2 * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
4 * Copyright (C) 2000 VA Linux Co
5 * Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
6 * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
13 * These routines maintain argument size conversion between 32bit and 64bit
17 #include <linux/kernel.h>
18 #include <linux/syscalls.h>
19 #include <linux/sysctl.h>
20 #include <linux/sched.h>
22 #include <linux/file.h>
23 #include <linux/signal.h>
24 #include <linux/resource.h>
25 #include <linux/times.h>
26 #include <linux/utsname.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/sem.h>
30 #include <linux/msg.h>
32 #include <linux/shm.h>
33 #include <linux/slab.h>
34 #include <linux/uio.h>
35 #include <linux/socket.h>
36 #include <linux/quota.h>
37 #include <linux/poll.h>
38 #include <linux/eventpoll.h>
39 #include <linux/personality.h>
40 #include <linux/ptrace.h>
41 #include <linux/regset.h>
42 #include <linux/stat.h>
43 #include <linux/ipc.h>
44 #include <linux/capability.h>
45 #include <linux/compat.h>
46 #include <linux/vfs.h>
47 #include <linux/mman.h>
48 #include <linux/mutex.h>
50 #include <asm/intrinsics.h>
51 #include <asm/types.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
63 # define DBG(fmt...) printk(KERN_DEBUG fmt)
68 #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
70 #define OFFSET4K(a) ((a) & 0xfff)
71 #define PAGE_START(addr) ((addr) & PAGE_MASK)
72 #define MINSIGSTKSZ_IA32 2048
74 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
75 #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
78 * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
81 /* XXX make per-mm: */
82 static DEFINE_MUTEX(ia32_mmap_mutex);
85 sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
90 unsigned long old_map_base, old_task_size, tssd;
92 filename = getname(name);
93 error = PTR_ERR(filename);
97 old_map_base = current->thread.map_base;
98 old_task_size = current->thread.task_size;
99 tssd = ia64_get_kr(IA64_KR_TSSD);
101 /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
102 current->thread.map_base = DEFAULT_MAP_BASE;
103 current->thread.task_size = DEFAULT_TASK_SIZE;
104 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
105 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
107 error = compat_do_execve(filename, argv, envp, regs);
111 /* oops, execve failed, switch back to old values... */
112 ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
113 ia64_set_kr(IA64_KR_TSSD, tssd);
114 current->thread.map_base = old_map_base;
115 current->thread.task_size = old_task_size;
121 int cp_compat_stat(struct kstat *stat, struct compat_stat __user *ubuf)
126 if ((u64) stat->size > MAX_NON_LFS ||
127 !old_valid_dev(stat->dev) ||
128 !old_valid_dev(stat->rdev))
132 if (sizeof(ino) < sizeof(stat->ino) && ino != stat->ino)
135 if (clear_user(ubuf, sizeof(*ubuf)))
138 err = __put_user(old_encode_dev(stat->dev), &ubuf->st_dev);
139 err |= __put_user(ino, &ubuf->st_ino);
140 err |= __put_user(stat->mode, &ubuf->st_mode);
141 err |= __put_user(stat->nlink, &ubuf->st_nlink);
142 err |= __put_user(high2lowuid(stat->uid), &ubuf->st_uid);
143 err |= __put_user(high2lowgid(stat->gid), &ubuf->st_gid);
144 err |= __put_user(old_encode_dev(stat->rdev), &ubuf->st_rdev);
145 err |= __put_user(stat->size, &ubuf->st_size);
146 err |= __put_user(stat->atime.tv_sec, &ubuf->st_atime);
147 err |= __put_user(stat->atime.tv_nsec, &ubuf->st_atime_nsec);
148 err |= __put_user(stat->mtime.tv_sec, &ubuf->st_mtime);
149 err |= __put_user(stat->mtime.tv_nsec, &ubuf->st_mtime_nsec);
150 err |= __put_user(stat->ctime.tv_sec, &ubuf->st_ctime);
151 err |= __put_user(stat->ctime.tv_nsec, &ubuf->st_ctime_nsec);
152 err |= __put_user(stat->blksize, &ubuf->st_blksize);
153 err |= __put_user(stat->blocks, &ubuf->st_blocks);
157 #if PAGE_SHIFT > IA32_PAGE_SHIFT
161 get_page_prot (struct vm_area_struct *vma, unsigned long addr)
165 if (!vma || vma->vm_start > addr)
168 if (vma->vm_flags & VM_READ)
170 if (vma->vm_flags & VM_WRITE)
172 if (vma->vm_flags & VM_EXEC)
178 * Map a subpage by creating an anonymous page that contains the union of the old page and
182 mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
187 unsigned long ret = 0;
188 struct vm_area_struct *vma = find_vma(current->mm, start);
189 int old_prot = get_page_prot(vma, start);
191 DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
192 file, start, end, prot, flags, off);
195 /* Optimize the case where the old mmap and the new mmap are both anonymous */
196 if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
197 if (clear_user((void __user *) start, end - start)) {
204 page = (void *) get_zeroed_page(GFP_KERNEL);
209 copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
211 down_write(¤t->mm->mmap_sem);
213 ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
214 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
216 up_write(¤t->mm->mmap_sem);
218 if (IS_ERR((void *) ret))
222 /* copy back the old page contents. */
223 if (offset_in_page(start))
224 copy_to_user((void __user *) PAGE_START(start), page,
225 offset_in_page(start));
226 if (offset_in_page(end))
227 copy_to_user((void __user *) end, page + offset_in_page(end),
228 PAGE_SIZE - offset_in_page(end));
231 if (!(flags & MAP_ANONYMOUS)) {
232 /* read the file contents */
233 inode = file->f_path.dentry->d_inode;
234 if (!inode->i_fop || !file->f_op->read
235 || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
243 if (!(prot & PROT_WRITE))
244 ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
247 free_page((unsigned long) page);
251 /* SLAB cache for ia64_partial_page structures */
252 struct kmem_cache *ia64_partial_page_cachep;
255 * init ia64_partial_page_list.
256 * return 0 means kmalloc fail.
258 struct ia64_partial_page_list*
259 ia32_init_pp_list(void)
261 struct ia64_partial_page_list *p;
263 if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
268 atomic_set(&p->pp_count, 1);
273 * Search for the partial page with @start in partial page list @ppl.
274 * If finds the partial page, return the found partial page.
275 * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
276 * be used by later __ia32_insert_pp().
278 static struct ia64_partial_page *
279 __ia32_find_pp(struct ia64_partial_page_list *ppl, unsigned int start,
280 struct ia64_partial_page **pprev, struct rb_node ***rb_link,
281 struct rb_node **rb_parent)
283 struct ia64_partial_page *pp;
284 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
287 if (pp && pp->base == start)
290 __rb_link = &ppl->ppl_rb.rb_node;
291 rb_prev = __rb_parent = NULL;
294 __rb_parent = *__rb_link;
295 pp = rb_entry(__rb_parent, struct ia64_partial_page, pp_rb);
297 if (pp->base == start) {
300 } else if (pp->base < start) {
301 rb_prev = __rb_parent;
302 __rb_link = &__rb_parent->rb_right;
304 __rb_link = &__rb_parent->rb_left;
308 *rb_link = __rb_link;
309 *rb_parent = __rb_parent;
312 *pprev = rb_entry(rb_prev, struct ia64_partial_page, pp_rb);
317 * insert @pp into @ppl.
320 __ia32_insert_pp(struct ia64_partial_page_list *ppl,
321 struct ia64_partial_page *pp, struct ia64_partial_page *prev,
322 struct rb_node **rb_link, struct rb_node *rb_parent)
326 pp->next = prev->next;
331 pp->next = rb_entry(rb_parent,
332 struct ia64_partial_page, pp_rb);
338 rb_link_node(&pp->pp_rb, rb_parent, rb_link);
339 rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
345 * delete @pp from partial page list @ppl.
