1076 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1077 return X86EMUL_CONTINUE;
1080 vcpu->mmio_needed = 1;
1081 vcpu->mmio_phys_addr = gpa;
1082 vcpu->mmio_size = bytes;
1083 vcpu->mmio_is_write = 0;
1085 return X86EMUL_UNHANDLEABLE;
1088 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1089 const void *val, int bytes)
1094 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1096 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1099 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1100 virt = kmap_atomic(page, KM_USER0);
1101 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1102 memcpy(virt + offset_in_page(gpa), val, bytes);
1103 kunmap_atomic(virt, KM_USER0);
1107 static int emulator_write_emulated_onepage(unsigned long addr,
1110 struct kvm_vcpu *vcpu)
1112 struct kvm_io_device *mmio_dev;
1113 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1115 if (gpa == UNMAPPED_GVA) {
1116 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1117 return X86EMUL_PROPAGATE_FAULT;
1120 if (emulator_write_phys(vcpu, gpa, val, bytes))
1121 return X86EMUL_CONTINUE;
1124 * Is this MMIO handled locally?
1126 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1128 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1129 return X86EMUL_CONTINUE;
1132 vcpu->mmio_needed = 1;
1133 vcpu->mmio_phys_addr = gpa;
1134 vcpu->mmio_size = bytes;
1135 vcpu->mmio_is_write = 1;
1136 memcpy(vcpu->mmio_data, val, bytes);
1138 return X86EMUL_CONTINUE;
1141 int emulator_write_emulated(unsigned long addr,
1144 struct kvm_vcpu *vcpu)
1146 /* Crossing a page boundary? */
1147 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1150 now = -addr & ~PAGE_MASK;
1151 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1152 if (rc != X86EMUL_CONTINUE)
1158 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1160 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1162 static int emulator_cmpxchg_emulated(unsigned long addr,
1166 struct kvm_vcpu *vcpu)
1168 static int reported;
1172 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1174 return emulator_write_emulated(addr, new, bytes, vcpu);
1177 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1179 return kvm_x86_ops->get_segment_base(vcpu, seg);
1182 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1184 return X86EMUL_CONTINUE;
1187 int emulate_clts(struct kvm_vcpu *vcpu)
1189 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
1190 return X86EMUL_CONTINUE;
1193 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1195 struct kvm_vcpu *vcpu = ctxt->vcpu;
1199 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1200 return X86EMUL_CONTINUE;
1202 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1203 return X86EMUL_UNHANDLEABLE;
1207 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1209 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1212 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1214 /* FIXME: better handling */
1215 return X86EMUL_UNHANDLEABLE;
1217 return X86EMUL_CONTINUE;
1220 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1222 static int reported;
1224 unsigned long rip = vcpu->rip;
1225 unsigned long rip_linear;
1227 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1232 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1234 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1235 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1238 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1240 struct x86_emulate_ops emulate_ops = {
1241 .read_std = emulator_read_std,
1242 .write_std = emulator_write_std,
1243 .read_emulated = emulator_read_emulated,
1244 .write_emulated = emulator_write_emulated,
1245 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1248 int emulate_instruction(struct kvm_vcpu *vcpu,
1249 struct kvm_run *run,
1256 vcpu->mmio_fault_cr2 = cr2;
1257 kvm_x86_ops->cache_regs(vcpu);
1259 vcpu->mmio_is_write = 0;
1260 vcpu->pio.string = 0;
1264 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1266 vcpu->emulate_ctxt.vcpu = vcpu;
1267 vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1268 vcpu->emulate_ctxt.cr2 = cr2;
1269 vcpu->emulate_ctxt.mode =
1270 (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
1271 ? X86EMUL_MODE_REAL : cs_l
1272 ? X86EMUL_MODE_PROT64 : cs_db
1273 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1275 if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1276 vcpu->emulate_ctxt.cs_base = 0;
1277 vcpu->emulate_ctxt.ds_base = 0;
1278 vcpu->emulate_ctxt.es_base = 0;
1279 vcpu->emulate_ctxt.ss_base = 0;
1281 vcpu->emulate_ctxt.cs_base =
1282 get_segment_base(vcpu, VCPU_SREG_CS);
1283 vcpu->emulate_ctxt.ds_base =
1284 get_segment_base(vcpu, VCPU_SREG_DS);
1285 vcpu->emulate_ctxt.es_base =
1286 get_segment_base(vcpu, VCPU_SREG_ES);
1287 vcpu->emulate_ctxt.ss_base =
1288 get_segment_base(vcpu, VCPU_SREG_SS);
1291 vcpu->emulate_ctxt.gs_base =
1292 get_segment_base(vcpu, VCPU_SREG_GS);
1293 vcpu->emulate_ctxt.fs_base =
1294 get_segment_base(vcpu, VCPU_SREG_FS);
1296 r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
1298 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1299 return EMULATE_DONE;
1300 return EMULATE_FAIL;
1304 r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
1306 if (vcpu->pio.string)
1307 return EMULATE_DO_MMIO;
1309 if ((r || vcpu->mmio_is_write) && run) {
1310 run->exit_reason = KVM_EXIT_MMIO;
1311 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1312 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1313 run->mmio.len = vcpu->mmio_size;
1314 run->mmio.is_write = vcpu->mmio_is_write;
1318 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1319 return EMULATE_DONE;
1320 if (!vcpu->mmio_needed) {
1321 kvm_report_emulation_failure(vcpu, "mmio");
1322 return EMULATE_FAIL;
