md/raid5: simplify interface for init_stripe and get_active_stripe
[linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/async_tx.h>
49 #include <linux/seq_file.h>
50 #include "md.h"
51 #include "raid5.h"
52 #include "raid6.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101
102 /*
103  * We maintain a biased count of active stripes in the bottom 16 bits of
104  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105  */
106 static inline int raid5_bi_phys_segments(struct bio *bio)
107 {
108         return bio->bi_phys_segments & 0xffff;
109 }
110
111 static inline int raid5_bi_hw_segments(struct bio *bio)
112 {
113         return (bio->bi_phys_segments >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 {
118         --bio->bi_phys_segments;
119         return raid5_bi_phys_segments(bio);
120 }
121
122 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 {
124         unsigned short val = raid5_bi_hw_segments(bio);
125
126         --val;
127         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
128         return val;
129 }
130
131 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 {
133         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
134 }
135
136 static inline int raid6_next_disk(int disk, int raid_disks)
137 {
138         disk++;
139         return (disk < raid_disks) ? disk : 0;
140 }
141
142 static void return_io(struct bio *return_bi)
143 {
144         struct bio *bi = return_bi;
145         while (bi) {
146
147                 return_bi = bi->bi_next;
148                 bi->bi_next = NULL;
149                 bi->bi_size = 0;
150                 bio_endio(bi, 0);
151                 bi = return_bi;
152         }
153 }
154
155 static void print_raid5_conf (raid5_conf_t *conf);
156
157 static int stripe_operations_active(struct stripe_head *sh)
158 {
159         return sh->check_state || sh->reconstruct_state ||
160                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
161                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
162 }
163
164 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
165 {
166         if (atomic_dec_and_test(&sh->count)) {
167                 BUG_ON(!list_empty(&sh->lru));
168                 BUG_ON(atomic_read(&conf->active_stripes)==0);
169                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
170                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
171                                 list_add_tail(&sh->lru, &conf->delayed_list);
172                                 blk_plug_device(conf->mddev->queue);
173                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
174                                    sh->bm_seq - conf->seq_write > 0) {
175                                 list_add_tail(&sh->lru, &conf->bitmap_list);
176                                 blk_plug_device(conf->mddev->queue);
177                         } else {
178                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
179                                 list_add_tail(&sh->lru, &conf->handle_list);
180                         }
181                         md_wakeup_thread(conf->mddev->thread);
182                 } else {
183                         BUG_ON(stripe_operations_active(sh));
184                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
185                                 atomic_dec(&conf->preread_active_stripes);
186                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
187                                         md_wakeup_thread(conf->mddev->thread);
188                         }
189                         atomic_dec(&conf->active_stripes);
190                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
191                                 list_add_tail(&sh->lru, &conf->inactive_list);
192                                 wake_up(&conf->wait_for_stripe);
193                                 if (conf->retry_read_aligned)
194                                         md_wakeup_thread(conf->mddev->thread);
195                         }
196                 }
197         }
198 }
199 static void release_stripe(struct stripe_head *sh)
200 {
201         raid5_conf_t *conf = sh->raid_conf;
202         unsigned long flags;
203
204         spin_lock_irqsave(&conf->device_lock, flags);
205         __release_stripe(conf, sh);
206         spin_unlock_irqrestore(&conf->device_lock, flags);
207 }
208
209 static inline void remove_hash(struct stripe_head *sh)
210 {
211         pr_debug("remove_hash(), stripe %llu\n",
212                 (unsigned long long)sh->sector);
213
214         hlist_del_init(&sh->hash);
215 }
216
217 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
218 {
219         struct hlist_head *hp = stripe_hash(conf, sh->sector);
220
221         pr_debug("insert_hash(), stripe %llu\n",
222                 (unsigned long long)sh->sector);
223
224         CHECK_DEVLOCK();
225         hlist_add_head(&sh->hash, hp);
226 }
227
228
229 /* find an idle stripe, make sure it is unhashed, and return it. */
230 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
231 {
232         struct stripe_head *sh = NULL;
233         struct list_head *first;
234
235         CHECK_DEVLOCK();
236         if (list_empty(&conf->inactive_list))
237                 goto out;
238         first = conf->inactive_list.next;
239         sh = list_entry(first, struct stripe_head, lru);