348 __ia32_delete_pp(struct ia64_partial_page_list *ppl,
349 struct ia64_partial_page *pp, struct ia64_partial_page *prev)
352 prev->next = pp->next;
353 if (ppl->pp_hint == pp)
356 ppl->pp_head = pp->next;
357 if (ppl->pp_hint == pp)
358 ppl->pp_hint = pp->next;
360 rb_erase(&pp->pp_rb, &ppl->ppl_rb);
361 kmem_cache_free(ia64_partial_page_cachep, pp);
364 static struct ia64_partial_page *
365 __pp_prev(struct ia64_partial_page *pp)
367 struct rb_node *prev = rb_prev(&pp->pp_rb);
369 return rb_entry(prev, struct ia64_partial_page, pp_rb);
375 * Delete partial pages with address between @start and @end.
376 * @start and @end are page aligned.
379 __ia32_delete_pp_range(unsigned int start, unsigned int end)
381 struct ia64_partial_page *pp, *prev;
382 struct rb_node **rb_link, *rb_parent;
387 pp = __ia32_find_pp(current->thread.ppl, start, &prev,
388 &rb_link, &rb_parent);
390 prev = __pp_prev(pp);
395 pp = current->thread.ppl->pp_head;
398 while (pp && pp->base < end) {
399 struct ia64_partial_page *tmp = pp->next;
400 __ia32_delete_pp(current->thread.ppl, pp, prev);
406 * Set the range between @start and @end in bitmap.
407 * @start and @end should be IA32 page aligned and in the same IA64 page.
410 __ia32_set_pp(unsigned int start, unsigned int end, int flags)
412 struct ia64_partial_page *pp, *prev;
413 struct rb_node ** rb_link, *rb_parent;
414 unsigned int pstart, start_bit, end_bit, i;
416 pstart = PAGE_START(start);
417 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
418 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
420 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
421 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
422 &rb_link, &rb_parent);
424 for (i = start_bit; i < end_bit; i++)
425 set_bit(i, &pp->bitmap);
427 * Check: if this partial page has been set to a full page,
430 if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
431 PAGE_SIZE/IA32_PAGE_SIZE) {
432 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
438 * MAP_FIXED may lead to overlapping mmap.
439 * In this case, the requested mmap area may already mmaped as a full
440 * page. So check vma before adding a new partial page.
442 if (flags & MAP_FIXED) {
443 struct vm_area_struct *vma = find_vma(current->mm, pstart);
444 if (vma && vma->vm_start <= pstart)
448 /* new a ia64_partial_page */
449 pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
454 for (i=start_bit; i<end_bit; i++)
455 set_bit(i, &(pp->bitmap));
457 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
462 * @start and @end should be IA32 page aligned, but don't need to be in the
463 * same IA64 page. Split @start and @end to make sure they're in the same IA64
464 * page, then call __ia32_set_pp().
467 ia32_set_pp(unsigned int start, unsigned int end, int flags)
469 down_write(¤t->mm->mmap_sem);
470 if (flags & MAP_FIXED) {
472 * MAP_FIXED may lead to overlapping mmap. When this happens,
473 * a series of complete IA64 pages results in deletion of
474 * old partial pages in that range.
476 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
479 if (end < PAGE_ALIGN(start)) {
480 __ia32_set_pp(start, end, flags);
482 if (offset_in_page(start))
483 __ia32_set_pp(start, PAGE_ALIGN(start), flags);
484 if (offset_in_page(end))
485 __ia32_set_pp(PAGE_START(end), end, flags);
487 up_write(¤t->mm->mmap_sem);
491 * Unset the range between @start and @end in bitmap.
492 * @start and @end should be IA32 page aligned and in the same IA64 page.
493 * After doing that, if the bitmap is 0, then free the page and return 1,
495 * If not find the partial page in the list, then
496 * If the vma exists, then the full page is set to a partial page;
497 * Else return -ENOMEM.
500 __ia32_unset_pp(unsigned int start, unsigned int end)
502 struct ia64_partial_page *pp, *prev;
503 struct rb_node ** rb_link, *rb_parent;
504 unsigned int pstart, start_bit, end_bit, i;
505 struct vm_area_struct *vma;
507 pstart = PAGE_START(start);
508 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
509 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
511 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
513 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
514 &rb_link, &rb_parent);
516 for (i = start_bit; i < end_bit; i++)
517 clear_bit(i, &pp->bitmap);
518 if (pp->bitmap == 0) {
519 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
525 vma = find_vma(current->mm, pstart);
526 if (!vma || vma->vm_start > pstart) {
530 /* new a ia64_partial_page */
531 pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
536 for (i = 0; i < start_bit; i++)
537 set_bit(i, &(pp->bitmap));
538 for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
539 set_bit(i, &(pp->bitmap));
541 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
546 * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
547 * __ia32_delete_pp_range(). Unset possible partial pages by calling
549 * The returned value see __ia32_unset_pp().
552 ia32_unset_pp(unsigned int *startp, unsigned int *endp)
554 unsigned int start = *startp, end = *endp;
557 down_write(¤t->mm->mmap_sem);
559 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
561 if (end < PAGE_ALIGN(start)) {
562 ret = __ia32_unset_pp(start, end);
564 *startp = PAGE_START(start);
565 *endp = PAGE_ALIGN(end);
568 /* to shortcut sys_munmap() in sys32_munmap() */
569 *startp = PAGE_START(start);
570 *endp = PAGE_START(end);
573 if (offset_in_page(start)) {
574 ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
576 *startp = PAGE_START(start);
578 *startp = PAGE_ALIGN(start);
582 if (offset_in_page(end)) {
583 ret = __ia32_unset_pp(PAGE_START(end), end);
585 *endp = PAGE_ALIGN(end);
587 *endp = PAGE_START(end);
592 up_write(¤t->mm->mmap_sem);
597 * Compare the range between @start and @end with bitmap in partial page.
598 * @start and @end should be IA32 page aligned and in the same IA64 page.
601 __ia32_compare_pp(unsigned int start, unsigned int end)
603 struct ia64_partial_page *pp, *prev;
604 struct rb_node ** rb_link, *rb_parent;
605 unsigned int pstart, start_bit, end_bit, size;
606 unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
608 pstart = PAGE_START(start);
610 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
611 &rb_link, &rb_parent);
615 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
616 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
617 size = sizeof(pp->bitmap) * 8;
618 first_bit = find_first_bit(&pp->bitmap, size);
619 next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
620 if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
621 /* exceeds the first range in bitmap */
623 } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
624 first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
625 if ((next_zero_bit < first_bit) && (first_bit < size))
626 return 1; /* has next range */
628 return 0; /* no next range */
634 * @start and @end should be IA32 page aligned, but don't need to be in the
635 * same IA64 page. Split @start and @end to make sure they're in the same IA64
636 * page, then call __ia32_compare_pp().
638 * Take this as example: the range is the 1st and 2nd 4K page.
639 * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
640 * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
641 * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
645 ia32_compare_pp(unsigned int *startp, unsigned int *endp)
647 unsigned int start = *startp, end = *endp;
650 down_write(¤t->mm->mmap_sem);
652 if (end < PAGE_ALIGN(start)) {
653 retval = __ia32_compare_pp(start, end);
655 *startp = PAGE_START(start);
656 *endp = PAGE_ALIGN(end);
659 if (offset_in_page(start)) {
660 retval = __ia32_compare_pp(start,
663 *startp = PAGE_START(start);
667 if (offset_in_page(end)) {
668 retval = __ia32_compare_pp(PAGE_START(end), end);
670 *endp = PAGE_ALIGN(end);
675 up_write(¤t->mm->mmap_sem);
680 __ia32_drop_pp_list(struct ia64_partial_page_list *ppl)
682 struct ia64_partial_page *pp = ppl->pp_head;
685 struct ia64_partial_page *next = pp->next;
686 kmem_cache_free(ia64_partial_page_cachep, pp);
694 ia32_drop_ia64_partial_page_list(struct task_struct *task)
696 struct ia64_partial_page_list* ppl = task->thread.ppl;
698 if (ppl && atomic_dec_and_test(&ppl->pp_count))
699 __ia32_drop_pp_list(ppl);
703 * Copy current->thread.ppl to ppl (already initialized).