1324 return EMULATE_DO_MMIO;
1327 kvm_x86_ops->decache_regs(vcpu);
1328 kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
1330 if (vcpu->mmio_is_write) {
1331 vcpu->mmio_needed = 0;
1332 return EMULATE_DO_MMIO;
1335 return EMULATE_DONE;
1337 EXPORT_SYMBOL_GPL(emulate_instruction);
1340 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1342 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1344 DECLARE_WAITQUEUE(wait, current);
1346 add_wait_queue(&vcpu->wq, &wait);
1349 * We will block until either an interrupt or a signal wakes us up
1351 while (!kvm_cpu_has_interrupt(vcpu)
1352 && !signal_pending(current)
1353 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1354 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1355 set_current_state(TASK_INTERRUPTIBLE);
1361 __set_current_state(TASK_RUNNING);
1362 remove_wait_queue(&vcpu->wq, &wait);
1365 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1367 ++vcpu->stat.halt_exits;
1368 if (irqchip_in_kernel(vcpu->kvm)) {
1369 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1370 kvm_vcpu_block(vcpu);
1371 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1375 vcpu->run->exit_reason = KVM_EXIT_HLT;
1379 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1381 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
1383 unsigned long nr, a0, a1, a2, a3, ret;
1385 kvm_x86_ops->cache_regs(vcpu);
1387 nr = vcpu->regs[VCPU_REGS_RAX];
1388 a0 = vcpu->regs[VCPU_REGS_RBX];
1389 a1 = vcpu->regs[VCPU_REGS_RCX];
1390 a2 = vcpu->regs[VCPU_REGS_RDX];
1391 a3 = vcpu->regs[VCPU_REGS_RSI];
1393 if (!is_long_mode(vcpu)) {
1406 vcpu->regs[VCPU_REGS_RAX] = ret;
1407 kvm_x86_ops->decache_regs(vcpu);
1410 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
1412 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
1414 char instruction[3];
1417 mutex_lock(&vcpu->kvm->lock);
1420 * Blow out the MMU to ensure that no other VCPU has an active mapping
1421 * to ensure that the updated hypercall appears atomically across all
1424 kvm_mmu_zap_all(vcpu->kvm);
1426 kvm_x86_ops->cache_regs(vcpu);
1427 kvm_x86_ops->patch_hypercall(vcpu, instruction);
1428 if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
1429 != X86EMUL_CONTINUE)
1432 mutex_unlock(&vcpu->kvm->lock);
1437 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1439 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1442 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1444 struct descriptor_table dt = { limit, base };
1446 kvm_x86_ops->set_gdt(vcpu, &dt);
1449 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1451 struct descriptor_table dt = { limit, base };
1453 kvm_x86_ops->set_idt(vcpu, &dt);
1456 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1457 unsigned long *rflags)
1460 *rflags = kvm_x86_ops->get_rflags(vcpu);
1463 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1465 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1476 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1481 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1482 unsigned long *rflags)
1486 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1487 *rflags = kvm_x86_ops->get_rflags(vcpu);
1496 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1499 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1503 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1508 case 0xc0010010: /* SYSCFG */
1509 case 0xc0010015: /* HWCR */
1510 case MSR_IA32_PLATFORM_ID:
1511 case MSR_IA32_P5_MC_ADDR:
1512 case MSR_IA32_P5_MC_TYPE:
1513 case MSR_IA32_MC0_CTL:
1514 case MSR_IA32_MCG_STATUS:
1515 case MSR_IA32_MCG_CAP:
1516 case MSR_IA32_MC0_MISC:
1517 case MSR_IA32_MC0_MISC+4:
1518 case MSR_IA32_MC0_MISC+8:
1519 case MSR_IA32_MC0_MISC+12:
1520 case MSR_IA32_MC0_MISC+16:
1521 case MSR_IA32_UCODE_REV:
1522 case MSR_IA32_PERF_STATUS:
1523 case MSR_IA32_EBL_CR_POWERON:
1524 /* MTRR registers */
1526 case 0x200 ... 0x2ff:
1529 case 0xcd: /* fsb frequency */
1532 case MSR_IA32_APICBASE:
1533 data = kvm_get_apic_base(vcpu);
1535 case MSR_IA32_MISC_ENABLE:
1536 data = vcpu->ia32_misc_enable_msr;
1538 #ifdef CONFIG_X86_64
1540 data = vcpu->shadow_efer;
1544 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1550 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1553 * Reads an msr value (of 'msr_index') into 'pdata'.
1554 * Returns 0 on success, non-0 otherwise.
1555 * Assumes vcpu_load() was already called.
1557 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1559 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1562 #ifdef CONFIG_X86_64
1564 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1566 if (efer & EFER_RESERVED_BITS) {
1567 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1574 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1575 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1580 kvm_x86_ops->set_efer(vcpu, efer);
1583 efer |= vcpu->shadow_efer & EFER_LMA;
1585 vcpu->shadow_efer = efer;
1590 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1593 #ifdef CONFIG_X86_64
1595 set_efer(vcpu, data);
1598 case MSR_IA32_MC0_STATUS:
1599 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1600 __FUNCTION__, data);
1602 case MSR_IA32_MCG_STATUS:
1603 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1604 __FUNCTION__, data);
1606 case MSR_IA32_UCODE_REV:
1607 case MSR_IA32_UCODE_WRITE:
1608 case 0x200 ... 0x2ff: /* MTRRs */
1610 case MSR_IA32_APICBASE:
1611 kvm_set_apic_base(vcpu, data);
1613 case MSR_IA32_MISC_ENABLE:
1614 vcpu->ia32_misc_enable_msr = data;
1617 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1622 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1625 * Writes msr value into into the appropriate "register".
1626 * Returns 0 on success, non-0 otherwise.
1627 * Assumes vcpu_load() was already called.
