2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/mii.h>
45 #define DRV_NAME "skge"
46 #define DRV_VERSION "1.7"
47 #define PFX DRV_NAME " "
49 #define DEFAULT_TX_RING_SIZE 128
50 #define DEFAULT_RX_RING_SIZE 512
51 #define MAX_TX_RING_SIZE 1024
52 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct skge_port *skge);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
109 static int skge_get_regs_len(struct net_device *dev)
115 * Returns copy of whole control register region
116 * Note: skip RAM address register because accessing it will
119 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
122 const struct skge_port *skge = netdev_priv(dev);
123 const void __iomem *io = skge->hw->regs;
126 memset(p, 0, regs->len);
127 memcpy_fromio(p, io, B3_RAM_ADDR);
129 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
130 regs->len - B3_RI_WTO_R1);
133 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
134 static int wol_supported(const struct skge_hw *hw)
136 return !((hw->chip_id == CHIP_ID_GENESIS ||
137 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
140 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
142 struct skge_port *skge = netdev_priv(dev);
144 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
145 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
148 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
150 struct skge_port *skge = netdev_priv(dev);
151 struct skge_hw *hw = skge->hw;
153 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
156 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
159 skge->wol = wol->wolopts == WAKE_MAGIC;
162 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
164 skge_write16(hw, WOL_CTRL_STAT,
165 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
166 WOL_CTL_ENA_MAGIC_PKT_UNIT);
168 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
173 /* Determine supported/advertised modes based on hardware.
174 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
176 static u32 skge_supported_modes(const struct skge_hw *hw)
181 supported = SUPPORTED_10baseT_Half
182 | SUPPORTED_10baseT_Full
183 | SUPPORTED_100baseT_Half
184 | SUPPORTED_100baseT_Full
185 | SUPPORTED_1000baseT_Half
186 | SUPPORTED_1000baseT_Full
187 | SUPPORTED_Autoneg| SUPPORTED_TP;
189 if (hw->chip_id == CHIP_ID_GENESIS)
190 supported &= ~(SUPPORTED_10baseT_Half
191 | SUPPORTED_10baseT_Full
192 | SUPPORTED_100baseT_Half
193 | SUPPORTED_100baseT_Full);
195 else if (hw->chip_id == CHIP_ID_YUKON)
196 supported &= ~SUPPORTED_1000baseT_Half;
198 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
204 static int skge_get_settings(struct net_device *dev,
205 struct ethtool_cmd *ecmd)
207 struct skge_port *skge = netdev_priv(dev);
208 struct skge_hw *hw = skge->hw;
210 ecmd->transceiver = XCVR_INTERNAL;
211 ecmd->supported = skge_supported_modes(hw);
214 ecmd->port = PORT_TP;
215 ecmd->phy_address = hw->phy_addr;
217 ecmd->port = PORT_FIBRE;
219 ecmd->advertising = skge->advertising;
220 ecmd->autoneg = skge->autoneg;
221 ecmd->speed = skge->speed;
222 ecmd->duplex = skge->duplex;
226 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
228 struct skge_port *skge = netdev_priv(dev);
229 const struct skge_hw *hw = skge->hw;
230 u32 supported = skge_supported_modes(hw);
232 if (ecmd->autoneg == AUTONEG_ENABLE) {
233 ecmd->advertising = supported;
239 switch (ecmd->speed) {
241 if (ecmd->duplex == DUPLEX_FULL)
242 setting = SUPPORTED_1000baseT_Full;
243 else if (ecmd->duplex == DUPLEX_HALF)
244 setting = SUPPORTED_1000baseT_Half;
249 if (ecmd->duplex == DUPLEX_FULL)
250 setting = SUPPORTED_100baseT_Full;
251 else if (ecmd->duplex == DUPLEX_HALF)
252 setting = SUPPORTED_100baseT_Half;
258 if (ecmd->duplex == DUPLEX_FULL)
259 setting = SUPPORTED_10baseT_Full;
260 else if (ecmd->duplex == DUPLEX_HALF)
261 setting = SUPPORTED_10baseT_Half;
269 if ((setting & supported) == 0)
272 skge->speed = ecmd->speed;
273 skge->duplex = ecmd->duplex;
276 skge->autoneg = ecmd->autoneg;
277 skge->advertising = ecmd->advertising;
279 if (netif_running(dev))
280 skge_phy_reset(skge);
285 static void skge_get_drvinfo(struct net_device *dev,
286 struct ethtool_drvinfo *info)
288 struct skge_port *skge = netdev_priv(dev);
290 strcpy(info->driver, DRV_NAME);
291 strcpy(info->version, DRV_VERSION);
292 strcpy(info->fw_version, "N/A");
293 strcpy(info->bus_info, pci_name(skge->hw->pdev));
296 static const struct skge_stat {
297 char name[ETH_GSTRING_LEN];
301 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
302 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
304 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
305 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
306 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
307 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
308 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
309 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
310 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
311 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
313 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
314 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
315 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
316 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
317 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
318 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
320 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
321 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
322 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
323 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
324 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
327 static int skge_get_stats_count(struct net_device *dev)
329 return ARRAY_SIZE(skge_stats);
332 static void skge_get_ethtool_stats(struct net_device *dev,
333 struct ethtool_stats *stats, u64 *data)
335 struct skge_port *skge = netdev_priv(dev);
337 if (skge->hw->chip_id == CHIP_ID_GENESIS)
338 genesis_get_stats(skge, data);
340 yukon_get_stats(skge, data);
343 /* Use hardware MIB variables for critical path statistics and
344 * transmit feedback not reported at interrupt.
345 * Other errors are accounted for in interrupt handler.
347 static struct net_device_stats *skge_get_stats(struct net_device *dev)
349 struct skge_port *skge = netdev_priv(dev);
350 u64 data[ARRAY_SIZE(skge_stats)];
352 if (skge->hw->chip_id == CHIP_ID_GENESIS)
353 genesis_get_stats(skge, data);
355 yukon_get_stats(skge, data);
357 skge->net_stats.tx_bytes = data[0];
358 skge->net_stats.rx_bytes = data[1];
359 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
360 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
361 skge->net_stats.multicast = data[3] + data[5];
362 skge->net_stats.collisions = data[10];
363 skge->net_stats.tx_aborted_errors = data[12];
365 return &skge->net_stats;
368 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
374 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
375 memcpy(data + i * ETH_GSTRING_LEN,
376 skge_stats[i].name, ETH_GSTRING_LEN);
381 static void skge_get_ring_param(struct net_device *dev,
382 struct ethtool_ringparam *p)
384 struct skge_port *skge = netdev_priv(dev);
386 p->rx_max_pending = MAX_RX_RING_SIZE;
387 p->tx_max_pending = MAX_TX_RING_SIZE;
388 p->rx_mini_max_pending = 0;
389 p->rx_jumbo_max_pending = 0;
391 p->rx_pending = skge->rx_ring.count;
392 p->tx_pending = skge->tx_ring.count;
393 p->rx_mini_pending = 0;
394 p->rx_jumbo_pending = 0;
397 static int skge_set_ring_param(struct net_device *dev,
398 struct ethtool_ringparam *p)
400 struct skge_port *skge = netdev_priv(dev);
403 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
404 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
407 skge->rx_ring.count = p->rx_pending;
408 skge->tx_ring.count = p->tx_pending;
410 if (netif_running(dev)) {
420 static u32 skge_get_msglevel(struct net_device *netdev)
422 struct skge_port *skge = netdev_priv(netdev);
423 return skge->msg_enable;
426 static void skge_set_msglevel(struct net_device *netdev, u32 value)
428 struct skge_port *skge = netdev_priv(netdev);
429 skge->msg_enable = value;
432 static int skge_nway_reset(struct net_device *dev)
434 struct skge_port *skge = netdev_priv(dev);
436 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
439 skge_phy_reset(skge);
443 static int skge_set_sg(struct net_device *dev, u32 data)
445 struct skge_port *skge = netdev_priv(dev);
446 struct skge_hw *hw = skge->hw;
448 if (hw->chip_id == CHIP_ID_GENESIS && data)
450 return ethtool_op_set_sg(dev, data);
453 static int skge_set_tx_csum(struct net_device *dev, u32 data)
455 struct skge_port *skge = netdev_priv(dev);
456 struct skge_hw *hw = skge->hw;