706 __ia32_copy_pp_list(struct ia64_partial_page_list *ppl)
708 struct ia64_partial_page *pp, *tmp, *prev;
709 struct rb_node **rb_link, *rb_parent;
713 ppl->ppl_rb = RB_ROOT;
714 rb_link = &ppl->ppl_rb.rb_node;
718 for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
719 tmp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
723 __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
725 rb_link = &tmp->pp_rb.rb_right;
726 rb_parent = &tmp->pp_rb;
732 ia32_copy_ia64_partial_page_list(struct task_struct *p,
733 unsigned long clone_flags)
737 if (clone_flags & CLONE_VM) {
738 atomic_inc(¤t->thread.ppl->pp_count);
739 p->thread.ppl = current->thread.ppl;
741 p->thread.ppl = ia32_init_pp_list();
744 down_write(¤t->mm->mmap_sem);
746 retval = __ia32_copy_pp_list(p->thread.ppl);
748 up_write(¤t->mm->mmap_sem);
755 emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
758 unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
763 pstart = PAGE_START(start);
764 pend = PAGE_ALIGN(end);
766 if (flags & MAP_FIXED) {
767 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
768 if (start > pstart) {
769 if (flags & MAP_SHARED)
771 "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
772 current->comm, task_pid_nr(current), start);
773 ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
775 if (IS_ERR((void *) ret))
782 if (flags & MAP_SHARED)
784 "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
785 current->comm, task_pid_nr(current), end);
786 ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
787 (off + len) - offset_in_page(end));
788 if (IS_ERR((void *) ret))
796 * If a start address was specified, use it if the entire rounded out area
799 if (start && !pstart)
800 fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
801 tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
804 start = pstart + offset_in_page(off); /* make start congruent with off */
806 pend = PAGE_ALIGN(end);
810 poff = off + (pstart - start); /* note: (pstart - start) may be negative */
811 is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
813 if ((flags & MAP_SHARED) && !is_congruent)
814 printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
815 "(addr=0x%lx,off=0x%llx)\n", current->comm, task_pid_nr(current), start, off);
817 DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
818 is_congruent ? "congruent" : "not congruent", poff);
820 down_write(¤t->mm->mmap_sem);
822 if (!(flags & MAP_ANONYMOUS) && is_congruent)
823 ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
825 ret = do_mmap(NULL, pstart, pend - pstart,
826 prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
827 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
829 up_write(¤t->mm->mmap_sem);
831 if (IS_ERR((void *) ret))
835 /* read the file contents */
836 inode = file->f_path.dentry->d_inode;
837 if (!inode->i_fop || !file->f_op->read
838 || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
841 sys_munmap(pstart, pend - pstart);
844 if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
848 if (!(flags & MAP_FIXED))
849 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
854 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
856 static inline unsigned int
857 get_prot32 (unsigned int prot)
859 if (prot & PROT_WRITE)
860 /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
861 prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
862 else if (prot & (PROT_READ | PROT_EXEC))
863 /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
864 prot |= (PROT_READ | PROT_EXEC);
870 ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
873 DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
874 file, addr, len, prot, flags, offset);
876 if (file && (!file->f_op || !file->f_op->mmap))
879 len = IA32_PAGE_ALIGN(len);
883 if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
885 if (flags & MAP_FIXED)
891 if (OFFSET4K(offset))
894 prot = get_prot32(prot);
896 #if PAGE_SHIFT > IA32_PAGE_SHIFT
897 mutex_lock(&ia32_mmap_mutex);
899 addr = emulate_mmap(file, addr, len, prot, flags, offset);
901 mutex_unlock(&ia32_mmap_mutex);
903 down_write(¤t->mm->mmap_sem);
905 addr = do_mmap(file, addr, len, prot, flags, offset);
907 up_write(¤t->mm->mmap_sem);
909 DBG("ia32_do_mmap: returning 0x%lx\n", addr);
914 * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
915 * system calls used a memory block for parameter passing..
918 struct mmap_arg_struct {
928 sys32_mmap (struct mmap_arg_struct __user *arg)
930 struct mmap_arg_struct a;
931 struct file *file = NULL;
935 if (copy_from_user(&a, arg, sizeof(a)))
938 if (OFFSET4K(a.offset))
943 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
944 if (!(flags & MAP_ANONYMOUS)) {
950 addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
958 sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
959 unsigned int fd, unsigned int pgoff)
961 struct file *file = NULL;
962 unsigned long retval;
964 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
965 if (!(flags & MAP_ANONYMOUS)) {
971 retval = ia32_do_mmap(file, addr, len, prot, flags,
972 (unsigned long) pgoff << IA32_PAGE_SHIFT);
980 sys32_munmap (unsigned int start, unsigned int len)
982 unsigned int end = start + len;
985 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
986 ret = sys_munmap(start, end - start);
991 end = IA32_PAGE_ALIGN(end);
995 ret = ia32_unset_pp(&start, &end);
1002 mutex_lock(&ia32_mmap_mutex);
1003 ret = sys_munmap(start, end - start);
1004 mutex_unlock(&ia32_mmap_mutex);
1009 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1012 * When mprotect()ing a partial page, we set the permission to the union of the old
1013 * settings and the new settings. In other words, it's only possible to make access to a
1014 * partial page less restrictive.
1017 mprotect_subpage (unsigned long address, int new_prot)
1020 struct vm_area_struct *vma;
1022 if (new_prot == PROT_NONE)
1023 return 0; /* optimize case where nothing changes... */
1024 vma = find_vma(current->mm, address);
1025 old_prot = get_page_prot(vma, address);
1026 return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
1029 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
1032 sys32_mprotect (unsigned int start, unsigned int len, int prot)
1034 unsigned int end = start + len;
1035 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1039 prot = get_prot32(prot);
1041 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1042 return sys_mprotect(start, end - start, prot);
1044 if (OFFSET4K(start))
1047 end = IA32_PAGE_ALIGN(end);
1051 retval = ia32_compare_pp(&start, &end);
1056 mutex_lock(&ia32_mmap_mutex);
1058 if (offset_in_page(start)) {
1059 /* start address is 4KB aligned but not page aligned. */
1060 retval = mprotect_subpage(PAGE_START(start), prot);
1064 start = PAGE_ALIGN(start);
1066 goto out; /* retval is already zero... */
1069 if (offset_in_page(end)) {
1070 /* end address is 4KB aligned but not page aligned. */
1071 retval = mprotect_subpage(PAGE_START(end), prot);
1075 end = PAGE_START(end);
1077 retval = sys_mprotect(start, end - start, prot);
1080 mutex_unlock(&ia32_mmap_mutex);
1086 sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
1087 unsigned int flags, unsigned int new_addr)
1091 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1092 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1094 unsigned int old_end, new_end;
1099 old_len = IA32_PAGE_ALIGN(old_len);
1100 new_len = IA32_PAGE_ALIGN(new_len);
1101 old_end = addr + old_len;
1102 new_end = addr + new_len;
1107 if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
1110 if (old_len >= new_len) {
1111 ret = sys32_munmap(addr + new_len, old_len - new_len);
1112 if (ret && old_len != new_len)
1115 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
1120 addr = PAGE_START(addr);
1121 old_len = PAGE_ALIGN(old_end) - addr;
1122 new_len = PAGE_ALIGN(new_end) - addr;
1124 mutex_lock(&ia32_mmap_mutex);
1125 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1126 mutex_unlock(&ia32_mmap_mutex);
1128 if ((ret >= 0) && (old_len < new_len)) {
1129 /* mremap expanded successfully */
1130 ia32_set_pp(old_end, new_end, flags);
1137 sys32_pipe (int __user *fd)
1142 retval = do_pipe(fds);
1145 if (copy_to_user(fd, fds, sizeof(fds)))
1152 get_tv32 (struct timeval *o, struct compat_timeval __user *i)
1154 return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
1155 (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec)));