240         list_del_init(first);
241         remove_hash(sh);
242         atomic_inc(&conf->active_stripes);
243 out:
244         return sh;
245 }
246
247 static void shrink_buffers(struct stripe_head *sh, int num)
248 {
249         struct page *p;
250         int i;
251
252         for (i=0; i<num ; i++) {
253                 p = sh->dev[i].page;
254                 if (!p)
255                         continue;
256                 sh->dev[i].page = NULL;
257                 put_page(p);
258         }
259 }
260
261 static int grow_buffers(struct stripe_head *sh, int num)
262 {
263         int i;
264
265         for (i=0; i<num; i++) {
266                 struct page *page;
267
268                 if (!(page = alloc_page(GFP_KERNEL))) {
269                         return 1;
270                 }
271                 sh->dev[i].page = page;
272         }
273         return 0;
274 }
275
276 static void raid5_build_block(struct stripe_head *sh, int i);
277 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks);
278
279 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
280 {
281         raid5_conf_t *conf = sh->raid_conf;
282         int i;
283
284         BUG_ON(atomic_read(&sh->count) != 0);
285         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
286         BUG_ON(stripe_operations_active(sh));
287
288         CHECK_DEVLOCK();
289         pr_debug("init_stripe called, stripe %llu\n",
290                 (unsigned long long)sh->sector);
291
292         remove_hash(sh);
293
294         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
295         sh->sector = sector;
296         sh->pd_idx = stripe_to_pdidx(sector, conf, sh->disks);
297         sh->state = 0;
298
299
300         for (i = sh->disks; i--; ) {
301                 struct r5dev *dev = &sh->dev[i];
302
303                 if (dev->toread || dev->read || dev->towrite || dev->written ||
304                     test_bit(R5_LOCKED, &dev->flags)) {
305                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
306                                (unsigned long long)sh->sector, i, dev->toread,
307                                dev->read, dev->towrite, dev->written,
308                                test_bit(R5_LOCKED, &dev->flags));
309                         BUG();
310                 }
311                 dev->flags = 0;
312                 raid5_build_block(sh, i);
313         }
314         insert_hash(conf, sh);
315 }
316
317 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
318 {
319         struct stripe_head *sh;
320         struct hlist_node *hn;
321
322         CHECK_DEVLOCK();
323         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
324         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
325                 if (sh->sector == sector && sh->disks == disks)
326                         return sh;
327         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
328         return NULL;
329 }
330
331 static void unplug_slaves(mddev_t *mddev);
332 static void raid5_unplug_device(struct request_queue *q);
333
334 static struct stripe_head *
335 get_active_stripe(raid5_conf_t *conf, sector_t sector,
336                   int previous, int noblock)
337 {
338         struct stripe_head *sh;
339         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
340
341         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
342
343         spin_lock_irq(&conf->device_lock);
344
345         do {
346                 wait_event_lock_irq(conf->wait_for_stripe,
347                                     conf->quiesce == 0,
348                                     conf->device_lock, /* nothing */);
349                 sh = __find_stripe(conf, sector, disks);
350                 if (!sh) {
351                         if (!conf->inactive_blocked)
352                                 sh = get_free_stripe(conf);
353                         if (noblock && sh == NULL)
354                                 break;
355                         if (!sh) {
356                                 conf->inactive_blocked = 1;
357                                 wait_event_lock_irq(conf->wait_for_stripe,
358                                                     !list_empty(&conf->inactive_list) &&
359                                                     (atomic_read(&conf->active_stripes)
360                                                      < (conf->max_nr_stripes *3/4)
361                                                      || !conf->inactive_blocked),
362                                                     conf->device_lock,
363                                                     raid5_unplug_device(conf->mddev->queue)
364                                         );
365                                 conf->inactive_blocked = 0;
366                         } else
367                                 init_stripe(sh, sector, previous);
368                 } else {
369                         if (atomic_read(&sh->count)) {
370                           BUG_ON(!list_empty(&sh->lru));
371                         } else {
372                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
373                                         atomic_inc(&conf->active_stripes);
374                                 if (list_empty(&sh->lru) &&
375                                     !test_bit(STRIPE_EXPANDING, &sh->state))