458 if (hw->chip_id == CHIP_ID_GENESIS && data)
461 return ethtool_op_set_tx_csum(dev, data);
464 static u32 skge_get_rx_csum(struct net_device *dev)
466 struct skge_port *skge = netdev_priv(dev);
468 return skge->rx_csum;
471 /* Only Yukon supports checksum offload. */
472 static int skge_set_rx_csum(struct net_device *dev, u32 data)
474 struct skge_port *skge = netdev_priv(dev);
476 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
479 skge->rx_csum = data;
483 static void skge_get_pauseparam(struct net_device *dev,
484 struct ethtool_pauseparam *ecmd)
486 struct skge_port *skge = netdev_priv(dev);
488 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
489 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
490 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
491 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
493 ecmd->autoneg = skge->autoneg;
496 static int skge_set_pauseparam(struct net_device *dev,
497 struct ethtool_pauseparam *ecmd)
499 struct skge_port *skge = netdev_priv(dev);
501 skge->autoneg = ecmd->autoneg;
502 if (ecmd->rx_pause && ecmd->tx_pause)
503 skge->flow_control = FLOW_MODE_SYMMETRIC;
504 else if (ecmd->rx_pause && !ecmd->tx_pause)
505 skge->flow_control = FLOW_MODE_REM_SEND;
506 else if (!ecmd->rx_pause && ecmd->tx_pause)
507 skge->flow_control = FLOW_MODE_LOC_SEND;
509 skge->flow_control = FLOW_MODE_NONE;
511 if (netif_running(dev))
512 skge_phy_reset(skge);
516 /* Chip internal frequency for clock calculations */
517 static inline u32 hwkhz(const struct skge_hw *hw)
519 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
522 /* Chip HZ to microseconds */
523 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
525 return (ticks * 1000) / hwkhz(hw);
528 /* Microseconds to chip HZ */
529 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
531 return hwkhz(hw) * usec / 1000;
534 static int skge_get_coalesce(struct net_device *dev,
535 struct ethtool_coalesce *ecmd)
537 struct skge_port *skge = netdev_priv(dev);
538 struct skge_hw *hw = skge->hw;
539 int port = skge->port;
541 ecmd->rx_coalesce_usecs = 0;
542 ecmd->tx_coalesce_usecs = 0;
544 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
545 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
546 u32 msk = skge_read32(hw, B2_IRQM_MSK);
548 if (msk & rxirqmask[port])
549 ecmd->rx_coalesce_usecs = delay;
550 if (msk & txirqmask[port])
551 ecmd->tx_coalesce_usecs = delay;
557 /* Note: interrupt timer is per board, but can turn on/off per port */
558 static int skge_set_coalesce(struct net_device *dev,
559 struct ethtool_coalesce *ecmd)
561 struct skge_port *skge = netdev_priv(dev);
562 struct skge_hw *hw = skge->hw;
563 int port = skge->port;
564 u32 msk = skge_read32(hw, B2_IRQM_MSK);
567 if (ecmd->rx_coalesce_usecs == 0)
568 msk &= ~rxirqmask[port];
569 else if (ecmd->rx_coalesce_usecs < 25 ||
570 ecmd->rx_coalesce_usecs > 33333)
573 msk |= rxirqmask[port];
574 delay = ecmd->rx_coalesce_usecs;
577 if (ecmd->tx_coalesce_usecs == 0)
578 msk &= ~txirqmask[port];
579 else if (ecmd->tx_coalesce_usecs < 25 ||
580 ecmd->tx_coalesce_usecs > 33333)
583 msk |= txirqmask[port];
584 delay = min(delay, ecmd->rx_coalesce_usecs);
587 skge_write32(hw, B2_IRQM_MSK, msk);
589 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
591 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
592 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
597 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
598 static void skge_led(struct skge_port *skge, enum led_mode mode)
600 struct skge_hw *hw = skge->hw;
601 int port = skge->port;
603 mutex_lock(&hw->phy_mutex);
604 if (hw->chip_id == CHIP_ID_GENESIS) {
607 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
608 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
609 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
610 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
614 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
615 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
617 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
618 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
623 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
624 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
625 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
627 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
633 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
634 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
635 PHY_M_LED_MO_DUP(MO_LED_OFF) |
636 PHY_M_LED_MO_10(MO_LED_OFF) |
637 PHY_M_LED_MO_100(MO_LED_OFF) |
638 PHY_M_LED_MO_1000(MO_LED_OFF) |
639 PHY_M_LED_MO_RX(MO_LED_OFF));
642 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
643 PHY_M_LED_PULS_DUR(PULS_170MS) |
644 PHY_M_LED_BLINK_RT(BLINK_84MS) |
648 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
649 PHY_M_LED_MO_RX(MO_LED_OFF) |
650 (skge->speed == SPEED_100 ?
651 PHY_M_LED_MO_100(MO_LED_ON) : 0));
654 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
655 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
656 PHY_M_LED_MO_DUP(MO_LED_ON) |
657 PHY_M_LED_MO_10(MO_LED_ON) |
658 PHY_M_LED_MO_100(MO_LED_ON) |
659 PHY_M_LED_MO_1000(MO_LED_ON) |
660 PHY_M_LED_MO_RX(MO_LED_ON));
663 mutex_unlock(&hw->phy_mutex);
666 /* blink LED's for finding board */
667 static int skge_phys_id(struct net_device *dev, u32 data)
669 struct skge_port *skge = netdev_priv(dev);
671 enum led_mode mode = LED_MODE_TST;
673 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
674 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
679 skge_led(skge, mode);
680 mode ^= LED_MODE_TST;
682 if (msleep_interruptible(BLINK_MS))
687 /* back to regular LED state */
688 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
693 static struct ethtool_ops skge_ethtool_ops = {
694 .get_settings = skge_get_settings,
695 .set_settings = skge_set_settings,
696 .get_drvinfo = skge_get_drvinfo,
697 .get_regs_len = skge_get_regs_len,
698 .get_regs = skge_get_regs,
699 .get_wol = skge_get_wol,
700 .set_wol = skge_set_wol,
701 .get_msglevel = skge_get_msglevel,
702 .set_msglevel = skge_set_msglevel,
703 .nway_reset = skge_nway_reset,
704 .get_link = ethtool_op_get_link,
705 .get_ringparam = skge_get_ring_param,
706 .set_ringparam = skge_set_ring_param,
707 .get_pauseparam = skge_get_pauseparam,
708 .set_pauseparam = skge_set_pauseparam,
709 .get_coalesce = skge_get_coalesce,
710 .set_coalesce = skge_set_coalesce,
711 .get_sg = ethtool_op_get_sg,
712 .set_sg = skge_set_sg,
713 .get_tx_csum = ethtool_op_get_tx_csum,
714 .set_tx_csum = skge_set_tx_csum,
715 .get_rx_csum = skge_get_rx_csum,
716 .set_rx_csum = skge_set_rx_csum,
717 .get_strings = skge_get_strings,
718 .phys_id = skge_phys_id,
719 .get_stats_count = skge_get_stats_count,
720 .get_ethtool_stats = skge_get_ethtool_stats,
721 .get_perm_addr = ethtool_op_get_perm_addr,
725 * Allocate ring elements and chain them together
726 * One-to-one association of board descriptors with ring elements
728 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
730 struct skge_tx_desc *d;
731 struct skge_element *e;
734 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
738 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
740 if (i == ring->count - 1) {
741 e->next = ring->start;
742 d->next_offset = base;
745 d->next_offset = base + (i+1) * sizeof(*d);
748 ring->to_use = ring->to_clean = ring->start;
753 /* Allocate and setup a new buffer for receiving */
754 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
755 struct sk_buff *skb, unsigned int bufsize)
757 struct skge_rx_desc *rd = e->desc;
760 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
764 rd->dma_hi = map >> 32;
766 rd->csum1_start = ETH_HLEN;
767 rd->csum2_start = ETH_HLEN;
773 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
774 pci_unmap_addr_set(e, mapaddr, map);
775 pci_unmap_len_set(e, maplen, bufsize);
778 /* Resume receiving using existing skb,
779 * Note: DMA address is not changed by chip.
780 * MTU not changed while receiver active.
782 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
784 struct skge_rx_desc *rd = e->desc;
787 rd->csum2_start = ETH_HLEN;
791 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
795 /* Free all buffers in receive ring, assumes receiver stopped */
796 static void skge_rx_clean(struct skge_port *skge)
798 struct skge_hw *hw = skge->hw;
799 struct skge_ring *ring = &skge->rx_ring;
800 struct skge_element *e;
804 struct skge_rx_desc *rd = e->desc;
807 pci_unmap_single(hw->pdev,
808 pci_unmap_addr(e, mapaddr),
809 pci_unmap_len(e, maplen),
811 dev_kfree_skb(e->skb);
814 } while ((e = e->next) != ring->start);
818 /* Allocate buffers for receive ring
819 * For receive: to_clean is next received frame.