1159 put_tv32 (struct compat_timeval __user *o, struct timeval *i)
1161 return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
1162 (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec)));
1165 asmlinkage unsigned long
1166 sys32_alarm (unsigned int seconds)
1168 return alarm_setitimer(seconds);
1171 /* Translations due to time_t size differences. Which affects all
1172 sorts of things, like timeval and itimerval. */
1174 extern struct timezone sys_tz;
1177 sys32_gettimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1181 do_gettimeofday(&ktv);
1182 if (put_tv32(tv, &ktv))
1186 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
1193 sys32_settimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1196 struct timespec kts;
1197 struct timezone ktz;
1200 if (get_tv32(&ktv, tv))
1202 kts.tv_sec = ktv.tv_sec;
1203 kts.tv_nsec = ktv.tv_usec * 1000;
1206 if (copy_from_user(&ktz, tz, sizeof(ktz)))
1210 return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
1213 struct getdents32_callback {
1214 struct compat_dirent __user *current_dir;
1215 struct compat_dirent __user *previous;
1220 struct readdir32_callback {
1221 struct old_linux32_dirent __user * dirent;
1226 filldir32 (void *__buf, const char *name, int namlen, loff_t offset, u64 ino,
1227 unsigned int d_type)
1229 struct compat_dirent __user * dirent;
1230 struct getdents32_callback * buf = (struct getdents32_callback *) __buf;
1231 int reclen = ROUND_UP(offsetof(struct compat_dirent, d_name) + namlen + 1, 4);
1234 buf->error = -EINVAL; /* only used if we fail.. */
1235 if (reclen > buf->count)
1238 if (sizeof(d_ino) < sizeof(ino) && d_ino != ino)
1240 buf->error = -EFAULT; /* only used if we fail.. */
1241 dirent = buf->previous;
1243 if (put_user(offset, &dirent->d_off))
1245 dirent = buf->current_dir;
1246 buf->previous = dirent;
1247 if (put_user(d_ino, &dirent->d_ino)
1248 || put_user(reclen, &dirent->d_reclen)
1249 || copy_to_user(dirent->d_name, name, namlen)
1250 || put_user(0, dirent->d_name + namlen))
1252 dirent = (struct compat_dirent __user *) ((char __user *) dirent + reclen);
1253 buf->current_dir = dirent;
1254 buf->count -= reclen;
1259 sys32_getdents (unsigned int fd, struct compat_dirent __user *dirent, unsigned int count)
1262 struct compat_dirent __user * lastdirent;
1263 struct getdents32_callback buf;
1267 if (!access_ok(VERIFY_WRITE, dirent, count))
1275 buf.current_dir = dirent;
1276 buf.previous = NULL;
1280 error = vfs_readdir(file, filldir32, &buf);
1284 lastdirent = buf.previous;
1286 if (put_user(file->f_pos, &lastdirent->d_off))
1289 error = count - buf.count;
1299 fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, u64 ino,
1300 unsigned int d_type)
1302 struct readdir32_callback * buf = (struct readdir32_callback *) __buf;
1303 struct old_linux32_dirent __user * dirent;
1309 if (sizeof(d_ino) < sizeof(ino) && d_ino != ino)
1312 dirent = buf->dirent;
1313 if (put_user(d_ino, &dirent->d_ino)
1314 || put_user(offset, &dirent->d_offset)
1315 || put_user(namlen, &dirent->d_namlen)
1316 || copy_to_user(dirent->d_name, name, namlen)
1317 || put_user(0, dirent->d_name + namlen))
1323 sys32_readdir (unsigned int fd, void __user *dirent, unsigned int count)
1327 struct readdir32_callback buf;
1335 buf.dirent = dirent;
1337 error = vfs_readdir(file, fillonedir32, &buf);
1345 struct sel_arg_struct {
1354 sys32_old_select (struct sel_arg_struct __user *arg)
1356 struct sel_arg_struct a;
1358 if (copy_from_user(&a, arg, sizeof(a)))
1360 return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
1361 compat_ptr(a.exp), compat_ptr(a.tvp));
1367 #define SEMTIMEDOP 4
1378 sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
1382 version = call >> 16; /* hack for backward compatibility */
1388 return compat_sys_semtimedop(first, compat_ptr(ptr),
1389 second, compat_ptr(fifth));
1390 /* else fall through for normal semop() */
1392 /* struct sembuf is the same on 32 and 64bit :)) */
1393 return sys_semtimedop(first, compat_ptr(ptr), second,
1396 return sys_semget(first, second, third);
1398 return compat_sys_semctl(first, second, third, compat_ptr(ptr));
1401 return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
1403 return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
1405 return sys_msgget((key_t) first, second);
1407 return compat_sys_msgctl(first, second, compat_ptr(ptr));
1410 return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
1413 return sys_shmdt(compat_ptr(ptr));
1415 return sys_shmget(first, (unsigned)second, third);
1417 return compat_sys_shmctl(first, second, compat_ptr(ptr));
1426 compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
1427 struct compat_rusage *ru);
1430 sys32_waitpid (int pid, unsigned int *stat_addr, int options)
1432 return compat_sys_wait4(pid, stat_addr, options, NULL);
1436 ia32_peek (struct task_struct *child, unsigned long addr, unsigned int *val)
1441 copied = access_process_vm(child, addr, val, sizeof(*val), 0);
1442 return (copied != sizeof(ret)) ? -EIO : 0;
1446 ia32_poke (struct task_struct *child, unsigned long addr, unsigned int val)
1449 if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
1455 * The order in which registers are stored in the ptrace regs structure
1468 #define PT_ORIG_EAX 11
1476 getreg (struct task_struct *child, int regno)
1478 struct pt_regs *child_regs;
1480 child_regs = task_pt_regs(child);
1481 switch (regno / sizeof(int)) {
1482 case PT_EBX: return child_regs->r11;
1483 case PT_ECX: return child_regs->r9;
1484 case PT_EDX: return child_regs->r10;
1485 case PT_ESI: return child_regs->r14;
1486 case PT_EDI: return child_regs->r15;
1487 case PT_EBP: return child_regs->r13;
1488 case PT_EAX: return child_regs->r8;
1489 case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
1490 case PT_EIP: return child_regs->cr_iip;
1491 case PT_UESP: return child_regs->r12;
1492 case PT_EFL: return child->thread.eflag;
1493 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1495 case PT_CS: return __USER_CS;
1497 printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
1504 putreg (struct task_struct *child, int regno, unsigned int value)
1506 struct pt_regs *child_regs;
1508 child_regs = task_pt_regs(child);
1509 switch (regno / sizeof(int)) {
1510 case PT_EBX: child_regs->r11 = value; break;
1511 case PT_ECX: child_regs->r9 = value; break;
1512 case PT_EDX: child_regs->r10 = value; break;
1513 case PT_ESI: child_regs->r14 = value; break;
1514 case PT_EDI: child_regs->r15 = value; break;
1515 case PT_EBP: child_regs->r13 = value; break;
1516 case PT_EAX: child_regs->r8 = value; break;
1517 case PT_ORIG_EAX: child_regs->r1 = value; break;
1518 case PT_EIP: child_regs->cr_iip = value; break;
1519 case PT_UESP: child_regs->r12 = value; break;
1520 case PT_EFL: child->thread.eflag = value; break;
1521 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1522 if (value != __USER_DS)
1524 "ia32.putreg: attempt to set invalid segment register %d = %x\n",
1528 if (value != __USER_CS)
1530 "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
1534 printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
1540 put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1541 struct switch_stack *swp, int tos)
1543 struct _fpreg_ia32 *f;
1546 f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
1547 if ((regno += tos) >= 8)
1551 ia64f2ia32f(f, &ptp->f8);
1554 ia64f2ia32f(f, &ptp->f9);
1557 ia64f2ia32f(f, &ptp->f10);
1560 ia64f2ia32f(f, &ptp->f11);
1566 ia64f2ia32f(f, &swp->f12 + (regno - 4));
1569 copy_to_user(reg, f, sizeof(*reg));
1573 get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1574 struct switch_stack *swp, int tos)
1577 if ((regno += tos) >= 8)
1581 copy_from_user(&ptp->f8, reg, sizeof(*reg));
1584 copy_from_user(&ptp->f9, reg, sizeof(*reg));
1587 copy_from_user(&ptp->f10, reg, sizeof(*reg));
1590 copy_from_user(&ptp->f11, reg, sizeof(*reg));
1596 copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
1603 save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1605 struct switch_stack *swp;
1606 struct pt_regs *ptp;
1609 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1612 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1613 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1614 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1615 __put_user(tsk->thread.fir, &save->fip);
1616 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1617 __put_user(tsk->thread.fdr, &save->foo);