376                                         BUG();
377                                 list_del_init(&sh->lru);
378                         }
379                 }
380         } while (sh == NULL);
381
382         if (sh)
383                 atomic_inc(&sh->count);
384
385         spin_unlock_irq(&conf->device_lock);
386         return sh;
387 }
388
389 static void
390 raid5_end_read_request(struct bio *bi, int error);
391 static void
392 raid5_end_write_request(struct bio *bi, int error);
393
394 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
395 {
396         raid5_conf_t *conf = sh->raid_conf;
397         int i, disks = sh->disks;
398
399         might_sleep();
400
401         for (i = disks; i--; ) {
402                 int rw;
403                 struct bio *bi;
404                 mdk_rdev_t *rdev;
405                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
406                         rw = WRITE;
407                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
408                         rw = READ;
409                 else
410                         continue;
411
412                 bi = &sh->dev[i].req;
413
414                 bi->bi_rw = rw;
415                 if (rw == WRITE)
416                         bi->bi_end_io = raid5_end_write_request;
417                 else
418                         bi->bi_end_io = raid5_end_read_request;
419
420                 rcu_read_lock();
421                 rdev = rcu_dereference(conf->disks[i].rdev);
422                 if (rdev && test_bit(Faulty, &rdev->flags))
423                         rdev = NULL;
424                 if (rdev)
425                         atomic_inc(&rdev->nr_pending);
426                 rcu_read_unlock();
427
428                 if (rdev) {
429                         if (s->syncing || s->expanding || s->expanded)
430                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
431
432                         set_bit(STRIPE_IO_STARTED, &sh->state);
433
434                         bi->bi_bdev = rdev->bdev;
435                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
436                                 __func__, (unsigned long long)sh->sector,
437                                 bi->bi_rw, i);
438                         atomic_inc(&sh->count);
439                         bi->bi_sector = sh->sector + rdev->data_offset;
440                         bi->bi_flags = 1 << BIO_UPTODATE;
441                         bi->bi_vcnt = 1;
442                         bi->bi_max_vecs = 1;
443                         bi->bi_idx = 0;
444                         bi->bi_io_vec = &sh->dev[i].vec;
445                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
446                         bi->bi_io_vec[0].bv_offset = 0;
447                         bi->bi_size = STRIPE_SIZE;
448                         bi->bi_next = NULL;
449                         if (rw == WRITE &&
450                             test_bit(R5_ReWrite, &sh->dev[i].flags))
451                                 atomic_add(STRIPE_SECTORS,
452                                         &rdev->corrected_errors);
453                         generic_make_request(bi);
454                 } else {
455                         if (rw == WRITE)
456                                 set_bit(STRIPE_DEGRADED, &sh->state);
457                         pr_debug("skip op %ld on disc %d for sector %llu\n",
458                                 bi->bi_rw, i, (unsigned long long)sh->sector);
459                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
460                         set_bit(STRIPE_HANDLE, &sh->state);
461                 }
462         }
463 }
464
465 static struct dma_async_tx_descriptor *
466 async_copy_data(int frombio, struct bio *bio, struct page *page,
467         sector_t sector, struct dma_async_tx_descriptor *tx)
468 {
469         struct bio_vec *bvl;
470         struct page *bio_page;
471         int i;
472         int page_offset;
473
474         if (bio->bi_sector >= sector)
475                 page_offset = (signed)(bio->bi_sector - sector) * 512;
476         else
477                 page_offset = (signed)(sector - bio->bi_sector) * -512;
478         bio_for_each_segment(bvl, bio, i) {
479                 int len = bio_iovec_idx(bio, i)->bv_len;
480                 int clen;
481                 int b_offset = 0;
482
483                 if (page_offset < 0) {
484                         b_offset = -page_offset;
485                         page_offset += b_offset;
486                         len -= b_offset;
487                 }
488
489                 if (len > 0 && page_offset + len > STRIPE_SIZE)
490                         clen = STRIPE_SIZE - page_offset;
491                 else
492                         clen = len;
493
494                 if (clen > 0) {
495                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
496                         bio_page = bio_iovec_idx(bio, i)->bv_page;
497                         if (frombio)
498                                 tx = async_memcpy(page, bio_page, page_offset,
499                                         b_offset, clen,
500                                         ASYNC_TX_DEP_ACK,
501                                         tx, NULL, NULL);
502                         else
503                                 tx = async_memcpy(bio_page, page, b_offset,