821 static int skge_rx_fill(struct skge_port *skge)
823 struct skge_ring *ring = &skge->rx_ring;
824 struct skge_element *e;
830 skb = __dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN,
835 skb_reserve(skb, NET_IP_ALIGN);
836 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
837 } while ( (e = e->next) != ring->start);
839 ring->to_clean = ring->start;
843 static void skge_link_up(struct skge_port *skge)
845 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
846 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
848 netif_carrier_on(skge->netdev);
849 netif_wake_queue(skge->netdev);
851 if (netif_msg_link(skge))
853 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
854 skge->netdev->name, skge->speed,
855 skge->duplex == DUPLEX_FULL ? "full" : "half",
856 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
857 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
858 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
859 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
863 static void skge_link_down(struct skge_port *skge)
865 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
866 netif_carrier_off(skge->netdev);
867 netif_stop_queue(skge->netdev);
869 if (netif_msg_link(skge))
870 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
873 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
877 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
878 *val = xm_read16(hw, port, XM_PHY_DATA);
880 for (i = 0; i < PHY_RETRIES; i++) {
881 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
888 *val = xm_read16(hw, port, XM_PHY_DATA);
893 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
896 if (__xm_phy_read(hw, port, reg, &v))
897 printk(KERN_WARNING PFX "%s: phy read timed out\n",
898 hw->dev[port]->name);
902 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
906 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
907 for (i = 0; i < PHY_RETRIES; i++) {
908 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
915 xm_write16(hw, port, XM_PHY_DATA, val);
916 for (i = 0; i < PHY_RETRIES; i++) {
917 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
924 static void genesis_init(struct skge_hw *hw)
926 /* set blink source counter */
927 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
928 skge_write8(hw, B2_BSC_CTRL, BSC_START);
930 /* configure mac arbiter */
931 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
933 /* configure mac arbiter timeout values */
934 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
935 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
936 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
937 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
939 skge_write8(hw, B3_MA_RCINI_RX1, 0);
940 skge_write8(hw, B3_MA_RCINI_RX2, 0);
941 skge_write8(hw, B3_MA_RCINI_TX1, 0);
942 skge_write8(hw, B3_MA_RCINI_TX2, 0);
944 /* configure packet arbiter timeout */
945 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
946 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
947 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
948 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
949 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
952 static void genesis_reset(struct skge_hw *hw, int port)
954 const u8 zero[8] = { 0 };
956 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
958 /* reset the statistics module */
959 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
960 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
961 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
962 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
963 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
965 /* disable Broadcom PHY IRQ */
966 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
968 xm_outhash(hw, port, XM_HSM, zero);
972 /* Convert mode to MII values */
973 static const u16 phy_pause_map[] = {
974 [FLOW_MODE_NONE] = 0,
975 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
976 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
977 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
981 /* Check status of Broadcom phy link */
982 static void bcom_check_link(struct skge_hw *hw, int port)
984 struct net_device *dev = hw->dev[port];
985 struct skge_port *skge = netdev_priv(dev);
988 /* read twice because of latch */
989 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
990 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
992 if ((status & PHY_ST_LSYNC) == 0) {
993 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
994 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
995 xm_write16(hw, port, XM_MMU_CMD, cmd);
996 /* dummy read to ensure writing */
997 (void) xm_read16(hw, port, XM_MMU_CMD);
999 if (netif_carrier_ok(dev))
1000 skge_link_down(skge);
1002 if (skge->autoneg == AUTONEG_ENABLE &&
1003 (status & PHY_ST_AN_OVER)) {
1004 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
1005 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1007 if (lpa & PHY_B_AN_RF) {
1008 printk(KERN_NOTICE PFX "%s: remote fault\n",
1013 /* Check Duplex mismatch */
1014 switch (aux & PHY_B_AS_AN_RES_MSK) {
1015 case PHY_B_RES_1000FD:
1016 skge->duplex = DUPLEX_FULL;
1018 case PHY_B_RES_1000HD:
1019 skge->duplex = DUPLEX_HALF;
1022 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1028 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1029 switch (aux & PHY_B_AS_PAUSE_MSK) {
1030 case PHY_B_AS_PAUSE_MSK:
1031 skge->flow_control = FLOW_MODE_SYMMETRIC;
1034 skge->flow_control = FLOW_MODE_REM_SEND;
1037 skge->flow_control = FLOW_MODE_LOC_SEND;
1040 skge->flow_control = FLOW_MODE_NONE;
1043 skge->speed = SPEED_1000;
1046 if (!netif_carrier_ok(dev))
1047 genesis_link_up(skge);
1051 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1052 * Phy on for 100 or 10Mbit operation
1054 static void bcom_phy_init(struct skge_port *skge, int jumbo)
1056 struct skge_hw *hw = skge->hw;
1057 int port = skge->port;
1059 u16 id1, r, ext, ctl;
1061 /* magic workaround patterns for Broadcom */
1062 static const struct {
1066 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1067 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1068 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1069 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1071 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1072 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1075 /* read Id from external PHY (all have the same address) */
1076 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1078 /* Optimize MDIO transfer by suppressing preamble. */
1079 r = xm_read16(hw, port, XM_MMU_CMD);
1081 xm_write16(hw, port, XM_MMU_CMD,r);
1084 case PHY_BCOM_ID1_C0:
1086 * Workaround BCOM Errata for the C0 type.
1087 * Write magic patterns to reserved registers.
1089 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1090 xm_phy_write(hw, port,
1091 C0hack[i].reg, C0hack[i].val);
1094 case PHY_BCOM_ID1_A1:
1096 * Workaround BCOM Errata for the A1 type.
1097 * Write magic patterns to reserved registers.
1099 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1100 xm_phy_write(hw, port,
1101 A1hack[i].reg, A1hack[i].val);
1106 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1107 * Disable Power Management after reset.
1109 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1110 r |= PHY_B_AC_DIS_PM;
1111 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1114 xm_read16(hw, port, XM_ISRC);
1116 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1117 ctl = PHY_CT_SP1000; /* always 1000mbit */
1119 if (skge->autoneg == AUTONEG_ENABLE) {
1121 * Workaround BCOM Errata #1 for the C5 type.
1122 * 1000Base-T Link Acquisition Failure in Slave Mode
1123 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1125 u16 adv = PHY_B_1000C_RD;
1126 if (skge->advertising & ADVERTISED_1000baseT_Half)
1127 adv |= PHY_B_1000C_AHD;
1128 if (skge->advertising & ADVERTISED_1000baseT_Full)
1129 adv |= PHY_B_1000C_AFD;
1130 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1132 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1134 if (skge->duplex == DUPLEX_FULL)
1135 ctl |= PHY_CT_DUP_MD;
1136 /* Force to slave */
1137 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1140 /* Set autonegotiation pause parameters */
1141 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1142 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1144 /* Handle Jumbo frames */
1146 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1147 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1149 ext |= PHY_B_PEC_HIGH_LA;
1153 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1154 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1156 /* Use link status change interrupt */
1157 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1159 bcom_check_link(hw, port);
1162 static void genesis_mac_init(struct skge_hw *hw, int port)
1164 struct net_device *dev = hw->dev[port];
1165 struct skge_port *skge = netdev_priv(dev);
1166 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1169 const u8 zero[6] = { 0 };
1171 for (i = 0; i < 10; i++) {
1172 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1174 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1179 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1182 /* Unreset the XMAC. */
1183 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1186 * Perform additional initialization for external PHYs,
1187 * namely for the 1000baseTX cards that use the XMAC's
1190 /* Take external Phy out of reset */
1191 r = skge_read32(hw, B2_GP_IO);
1193 r |= GP_DIR_0|GP_IO_0;
1195 r |= GP_DIR_2|GP_IO_2;
1197 skge_write32(hw, B2_GP_IO, r);
1200 /* Enable GMII interface */
1201 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1203 bcom_phy_init(skge, jumbo);
1205 /* Set Station Address */
1206 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1208 /* We don't use match addresses so clear */
1209 for (i = 1; i < 16; i++)
1210 xm_outaddr(hw, port, XM_EXM(i), zero);
1212 /* Clear MIB counters */
1213 xm_write16(hw, port, XM_STAT_CMD,
1214 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1215 /* Clear two times according to Errata #3 */
1216 xm_write16(hw, port, XM_STAT_CMD,
1217 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1219 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1220 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1222 /* We don't need the FCS appended to the packet. */
1223 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1225 r |= XM_RX_BIG_PK_OK;
1227 if (skge->duplex == DUPLEX_HALF) {
1229 * If in manual half duplex mode the other side might be in
1230 * full duplex mode, so ignore if a carrier extension is not seen
1231 * on frames received
1233 r |= XM_RX_DIS_CEXT;
1235 xm_write16(hw, port, XM_RX_CMD, r);
1238 /* We want short frames padded to 60 bytes. */
1239 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1242 * Bump up the transmit threshold. This helps hold off transmit
1243 * underruns when we're blasting traffic from both ports at once.
1245 xm_write16(hw, port, XM_TX_THR, 512);
1248 * Enable the reception of all error frames. This is is
1249 * a necessary evil due to the design of the XMAC. The
1250 * XMAC's receive FIFO is only 8K in size, however jumbo
1251 * frames can be up to 9000 bytes in length. When bad
1252 * frame filtering is enabled, the XMAC's RX FIFO operates
1253 * in 'store and forward' mode. For this to work, the
1254 * entire frame has to fit into the FIFO, but that means
1255 * that jumbo frames larger than 8192 bytes will be
1256 * truncated. Disabling all bad frame filtering causes
1257 * the RX FIFO to operate in streaming mode, in which
1258 * case the XMAC will start transferring frames out of the
1259 * RX FIFO as soon as the FIFO threshold is reached.
1261 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1265 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1266 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1267 * and 'Octets Rx OK Hi Cnt Ov'.
1269 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1272 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1273 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1274 * and 'Octets Tx OK Hi Cnt Ov'.
1276 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1278 /* Configure MAC arbiter */
1279 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1281 /* configure timeout values */
1282 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1283 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1284 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1285 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1287 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1288 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1289 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1290 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1292 /* Configure Rx MAC FIFO */
1293 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1294 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1295 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1297 /* Configure Tx MAC FIFO */
1298 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1299 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1300 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1303 /* Enable frame flushing if jumbo frames used */
1304 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1306 /* enable timeout timers if normal frames */
1307 skge_write16(hw, B3_PA_CTRL,
1308 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1312 static void genesis_stop(struct skge_port *skge)
1314 struct skge_hw *hw = skge->hw;
1315 int port = skge->port;
1318 genesis_reset(hw, port);
1320 /* Clear Tx packet arbiter timeout IRQ */
1321 skge_write16(hw, B3_PA_CTRL,
1322 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1325 * If the transfer sticks at the MAC the STOP command will not
1326 * terminate if we don't flush the XMAC's transmit FIFO !
1328 xm_write32(hw, port, XM_MODE,
1329 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1333 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1335 /* For external PHYs there must be special handling */
1336 reg = skge_read32(hw, B2_GP_IO);
1344 skge_write32(hw, B2_GP_IO, reg);
1345 skge_read32(hw, B2_GP_IO);
1347 xm_write16(hw, port, XM_MMU_CMD,
1348 xm_read16(hw, port, XM_MMU_CMD)
1349 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1351 xm_read16(hw, port, XM_MMU_CMD);
1355 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1357 struct skge_hw *hw = skge->hw;
1358 int port = skge->port;
1360 unsigned long timeout = jiffies + HZ;
1362 xm_write16(hw, port,
1363 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1365 /* wait for update to complete */
1366 while (xm_read16(hw, port, XM_STAT_CMD)
1367 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1368 if (time_after(jiffies, timeout))
1373 /* special case for 64 bit octet counter */
1374 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1375 | xm_read32(hw, port, XM_TXO_OK_LO);
1376 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1377 | xm_read32(hw, port, XM_RXO_OK_LO);
1379 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1380 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1383 static void genesis_mac_intr(struct skge_hw *hw, int port)
1385 struct skge_port *skge = netdev_priv(hw->dev[port]);
1386 u16 status = xm_read16(hw, port, XM_ISRC);
1388 if (netif_msg_intr(skge))
1389 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1390 skge->netdev->name, status);
1392 if (status & XM_IS_TXF_UR) {
1393 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1394 ++skge->net_stats.tx_fifo_errors;
1396 if (status & XM_IS_RXF_OV) {
1397 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1398 ++skge->net_stats.rx_fifo_errors;
1402 static void genesis_link_up(struct skge_port *skge)
1404 struct skge_hw *hw = skge->hw;
1405 int port = skge->port;
1409 cmd = xm_read16(hw, port, XM_MMU_CMD);
1412 * enabling pause frame reception is required for 1000BT
1413 * because the XMAC is not reset if the link is going down
1415 if (skge->flow_control == FLOW_MODE_NONE ||
1416 skge->flow_control == FLOW_MODE_LOC_SEND)
1417 /* Disable Pause Frame Reception */
1418 cmd |= XM_MMU_IGN_PF;
1420 /* Enable Pause Frame Reception */
1421 cmd &= ~XM_MMU_IGN_PF;
1423 xm_write16(hw, port, XM_MMU_CMD, cmd);
1425 mode = xm_read32(hw, port, XM_MODE);
1426 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1427 skge->flow_control == FLOW_MODE_LOC_SEND) {
1429 * Configure Pause Frame Generation
1430 * Use internal and external Pause Frame Generation.