1618 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1621 * Stack frames start with 16-bytes of temp space
1623 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1624 ptp = task_pt_regs(tsk);
1625 tos = (tsk->thread.fsr >> 11) & 7;
1626 for (i = 0; i < 8; i++)
1627 put_fpreg(i, &save->st_space[i], ptp, swp, tos);
1632 restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1634 struct switch_stack *swp;
1635 struct pt_regs *ptp;
1637 unsigned int fsrlo, fsrhi, num32;
1639 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1642 __get_user(num32, (unsigned int __user *)&save->cwd);
1643 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1644 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1645 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1646 num32 = (fsrhi << 16) | fsrlo;
1647 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1648 __get_user(num32, (unsigned int __user *)&save->fip);
1649 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1650 __get_user(num32, (unsigned int __user *)&save->foo);
1651 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1654 * Stack frames start with 16-bytes of temp space
1656 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1657 ptp = task_pt_regs(tsk);
1658 tos = (tsk->thread.fsr >> 11) & 7;
1659 for (i = 0; i < 8; i++)
1660 get_fpreg(i, &save->st_space[i], ptp, swp, tos);
1665 save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1667 struct switch_stack *swp;
1668 struct pt_regs *ptp;
1670 unsigned long mxcsr=0;
1671 unsigned long num128[2];
1673 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1676 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1677 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1678 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1679 __put_user(tsk->thread.fir, &save->fip);
1680 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1681 __put_user(tsk->thread.fdr, &save->foo);
1682 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1685 * Stack frames start with 16-bytes of temp space
1687 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1688 ptp = task_pt_regs(tsk);
1689 tos = (tsk->thread.fsr >> 11) & 7;
1690 for (i = 0; i < 8; i++)
1691 put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1693 mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
1694 __put_user(mxcsr & 0xffff, &save->mxcsr);
1695 for (i = 0; i < 8; i++) {
1696 memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
1697 memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
1698 copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
1704 restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1706 struct switch_stack *swp;
1707 struct pt_regs *ptp;
1709 unsigned int fsrlo, fsrhi, num32;
1711 unsigned long num64;
1712 unsigned long num128[2];
1714 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1717 __get_user(num32, (unsigned int __user *)&save->cwd);
1718 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1719 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1720 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1721 num32 = (fsrhi << 16) | fsrlo;
1722 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1723 __get_user(num32, (unsigned int __user *)&save->fip);
1724 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1725 __get_user(num32, (unsigned int __user *)&save->foo);
1726 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1729 * Stack frames start with 16-bytes of temp space
1731 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1732 ptp = task_pt_regs(tsk);
1733 tos = (tsk->thread.fsr >> 11) & 7;
1734 for (i = 0; i < 8; i++)
1735 get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1737 __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
1738 num64 = mxcsr & 0xff10;
1739 tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
1740 num64 = mxcsr & 0x3f;
1741 tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
1743 for (i = 0; i < 8; i++) {
1744 copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
1745 memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
1746 memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
1752 sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data)
1754 struct task_struct *child;
1755 unsigned int value, tmp;
1759 if (request == PTRACE_TRACEME) {
1760 ret = ptrace_traceme();
1764 child = ptrace_get_task_struct(pid);
1765 if (IS_ERR(child)) {
1766 ret = PTR_ERR(child);
1770 if (request == PTRACE_ATTACH) {
1771 ret = sys_ptrace(request, pid, addr, data);
1775 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1780 case PTRACE_PEEKTEXT:
1781 case PTRACE_PEEKDATA: /* read word at location addr */
1782 ret = ia32_peek(child, addr, &value);
1784 ret = put_user(value, (unsigned int __user *) compat_ptr(data));
1789 case PTRACE_POKETEXT:
1790 case PTRACE_POKEDATA: /* write the word at location addr */
1791 ret = ia32_poke(child, addr, data);
1794 case PTRACE_PEEKUSR: /* read word at addr in USER area */
1796 if ((addr & 3) || addr > 17*sizeof(int))
1799 tmp = getreg(child, addr);
1800 if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
1804 case PTRACE_POKEUSR: /* write word at addr in USER area */
1806 if ((addr & 3) || addr > 17*sizeof(int))
1809 putreg(child, addr, data);
1813 case IA32_PTRACE_GETREGS:
1814 if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
1818 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1819 put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
1820 data += sizeof(int);
1825 case IA32_PTRACE_SETREGS:
1826 if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
1830 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1831 get_user(tmp, (unsigned int __user *) compat_ptr(data));
1832 putreg(child, i, tmp);
1833 data += sizeof(int);
1838 case IA32_PTRACE_GETFPREGS:
1839 ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1843 case IA32_PTRACE_GETFPXREGS:
1844 ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1848 case IA32_PTRACE_SETFPREGS:
1849 ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1853 case IA32_PTRACE_SETFPXREGS:
1854 ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1858 case PTRACE_GETEVENTMSG:
1859 ret = put_user(child->ptrace_message, (unsigned int __user *) compat_ptr(data));
1862 case PTRACE_SYSCALL: /* continue, stop after next syscall */
1863 case PTRACE_CONT: /* restart after signal. */
1865 case PTRACE_SINGLESTEP: /* execute chile for one instruction */
1866 case PTRACE_DETACH: /* detach a process */
1867 ret = sys_ptrace(request, pid, addr, data);
1871 ret = ptrace_request(child, request, addr, data);
1876 put_task_struct(child);
1884 unsigned int ss_flags;
1885 unsigned int ss_size;
1889 sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
1890 long arg2, long arg3, long arg4, long arg5, long arg6,
1891 long arg7, struct pt_regs pt)
1896 mm_segment_t old_fs = get_fs();
1899 if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
1901 uss.ss_sp = (void __user *) (long) buf32.ss_sp;
1902 uss.ss_flags = buf32.ss_flags;
1903 /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
1904 check and set it to the user requested value later */
1905 if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
1909 uss.ss_size = MINSIGSTKSZ;
1912 ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
1913 (stack_t __user *) &uoss, pt.r12);
1914 current->sas_ss_size = buf32.ss_size;
1920 buf32.ss_sp = (long __user) uoss.ss_sp;
1921 buf32.ss_flags = uoss.ss_flags;
1922 buf32.ss_size = uoss.ss_size;
1923 if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
1932 current->state = TASK_INTERRUPTIBLE;
1934 return -ERESTARTNOHAND;
1938 sys32_msync (unsigned int start, unsigned int len, int flags)
1942 if (OFFSET4K(start))
1944 addr = PAGE_START(start);
1945 return sys_msync(addr, len + (start - addr), flags);
1951 unsigned int oldval;
1952 unsigned int oldlenp;
1953 unsigned int newval;
1954 unsigned int newlen;
1955 unsigned int __unused[4];
1958 #ifdef CONFIG_SYSCTL_SYSCALL
1960 sys32_sysctl (struct sysctl32 __user *args)
1962 struct sysctl32 a32;
1963 mm_segment_t old_fs = get_fs ();
1964 void __user *oldvalp, *newvalp;
1969 if (copy_from_user(&a32, args, sizeof(a32)))
1973 * We need to pre-validate these because we have to disable address checking
1974 * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
1975 * user specifying bad addresses here. Well, since we're dealing with 32 bit
1976 * addresses, we KNOW that access_ok() will always succeed, so this is an
1977 * expensive NOP, but so what...