504                                         page_offset, clen,
505                                         ASYNC_TX_DEP_ACK,
506                                         tx, NULL, NULL);
507                 }
508                 if (clen < len) /* hit end of page */
509                         break;
510                 page_offset +=  len;
511         }
512
513         return tx;
514 }
515
516 static void ops_complete_biofill(void *stripe_head_ref)
517 {
518         struct stripe_head *sh = stripe_head_ref;
519         struct bio *return_bi = NULL;
520         raid5_conf_t *conf = sh->raid_conf;
521         int i;
522
523         pr_debug("%s: stripe %llu\n", __func__,
524                 (unsigned long long)sh->sector);
525
526         /* clear completed biofills */
527         spin_lock_irq(&conf->device_lock);
528         for (i = sh->disks; i--; ) {
529                 struct r5dev *dev = &sh->dev[i];
530
531                 /* acknowledge completion of a biofill operation */
532                 /* and check if we need to reply to a read request,
533                  * new R5_Wantfill requests are held off until
534                  * !STRIPE_BIOFILL_RUN
535                  */
536                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
537                         struct bio *rbi, *rbi2;
538
539                         BUG_ON(!dev->read);
540                         rbi = dev->read;
541                         dev->read = NULL;
542                         while (rbi && rbi->bi_sector <
543                                 dev->sector + STRIPE_SECTORS) {
544                                 rbi2 = r5_next_bio(rbi, dev->sector);
545                                 if (!raid5_dec_bi_phys_segments(rbi)) {
546                                         rbi->bi_next = return_bi;
547                                         return_bi = rbi;
548                                 }
549                                 rbi = rbi2;
550                         }
551                 }
552         }
553         spin_unlock_irq(&conf->device_lock);
554         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
555
556         return_io(return_bi);
557
558         set_bit(STRIPE_HANDLE, &sh->state);
559         release_stripe(sh);
560 }
561
562 static void ops_run_biofill(struct stripe_head *sh)
563 {
564         struct dma_async_tx_descriptor *tx = NULL;
565         raid5_conf_t *conf = sh->raid_conf;
566         int i;
567
568         pr_debug("%s: stripe %llu\n", __func__,
569                 (unsigned long long)sh->sector);
570
571         for (i = sh->disks; i--; ) {
572                 struct r5dev *dev = &sh->dev[i];
573                 if (test_bit(R5_Wantfill, &dev->flags)) {
574                         struct bio *rbi;
575                         spin_lock_irq(&conf->device_lock);
576                         dev->read = rbi = dev->toread;
577                         dev->toread = NULL;
578                         spin_unlock_irq(&conf->device_lock);
579                         while (rbi && rbi->bi_sector <
580                                 dev->sector + STRIPE_SECTORS) {
581                                 tx = async_copy_data(0, rbi, dev->page,
582                                         dev->sector, tx);
583                                 rbi = r5_next_bio(rbi, dev->sector);
584                         }
585                 }
586         }
587
588         atomic_inc(&sh->count);
589         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
590                 ops_complete_biofill, sh);
591 }
592
593 static void ops_complete_compute5(void *stripe_head_ref)
594 {
595         struct stripe_head *sh = stripe_head_ref;
596         int target = sh->ops.target;
597         struct r5dev *tgt = &sh->dev[target];
598
599         pr_debug("%s: stripe %llu\n", __func__,
600                 (unsigned long long)sh->sector);
601
602         set_bit(R5_UPTODATE, &tgt->flags);
603         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
604         clear_bit(R5_Wantcompute, &tgt->flags);
605         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
606         if (sh->check_state == check_state_compute_run)
607                 sh->check_state = check_state_compute_result;
608         set_bit(STRIPE_HANDLE, &sh->state);
609         release_stripe(sh);
610 }
611
612 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
613 {
614         /* kernel stack size limits the total number of disks */
615         int disks = sh->disks;
616         struct page *xor_srcs[disks];
617         int target = sh->ops.target;
618         struct r5dev *tgt = &sh->dev[target];
619         struct page *xor_dest = tgt->page;
620         int count = 0;
621         struct dma_async_tx_descriptor *tx;
622         int i;
623
624         pr_debug("%s: stripe %llu block: %d\n",
625                 __func__, (unsigned long long)sh->sector, target);
626         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
627
628         for (i = disks; i--; )
629                 if (i != target)
630                         xor_srcs[count++] = sh->dev[i].page;
631
632         atomic_inc(&sh->count);
633
634         if (unlikely(count == 1))
635                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
636                         0, NULL, ops_complete_compute5, sh);
637         else