1431 * Sending pause frames is edge triggered.
1432 * Send a Pause frame with the maximum pause time if
1433 * internal oder external FIFO full condition occurs.
1434 * Send a zero pause time frame to re-start transmission.
1436 /* XM_PAUSE_DA = '010000C28001' (default) */
1437 /* XM_MAC_PTIME = 0xffff (maximum) */
1438 /* remember this value is defined in big endian (!) */
1439 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1441 mode |= XM_PAUSE_MODE;
1442 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1445 * disable pause frame generation is required for 1000BT
1446 * because the XMAC is not reset if the link is going down
1448 /* Disable Pause Mode in Mode Register */
1449 mode &= ~XM_PAUSE_MODE;
1451 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1454 xm_write32(hw, port, XM_MODE, mode);
1457 /* disable GP0 interrupt bit for external Phy */
1458 msk |= XM_IS_INP_ASS;
1460 xm_write16(hw, port, XM_IMSK, msk);
1461 xm_read16(hw, port, XM_ISRC);
1463 /* get MMU Command Reg. */
1464 cmd = xm_read16(hw, port, XM_MMU_CMD);
1465 if (skge->duplex == DUPLEX_FULL)
1466 cmd |= XM_MMU_GMII_FD;
1469 * Workaround BCOM Errata (#10523) for all BCom Phys
1470 * Enable Power Management after link up
1472 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1473 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1474 & ~PHY_B_AC_DIS_PM);
1475 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1478 xm_write16(hw, port, XM_MMU_CMD,
1479 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1484 static inline void bcom_phy_intr(struct skge_port *skge)
1486 struct skge_hw *hw = skge->hw;
1487 int port = skge->port;
1490 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1491 if (netif_msg_intr(skge))
1492 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1493 skge->netdev->name, isrc);
1495 if (isrc & PHY_B_IS_PSE)
1496 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1497 hw->dev[port]->name);
1499 /* Workaround BCom Errata:
1500 * enable and disable loopback mode if "NO HCD" occurs.
1502 if (isrc & PHY_B_IS_NO_HDCL) {
1503 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1504 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1505 ctrl | PHY_CT_LOOP);
1506 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1507 ctrl & ~PHY_CT_LOOP);
1510 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1511 bcom_check_link(hw, port);
1515 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1519 gma_write16(hw, port, GM_SMI_DATA, val);
1520 gma_write16(hw, port, GM_SMI_CTRL,
1521 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1522 for (i = 0; i < PHY_RETRIES; i++) {
1525 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1529 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1530 hw->dev[port]->name);
1534 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1538 gma_write16(hw, port, GM_SMI_CTRL,
1539 GM_SMI_CT_PHY_AD(hw->phy_addr)
1540 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1542 for (i = 0; i < PHY_RETRIES; i++) {
1544 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1550 *val = gma_read16(hw, port, GM_SMI_DATA);
1554 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1557 if (__gm_phy_read(hw, port, reg, &v))
1558 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1559 hw->dev[port]->name);
1563 /* Marvell Phy Initialization */
1564 static void yukon_init(struct skge_hw *hw, int port)
1566 struct skge_port *skge = netdev_priv(hw->dev[port]);
1567 u16 ctrl, ct1000, adv;
1569 if (skge->autoneg == AUTONEG_ENABLE) {
1570 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1572 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1573 PHY_M_EC_MAC_S_MSK);
1574 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1576 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1578 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1581 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1582 if (skge->autoneg == AUTONEG_DISABLE)
1583 ctrl &= ~PHY_CT_ANE;
1585 ctrl |= PHY_CT_RESET;
1586 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1592 if (skge->autoneg == AUTONEG_ENABLE) {
1594 if (skge->advertising & ADVERTISED_1000baseT_Full)
1595 ct1000 |= PHY_M_1000C_AFD;
1596 if (skge->advertising & ADVERTISED_1000baseT_Half)
1597 ct1000 |= PHY_M_1000C_AHD;
1598 if (skge->advertising & ADVERTISED_100baseT_Full)
1599 adv |= PHY_M_AN_100_FD;
1600 if (skge->advertising & ADVERTISED_100baseT_Half)
1601 adv |= PHY_M_AN_100_HD;
1602 if (skge->advertising & ADVERTISED_10baseT_Full)
1603 adv |= PHY_M_AN_10_FD;
1604 if (skge->advertising & ADVERTISED_10baseT_Half)
1605 adv |= PHY_M_AN_10_HD;
1606 } else /* special defines for FIBER (88E1011S only) */
1607 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1609 /* Set Flow-control capabilities */
1610 adv |= phy_pause_map[skge->flow_control];
1612 /* Restart Auto-negotiation */
1613 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1615 /* forced speed/duplex settings */
1616 ct1000 = PHY_M_1000C_MSE;
1618 if (skge->duplex == DUPLEX_FULL)
1619 ctrl |= PHY_CT_DUP_MD;
1621 switch (skge->speed) {
1623 ctrl |= PHY_CT_SP1000;
1626 ctrl |= PHY_CT_SP100;
1630 ctrl |= PHY_CT_RESET;
1633 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1635 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1636 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1638 /* Enable phy interrupt on autonegotiation complete (or link up) */
1639 if (skge->autoneg == AUTONEG_ENABLE)
1640 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1642 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1645 static void yukon_reset(struct skge_hw *hw, int port)
1647 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1648 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1649 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1650 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1651 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1653 gma_write16(hw, port, GM_RX_CTRL,
1654 gma_read16(hw, port, GM_RX_CTRL)
1655 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1658 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1659 static int is_yukon_lite_a0(struct skge_hw *hw)
1664 if (hw->chip_id != CHIP_ID_YUKON)
1667 reg = skge_read32(hw, B2_FAR);
1668 skge_write8(hw, B2_FAR + 3, 0xff);
1669 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1670 skge_write32(hw, B2_FAR, reg);
1674 static void yukon_mac_init(struct skge_hw *hw, int port)
1676 struct skge_port *skge = netdev_priv(hw->dev[port]);
1679 const u8 *addr = hw->dev[port]->dev_addr;
1681 /* WA code for COMA mode -- set PHY reset */
1682 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1683 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1684 reg = skge_read32(hw, B2_GP_IO);
1685 reg |= GP_DIR_9 | GP_IO_9;
1686 skge_write32(hw, B2_GP_IO, reg);
1690 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1691 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1693 /* WA code for COMA mode -- clear PHY reset */
1694 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1695 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1696 reg = skge_read32(hw, B2_GP_IO);
1699 skge_write32(hw, B2_GP_IO, reg);
1702 /* Set hardware config mode */
1703 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1704 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1705 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1707 /* Clear GMC reset */
1708 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1709 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1710 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1712 if (skge->autoneg == AUTONEG_DISABLE) {
1713 reg = GM_GPCR_AU_ALL_DIS;
1714 gma_write16(hw, port, GM_GP_CTRL,
1715 gma_read16(hw, port, GM_GP_CTRL) | reg);
1717 switch (skge->speed) {
1719 reg &= ~GM_GPCR_SPEED_100;
1720 reg |= GM_GPCR_SPEED_1000;
1723 reg &= ~GM_GPCR_SPEED_1000;
1724 reg |= GM_GPCR_SPEED_100;
1727 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1731 if (skge->duplex == DUPLEX_FULL)
1732 reg |= GM_GPCR_DUP_FULL;
1734 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1736 switch (skge->flow_control) {
1737 case FLOW_MODE_NONE:
1738 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1739 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1741 case FLOW_MODE_LOC_SEND:
1742 /* disable Rx flow-control */
1743 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1746 gma_write16(hw, port, GM_GP_CTRL, reg);
1747 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1749 yukon_init(hw, port);
1752 reg = gma_read16(hw, port, GM_PHY_ADDR);
1753 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1755 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1756 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1757 gma_write16(hw, port, GM_PHY_ADDR, reg);
1759 /* transmit control */
1760 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1762 /* receive control reg: unicast + multicast + no FCS */
1763 gma_write16(hw, port, GM_RX_CTRL,
1764 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1766 /* transmit flow control */
1767 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1769 /* transmit parameter */
1770 gma_write16(hw, port, GM_TX_PARAM,
1771 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1772 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1773 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1775 /* serial mode register */
1776 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1777 if (hw->dev[port]->mtu > 1500)
1778 reg |= GM_SMOD_JUMBO_ENA;
1780 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1782 /* physical address: used for pause frames */
1783 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1784 /* virtual address for data */
1785 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1787 /* enable interrupt mask for counter overflows */
1788 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1789 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1790 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1792 /* Initialize Mac Fifo */
1794 /* Configure Rx MAC FIFO */
1795 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1796 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1798 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1799 if (is_yukon_lite_a0(hw))
1800 reg &= ~GMF_RX_F_FL_ON;
1802 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1803 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1805 * because Pause Packet Truncation in GMAC is not working
1806 * we have to increase the Flush Threshold to 64 bytes
1807 * in order to flush pause packets in Rx FIFO on Yukon-1
1809 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1811 /* Configure Tx MAC FIFO */
1812 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1813 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1816 /* Go into power down mode */
1817 static void yukon_suspend(struct skge_hw *hw, int port)
1821 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1822 ctrl |= PHY_M_PC_POL_R_DIS;
1823 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
1825 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1826 ctrl |= PHY_CT_RESET;
1827 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1829 /* switch IEEE compatible power down mode on */
1830 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1831 ctrl |= PHY_CT_PDOWN;
1832 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1835 static void yukon_stop(struct skge_port *skge)
1837 struct skge_hw *hw = skge->hw;
1838 int port = skge->port;
1840 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1841 yukon_reset(hw, port);
1843 gma_write16(hw, port, GM_GP_CTRL,
1844 gma_read16(hw, port, GM_GP_CTRL)
1845 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1846 gma_read16(hw, port, GM_GP_CTRL);
1848 yukon_suspend(hw, port);
1850 /* set GPHY Control reset */
1851 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1852 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1855 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1857 struct skge_hw *hw = skge->hw;