1629 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1631 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1634 void kvm_resched(struct kvm_vcpu *vcpu)
1636 if (!need_resched())
1640 EXPORT_SYMBOL_GPL(kvm_resched);
1642 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1646 struct kvm_cpuid_entry *e, *best;
1648 kvm_x86_ops->cache_regs(vcpu);
1649 function = vcpu->regs[VCPU_REGS_RAX];
1650 vcpu->regs[VCPU_REGS_RAX] = 0;
1651 vcpu->regs[VCPU_REGS_RBX] = 0;
1652 vcpu->regs[VCPU_REGS_RCX] = 0;
1653 vcpu->regs[VCPU_REGS_RDX] = 0;
1655 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1656 e = &vcpu->cpuid_entries[i];
1657 if (e->function == function) {
1662 * Both basic or both extended?
1664 if (((e->function ^ function) & 0x80000000) == 0)
1665 if (!best || e->function > best->function)
1669 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1670 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1671 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1672 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1674 kvm_x86_ops->decache_regs(vcpu);
1675 kvm_x86_ops->skip_emulated_instruction(vcpu);
1677 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1679 static int pio_copy_data(struct kvm_vcpu *vcpu)
1681 void *p = vcpu->pio_data;
1684 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1686 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1689 free_pio_guest_pages(vcpu);
1692 q += vcpu->pio.guest_page_offset;
1693 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1695 memcpy(q, p, bytes);
1697 memcpy(p, q, bytes);
1698 q -= vcpu->pio.guest_page_offset;
1700 free_pio_guest_pages(vcpu);
1704 static int complete_pio(struct kvm_vcpu *vcpu)
1706 struct kvm_pio_request *io = &vcpu->pio;
1710 kvm_x86_ops->cache_regs(vcpu);
1714 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1718 r = pio_copy_data(vcpu);
1720 kvm_x86_ops->cache_regs(vcpu);
1727 delta *= io->cur_count;
1729 * The size of the register should really depend on
1730 * current address size.
1732 vcpu->regs[VCPU_REGS_RCX] -= delta;
1738 vcpu->regs[VCPU_REGS_RDI] += delta;
1740 vcpu->regs[VCPU_REGS_RSI] += delta;
1743 kvm_x86_ops->decache_regs(vcpu);
1745 io->count -= io->cur_count;
1751 static void kernel_pio(struct kvm_io_device *pio_dev,
1752 struct kvm_vcpu *vcpu,
1755 /* TODO: String I/O for in kernel device */
1757 mutex_lock(&vcpu->kvm->lock);
1759 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1763 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1766 mutex_unlock(&vcpu->kvm->lock);
1769 static void pio_string_write(struct kvm_io_device *pio_dev,
1770 struct kvm_vcpu *vcpu)
1772 struct kvm_pio_request *io = &vcpu->pio;
1773 void *pd = vcpu->pio_data;
1776 mutex_lock(&vcpu->kvm->lock);
1777 for (i = 0; i < io->cur_count; i++) {
1778 kvm_iodevice_write(pio_dev, io->port,
1783 mutex_unlock(&vcpu->kvm->lock);
1786 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1787 int size, unsigned port)
1789 struct kvm_io_device *pio_dev;
1791 vcpu->run->exit_reason = KVM_EXIT_IO;
1792 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1793 vcpu->run->io.size = vcpu->pio.size = size;
1794 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1795 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1796 vcpu->run->io.port = vcpu->pio.port = port;
1798 vcpu->pio.string = 0;
1800 vcpu->pio.guest_page_offset = 0;
1803 kvm_x86_ops->cache_regs(vcpu);
1804 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1805 kvm_x86_ops->decache_regs(vcpu);
1807 kvm_x86_ops->skip_emulated_instruction(vcpu);
1809 pio_dev = vcpu_find_pio_dev(vcpu, port);
1811 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1817 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1819 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1820 int size, unsigned long count, int down,
1821 gva_t address, int rep, unsigned port)
1823 unsigned now, in_page;
1827 struct kvm_io_device *pio_dev;
1829 vcpu->run->exit_reason = KVM_EXIT_IO;
1830 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1831 vcpu->run->io.size = vcpu->pio.size = size;
1832 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1833 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1834 vcpu->run->io.port = vcpu->pio.port = port;
1836 vcpu->pio.string = 1;
1837 vcpu->pio.down = down;
1838 vcpu->pio.guest_page_offset = offset_in_page(address);
1839 vcpu->pio.rep = rep;
1842 kvm_x86_ops->skip_emulated_instruction(vcpu);
1847 in_page = PAGE_SIZE - offset_in_page(address);
1849 in_page = offset_in_page(address) + size;
1850 now = min(count, (unsigned long)in_page / size);
1853 * String I/O straddles page boundary. Pin two guest pages
1854 * so that we satisfy atomicity constraints. Do just one
1855 * transaction to avoid complexity.
1862 * String I/O in reverse. Yuck. Kill the guest, fix later.
1864 pr_unimpl(vcpu, "guest string pio down\n");
1868 vcpu->run->io.count = now;
1869 vcpu->pio.cur_count = now;
1871 if (vcpu->pio.cur_count == vcpu->pio.count)
1872 kvm_x86_ops->skip_emulated_instruction(vcpu);
1874 for (i = 0; i < nr_pages; ++i) {
1875 mutex_lock(&vcpu->kvm->lock);
1876 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1879 vcpu->pio.guest_pages[i] = page;
1880 mutex_unlock(&vcpu->kvm->lock);
1883 free_pio_guest_pages(vcpu);
1888 pio_dev = vcpu_find_pio_dev(vcpu, port);
1889 if (!vcpu->pio.in) {
1890 /* string PIO write */
1891 ret = pio_copy_data(vcpu);
1892 if (ret >= 0 && pio_dev) {
1893 pio_string_write(pio_dev, vcpu);
1895 if (vcpu->pio.count == 0)
1899 pr_unimpl(vcpu, "no string pio read support yet, "
1900 "port %x size %d count %ld\n",
1905 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1908 * Check if userspace requested an interrupt window, and that the
1909 * interrupt window is open.
1911 * No need to exit to userspace if we already have an interrupt queued.