638                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
639                         ASYNC_TX_XOR_ZERO_DST, NULL,
640                         ops_complete_compute5, sh);
641
642         return tx;
643 }
644
645 static void ops_complete_prexor(void *stripe_head_ref)
646 {
647         struct stripe_head *sh = stripe_head_ref;
648
649         pr_debug("%s: stripe %llu\n", __func__,
650                 (unsigned long long)sh->sector);
651 }
652
653 static struct dma_async_tx_descriptor *
654 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
655 {
656         /* kernel stack size limits the total number of disks */
657         int disks = sh->disks;
658         struct page *xor_srcs[disks];
659         int count = 0, pd_idx = sh->pd_idx, i;
660
661         /* existing parity data subtracted */
662         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
663
664         pr_debug("%s: stripe %llu\n", __func__,
665                 (unsigned long long)sh->sector);
666
667         for (i = disks; i--; ) {
668                 struct r5dev *dev = &sh->dev[i];
669                 /* Only process blocks that are known to be uptodate */
670                 if (test_bit(R5_Wantdrain, &dev->flags))
671                         xor_srcs[count++] = dev->page;
672         }
673
674         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
675                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
676                 ops_complete_prexor, sh);
677
678         return tx;
679 }
680
681 static struct dma_async_tx_descriptor *
682 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
683 {
684         int disks = sh->disks;
685         int i;
686
687         pr_debug("%s: stripe %llu\n", __func__,
688                 (unsigned long long)sh->sector);
689
690         for (i = disks; i--; ) {
691                 struct r5dev *dev = &sh->dev[i];
692                 struct bio *chosen;
693
694                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
695                         struct bio *wbi;
696
697                         spin_lock(&sh->lock);
698                         chosen = dev->towrite;
699                         dev->towrite = NULL;
700                         BUG_ON(dev->written);
701                         wbi = dev->written = chosen;
702                         spin_unlock(&sh->lock);
703
704                         while (wbi && wbi->bi_sector <
705                                 dev->sector + STRIPE_SECTORS) {
706                                 tx = async_copy_data(1, wbi, dev->page,
707                                         dev->sector, tx);
708                                 wbi = r5_next_bio(wbi, dev->sector);
709                         }
710                 }
711         }
712
713         return tx;
714 }
715
716 static void ops_complete_postxor(void *stripe_head_ref)
717 {
718         struct stripe_head *sh = stripe_head_ref;
719         int disks = sh->disks, i, pd_idx = sh->pd_idx;
720
721         pr_debug("%s: stripe %llu\n", __func__,
722                 (unsigned long long)sh->sector);
723
724         for (i = disks; i--; ) {
725                 struct r5dev *dev = &sh->dev[i];
726                 if (dev->written || i == pd_idx)
727                         set_bit(R5_UPTODATE, &dev->flags);
728         }
729
730         if (sh->reconstruct_state == reconstruct_state_drain_run)
731                 sh->reconstruct_state = reconstruct_state_drain_result;
732         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
733                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
734         else {
735                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
736                 sh->reconstruct_state = reconstruct_state_result;
737         }
738
739         set_bit(STRIPE_HANDLE, &sh->state);
740         release_stripe(sh);
741 }
742
743 static void
744 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
745 {
746         /* kernel stack size limits the total number of disks */
747         int disks = sh->disks;
748         struct page *xor_srcs[disks];
749
750         int count = 0, pd_idx = sh->pd_idx, i;
751         struct page *xor_dest;
752         int prexor = 0;
753         unsigned long flags;
754
755         pr_debug("%s: stripe %llu\n", __func__,
756                 (unsigned long long)sh->sector);
757
758         /* check if prexor is active which means only process blocks
759          * that are part of a read-modify-write (written)
760          */
761         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
762                 prexor = 1;
763                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
764                 for (i = disks; i--; ) {
765                         struct r5dev *dev = &sh->dev[i];
766                         if (dev->written)
767                                 xor_srcs[count++] = dev->page;
768                 }
769         } else {
770                 xor_dest = sh->dev[pd_idx].page;
771                 for (i = disks; i--; ) {
772                         struct r5dev *dev = &sh->dev[i];
773                         if (i != pd_idx)
774                                 xor_srcs[count++] = dev->page;
775                 }
776         }
777
778         /* 1/ if we prexor'd then the dest is reused as a source
779          * 2/ if we did not prexor then we are redoing the parity