1858 int port = skge->port;
1861 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
1862 | gma_read32(hw, port, GM_TXO_OK_LO);
1863 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
1864 | gma_read32(hw, port, GM_RXO_OK_LO);
1866 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1867 data[i] = gma_read32(hw, port,
1868 skge_stats[i].gma_offset);
1871 static void yukon_mac_intr(struct skge_hw *hw, int port)
1873 struct net_device *dev = hw->dev[port];
1874 struct skge_port *skge = netdev_priv(dev);
1875 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1877 if (netif_msg_intr(skge))
1878 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1881 if (status & GM_IS_RX_FF_OR) {
1882 ++skge->net_stats.rx_fifo_errors;
1883 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1886 if (status & GM_IS_TX_FF_UR) {
1887 ++skge->net_stats.tx_fifo_errors;
1888 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1893 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1895 switch (aux & PHY_M_PS_SPEED_MSK) {
1896 case PHY_M_PS_SPEED_1000:
1898 case PHY_M_PS_SPEED_100:
1905 static void yukon_link_up(struct skge_port *skge)
1907 struct skge_hw *hw = skge->hw;
1908 int port = skge->port;
1911 /* Enable Transmit FIFO Underrun */
1912 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1914 reg = gma_read16(hw, port, GM_GP_CTRL);
1915 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1916 reg |= GM_GPCR_DUP_FULL;
1919 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1920 gma_write16(hw, port, GM_GP_CTRL, reg);
1922 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1926 static void yukon_link_down(struct skge_port *skge)
1928 struct skge_hw *hw = skge->hw;
1929 int port = skge->port;
1932 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1934 ctrl = gma_read16(hw, port, GM_GP_CTRL);
1935 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
1936 gma_write16(hw, port, GM_GP_CTRL, ctrl);
1938 if (skge->flow_control == FLOW_MODE_REM_SEND) {
1939 /* restore Asymmetric Pause bit */
1940 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
1941 gm_phy_read(hw, port,
1947 yukon_reset(hw, port);
1948 skge_link_down(skge);
1950 yukon_init(hw, port);
1953 static void yukon_phy_intr(struct skge_port *skge)
1955 struct skge_hw *hw = skge->hw;
1956 int port = skge->port;
1957 const char *reason = NULL;
1958 u16 istatus, phystat;
1960 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1961 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1963 if (netif_msg_intr(skge))
1964 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
1965 skge->netdev->name, istatus, phystat);
1967 if (istatus & PHY_M_IS_AN_COMPL) {
1968 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1970 reason = "remote fault";
1974 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1975 reason = "master/slave fault";
1979 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1980 reason = "speed/duplex";
1984 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1985 ? DUPLEX_FULL : DUPLEX_HALF;
1986 skge->speed = yukon_speed(hw, phystat);
1988 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1989 switch (phystat & PHY_M_PS_PAUSE_MSK) {
1990 case PHY_M_PS_PAUSE_MSK:
1991 skge->flow_control = FLOW_MODE_SYMMETRIC;
1993 case PHY_M_PS_RX_P_EN:
1994 skge->flow_control = FLOW_MODE_REM_SEND;
1996 case PHY_M_PS_TX_P_EN:
1997 skge->flow_control = FLOW_MODE_LOC_SEND;
2000 skge->flow_control = FLOW_MODE_NONE;
2003 if (skge->flow_control == FLOW_MODE_NONE ||
2004 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2005 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2007 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2008 yukon_link_up(skge);
2012 if (istatus & PHY_M_IS_LSP_CHANGE)
2013 skge->speed = yukon_speed(hw, phystat);
2015 if (istatus & PHY_M_IS_DUP_CHANGE)
2016 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2017 if (istatus & PHY_M_IS_LST_CHANGE) {
2018 if (phystat & PHY_M_PS_LINK_UP)
2019 yukon_link_up(skge);
2021 yukon_link_down(skge);
2025 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2026 skge->netdev->name, reason);
2028 /* XXX restart autonegotiation? */
2031 static void skge_phy_reset(struct skge_port *skge)
2033 struct skge_hw *hw = skge->hw;
2034 int port = skge->port;
2036 netif_stop_queue(skge->netdev);
2037 netif_carrier_off(skge->netdev);
2039 mutex_lock(&hw->phy_mutex);
2040 if (hw->chip_id == CHIP_ID_GENESIS) {
2041 genesis_reset(hw, port);
2042 genesis_mac_init(hw, port);
2044 yukon_reset(hw, port);
2045 yukon_init(hw, port);
2047 mutex_unlock(&hw->phy_mutex);
2050 /* Basic MII support */
2051 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2053 struct mii_ioctl_data *data = if_mii(ifr);
2054 struct skge_port *skge = netdev_priv(dev);
2055 struct skge_hw *hw = skge->hw;
2056 int err = -EOPNOTSUPP;
2058 if (!netif_running(dev))
2059 return -ENODEV; /* Phy still in reset */
2063 data->phy_id = hw->phy_addr;
2068 mutex_lock(&hw->phy_mutex);
2069 if (hw->chip_id == CHIP_ID_GENESIS)
2070 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2072 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2073 mutex_unlock(&hw->phy_mutex);
2074 data->val_out = val;
2079 if (!capable(CAP_NET_ADMIN))
2082 mutex_lock(&hw->phy_mutex);
2083 if (hw->chip_id == CHIP_ID_GENESIS)
2084 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2087 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2089 mutex_unlock(&hw->phy_mutex);
2095 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2101 end = start + len - 1;
2103 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2104 skge_write32(hw, RB_ADDR(q, RB_START), start);
2105 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2106 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2107 skge_write32(hw, RB_ADDR(q, RB_END), end);
2109 if (q == Q_R1 || q == Q_R2) {
2110 /* Set thresholds on receive queue's */
2111 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2113 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2116 /* Enable store & forward on Tx queue's because
2117 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2119 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2122 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2125 /* Setup Bus Memory Interface */
2126 static void skge_qset(struct skge_port *skge, u16 q,
2127 const struct skge_element *e)
2129 struct skge_hw *hw = skge->hw;
2130 u32 watermark = 0x600;
2131 u64 base = skge->dma + (e->desc - skge->mem);
2133 /* optimization to reduce window on 32bit/33mhz */
2134 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2137 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2138 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2139 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2140 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2143 static int skge_up(struct net_device *dev)
2145 struct skge_port *skge = netdev_priv(dev);
2146 struct skge_hw *hw = skge->hw;
2147 int port = skge->port;
2148 u32 chunk, ram_addr;
2149 size_t rx_size, tx_size;
2152 if (netif_msg_ifup(skge))
2153 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2155 if (dev->mtu > RX_BUF_SIZE)
2156 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2158 skge->rx_buf_size = RX_BUF_SIZE;
2161 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2162 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2163 skge->mem_size = tx_size + rx_size;
2164 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2168 BUG_ON(skge->dma & 7);
2170 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2171 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2176 memset(skge->mem, 0, skge->mem_size);
2178 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2182 err = skge_rx_fill(skge);
2186 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2187 skge->dma + rx_size);
2191 /* Initialize MAC */
2192 mutex_lock(&hw->phy_mutex);
2193 if (hw->chip_id == CHIP_ID_GENESIS)
2194 genesis_mac_init(hw, port);
2196 yukon_mac_init(hw, port);
2197 mutex_unlock(&hw->phy_mutex);
2199 /* Configure RAMbuffers */
2200 chunk = hw->ram_size / ((hw->ports + 1)*2);
2201 ram_addr = hw->ram_offset + 2 * chunk * port;
2203 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2204 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2206 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2207 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2208 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2210 /* Start receiver BMU */
2212 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2213 skge_led(skge, LED_MODE_ON);
2215 netif_poll_enable(dev);
2219 skge_rx_clean(skge);
2220 kfree(skge->rx_ring.start);
2222 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2228 static int skge_down(struct net_device *dev)
2230 struct skge_port *skge = netdev_priv(dev);
2231 struct skge_hw *hw = skge->hw;
2232 int port = skge->port;
2234 if (skge->mem == NULL)
2237 if (netif_msg_ifdown(skge))
2238 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2240 netif_stop_queue(dev);
2242 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2243 if (hw->chip_id == CHIP_ID_GENESIS)
2248 /* Stop transmitter */
2249 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2250 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2251 RB_RST_SET|RB_DIS_OP_MD);
2254 /* Disable Force Sync bit and Enable Alloc bit */
2255 skge_write8(hw, SK_REG(port, TXA_CTRL),
2256 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2258 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2259 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2260 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2262 /* Reset PCI FIFO */
2263 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2264 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2266 /* Reset the RAM Buffer async Tx queue */
2267 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2269 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2270 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2271 RB_RST_SET|RB_DIS_OP_MD);
2272 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2274 if (hw->chip_id == CHIP_ID_GENESIS) {
2275 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2276 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2278 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2279 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2282 skge_led(skge, LED_MODE_OFF);
2284 netif_poll_disable(dev);
2285 skge_tx_clean(skge);
2286 skge_rx_clean(skge);
2288 kfree(skge->rx_ring.start);
2289 kfree(skge->tx_ring.start);
2290 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2295 static inline int skge_avail(const struct skge_ring *ring)
2297 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2298 + (ring->to_clean - ring->to_use) - 1;
2301 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2303 struct skge_port *skge = netdev_priv(dev);
2304 struct skge_hw *hw = skge->hw;
2305 struct skge_element *e;
2306 struct skge_tx_desc *td;
2310 unsigned long flags;
2312 if (skb_padto(skb, ETH_ZLEN))
2313 return NETDEV_TX_OK;
2315 if (!spin_trylock_irqsave(&skge->tx_lock, flags))
2316 /* Collision - tell upper layer to requeue */
2317 return NETDEV_TX_LOCKED;
2319 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
2320 if (!netif_queue_stopped(dev)) {
2321 netif_stop_queue(dev);
2323 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2326 spin_unlock_irqrestore(&skge->tx_lock, flags);
2327 return NETDEV_TX_BUSY;
2330 e = skge->tx_ring.to_use;
2332 BUG_ON(td->control & BMU_OWN);
2334 len = skb_headlen(skb);
2335 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2336 pci_unmap_addr_set(e, mapaddr, map);
2337 pci_unmap_len_set(e, maplen, len);
2340 td->dma_hi = map >> 32;
2342 if (skb->ip_summed == CHECKSUM_HW) {
2343 int offset = skb->h.raw - skb->data;
2345 /* This seems backwards, but it is what the sk98lin
2346 * does. Looks like hardware is wrong?