1913 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1914 struct kvm_run *kvm_run)
1916 return (!vcpu->irq_summary &&
1917 kvm_run->request_interrupt_window &&
1918 vcpu->interrupt_window_open &&
1919 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
1922 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1923 struct kvm_run *kvm_run)
1925 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
1926 kvm_run->cr8 = get_cr8(vcpu);
1927 kvm_run->apic_base = kvm_get_apic_base(vcpu);
1928 if (irqchip_in_kernel(vcpu->kvm))
1929 kvm_run->ready_for_interrupt_injection = 1;
1931 kvm_run->ready_for_interrupt_injection =
1932 (vcpu->interrupt_window_open &&
1933 vcpu->irq_summary == 0);
1936 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1940 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
1941 printk("vcpu %d received sipi with vector # %x\n",
1942 vcpu->vcpu_id, vcpu->sipi_vector);
1943 kvm_lapic_reset(vcpu);
1944 kvm_x86_ops->vcpu_reset(vcpu);
1945 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
1949 if (vcpu->guest_debug.enabled)
1950 kvm_x86_ops->guest_debug_pre(vcpu);
1953 r = kvm_mmu_reload(vcpu);
1959 kvm_x86_ops->prepare_guest_switch(vcpu);
1960 kvm_load_guest_fpu(vcpu);
1962 local_irq_disable();
1964 if (signal_pending(current)) {
1968 kvm_run->exit_reason = KVM_EXIT_INTR;
1969 ++vcpu->stat.signal_exits;
1973 if (irqchip_in_kernel(vcpu->kvm))
1974 kvm_x86_ops->inject_pending_irq(vcpu);
1975 else if (!vcpu->mmio_read_completed)
1976 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
1978 vcpu->guest_mode = 1;
1982 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1983 kvm_x86_ops->tlb_flush(vcpu);
1985 kvm_x86_ops->run(vcpu, kvm_run);
1987 vcpu->guest_mode = 0;
1993 * We must have an instruction between local_irq_enable() and
1994 * kvm_guest_exit(), so the timer interrupt isn't delayed by
1995 * the interrupt shadow. The stat.exits increment will do nicely.
1996 * But we need to prevent reordering, hence this barrier():
2005 * Profile KVM exit RIPs:
2007 if (unlikely(prof_on == KVM_PROFILING)) {
2008 kvm_x86_ops->cache_regs(vcpu);
2009 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2012 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2015 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2017 kvm_run->exit_reason = KVM_EXIT_INTR;
2018 ++vcpu->stat.request_irq_exits;
2021 if (!need_resched()) {
2022 ++vcpu->stat.light_exits;
2033 post_kvm_run_save(vcpu, kvm_run);
2039 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2046 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2047 kvm_vcpu_block(vcpu);
2052 if (vcpu->sigset_active)
2053 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2055 /* re-sync apic's tpr */
2056 if (!irqchip_in_kernel(vcpu->kvm))
2057 set_cr8(vcpu, kvm_run->cr8);
2059 if (vcpu->pio.cur_count) {
2060 r = complete_pio(vcpu);
2065 if (vcpu->mmio_needed) {
2066 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2067 vcpu->mmio_read_completed = 1;
2068 vcpu->mmio_needed = 0;
2069 r = emulate_instruction(vcpu, kvm_run,
2070 vcpu->mmio_fault_cr2, 0, 1);
2071 if (r == EMULATE_DO_MMIO) {
2073 * Read-modify-write. Back to userspace.
2080 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2081 kvm_x86_ops->cache_regs(vcpu);
2082 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2083 kvm_x86_ops->decache_regs(vcpu);
2086 r = __vcpu_run(vcpu, kvm_run);
2089 if (vcpu->sigset_active)
2090 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2096 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2097 struct kvm_regs *regs)
2101 kvm_x86_ops->cache_regs(vcpu);
2103 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2104 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2105 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2106 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2107 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2108 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2109 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2110 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2111 #ifdef CONFIG_X86_64
2112 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2113 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2114 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2115 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2116 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2117 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2118 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2119 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2122 regs->rip = vcpu->rip;
2123 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2126 * Don't leak debug flags in case they were set for guest debugging
2128 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2129 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2136 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2137 struct kvm_regs *regs)
2141 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2142 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2143 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2144 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2145 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2146 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2147 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2148 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2149 #ifdef CONFIG_X86_64
2150 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2151 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2152 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2153 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2154 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2155 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2156 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2157 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2160 vcpu->rip = regs->rip;
2161 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2163 kvm_x86_ops->decache_regs(vcpu);
2170 static void get_segment(struct kvm_vcpu *vcpu,
2171 struct kvm_segment *var, int seg)
2173 return kvm_x86_ops->get_segment(vcpu, var, seg);
2176 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2177 struct kvm_sregs *sregs)
2179 struct descriptor_table dt;
2184 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2185 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2186 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2187 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2188 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2189 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2191 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2192 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2194 kvm_x86_ops->get_idt(vcpu, &dt);
2195 sregs->idt.limit = dt.limit;
2196 sregs->idt.base = dt.base;
2197 kvm_x86_ops->get_gdt(vcpu, &dt);
2198 sregs->gdt.limit = dt.limit;
2199 sregs->gdt.base = dt.base;
2201 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2202 sregs->cr0 = vcpu->cr0;