1979 namep = (int __user *) compat_ptr(a32.name);
1980 oldvalp = compat_ptr(a32.oldval);
1981 newvalp = compat_ptr(a32.newval);
1983 if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1984 || !access_ok(VERIFY_WRITE, namep, 0)
1985 || !access_ok(VERIFY_WRITE, oldvalp, 0)
1986 || !access_ok(VERIFY_WRITE, newvalp, 0))
1991 ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
1992 newvalp, (size_t) a32.newlen);
1996 if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
2004 sys32_newuname (struct new_utsname __user *name)
2006 int ret = sys_newuname(name);
2009 if (copy_to_user(name->machine, "i686\0\0\0", 8))
2015 sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
2019 mm_segment_t old_fs = get_fs();
2022 ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
2025 if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
2031 sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
2035 mm_segment_t old_fs = get_fs();
2038 ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
2044 return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
2048 sys32_lseek (unsigned int fd, int offset, unsigned int whence)
2050 /* Sign-extension of "offset" is important here... */
2051 return sys_lseek(fd, offset, whence);
2055 groups16_to_user(short __user *grouplist, struct group_info *group_info)
2060 for (i = 0; i < group_info->ngroups; i++) {
2061 group = (short)GROUP_AT(group_info, i);
2062 if (put_user(group, grouplist+i))
2070 groups16_from_user(struct group_info *group_info, short __user *grouplist)
2075 for (i = 0; i < group_info->ngroups; i++) {
2076 if (get_user(group, grouplist+i))
2078 GROUP_AT(group_info, i) = (gid_t)group;
2085 sys32_getgroups16 (int gidsetsize, short __user *grouplist)
2092 get_group_info(current->group_info);
2093 i = current->group_info->ngroups;
2095 if (i > gidsetsize) {
2099 if (groups16_to_user(grouplist, current->group_info)) {
2105 put_group_info(current->group_info);
2110 sys32_setgroups16 (int gidsetsize, short __user *grouplist)
2112 struct group_info *group_info;
2115 if (!capable(CAP_SETGID))
2117 if ((unsigned)gidsetsize > NGROUPS_MAX)
2120 group_info = groups_alloc(gidsetsize);
2123 retval = groups16_from_user(group_info, grouplist);
2125 put_group_info(group_info);
2129 retval = set_current_groups(group_info);
2130 put_group_info(group_info);
2136 sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
2138 return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
2142 sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
2144 return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
2148 putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
2153 if (clear_user(ubuf, sizeof(*ubuf)))
2156 hdev = huge_encode_dev(kbuf->dev);
2157 err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
2158 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
2159 err |= __put_user(kbuf->ino, &ubuf->__st_ino);
2160 err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
2161 err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
2162 err |= __put_user(kbuf->mode, &ubuf->st_mode);
2163 err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
2164 err |= __put_user(kbuf->uid, &ubuf->st_uid);
2165 err |= __put_user(kbuf->gid, &ubuf->st_gid);
2166 hdev = huge_encode_dev(kbuf->rdev);
2167 err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
2168 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
2169 err |= __put_user(kbuf->size, &ubuf->st_size_lo);
2170 err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
2171 err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
2172 err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
2173 err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
2174 err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
2175 err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
2176 err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
2177 err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
2178 err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
2183 sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
2186 long ret = vfs_stat(filename, &s);
2188 ret = putstat64(statbuf, &s);
2193 sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
2196 long ret = vfs_lstat(filename, &s);
2198 ret = putstat64(statbuf, &s);
2203 sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
2206 long ret = vfs_fstat(fd, &s);
2208 ret = putstat64(statbuf, &s);
2213 sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
2215 mm_segment_t old_fs = get_fs();
2220 ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
2222 if (put_compat_timespec(&t, interval))
2228 sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2230 return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2234 sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2236 return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2240 sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
2242 mm_segment_t old_fs = get_fs();
2246 if (offset && get_user(of, offset))
2250 ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
2253 if (offset && put_user(of, offset))
2260 sys32_personality (unsigned int personality)
2264 if (current->personality == PER_LINUX32 && personality == PER_LINUX)
2265 personality = PER_LINUX32;
2266 ret = sys_personality(personality);
2267 if (ret == PER_LINUX32)
2272 asmlinkage unsigned long
2273 sys32_brk (unsigned int brk)
2275 unsigned long ret, obrk;
2276 struct mm_struct *mm = current->mm;
2281 clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
2285 /* Structure for ia32 emulation on ia64 */
2286 struct epoll_event32
2293 sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
2295 mm_segment_t old_fs = get_fs();
2296 struct epoll_event event64;
2300 if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
2303 __get_user(event64.events, &event->events);
2304 __get_user(data_halfword, &event->data[0]);
2305 event64.data = data_halfword;
2306 __get_user(data_halfword, &event->data[1]);
2307 event64.data |= (u64)data_halfword << 32;
2310 error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
2317 sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
2320 struct epoll_event *events64 = NULL;
2321 mm_segment_t old_fs = get_fs();
2322 int numevents, size;
2324 int do_free_pages = 0;
2326 if (maxevents <= 0) {
2330 /* Verify that the area passed by the user is writeable */
2331 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
2335 * Allocate space for the intermediate copy. If the space needed
2336 * is large enough to cause kmalloc to fail, then try again with
2339 size = maxevents * sizeof(struct epoll_event);
2340 events64 = kmalloc(size, GFP_KERNEL);
2341 if (events64 == NULL) {
2342 events64 = (struct epoll_event *)
2343 __get_free_pages(GFP_KERNEL, get_order(size));
2344 if (events64 == NULL)
2349 /* Do the system call */
2350 set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
2351 numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
2352 maxevents, timeout);
2355 /* Don't modify userspace memory if we're returning an error */
2356 if (numevents > 0) {
2357 /* Translate the 64-bit structures back into the 32-bit
2359 for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
2360 __put_user(events64[evt_idx].events,
2361 &events[evt_idx].events);
2362 __put_user((u32)events64[evt_idx].data,
2363 &events[evt_idx].data[0]);
2364 __put_user((u32)(events64[evt_idx].data >> 32),
2365 &events[evt_idx].data[1]);
2370 free_pages((unsigned long) events64, get_order(size));
2377 * Get a yet unused TLS descriptor index.
2382 struct thread_struct *t = ¤t->thread;
2385 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
2386 if (desc_empty(t->tls_array + idx))
2387 return idx + GDT_ENTRY_TLS_MIN;
2391 static void set_tls_desc(struct task_struct *p, int idx,
2392 const struct ia32_user_desc *info, int n)
2394 struct thread_struct *t = &p->thread;
2395 struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN];
2399 * We must not get preempted while modifying the TLS.
2404 if (LDT_empty(info)) {
2408 desc->a = LDT_entry_a(info);
2409 desc->b = LDT_entry_b(info);
2416 if (t == ¤t->thread)
2423 * Set a given TLS descriptor:
2426 sys32_set_thread_area (struct ia32_user_desc __user *u_info)
2428 struct ia32_user_desc info;
2431 if (copy_from_user(&info, u_info, sizeof(info)))
2433 idx = info.entry_number;