2348 if (skb->h.ipiph->protocol == IPPROTO_UDP
2349 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2350 control = BMU_TCP_CHECK;
2352 control = BMU_UDP_CHECK;
2355 td->csum_start = offset;
2356 td->csum_write = offset + skb->csum;
2358 control = BMU_CHECK;
2360 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2361 control |= BMU_EOF| BMU_IRQ_EOF;
2363 struct skge_tx_desc *tf = td;
2365 control |= BMU_STFWD;
2366 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2367 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2369 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2370 frag->size, PCI_DMA_TODEVICE);
2375 BUG_ON(tf->control & BMU_OWN);
2378 tf->dma_hi = (u64) map >> 32;
2379 pci_unmap_addr_set(e, mapaddr, map);
2380 pci_unmap_len_set(e, maplen, frag->size);
2382 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2384 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2386 /* Make sure all the descriptors written */
2388 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2391 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2393 if (unlikely(netif_msg_tx_queued(skge)))
2394 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2395 dev->name, e - skge->tx_ring.start, skb->len);
2397 skge->tx_ring.to_use = e->next;
2398 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2399 pr_debug("%s: transmit queue full\n", dev->name);
2400 netif_stop_queue(dev);
2403 spin_unlock_irqrestore(&skge->tx_lock, flags);
2405 dev->trans_start = jiffies;
2407 return NETDEV_TX_OK;
2411 /* Free resources associated with this reing element */
2412 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2415 struct pci_dev *pdev = skge->hw->pdev;
2419 /* skb header vs. fragment */
2420 if (control & BMU_STF)
2421 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2422 pci_unmap_len(e, maplen),
2425 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2426 pci_unmap_len(e, maplen),
2429 if (control & BMU_EOF) {
2430 if (unlikely(netif_msg_tx_done(skge)))
2431 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2432 skge->netdev->name, e - skge->tx_ring.start);
2434 dev_kfree_skb_any(e->skb);
2439 /* Free all buffers in transmit ring */
2440 static void skge_tx_clean(struct skge_port *skge)
2442 struct skge_element *e;
2443 unsigned long flags;
2445 spin_lock_irqsave(&skge->tx_lock, flags);
2446 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2447 struct skge_tx_desc *td = e->desc;
2448 skge_tx_free(skge, e, td->control);
2452 skge->tx_ring.to_clean = e;
2453 netif_wake_queue(skge->netdev);
2454 spin_unlock_irqrestore(&skge->tx_lock, flags);
2457 static void skge_tx_timeout(struct net_device *dev)
2459 struct skge_port *skge = netdev_priv(dev);
2461 if (netif_msg_timer(skge))
2462 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2464 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2465 skge_tx_clean(skge);
2468 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2472 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2475 if (!netif_running(dev)) {
2491 static void genesis_set_multicast(struct net_device *dev)
2493 struct skge_port *skge = netdev_priv(dev);
2494 struct skge_hw *hw = skge->hw;
2495 int port = skge->port;
2496 int i, count = dev->mc_count;
2497 struct dev_mc_list *list = dev->mc_list;
2501 mode = xm_read32(hw, port, XM_MODE);
2502 mode |= XM_MD_ENA_HASH;
2503 if (dev->flags & IFF_PROMISC)
2504 mode |= XM_MD_ENA_PROM;
2506 mode &= ~XM_MD_ENA_PROM;
2508 if (dev->flags & IFF_ALLMULTI)
2509 memset(filter, 0xff, sizeof(filter));
2511 memset(filter, 0, sizeof(filter));
2512 for (i = 0; list && i < count; i++, list = list->next) {
2514 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2516 filter[bit/8] |= 1 << (bit%8);
2520 xm_write32(hw, port, XM_MODE, mode);
2521 xm_outhash(hw, port, XM_HSM, filter);
2524 static void yukon_set_multicast(struct net_device *dev)
2526 struct skge_port *skge = netdev_priv(dev);
2527 struct skge_hw *hw = skge->hw;
2528 int port = skge->port;
2529 struct dev_mc_list *list = dev->mc_list;
2533 memset(filter, 0, sizeof(filter));
2535 reg = gma_read16(hw, port, GM_RX_CTRL);
2536 reg |= GM_RXCR_UCF_ENA;
2538 if (dev->flags & IFF_PROMISC) /* promiscuous */
2539 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2540 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2541 memset(filter, 0xff, sizeof(filter));
2542 else if (dev->mc_count == 0) /* no multicast */
2543 reg &= ~GM_RXCR_MCF_ENA;
2546 reg |= GM_RXCR_MCF_ENA;
2548 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2549 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2550 filter[bit/8] |= 1 << (bit%8);
2555 gma_write16(hw, port, GM_MC_ADDR_H1,
2556 (u16)filter[0] | ((u16)filter[1] << 8));
2557 gma_write16(hw, port, GM_MC_ADDR_H2,
2558 (u16)filter[2] | ((u16)filter[3] << 8));
2559 gma_write16(hw, port, GM_MC_ADDR_H3,
2560 (u16)filter[4] | ((u16)filter[5] << 8));
2561 gma_write16(hw, port, GM_MC_ADDR_H4,
2562 (u16)filter[6] | ((u16)filter[7] << 8));
2564 gma_write16(hw, port, GM_RX_CTRL, reg);
2567 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2569 if (hw->chip_id == CHIP_ID_GENESIS)
2570 return status >> XMR_FS_LEN_SHIFT;
2572 return status >> GMR_FS_LEN_SHIFT;
2575 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2577 if (hw->chip_id == CHIP_ID_GENESIS)
2578 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2580 return (status & GMR_FS_ANY_ERR) ||
2581 (status & GMR_FS_RX_OK) == 0;
2585 /* Get receive buffer from descriptor.