2203 sregs->cr2 = vcpu->cr2;
2204 sregs->cr3 = vcpu->cr3;
2205 sregs->cr4 = vcpu->cr4;
2206 sregs->cr8 = get_cr8(vcpu);
2207 sregs->efer = vcpu->shadow_efer;
2208 sregs->apic_base = kvm_get_apic_base(vcpu);
2210 if (irqchip_in_kernel(vcpu->kvm)) {
2211 memset(sregs->interrupt_bitmap, 0,
2212 sizeof sregs->interrupt_bitmap);
2213 pending_vec = kvm_x86_ops->get_irq(vcpu);
2214 if (pending_vec >= 0)
2215 set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
2217 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2218 sizeof sregs->interrupt_bitmap);
2225 static void set_segment(struct kvm_vcpu *vcpu,
2226 struct kvm_segment *var, int seg)
2228 return kvm_x86_ops->set_segment(vcpu, var, seg);
2231 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2232 struct kvm_sregs *sregs)
2234 int mmu_reset_needed = 0;
2235 int i, pending_vec, max_bits;
2236 struct descriptor_table dt;
2240 dt.limit = sregs->idt.limit;
2241 dt.base = sregs->idt.base;
2242 kvm_x86_ops->set_idt(vcpu, &dt);
2243 dt.limit = sregs->gdt.limit;
2244 dt.base = sregs->gdt.base;
2245 kvm_x86_ops->set_gdt(vcpu, &dt);
2247 vcpu->cr2 = sregs->cr2;
2248 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2249 vcpu->cr3 = sregs->cr3;
2251 set_cr8(vcpu, sregs->cr8);
2253 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2254 #ifdef CONFIG_X86_64
2255 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2257 kvm_set_apic_base(vcpu, sregs->apic_base);
2259 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2261 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2262 vcpu->cr0 = sregs->cr0;
2263 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2265 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2266 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2267 if (!is_long_mode(vcpu) && is_pae(vcpu))
2268 load_pdptrs(vcpu, vcpu->cr3);
2270 if (mmu_reset_needed)
2271 kvm_mmu_reset_context(vcpu);
2273 if (!irqchip_in_kernel(vcpu->kvm)) {
2274 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2275 sizeof vcpu->irq_pending);
2276 vcpu->irq_summary = 0;
2277 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2278 if (vcpu->irq_pending[i])
2279 __set_bit(i, &vcpu->irq_summary);
2281 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2282 pending_vec = find_first_bit(
2283 (const unsigned long *)sregs->interrupt_bitmap,
2285 /* Only pending external irq is handled here */
2286 if (pending_vec < max_bits) {
2287 kvm_x86_ops->set_irq(vcpu, pending_vec);
2288 printk("Set back pending irq %d\n", pending_vec);
2292 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2293 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2294 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2295 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2296 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2297 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2299 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2300 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2307 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2309 struct kvm_segment cs;
2311 get_segment(vcpu, &cs, VCPU_SREG_CS);
2315 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2318 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2319 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2321 * This list is modified at module load time to reflect the
2322 * capabilities of the host cpu.
2324 static u32 msrs_to_save[] = {
2325 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2327 #ifdef CONFIG_X86_64
2328 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2330 MSR_IA32_TIME_STAMP_COUNTER,
2333 static unsigned num_msrs_to_save;
2335 static u32 emulated_msrs[] = {
2336 MSR_IA32_MISC_ENABLE,
2339 static __init void kvm_init_msr_list(void)
2344 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2345 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2348 msrs_to_save[j] = msrs_to_save[i];
2351 num_msrs_to_save = j;
2355 * Adapt set_msr() to msr_io()'s calling convention
2357 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2359 return kvm_set_msr(vcpu, index, *data);
2363 * Read or write a bunch of msrs. All parameters are kernel addresses.
2365 * @return number of msrs set successfully.
2367 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2368 struct kvm_msr_entry *entries,
2369 int (*do_msr)(struct kvm_vcpu *vcpu,
2370 unsigned index, u64 *data))
2376 for (i = 0; i < msrs->nmsrs; ++i)
2377 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2386 * Read or write a bunch of msrs. Parameters are user addresses.
2388 * @return number of msrs set successfully.
2390 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2391 int (*do_msr)(struct kvm_vcpu *vcpu,
2392 unsigned index, u64 *data),
2395 struct kvm_msrs msrs;
2396 struct kvm_msr_entry *entries;
2401 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2405 if (msrs.nmsrs >= MAX_IO_MSRS)
2409 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2410 entries = vmalloc(size);
2415 if (copy_from_user(entries, user_msrs->entries, size))
2418 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2423 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2435 * Translate a guest virtual address to a guest physical address.
2437 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2438 struct kvm_translation *tr)
2440 unsigned long vaddr = tr->linear_address;
2444 mutex_lock(&vcpu->kvm->lock);
2445 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2446 tr->physical_address = gpa;
2447 tr->valid = gpa != UNMAPPED_GVA;
2450 mutex_unlock(&vcpu->kvm->lock);
2456 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2457 struct kvm_interrupt *irq)
2459 if (irq->irq < 0 || irq->irq >= 256)
2461 if (irqchip_in_kernel(vcpu->kvm))
2465 set_bit(irq->irq, vcpu->irq_pending);
2466 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2473 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2474 struct kvm_debug_guest *dbg)
2480 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2487 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2488 unsigned long address,
2491 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2492 unsigned long pgoff;
2495 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2497 page = virt_to_page(vcpu->run);
2498 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2499 page = virt_to_page(vcpu->pio_data);
2501 return NOPAGE_SIGBUS;
2504 *type = VM_FAULT_MINOR;
2509 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2510 .nopage = kvm_vcpu_nopage,
2513 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2515 vma->vm_ops = &kvm_vcpu_vm_ops;
2519 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2521 struct kvm_vcpu *vcpu = filp->private_data;
2523 fput(vcpu->kvm->filp);
2527 static struct file_operations kvm_vcpu_fops = {
2528 .release = kvm_vcpu_release,
2529 .unlocked_ioctl = kvm_vcpu_ioctl,
2530 .compat_ioctl = kvm_vcpu_ioctl,
2531 .mmap = kvm_vcpu_mmap,
2535 * Allocates an inode for the vcpu.