2436 * index -1 means the kernel should try to find and allocate an empty descriptor:
2439 idx = get_free_idx();
2442 if (put_user(idx, &u_info->entry_number))
2446 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2449 set_tls_desc(current, idx, &info, 1);
2454 * Get the current Thread-Local Storage area:
2457 #define GET_BASE(desc) ( \
2458 (((desc)->a >> 16) & 0x0000ffff) | \
2459 (((desc)->b << 16) & 0x00ff0000) | \
2460 ( (desc)->b & 0xff000000) )
2462 #define GET_LIMIT(desc) ( \
2463 ((desc)->a & 0x0ffff) | \
2464 ((desc)->b & 0xf0000) )
2466 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
2467 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
2468 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
2469 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
2470 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
2471 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
2473 static void fill_user_desc(struct ia32_user_desc *info, int idx,
2474 const struct desc_struct *desc)
2476 info->entry_number = idx;
2477 info->base_addr = GET_BASE(desc);
2478 info->limit = GET_LIMIT(desc);
2479 info->seg_32bit = GET_32BIT(desc);
2480 info->contents = GET_CONTENTS(desc);
2481 info->read_exec_only = !GET_WRITABLE(desc);
2482 info->limit_in_pages = GET_LIMIT_PAGES(desc);
2483 info->seg_not_present = !GET_PRESENT(desc);
2484 info->useable = GET_USEABLE(desc);
2488 sys32_get_thread_area (struct ia32_user_desc __user *u_info)
2490 struct ia32_user_desc info;
2491 struct desc_struct *desc;
2494 if (get_user(idx, &u_info->entry_number))
2496 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2499 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
2500 fill_user_desc(&info, idx, desc);
2502 if (copy_to_user(u_info, &info, sizeof(info)))
2514 const void __user *ubuf;
2517 struct regset_getset {
2518 struct task_struct *target;
2519 const struct user_regset *regset;
2521 struct regset_get get;
2522 struct regset_set set;
2529 static void getfpreg(struct task_struct *task, int regno, int *val)
2531 switch (regno / sizeof(int)) {
2533 *val = task->thread.fcr & 0xffff;
2536 *val = task->thread.fsr & 0xffff;
2539 *val = (task->thread.fsr>>16) & 0xffff;
2542 *val = task->thread.fir;
2545 *val = (task->thread.fir>>32) & 0xffff;
2548 *val = task->thread.fdr;
2551 *val = (task->thread.fdr >> 32) & 0xffff;
2556 static void setfpreg(struct task_struct *task, int regno, int val)
2558 switch (regno / sizeof(int)) {
2560 task->thread.fcr = (task->thread.fcr & (~0x1f3f))
2564 task->thread.fsr = (task->thread.fsr & (~0xffff)) | val;
2567 task->thread.fsr = (task->thread.fsr & (~0xffff0000))
2571 task->thread.fir = (task->thread.fir & (~0xffffffff)) | val;
2574 task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | val;
2579 static void access_fpreg_ia32(int regno, void *reg,
2580 struct pt_regs *pt, struct switch_stack *sw,
2585 if ((regno += tos) >= 8)
2588 f = &pt->f8 + regno;
2589 else if (regno <= 7)
2590 f = &sw->f12 + (regno - 4);
2592 printk(KERN_ERR "regno must be less than 7 \n");
2597 memcpy(f, reg, sizeof(struct _fpreg_ia32));
2599 memcpy(reg, f, sizeof(struct _fpreg_ia32));
2602 static void do_fpregs_get(struct unw_frame_info *info, void *arg)
2604 struct regset_getset *dst = arg;
2605 struct task_struct *task = dst->target;
2607 int start, end, tos;
2610 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2612 if (dst->pos < 7 * sizeof(int)) {
2613 end = min((dst->pos + dst->count),
2614 (unsigned int)(7 * sizeof(int)));
2615 for (start = dst->pos; start < end; start += sizeof(int))
2616 getfpreg(task, start, (int *)(buf + start));
2617 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2618 &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
2619 0, 7 * sizeof(int));
2620 if (dst->ret || dst->count == 0)
2623 if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
2624 pt = task_pt_regs(task);
2625 tos = (task->thread.fsr >> 11) & 7;
2626 end = min(dst->pos + dst->count,
2627 (unsigned int)(sizeof(struct ia32_user_i387_struct)));
2628 start = (dst->pos - 7 * sizeof(int)) /
2629 sizeof(struct _fpreg_ia32);
2630 end = (end - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
2631 for (; start < end; start++)
2632 access_fpreg_ia32(start,
2633 (struct _fpreg_ia32 *)buf + start,
2634 pt, info->sw, tos, 0);
2635 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2636 &dst->u.get.kbuf, &dst->u.get.ubuf,
2637 buf, 7 * sizeof(int),
2638 sizeof(struct ia32_user_i387_struct));
2639 if (dst->ret || dst->count == 0)
2644 static void do_fpregs_set(struct unw_frame_info *info, void *arg)
2646 struct regset_getset *dst = arg;
2647 struct task_struct *task = dst->target;
2650 int end, start, tos;
2652 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2655 if (dst->pos < 7 * sizeof(int)) {
2657 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2658 &dst->u.set.kbuf, &dst->u.set.ubuf, buf,
2659 0, 7 * sizeof(int));
2662 for (; start < dst->pos; start += sizeof(int))
2663 setfpreg(task, start, *((int *)(buf + start)));
2664 if (dst->count == 0)
2667 if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
2668 start = (dst->pos - 7 * sizeof(int)) /
2669 sizeof(struct _fpreg_ia32);
2670 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2671 &dst->u.set.kbuf, &dst->u.set.ubuf,
2672 buf, 7 * sizeof(int),
2673 sizeof(struct ia32_user_i387_struct));
2676 pt = task_pt_regs(task);
2677 tos = (task->thread.fsr >> 11) & 7;
2678 end = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
2679 for (; start < end; start++)
2680 access_fpreg_ia32(start,
2681 (struct _fpreg_ia32 *)buf + start,
2682 pt, info->sw, tos, 1);
2683 if (dst->count == 0)
2688 #define OFFSET(member) ((int)(offsetof(struct ia32_user_fxsr_struct, member)))
2689 static void getfpxreg(struct task_struct *task, int start, int end, char *buf)
2693 min_val = min(end, OFFSET(fop));
2694 while (start < min_val) {
2695 if (start == OFFSET(cwd))
2696 *((short *)buf) = task->thread.fcr & 0xffff;
2697 else if (start == OFFSET(swd))
2698 *((short *)buf) = task->thread.fsr & 0xffff;
2699 else if (start == OFFSET(twd))
2700 *((short *)buf) = (task->thread.fsr>>16) & 0xffff;
2704 /* skip fop element */
2705 if (start == OFFSET(fop)) {
2709 while (start < end) {
2710 if (start == OFFSET(fip))
2711 *((int *)buf) = task->thread.fir;
2712 else if (start == OFFSET(fcs))
2713 *((int *)buf) = (task->thread.fir>>32) & 0xffff;
2714 else if (start == OFFSET(foo))
2715 *((int *)buf) = task->thread.fdr;
2716 else if (start == OFFSET(fos))
2717 *((int *)buf) = (task->thread.fdr>>32) & 0xffff;
2718 else if (start == OFFSET(mxcsr))
2719 *((int *)buf) = ((task->thread.fcr>>32) & 0xff80)
2720 | ((task->thread.fsr>>32) & 0x3f);
2726 static void setfpxreg(struct task_struct *task, int start, int end, char *buf)
2730 unsigned long num64;
2732 min_val = min(end, OFFSET(fop));
2733 while (start < min_val) {
2734 num = *((short *)buf);
2735 if (start == OFFSET(cwd)) {
2736 task->thread.fcr = (task->thread.fcr & (~0x1f3f))
2738 } else if (start == OFFSET(swd)) {
2739 task->thread.fsr = (task->thread.fsr & (~0xffff)) | num;
2740 } else if (start == OFFSET(twd)) {
2741 task->thread.fsr = (task->thread.fsr & (~0xffff0000))
2742 | (((int)num) << 16);
2747 /* skip fop element */
2748 if (start == OFFSET(fop)) {
2752 while (start < end) {
2753 num32 = *((int *)buf);
2754 if (start == OFFSET(fip))
2755 task->thread.fir = (task->thread.fir & (~0xffffffff))
2757 else if (start == OFFSET(foo))
2758 task->thread.fdr = (task->thread.fdr & (~0xffffffff))
2760 else if (start == OFFSET(mxcsr)) {
2761 num64 = num32 & 0xff10;
2762 task->thread.fcr = (task->thread.fcr &
2763 (~0xff1000000000UL)) | (num64<<32);
2764 num64 = num32 & 0x3f;
2765 task->thread.fsr = (task->thread.fsr &
2766 (~0x3f00000000UL)) | (num64<<32);
2773 static void do_fpxregs_get(struct unw_frame_info *info, void *arg)
2775 struct regset_getset *dst = arg;
2776 struct task_struct *task = dst->target;
2779 int start, end, tos;
2781 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2783 if (dst->pos < OFFSET(st_space[0])) {
2784 end = min(dst->pos + dst->count, (unsigned int)32);
2785 getfpxreg(task, dst->pos, end, buf);
2786 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2787 &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
2788 0, OFFSET(st_space[0]));
2789 if (dst->ret || dst->count == 0)
2792 if (dst->pos < OFFSET(xmm_space[0])) {