2586 * Handles copy of small buffers and reallocation failures
2588 static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
2589 struct skge_element *e,
2590 u32 control, u32 status, u16 csum)
2592 struct sk_buff *skb;
2593 u16 len = control & BMU_BBC;
2595 if (unlikely(netif_msg_rx_status(skge)))
2596 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2597 skge->netdev->name, e - skge->rx_ring.start,
2600 if (len > skge->rx_buf_size)
2603 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2606 if (bad_phy_status(skge->hw, status))
2609 if (phy_length(skge->hw, status) != len)
2612 if (len < RX_COPY_THRESHOLD) {
2613 skb = dev_alloc_skb(len + 2);
2617 skb_reserve(skb, 2);
2618 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2619 pci_unmap_addr(e, mapaddr),
2620 len, PCI_DMA_FROMDEVICE);
2621 memcpy(skb->data, e->skb->data, len);
2622 pci_dma_sync_single_for_device(skge->hw->pdev,
2623 pci_unmap_addr(e, mapaddr),
2624 len, PCI_DMA_FROMDEVICE);
2625 skge_rx_reuse(e, skge->rx_buf_size);
2627 struct sk_buff *nskb;
2628 nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
2632 skb_reserve(nskb, NET_IP_ALIGN);
2633 pci_unmap_single(skge->hw->pdev,
2634 pci_unmap_addr(e, mapaddr),
2635 pci_unmap_len(e, maplen),
2636 PCI_DMA_FROMDEVICE);
2638 prefetch(skb->data);
2639 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2643 skb->dev = skge->netdev;
2644 if (skge->rx_csum) {
2646 skb->ip_summed = CHECKSUM_HW;
2649 skb->protocol = eth_type_trans(skb, skge->netdev);
2654 if (netif_msg_rx_err(skge))
2655 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2656 skge->netdev->name, e - skge->rx_ring.start,
2659 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2660 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2661 skge->net_stats.rx_length_errors++;
2662 if (status & XMR_FS_FRA_ERR)
2663 skge->net_stats.rx_frame_errors++;
2664 if (status & XMR_FS_FCS_ERR)
2665 skge->net_stats.rx_crc_errors++;
2667 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2668 skge->net_stats.rx_length_errors++;
2669 if (status & GMR_FS_FRAGMENT)
2670 skge->net_stats.rx_frame_errors++;
2671 if (status & GMR_FS_CRC_ERR)
2672 skge->net_stats.rx_crc_errors++;
2676 skge_rx_reuse(e, skge->rx_buf_size);
2680 /* Free all buffers in Tx ring which are no longer owned by device */
2681 static void skge_txirq(struct net_device *dev)
2683 struct skge_port *skge = netdev_priv(dev);
2684 struct skge_ring *ring = &skge->tx_ring;
2685 struct skge_element *e;
2689 spin_lock(&skge->tx_lock);
2690 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2691 struct skge_tx_desc *td = e->desc;
2693 if (td->control & BMU_OWN)
2696 skge_tx_free(skge, e, td->control);
2698 skge->tx_ring.to_clean = e;
2700 if (netif_queue_stopped(skge->netdev)
2701 && skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2702 netif_wake_queue(skge->netdev);
2704 spin_unlock(&skge->tx_lock);
2707 static int skge_poll(struct net_device *dev, int *budget)
2709 struct skge_port *skge = netdev_priv(dev);
2710 struct skge_hw *hw = skge->hw;
2711 struct skge_ring *ring = &skge->rx_ring;
2712 struct skge_element *e;
2713 int to_do = min(dev->quota, *budget);
2716 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2717 struct skge_rx_desc *rd = e->desc;
2718 struct sk_buff *skb;
2722 control = rd->control;
2723 if (control & BMU_OWN)
2726 skb = skge_rx_get(skge, e, control, rd->status, rd->csum2);
2728 dev->last_rx = jiffies;
2729 netif_receive_skb(skb);
2736 /* restart receiver */
2738 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2740 *budget -= work_done;
2741 dev->quota -= work_done;
2743 if (work_done >= to_do)
2744 return 1; /* not done */
2746 netif_rx_complete(dev);
2748 spin_lock_irq(&hw->hw_lock);
2749 hw->intr_mask |= rxirqmask[skge->port];
2750 skge_write32(hw, B0_IMSK, hw->intr_mask);
2751 skge_read32(hw, B0_IMSK);
2752 spin_unlock_irq(&hw->hw_lock);
2757 /* Parity errors seem to happen when Genesis is connected to a switch
2758 * with no other ports present. Heartbeat error??
2760 static void skge_mac_parity(struct skge_hw *hw, int port)
2762 struct net_device *dev = hw->dev[port];
2765 struct skge_port *skge = netdev_priv(dev);
2766 ++skge->net_stats.tx_heartbeat_errors;
2769 if (hw->chip_id == CHIP_ID_GENESIS)
2770 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2773 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2774 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2775 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2776 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2779 static void skge_mac_intr(struct skge_hw *hw, int port)
2781 if (hw->chip_id == CHIP_ID_GENESIS)
2782 genesis_mac_intr(hw, port);
2784 yukon_mac_intr(hw, port);
2787 /* Handle device specific framing and timeout interrupts */
2788 static void skge_error_irq(struct skge_hw *hw)
2790 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2792 if (hw->chip_id == CHIP_ID_GENESIS) {
2793 /* clear xmac errors */
2794 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2795 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2796 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2797 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2799 /* Timestamp (unused) overflow */
2800 if (hwstatus & IS_IRQ_TIST_OV)
2801 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2804 if (hwstatus & IS_RAM_RD_PAR) {
2805 printk(KERN_ERR PFX "Ram read data parity error\n");
2806 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2809 if (hwstatus & IS_RAM_WR_PAR) {
2810 printk(KERN_ERR PFX "Ram write data parity error\n");
2811 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2814 if (hwstatus & IS_M1_PAR_ERR)
2815 skge_mac_parity(hw, 0);
2817 if (hwstatus & IS_M2_PAR_ERR)
2818 skge_mac_parity(hw, 1);
2820 if (hwstatus & IS_R1_PAR_ERR) {
2821 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2823 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2826 if (hwstatus & IS_R2_PAR_ERR) {
2827 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2829 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2832 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2833 u16 pci_status, pci_cmd;
2835 pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
2836 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2838 printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
2839 pci_name(hw->pdev), pci_cmd, pci_status);
2841 /* Write the error bits back to clear them. */
2842 pci_status &= PCI_STATUS_ERROR_BITS;
2843 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2844 pci_write_config_word(hw->pdev, PCI_COMMAND,
2845 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
2846 pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
2847 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2849 /* if error still set then just ignore it */
2850 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2851 if (hwstatus & IS_IRQ_STAT) {
2852 printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
2853 hw->intr_mask &= ~IS_HW_ERR;
2859 * Interrupt from PHY are handled in work queue
2860 * because accessing phy registers requires spin wait which might
2861 * cause excess interrupt latency.
2863 static void skge_extirq(void *arg)
2865 struct skge_hw *hw = arg;
2868 mutex_lock(&hw->phy_mutex);
2869 for (port = 0; port < hw->ports; port++) {
2870 struct net_device *dev = hw->dev[port];
2871 struct skge_port *skge = netdev_priv(dev);
2873 if (netif_running(dev)) {
2874 if (hw->chip_id != CHIP_ID_GENESIS)
2875 yukon_phy_intr(skge);
2877 bcom_phy_intr(skge);
2880 mutex_unlock(&hw->phy_mutex);
2882 spin_lock_irq(&hw->hw_lock);
2883 hw->intr_mask |= IS_EXT_REG;
2884 skge_write32(hw, B0_IMSK, hw->intr_mask);
2885 skge_read32(hw, B0_IMSK);
2886 spin_unlock_irq(&hw->hw_lock);
2889 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2891 struct skge_hw *hw = dev_id;
2894 /* Reading this register masks IRQ */
2895 status = skge_read32(hw, B0_SP_ISRC);
2899 spin_lock(&hw->hw_lock);
2900 status &= hw->intr_mask;
2901 if (status & IS_EXT_REG) {
2902 hw->intr_mask &= ~IS_EXT_REG;
2903 schedule_work(&hw->phy_work);
2906 if (status & IS_XA1_F) {
2907 skge_write8(hw, Q_ADDR(Q_XA1, Q_CSR), CSR_IRQ_CL_F);
2908 skge_txirq(hw->dev[0]);
2911 if (status & IS_R1_F) {
2912 skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
2913 hw->intr_mask &= ~IS_R1_F;
2914 netif_rx_schedule(hw->dev[0]);
2917 if (status & IS_PA_TO_TX1)
2918 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2920 if (status & IS_PA_TO_RX1) {
2921 struct skge_port *skge = netdev_priv(hw->dev[0]);
2923 ++skge->net_stats.rx_over_errors;
2924 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2928 if (status & IS_MAC1)
2929 skge_mac_intr(hw, 0);
2932 if (status & IS_XA2_F) {
2933 skge_write8(hw, Q_ADDR(Q_XA2, Q_CSR), CSR_IRQ_CL_F);
2934 skge_txirq(hw->dev[1]);
2937 if (status & IS_R2_F) {
2938 skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
2939 hw->intr_mask &= ~IS_R2_F;
2940 netif_rx_schedule(hw->dev[1]);
2943 if (status & IS_PA_TO_RX2) {
2944 struct skge_port *skge = netdev_priv(hw->dev[1]);
2945 ++skge->net_stats.rx_over_errors;
2946 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
2949 if (status & IS_PA_TO_TX2)
2950 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
2952 if (status & IS_MAC2)
2953 skge_mac_intr(hw, 1);
2956 if (status & IS_HW_ERR)
2959 skge_write32(hw, B0_IMSK, hw->intr_mask);
2960 skge_read32(hw, B0_IMSK);
2961 spin_unlock(&hw->hw_lock);
2966 #ifdef CONFIG_NET_POLL_CONTROLLER
2967 static void skge_netpoll(struct net_device *dev)
2969 struct skge_port *skge = netdev_priv(dev);
2971 disable_irq(dev->irq);
2972 skge_intr(dev->irq, skge->hw, NULL);
2973 enable_irq(dev->irq);
2977 static int skge_set_mac_address(struct net_device *dev, void *p)
2979 struct skge_port *skge = netdev_priv(dev);
2980 struct skge_hw *hw = skge->hw;
2981 unsigned port = skge->port;
2982 const struct sockaddr *addr = p;
2984 if (!is_valid_ether_addr(addr->sa_data))
2985 return -EADDRNOTAVAIL;
2987 mutex_lock(&hw->phy_mutex);
2988 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2989 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2990 dev->dev_addr, ETH_ALEN);
2991 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2992 dev->dev_addr, ETH_ALEN);
2994 if (hw->chip_id == CHIP_ID_GENESIS)
2995 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
2997 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
2998 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3000 mutex_unlock(&hw->phy_mutex);
3005 static const struct {
3009 { CHIP_ID_GENESIS, "Genesis" },
3010 { CHIP_ID_YUKON, "Yukon" },
3011 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3012 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3015 static const char *skge_board_name(const struct skge_hw *hw)
3018 static char buf[16];
3020 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3021 if (skge_chips[i].id == hw->chip_id)
3022 return skge_chips[i].name;
3024 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3030 * Setup the board data structure, but don't bring up
3033 static int skge_reset(struct skge_hw *hw)
3036 u16 ctst, pci_status;
3037 u8 t8, mac_cfg, pmd_type, phy_type;
3040 ctst = skge_read16(hw, B0_CTST);
3043 skge_write8(hw, B0_CTST, CS_RST_SET);