780          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
781          * for the synchronous xor case
782          */
783         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
784                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
785
786         atomic_inc(&sh->count);
787
788         if (unlikely(count == 1)) {
789                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
790                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
791                         flags, tx, ops_complete_postxor, sh);
792         } else
793                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
794                         flags, tx, ops_complete_postxor, sh);
795 }
796
797 static void ops_complete_check(void *stripe_head_ref)
798 {
799         struct stripe_head *sh = stripe_head_ref;
800
801         pr_debug("%s: stripe %llu\n", __func__,
802                 (unsigned long long)sh->sector);
803
804         sh->check_state = check_state_check_result;
805         set_bit(STRIPE_HANDLE, &sh->state);
806         release_stripe(sh);
807 }
808
809 static void ops_run_check(struct stripe_head *sh)
810 {
811         /* kernel stack size limits the total number of disks */
812         int disks = sh->disks;
813         struct page *xor_srcs[disks];
814         struct dma_async_tx_descriptor *tx;
815
816         int count = 0, pd_idx = sh->pd_idx, i;
817         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
818
819         pr_debug("%s: stripe %llu\n", __func__,
820                 (unsigned long long)sh->sector);
821
822         for (i = disks; i--; ) {
823                 struct r5dev *dev = &sh->dev[i];
824                 if (i != pd_idx)
825                         xor_srcs[count++] = dev->page;
826         }
827
828         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
829                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
830
831         atomic_inc(&sh->count);
832         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
833                 ops_complete_check, sh);
834 }
835
836 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
837 {
838         int overlap_clear = 0, i, disks = sh->disks;
839         struct dma_async_tx_descriptor *tx = NULL;
840
841         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
842                 ops_run_biofill(sh);
843                 overlap_clear++;
844         }
845
846         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
847                 tx = ops_run_compute5(sh);
848                 /* terminate the chain if postxor is not set to be run */
849                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
850                         async_tx_ack(tx);
851         }
852
853         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
854                 tx = ops_run_prexor(sh, tx);
855
856         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
857                 tx = ops_run_biodrain(sh, tx);
858                 overlap_clear++;
859         }
860
861         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
862                 ops_run_postxor(sh, tx);
863
864         if (test_bit(STRIPE_OP_CHECK, &ops_request))
865                 ops_run_check(sh);
866
867         if (overlap_clear)
868                 for (i = disks; i--; ) {
869                         struct r5dev *dev = &sh->dev[i];
870                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
871                                 wake_up(&sh->raid_conf->wait_for_overlap);
872                 }
873 }
874
875 static int grow_one_stripe(raid5_conf_t *conf)
876 {
877         struct stripe_head *sh;
878         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
879         if (!sh)
880                 return 0;
881         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
882         sh->raid_conf = conf;
883         spin_lock_init(&sh->lock);
884
885         if (grow_buffers(sh, conf->raid_disks)) {
886                 shrink_buffers(sh, conf->raid_disks);
887                 kmem_cache_free(conf->slab_cache, sh);
888                 return 0;
889         }
890         sh->disks = conf->raid_disks;
891         /* we just created an active stripe so... */
892         atomic_set(&sh->count, 1);
893         atomic_inc(&conf->active_stripes);
894         INIT_LIST_HEAD(&sh->lru);
895         release_stripe(sh);
896         return 1;
897 }
898
899 static int grow_stripes(raid5_conf_t *conf, int num)
900 {
901         struct kmem_cache *sc;
902         int devs = conf->raid_disks;
903
904         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
905         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
906         conf->active_name = 0;
907         sc = kmem_cache_create(conf->cache_name[conf->active_name],
908                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
909                                0, 0, NULL);
910         if (!sc)
911                 return 1;
912         conf->slab_cache = sc;
913         conf->pool_size = devs;
914         while (num--)
915                 if (!grow_one_stripe(conf))
916                         return 1;
917         return 0;
918 }
919
920 #ifdef CONFIG_MD_RAID5_RESHAPE
921 static int resize_stripes(raid5_conf_t *conf, int newsize)
922 {
923         /* Make all the stripes able to hold 'newsize' devices.