2793 pt = task_pt_regs(task);
2794 tos = (task->thread.fsr >> 11) & 7;
2795 end = min(dst->pos + dst->count,
2796 (unsigned int)OFFSET(xmm_space[0]));
2797 start = (dst->pos - OFFSET(st_space[0])) / 16;
2798 end = (end - OFFSET(st_space[0])) / 16;
2799 for (; start < end; start++)
2800 access_fpreg_ia32(start, buf + 16 * start, pt,
2802 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2803 &dst->u.get.kbuf, &dst->u.get.ubuf,
2804 buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
2805 if (dst->ret || dst->count == 0)
2808 if (dst->pos < OFFSET(padding[0]))
2809 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2810 &dst->u.get.kbuf, &dst->u.get.ubuf,
2811 &info->sw->f16, OFFSET(xmm_space[0]),
2812 OFFSET(padding[0]));
2815 static void do_fpxregs_set(struct unw_frame_info *info, void *arg)
2817 struct regset_getset *dst = arg;
2818 struct task_struct *task = dst->target;
2822 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2825 if (dst->pos < OFFSET(st_space[0])) {
2827 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2828 &dst->u.set.kbuf, &dst->u.set.ubuf,
2829 buf, 0, OFFSET(st_space[0]));
2832 setfpxreg(task, start, dst->pos, buf);
2833 if (dst->count == 0)
2836 if (dst->pos < OFFSET(xmm_space[0])) {
2839 pt = task_pt_regs(task);
2840 tos = (task->thread.fsr >> 11) & 7;
2841 start = (dst->pos - OFFSET(st_space[0])) / 16;
2842 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2843 &dst->u.set.kbuf, &dst->u.set.ubuf,
2844 buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
2847 end = (dst->pos - OFFSET(st_space[0])) / 16;
2848 for (; start < end; start++)
2849 access_fpreg_ia32(start, buf + 16 * start, pt, info->sw,
2851 if (dst->count == 0)
2854 if (dst->pos < OFFSET(padding[0]))
2855 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2856 &dst->u.set.kbuf, &dst->u.set.ubuf,
2857 &info->sw->f16, OFFSET(xmm_space[0]),
2858 OFFSET(padding[0]));
2862 static int do_regset_call(void (*call)(struct unw_frame_info *, void *),
2863 struct task_struct *target,
2864 const struct user_regset *regset,
2865 unsigned int pos, unsigned int count,
2866 const void *kbuf, const void __user *ubuf)
2868 struct regset_getset info = { .target = target, .regset = regset,
2869 .pos = pos, .count = count,
2870 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
2873 if (target == current)
2874 unw_init_running(call, &info);
2876 struct unw_frame_info ufi;
2877 memset(&ufi, 0, sizeof(ufi));
2878 unw_init_from_blocked_task(&ufi, target);
2879 (*call)(&ufi, &info);
2885 static int ia32_fpregs_get(struct task_struct *target,
2886 const struct user_regset *regset,
2887 unsigned int pos, unsigned int count,
2888 void *kbuf, void __user *ubuf)
2890 return do_regset_call(do_fpregs_get, target, regset, pos, count,
2894 static int ia32_fpregs_set(struct task_struct *target,
2895 const struct user_regset *regset,
2896 unsigned int pos, unsigned int count,
2897 const void *kbuf, const void __user *ubuf)
2899 return do_regset_call(do_fpregs_set, target, regset, pos, count,
2903 static int ia32_fpxregs_get(struct task_struct *target,
2904 const struct user_regset *regset,
2905 unsigned int pos, unsigned int count,
2906 void *kbuf, void __user *ubuf)
2908 return do_regset_call(do_fpxregs_get, target, regset, pos, count,
2912 static int ia32_fpxregs_set(struct task_struct *target,
2913 const struct user_regset *regset,
2914 unsigned int pos, unsigned int count,
2915 const void *kbuf, const void __user *ubuf)
2917 return do_regset_call(do_fpxregs_set, target, regset, pos, count,
2921 static int ia32_genregs_get(struct task_struct *target,
2922 const struct user_regset *regset,
2923 unsigned int pos, unsigned int count,
2924 void *kbuf, void __user *ubuf)
2929 *kp++ = getreg(target, pos);
2934 u32 __user *up = ubuf;
2936 if (__put_user(getreg(target, pos), up++))
2945 static int ia32_genregs_set(struct task_struct *target,
2946 const struct user_regset *regset,
2947 unsigned int pos, unsigned int count,
2948 const void *kbuf, const void __user *ubuf)
2953 const u32 *kp = kbuf;
2954 while (!ret && count > 0) {
2955 putreg(target, pos, *kp++);
2960 const u32 __user *up = ubuf;
2962 while (!ret && count > 0) {
2963 ret = __get_user(val, up++);
2965 putreg(target, pos, val);
2973 static int ia32_tls_active(struct task_struct *target,
2974 const struct user_regset *regset)
2976 struct thread_struct *t = &target->thread;
2977 int n = GDT_ENTRY_TLS_ENTRIES;
2978 while (n > 0 && desc_empty(&t->tls_array[n -1]))
2983 static int ia32_tls_get(struct task_struct *target,
2984 const struct user_regset *regset, unsigned int pos,
2985 unsigned int count, void *kbuf, void __user *ubuf)
2987 const struct desc_struct *tls;
2989 if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
2990 (pos % sizeof(struct ia32_user_desc)) != 0 ||
2991 (count % sizeof(struct ia32_user_desc)) != 0)
2994 pos /= sizeof(struct ia32_user_desc);
2995 count /= sizeof(struct ia32_user_desc);
2997 tls = &target->thread.tls_array[pos];
3000 struct ia32_user_desc *info = kbuf;
3002 fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++,
3005 struct ia32_user_desc __user *u_info = ubuf;
3006 while (count-- > 0) {
3007 struct ia32_user_desc info;
3008 fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++);
3009 if (__copy_to_user(u_info++, &info, sizeof(info)))
3017 static int ia32_tls_set(struct task_struct *target,
3018 const struct user_regset *regset, unsigned int pos,
3019 unsigned int count, const void *kbuf, const void __user *ubuf)
3021 struct ia32_user_desc infobuf[GDT_ENTRY_TLS_ENTRIES];
3022 const struct ia32_user_desc *info;
3024 if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
3025 (pos % sizeof(struct ia32_user_desc)) != 0 ||
3026 (count % sizeof(struct ia32_user_desc)) != 0)
3031 else if (__copy_from_user(infobuf, ubuf, count))
3036 set_tls_desc(target,
3037 GDT_ENTRY_TLS_MIN + (pos / sizeof(struct ia32_user_desc)),
3038 info, count / sizeof(struct ia32_user_desc));
3044 * This should match arch/i386/kernel/ptrace.c:native_regsets.
3047 static const struct user_regset ia32_regsets[] = {
3049 .core_note_type = NT_PRSTATUS,
3050 .n = sizeof(struct user_regs_struct32)/4,
3051 .size = 4, .align = 4,
3052 .get = ia32_genregs_get, .set = ia32_genregs_set
3055 .core_note_type = NT_PRFPREG,
3056 .n = sizeof(struct ia32_user_i387_struct) / 4,
3057 .size = 4, .align = 4,
3058 .get = ia32_fpregs_get, .set = ia32_fpregs_set
3061 .core_note_type = NT_PRXFPREG,
3062 .n = sizeof(struct ia32_user_fxsr_struct) / 4,
3063 .size = 4, .align = 4,
3064 .get = ia32_fpxregs_get, .set = ia32_fpxregs_set
3067 .core_note_type = NT_386_TLS,
3068 .n = GDT_ENTRY_TLS_ENTRIES,
3069 .bias = GDT_ENTRY_TLS_MIN,
3070 .size = sizeof(struct ia32_user_desc),
3071 .align = sizeof(struct ia32_user_desc),
3072 .active = ia32_tls_active,
3073 .get = ia32_tls_get, .set = ia32_tls_set,
3077 const struct user_regset_view user_ia32_view = {
3078 .name = "i386", .e_machine = EM_386,
3079 .regsets = ia32_regsets, .n = ARRAY_SIZE(ia32_regsets)
3082 long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
3083 __u32 len_low, __u32 len_high, int advice)
3085 return sys_fadvise64_64(fd,
3086 (((u64)offset_high)<<32) | offset_low,
3087 (((u64)len_high)<<32) | len_low,
3091 #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
3093 asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
3097 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
3098 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
3099 return sys_setreuid(sruid, seuid);
3103 sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
3106 uid_t sruid, seuid, ssuid;
3108 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
3109 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
3110 ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
3111 return sys_setresuid(sruid, seuid, ssuid);
3115 sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
3119 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
3120 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
3121 return sys_setregid(srgid, segid);
3125 sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
3128 gid_t srgid, segid, ssgid;
3130 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
3131 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
3132 ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
3133 return sys_setresgid(srgid, segid, ssgid);