2537 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2540 struct inode *inode;
2543 r = anon_inode_getfd(&fd, &inode, &file,
2544 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2547 atomic_inc(&vcpu->kvm->filp->f_count);
2552 * Creates some virtual cpus. Good luck creating more than one.
2554 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2557 struct kvm_vcpu *vcpu;
2562 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2564 return PTR_ERR(vcpu);
2566 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2568 /* We do fxsave: this must be aligned. */
2569 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2572 r = kvm_mmu_setup(vcpu);
2577 mutex_lock(&kvm->lock);
2578 if (kvm->vcpus[n]) {
2580 mutex_unlock(&kvm->lock);
2583 kvm->vcpus[n] = vcpu;
2584 mutex_unlock(&kvm->lock);
2586 /* Now it's all set up, let userspace reach it */
2587 r = create_vcpu_fd(vcpu);
2593 mutex_lock(&kvm->lock);
2594 kvm->vcpus[n] = NULL;
2595 mutex_unlock(&kvm->lock);
2599 kvm_mmu_unload(vcpu);
2603 kvm_x86_ops->vcpu_free(vcpu);
2607 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2611 struct kvm_cpuid_entry *e, *entry;
2613 rdmsrl(MSR_EFER, efer);
2615 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2616 e = &vcpu->cpuid_entries[i];
2617 if (e->function == 0x80000001) {
2622 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2623 entry->edx &= ~(1 << 20);
2624 printk(KERN_INFO "kvm: guest NX capability removed\n");
2628 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2629 struct kvm_cpuid *cpuid,
2630 struct kvm_cpuid_entry __user *entries)
2635 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2638 if (copy_from_user(&vcpu->cpuid_entries, entries,
2639 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2641 vcpu->cpuid_nent = cpuid->nent;
2642 cpuid_fix_nx_cap(vcpu);
2649 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2652 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2653 vcpu->sigset_active = 1;
2654 vcpu->sigset = *sigset;
2656 vcpu->sigset_active = 0;
2661 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2662 * we have asm/x86/processor.h
2673 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2674 #ifdef CONFIG_X86_64
2675 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2677 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2681 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2683 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2687 memcpy(fpu->fpr, fxsave->st_space, 128);
2688 fpu->fcw = fxsave->cwd;
2689 fpu->fsw = fxsave->swd;
2690 fpu->ftwx = fxsave->twd;
2691 fpu->last_opcode = fxsave->fop;
2692 fpu->last_ip = fxsave->rip;
2693 fpu->last_dp = fxsave->rdp;
2694 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2701 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2703 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2707 memcpy(fxsave->st_space, fpu->fpr, 128);
2708 fxsave->cwd = fpu->fcw;
2709 fxsave->swd = fpu->fsw;
2710 fxsave->twd = fpu->ftwx;
2711 fxsave->fop = fpu->last_opcode;
2712 fxsave->rip = fpu->last_ip;
2713 fxsave->rdp = fpu->last_dp;
2714 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2721 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2722 struct kvm_lapic_state *s)
2725 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2731 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2732 struct kvm_lapic_state *s)
2735 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2736 kvm_apic_post_state_restore(vcpu);
2742 static long kvm_vcpu_ioctl(struct file *filp,
2743 unsigned int ioctl, unsigned long arg)
2745 struct kvm_vcpu *vcpu = filp->private_data;
2746 void __user *argp = (void __user *)arg;
2754 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2756 case KVM_GET_REGS: {
2757 struct kvm_regs kvm_regs;
2759 memset(&kvm_regs, 0, sizeof kvm_regs);
2760 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2764 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2769 case KVM_SET_REGS: {
2770 struct kvm_regs kvm_regs;
2773 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2775 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2781 case KVM_GET_SREGS: {
2782 struct kvm_sregs kvm_sregs;
2784 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2785 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2789 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2794 case KVM_SET_SREGS: {
2795 struct kvm_sregs kvm_sregs;
2798 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2800 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2806 case KVM_TRANSLATE: {
2807 struct kvm_translation tr;
2810 if (copy_from_user(&tr, argp, sizeof tr))
2812 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2816 if (copy_to_user(argp, &tr, sizeof tr))
2821 case KVM_INTERRUPT: {
2822 struct kvm_interrupt irq;
2825 if (copy_from_user(&irq, argp, sizeof irq))
2827 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2833 case KVM_DEBUG_GUEST: {
2834 struct kvm_debug_guest dbg;
2837 if (copy_from_user(&dbg, argp, sizeof dbg))
2839 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2846 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2849 r = msr_io(vcpu, argp, do_set_msr, 0);
2851 case KVM_SET_CPUID: {
2852 struct kvm_cpuid __user *cpuid_arg = argp;
2853 struct kvm_cpuid cpuid;
2856 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2858 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2863 case KVM_SET_SIGNAL_MASK: {
2864 struct kvm_signal_mask __user *sigmask_arg = argp;
2865 struct kvm_signal_mask kvm_sigmask;
2866 sigset_t sigset, *p;
2871 if (copy_from_user(&kvm_sigmask, argp,
2872 sizeof kvm_sigmask))
2875 if (kvm_sigmask.len != sizeof sigset)