924          * New slots in each stripe get 'page' set to a new page.
925          *
926          * This happens in stages:
927          * 1/ create a new kmem_cache and allocate the required number of
928          *    stripe_heads.
929          * 2/ gather all the old stripe_heads and tranfer the pages across
930          *    to the new stripe_heads.  This will have the side effect of
931          *    freezing the array as once all stripe_heads have been collected,
932          *    no IO will be possible.  Old stripe heads are freed once their
933          *    pages have been transferred over, and the old kmem_cache is
934          *    freed when all stripes are done.
935          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
936          *    we simple return a failre status - no need to clean anything up.
937          * 4/ allocate new pages for the new slots in the new stripe_heads.
938          *    If this fails, we don't bother trying the shrink the
939          *    stripe_heads down again, we just leave them as they are.
940          *    As each stripe_head is processed the new one is released into
941          *    active service.
942          *
943          * Once step2 is started, we cannot afford to wait for a write,
944          * so we use GFP_NOIO allocations.
945          */
946         struct stripe_head *osh, *nsh;
947         LIST_HEAD(newstripes);
948         struct disk_info *ndisks;
949         int err;
950         struct kmem_cache *sc;
951         int i;
952
953         if (newsize <= conf->pool_size)
954                 return 0; /* never bother to shrink */
955
956         err = md_allow_write(conf->mddev);
957         if (err)
958                 return err;
959
960         /* Step 1 */
961         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
962                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
963                                0, 0, NULL);
964         if (!sc)
965                 return -ENOMEM;
966
967         for (i = conf->max_nr_stripes; i; i--) {
968                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
969                 if (!nsh)
970                         break;
971
972                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
973
974                 nsh->raid_conf = conf;
975                 spin_lock_init(&nsh->lock);
976
977                 list_add(&nsh->lru, &newstripes);
978         }
979         if (i) {
980                 /* didn't get enough, give up */
981                 while (!list_empty(&newstripes)) {
982                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
983                         list_del(&nsh->lru);
984                         kmem_cache_free(sc, nsh);
985                 }
986                 kmem_cache_destroy(sc);
987                 return -ENOMEM;
988         }
989         /* Step 2 - Must use GFP_NOIO now.
990          * OK, we have enough stripes, start collecting inactive
991          * stripes and copying them over
992          */
993         list_for_each_entry(nsh, &newstripes, lru) {
994                 spin_lock_irq(&conf->device_lock);
995                 wait_event_lock_irq(conf->wait_for_stripe,
996                                     !list_empty(&conf->inactive_list),
997                                     conf->device_lock,
998                                     unplug_slaves(conf->mddev)
999                         );
1000                 osh = get_free_stripe(conf);
1001                 spin_unlock_irq(&conf->device_lock);
1002                 atomic_set(&nsh->count, 1);
1003                 for(i=0; i<conf->pool_size; i++)
1004                         nsh->dev[i].page = osh->dev[i].page;
1005                 for( ; i<newsize; i++)
1006                         nsh->dev[i].page = NULL;
1007                 kmem_cache_free(conf->slab_cache, osh);
1008         }
1009         kmem_cache_destroy(conf->slab_cache);
1010
1011         /* Step 3.
1012          * At this point, we are holding all the stripes so the array
1013          * is completely stalled, so now is a good time to resize
1014          * conf->disks.