3044 skge_write8(hw, B0_CTST, CS_RST_CLR);
3046 /* clear PCI errors, if any */
3047 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3048 skge_write8(hw, B2_TST_CTRL2, 0);
3050 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3051 pci_write_config_word(hw->pdev, PCI_STATUS,
3052 pci_status | PCI_STATUS_ERROR_BITS);
3053 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3054 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3056 /* restore CLK_RUN bits (for Yukon-Lite) */
3057 skge_write16(hw, B0_CTST,
3058 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3060 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3061 phy_type = skge_read8(hw, B2_E_1) & 0xf;
3062 pmd_type = skge_read8(hw, B2_PMD_TYP);
3063 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3065 switch (hw->chip_id) {
3066 case CHIP_ID_GENESIS:
3069 hw->phy_addr = PHY_ADDR_BCOM;
3072 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3073 pci_name(hw->pdev), phy_type);
3079 case CHIP_ID_YUKON_LITE:
3080 case CHIP_ID_YUKON_LP:
3081 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3084 hw->phy_addr = PHY_ADDR_MARV;
3088 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3089 pci_name(hw->pdev), hw->chip_id);
3093 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3094 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3095 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3097 /* read the adapters RAM size */
3098 t8 = skge_read8(hw, B2_E_0);
3099 if (hw->chip_id == CHIP_ID_GENESIS) {
3101 /* special case: 4 x 64k x 36, offset = 0x80000 */
3102 hw->ram_size = 0x100000;
3103 hw->ram_offset = 0x80000;
3105 hw->ram_size = t8 * 512;
3108 hw->ram_size = 0x20000;
3110 hw->ram_size = t8 * 4096;
3112 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3114 hw->intr_mask |= IS_PORT_2;
3116 if (hw->chip_id == CHIP_ID_GENESIS)
3119 /* switch power to VCC (WA for VAUX problem) */
3120 skge_write8(hw, B0_POWER_CTRL,
3121 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3123 /* avoid boards with stuck Hardware error bits */
3124 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3125 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3126 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3127 hw->intr_mask &= ~IS_HW_ERR;
3130 /* Clear PHY COMA */
3131 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3132 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3133 reg &= ~PCI_PHY_COMA;
3134 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3135 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3138 for (i = 0; i < hw->ports; i++) {
3139 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3140 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3144 /* turn off hardware timer (unused) */
3145 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3146 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3147 skge_write8(hw, B0_LED, LED_STAT_ON);
3149 /* enable the Tx Arbiters */
3150 for (i = 0; i < hw->ports; i++)
3151 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3153 /* Initialize ram interface */
3154 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3156 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3157 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3158 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3159 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3160 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3161 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3162 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3163 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3164 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3165 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3166 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3167 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3169 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3171 /* Set interrupt moderation for Transmit only
3172 * Receive interrupts avoided by NAPI
3174 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3175 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3176 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3178 skge_write32(hw, B0_IMSK, hw->intr_mask);
3180 mutex_lock(&hw->phy_mutex);
3181 for (i = 0; i < hw->ports; i++) {
3182 if (hw->chip_id == CHIP_ID_GENESIS)
3183 genesis_reset(hw, i);
3187 mutex_unlock(&hw->phy_mutex);
3192 /* Initialize network device */
3193 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3196 struct skge_port *skge;
3197 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3200 printk(KERN_ERR "skge etherdev alloc failed");
3204 SET_MODULE_OWNER(dev);
3205 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3206 dev->open = skge_up;
3207 dev->stop = skge_down;
3208 dev->do_ioctl = skge_ioctl;
3209 dev->hard_start_xmit = skge_xmit_frame;
3210 dev->get_stats = skge_get_stats;
3211 if (hw->chip_id == CHIP_ID_GENESIS)
3212 dev->set_multicast_list = genesis_set_multicast;
3214 dev->set_multicast_list = yukon_set_multicast;
3216 dev->set_mac_address = skge_set_mac_address;
3217 dev->change_mtu = skge_change_mtu;
3218 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3219 dev->tx_timeout = skge_tx_timeout;
3220 dev->watchdog_timeo = TX_WATCHDOG;
3221 dev->poll = skge_poll;
3222 dev->weight = NAPI_WEIGHT;
3223 #ifdef CONFIG_NET_POLL_CONTROLLER
3224 dev->poll_controller = skge_netpoll;
3226 dev->irq = hw->pdev->irq;
3227 dev->features = NETIF_F_LLTX;
3229 dev->features |= NETIF_F_HIGHDMA;
3231 skge = netdev_priv(dev);
3234 skge->msg_enable = netif_msg_init(debug, default_msg);
3235 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3236 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3238 /* Auto speed and flow control */
3239 skge->autoneg = AUTONEG_ENABLE;
3240 skge->flow_control = FLOW_MODE_SYMMETRIC;
3243 skge->advertising = skge_supported_modes(hw);
3245 hw->dev[port] = dev;
3249 spin_lock_init(&skge->tx_lock);
3251 if (hw->chip_id != CHIP_ID_GENESIS) {
3252 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3256 /* read the mac address */
3257 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3258 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3260 /* device is off until link detection */
3261 netif_carrier_off(dev);
3262 netif_stop_queue(dev);
3267 static void __devinit skge_show_addr(struct net_device *dev)
3269 const struct skge_port *skge = netdev_priv(dev);
3271 if (netif_msg_probe(skge))
3272 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3274 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3275 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3278 static int __devinit skge_probe(struct pci_dev *pdev,
3279 const struct pci_device_id *ent)
3281 struct net_device *dev, *dev1;
3283 int err, using_dac = 0;
3285 err = pci_enable_device(pdev);
3287 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3292 err = pci_request_regions(pdev, DRV_NAME);
3294 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3296 goto err_out_disable_pdev;
3299 pci_set_master(pdev);
3301 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3303 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3304 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3306 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3310 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3312 goto err_out_free_regions;
3316 /* byte swap descriptors in hardware */
3320 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3321 reg |= PCI_REV_DESC;
3322 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3327 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3329 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3331 goto err_out_free_regions;
3335 mutex_init(&hw->phy_mutex);
3336 INIT_WORK(&hw->phy_work, skge_extirq, hw);
3337 spin_lock_init(&hw->hw_lock);
3339 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3341 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3343 goto err_out_free_hw;
3346 err = skge_reset(hw);
3348 goto err_out_iounmap;
3350 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3351 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3352 skge_board_name(hw), hw->chip_rev);
3354 dev = skge_devinit(hw, 0, using_dac);
3356 goto err_out_led_off;
3358 if (!is_valid_ether_addr(dev->dev_addr)) {
3359 printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
3362 goto err_out_free_netdev;
3365 err = register_netdev(dev);
3367 printk(KERN_ERR PFX "%s: cannot register net device\n",
3369 goto err_out_free_netdev;
3372 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3374 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3375 dev->name, pdev->irq);
3376 goto err_out_unregister;
3378 skge_show_addr(dev);
3380 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3381 if (register_netdev(dev1) == 0)
3382 skge_show_addr(dev1);
3384 /* Failure to register second port need not be fatal */
3385 printk(KERN_WARNING PFX "register of second port failed\n");
3390 pci_set_drvdata(pdev, hw);
3395 unregister_netdev(dev);
3396 err_out_free_netdev:
3399 skge_write16(hw, B0_LED, LED_STAT_OFF);
3404 err_out_free_regions:
3405 pci_release_regions(pdev);
3406 err_out_disable_pdev:
3407 pci_disable_device(pdev);
3408 pci_set_drvdata(pdev, NULL);
3413 static void __devexit skge_remove(struct pci_dev *pdev)
3415 struct skge_hw *hw = pci_get_drvdata(pdev);
3416 struct net_device *dev0, *dev1;
3421 if ((dev1 = hw->dev[1]))
3422 unregister_netdev(dev1);
3424 unregister_netdev(dev0);
3426 spin_lock_irq(&hw->hw_lock);
3428 skge_write32(hw, B0_IMSK, 0);
3429 skge_read32(hw, B0_IMSK);
3430 spin_unlock_irq(&hw->hw_lock);
3432 skge_write16(hw, B0_LED, LED_STAT_OFF);
3433 skge_write8(hw, B0_CTST, CS_RST_SET);
3435 flush_scheduled_work();
3437 free_irq(pdev->irq, hw);
3438 pci_release_regions(pdev);
3439 pci_disable_device(pdev);
3446 pci_set_drvdata(pdev, NULL);
3450 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3452 struct skge_hw *hw = pci_get_drvdata(pdev);
3455 pci_save_state(pdev);
3456 for (i = 0; i < hw->ports; i++) {
3457 struct net_device *dev = hw->dev[i];
3459 if (netif_running(dev)) {
3460 struct skge_port *skge = netdev_priv(dev);
3462 netif_carrier_off(dev);
3464 netif_stop_queue(dev);
3469 netif_device_detach(dev);
3472 skge_write32(hw, B0_IMSK, 0);
3473 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3474 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3479 static int skge_resume(struct pci_dev *pdev)
3481 struct skge_hw *hw = pci_get_drvdata(pdev);
3484 pci_set_power_state(pdev, PCI_D0);
3485 pci_restore_state(pdev);
3486 pci_enable_wake(pdev, PCI_D0, 0);
3488 err = skge_reset(hw);
3492 for (i = 0; i < hw->ports; i++) {
3493 struct net_device *dev = hw->dev[i];
3495 netif_device_attach(dev);
3496 if (netif_running(dev)) {
3500 printk(KERN_ERR PFX "%s: could not up: %d\n",
3512 static struct pci_driver skge_driver = {
3514 .id_table = skge_id_table,
3515 .probe = skge_probe,
3516 .remove = __devexit_p(skge_remove),
3518 .suspend = skge_suspend,
3519 .resume = skge_resume,
3523 static int __init skge_init_module(void)
3525 return pci_register_driver(&skge_driver);
3528 static void __exit skge_cleanup_module(void)
3530 pci_unregister_driver(&skge_driver);
3533 module_init(skge_init_module);
3534 module_exit(skge_cleanup_module);