2878 if (copy_from_user(&sigset, sigmask_arg->sigset,
2883 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2889 memset(&fpu, 0, sizeof fpu);
2890 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2894 if (copy_to_user(argp, &fpu, sizeof fpu))
2903 if (copy_from_user(&fpu, argp, sizeof fpu))
2905 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2911 case KVM_GET_LAPIC: {
2912 struct kvm_lapic_state lapic;
2914 memset(&lapic, 0, sizeof lapic);
2915 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
2919 if (copy_to_user(argp, &lapic, sizeof lapic))
2924 case KVM_SET_LAPIC: {
2925 struct kvm_lapic_state lapic;
2928 if (copy_from_user(&lapic, argp, sizeof lapic))
2930 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
2943 static long kvm_vm_ioctl(struct file *filp,
2944 unsigned int ioctl, unsigned long arg)
2946 struct kvm *kvm = filp->private_data;
2947 void __user *argp = (void __user *)arg;
2951 case KVM_CREATE_VCPU:
2952 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2956 case KVM_SET_MEMORY_REGION: {
2957 struct kvm_memory_region kvm_mem;
2960 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2962 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2967 case KVM_GET_DIRTY_LOG: {
2968 struct kvm_dirty_log log;
2971 if (copy_from_user(&log, argp, sizeof log))
2973 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2978 case KVM_SET_MEMORY_ALIAS: {
2979 struct kvm_memory_alias alias;
2982 if (copy_from_user(&alias, argp, sizeof alias))
2984 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2989 case KVM_CREATE_IRQCHIP:
2991 kvm->vpic = kvm_create_pic(kvm);
2993 r = kvm_ioapic_init(kvm);
3003 case KVM_IRQ_LINE: {
3004 struct kvm_irq_level irq_event;
3007 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3009 if (irqchip_in_kernel(kvm)) {
3010 mutex_lock(&kvm->lock);
3011 if (irq_event.irq < 16)
3012 kvm_pic_set_irq(pic_irqchip(kvm),
3015 kvm_ioapic_set_irq(kvm->vioapic,
3018 mutex_unlock(&kvm->lock);
3023 case KVM_GET_IRQCHIP: {
3024 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3025 struct kvm_irqchip chip;
3028 if (copy_from_user(&chip, argp, sizeof chip))
3031 if (!irqchip_in_kernel(kvm))
3033 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
3037 if (copy_to_user(argp, &chip, sizeof chip))
3042 case KVM_SET_IRQCHIP: {
3043 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3044 struct kvm_irqchip chip;
3047 if (copy_from_user(&chip, argp, sizeof chip))
3050 if (!irqchip_in_kernel(kvm))
3052 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3065 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3066 unsigned long address,
3069 struct kvm *kvm = vma->vm_file->private_data;
3070 unsigned long pgoff;
3073 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3074 page = gfn_to_page(kvm, pgoff);
3076 return NOPAGE_SIGBUS;
3079 *type = VM_FAULT_MINOR;
3084 static struct vm_operations_struct kvm_vm_vm_ops = {
3085 .nopage = kvm_vm_nopage,
3088 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3090 vma->vm_ops = &kvm_vm_vm_ops;
3094 static struct file_operations kvm_vm_fops = {
3095 .release = kvm_vm_release,
3096 .unlocked_ioctl = kvm_vm_ioctl,
3097 .compat_ioctl = kvm_vm_ioctl,
3098 .mmap = kvm_vm_mmap,
3101 static int kvm_dev_ioctl_create_vm(void)
3104 struct inode *inode;
3108 kvm = kvm_create_vm();
3110 return PTR_ERR(kvm);
3111 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3113 kvm_destroy_vm(kvm);
3122 static long kvm_dev_ioctl(struct file *filp,
3123 unsigned int ioctl, unsigned long arg)
3125 void __user *argp = (void __user *)arg;
3129 case KVM_GET_API_VERSION:
3133 r = KVM_API_VERSION;
3139 r = kvm_dev_ioctl_create_vm();
3141 case KVM_GET_MSR_INDEX_LIST: {
3142 struct kvm_msr_list __user *user_msr_list = argp;
3143 struct kvm_msr_list msr_list;
3147 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3150 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3151 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3154 if (n < num_msrs_to_save)
3157 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3158 num_msrs_to_save * sizeof(u32)))
3160 if (copy_to_user(user_msr_list->indices
3161 + num_msrs_to_save * sizeof(u32),
3163 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3168 case KVM_CHECK_EXTENSION: {
3169 int ext = (long)argp;
3172 case KVM_CAP_IRQCHIP:
3182 case KVM_GET_VCPU_MMAP_SIZE:
3195 static struct file_operations kvm_chardev_ops = {
3196 .unlocked_ioctl = kvm_dev_ioctl,
3197 .compat_ioctl = kvm_dev_ioctl,
3200 static struct miscdevice kvm_dev = {
3207 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3210 static void decache_vcpus_on_cpu(int cpu)
3213 struct kvm_vcpu *vcpu;
3216 spin_lock(&kvm_lock);
3217 list_for_each_entry(vm, &vm_list, vm_list)
3218 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3219 vcpu = vm->vcpus[i];
3223 * If the vcpu is locked, then it is running on some
3224 * other cpu and therefore it is not cached on the
3227 * If it's not locked, check the last cpu it executed
3230 if (mutex_trylock(&vcpu->mutex)) {
3231 if (vcpu->cpu == cpu) {
3232 kvm_x86_ops->vcpu_decache(vcpu);
3235 mutex_unlock(&vcpu->mutex);
3238 spin_unlock(&kvm_lock);
3241 static void hardware_enable(void *junk)
3243 int cpu = raw_smp_processor_id();
3245 if (cpu_isset(cpu, cpus_hardware_enabled))
3247 cpu_set(cpu, cpus_hardware_enabled);
3248 kvm_x86_ops->hardware_enable(NULL);
3251 static void hardware_disable(void *junk)
3253 int cpu = raw_smp_processor_id();
3255 if (!cpu_isset(cpu, cpus_hardware_enabled))
3257 cpu_clear(cpu, cpus_hardware_enabled);
3258 decache_vcpus_on_cpu(cpu);
3259 kvm_x86_ops->hardware_disable(NULL);
3262 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3269 case CPU_DYING_FROZEN:
3270 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3272 hardware_disable(NULL);
3274 case CPU_UP_CANCELED:
3275 case CPU_UP_CANCELED_FROZEN:
3276 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3278 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3281 case CPU_ONLINE_FROZEN:
3282 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3284 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3290 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3293 if (val == SYS_RESTART) {
3295 * Some (well, at least mine) BIOSes hang on reboot if
3298 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3299 on_each_cpu(hardware_disable, NULL, 0, 1);
3304 static struct notifier_block kvm_reboot_notifier = {
3305 .notifier_call = kvm_reboot,
3309 void kvm_io_bus_init(struct kvm_io_bus *bus)
3311 memset(bus, 0, sizeof(*bus));
3314 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3318 for (i = 0; i < bus->dev_count; i++) {
3319 struct kvm_io_device *pos = bus->devs[i];
3321 kvm_iodevice_destructor(pos);
3325 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3329 for (i = 0; i < bus->dev_count; i++) {
3330 struct kvm_io_device *pos = bus->devs[i];
3332 if (pos->in_range(pos, addr))
3339 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3341 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3343 bus->devs[bus->dev_count++] = dev;
3346 static struct notifier_block kvm_cpu_notifier = {
3347 .notifier_call = kvm_cpu_hotplug,
3348 .priority = 20, /* must be > scheduler priority */
3351 static u64 stat_get(void *_offset)
3353 unsigned offset = (long)_offset;
3356 struct kvm_vcpu *vcpu;
3359 spin_lock(&kvm_lock);
3360 list_for_each_entry(kvm, &vm_list, vm_list)
3361 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3362 vcpu = kvm->vcpus[i];
3364 total += *(u32 *)((void *)vcpu + offset);
3366 spin_unlock(&kvm_lock);
3370 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3372 static __init void kvm_init_debug(void)
3374 struct kvm_stats_debugfs_item *p;
3376 debugfs_dir = debugfs_create_dir("kvm", NULL);
3377 for (p = debugfs_entries; p->name; ++p)
3378 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3379 (void *)(long)p->offset,
3383 static void kvm_exit_debug(void)
3385 struct kvm_stats_debugfs_item *p;
3387 for (p = debugfs_entries; p->name; ++p)
3388 debugfs_remove(p->dentry);
3389 debugfs_remove(debugfs_dir);
3392 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3394 hardware_disable(NULL);
3398 static int kvm_resume(struct sys_device *dev)
3400 hardware_enable(NULL);
3404 static struct sysdev_class kvm_sysdev_class = {
3406 .suspend = kvm_suspend,
3407 .resume = kvm_resume,
3410 static struct sys_device kvm_sysdev = {
3412 .cls = &kvm_sysdev_class,
3415 hpa_t bad_page_address;
3418 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3420 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3423 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3425 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3427 kvm_x86_ops->vcpu_load(vcpu, cpu);
3430 static void kvm_sched_out(struct preempt_notifier *pn,
3431 struct task_struct *next)
3433 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3435 kvm_x86_ops->vcpu_put(vcpu);
3438 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3439 struct module *module)
3445 printk(KERN_ERR "kvm: already loaded the other module\n");
3449 if (!ops->cpu_has_kvm_support()) {
3450 printk(KERN_ERR "kvm: no hardware support\n");
3453 if (ops->disabled_by_bios()) {
3454 printk(KERN_ERR "kvm: disabled by bios\n");
3460 r = kvm_x86_ops->hardware_setup();
3464 for_each_online_cpu(cpu) {
3465 smp_call_function_single(cpu,
3466 kvm_x86_ops->check_processor_compatibility,
3472 on_each_cpu(hardware_enable, NULL, 0, 1);
3473 r = register_cpu_notifier(&kvm_cpu_notifier);
3476 register_reboot_notifier(&kvm_reboot_notifier);
3478 r = sysdev_class_register(&kvm_sysdev_class);
3482 r = sysdev_register(&kvm_sysdev);
3486 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3487 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3488 __alignof__(struct kvm_vcpu), 0, 0);
3489 if (!kvm_vcpu_cache) {
3494 kvm_chardev_ops.owner = module;
3496 r = misc_register(&kvm_dev);
3498 printk (KERN_ERR "kvm: misc device register failed\n");
3502 kvm_preempt_ops.sched_in = kvm_sched_in;
3503 kvm_preempt_ops.sched_out = kvm_sched_out;
3505 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3510 kmem_cache_destroy(kvm_vcpu_cache);
3512 sysdev_unregister(&kvm_sysdev);
3514 sysdev_class_unregister(&kvm_sysdev_class);
3516 unregister_reboot_notifier(&kvm_reboot_notifier);
3517 unregister_cpu_notifier(&kvm_cpu_notifier);
3519 on_each_cpu(hardware_disable, NULL, 0, 1);
3521 kvm_x86_ops->hardware_unsetup();
3527 void kvm_exit_x86(void)
3529 misc_deregister(&kvm_dev);
3530 kmem_cache_destroy(kvm_vcpu_cache);
3531 sysdev_unregister(&kvm_sysdev);
3532 sysdev_class_unregister(&kvm_sysdev_class);
3533 unregister_reboot_notifier(&kvm_reboot_notifier);
3534 unregister_cpu_notifier(&kvm_cpu_notifier);
3535 on_each_cpu(hardware_disable, NULL, 0, 1);
3536 kvm_x86_ops->hardware_unsetup();
3540 static __init int kvm_init(void)
3542 static struct page *bad_page;
3545 r = kvm_mmu_module_init();
3551 kvm_init_msr_list();
3553 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3558 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3559 memset(__va(bad_page_address), 0, PAGE_SIZE);
3565 kvm_mmu_module_exit();
3570 static __exit void kvm_exit(void)
3573 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3574 kvm_mmu_module_exit();
3577 module_init(kvm_init)
3578 module_exit(kvm_exit)
3580 EXPORT_SYMBOL_GPL(kvm_init_x86);
3581 EXPORT_SYMBOL_GPL(kvm_exit_x86);