1015          */
1016         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1017         if (ndisks) {
1018                 for (i=0; i<conf->raid_disks; i++)
1019                         ndisks[i] = conf->disks[i];
1020                 kfree(conf->disks);
1021                 conf->disks = ndisks;
1022         } else
1023                 err = -ENOMEM;
1024
1025         /* Step 4, return new stripes to service */
1026         while(!list_empty(&newstripes)) {
1027                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1028                 list_del_init(&nsh->lru);
1029                 for (i=conf->raid_disks; i < newsize; i++)
1030                         if (nsh->dev[i].page == NULL) {
1031                                 struct page *p = alloc_page(GFP_NOIO);
1032                                 nsh->dev[i].page = p;
1033                                 if (!p)
1034                                         err = -ENOMEM;
1035                         }
1036                 release_stripe(nsh);
1037         }
1038         /* critical section pass, GFP_NOIO no longer needed */
1039
1040         conf->slab_cache = sc;
1041         conf->active_name = 1-conf->active_name;
1042         conf->pool_size = newsize;
1043         return err;
1044 }
1045 #endif
1046
1047 static int drop_one_stripe(raid5_conf_t *conf)
1048 {
1049         struct stripe_head *sh;
1050
1051         spin_lock_irq(&conf->device_lock);
1052         sh = get_free_stripe(conf);
1053         spin_unlock_irq(&conf->device_lock);
1054         if (!sh)
1055                 return 0;
1056         BUG_ON(atomic_read(&sh->count));
1057         shrink_buffers(sh, conf->pool_size);
1058         kmem_cache_free(conf->slab_cache, sh);
1059         atomic_dec(&conf->active_stripes);
1060         return 1;
1061 }
1062
1063 static void shrink_stripes(raid5_conf_t *conf)
1064 {
1065         while (drop_one_stripe(conf))
1066                 ;
1067
1068         if (conf->slab_cache)
1069                 kmem_cache_destroy(conf->slab_cache);
1070         conf->slab_cache = NULL;
1071 }
1072
1073 static void raid5_end_read_request(struct bio * bi, int error)
1074 {
1075         struct stripe_head *sh = bi->bi_private;
1076         raid5_conf_t *conf = sh->raid_conf;
1077         int disks = sh->disks, i;
1078         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1079         char b[BDEVNAME_SIZE];
1080         mdk_rdev_t *rdev;
1081
1082
1083         for (i=0 ; i<disks; i++)
1084                 if (bi == &sh->dev[i].req)
1085                         break;
1086
1087         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1088                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1089                 uptodate);
1090         if (i == disks) {
1091                 BUG();
1092                 return;
1093         }
1094
1095         if (uptodate) {
1096                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1097                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1098                         rdev = conf->disks[i].rdev;
1099                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1100                                   " (%lu sectors at %llu on %s)\n",
1101                                   mdname(conf->mddev), STRIPE_SECTORS,
1102                                   (unsigned long long)(sh->sector
1103                                                        + rdev->data_offset),
1104                                   bdevname(rdev->bdev, b));
1105                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1106                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1107                 }
1108                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1109                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1110         } else {
1111                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1112                 int retry = 0;
1113                 rdev = conf->disks[i].rdev;
1114
1115                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1116                 atomic_inc(&rdev->read_errors);
1117                 if (conf->mddev->degraded)
1118                         printk_rl(KERN_WARNING
1119                                   "raid5:%s: read error not correctable "
1120                                   "(sector %llu on %s).\n",
1121                                   mdname(conf->mddev),
1122                                   (unsigned long long)(sh->sector
1123                                                        + rdev->data_offset),
1124                                   bdn);
1125                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1126                         /* Oh, no!!! */
1127                         printk_rl(KERN_WARNING
1128                                   "raid5:%s: read error NOT corrected!! "
1129                                   "(sector %llu on %s).\n",
1130                                   mdname(conf->mddev),
1131                                   (unsigned long long)(sh->sector
1132                                                        + rdev->data_offset),
1133                                   bdn);
1134                 else if (atomic_read(&rdev->read_errors)
1135                          > conf->max_nr_stripes)
1136                         printk(KERN_WARNING
1137                                "raid5:%s: Too many read errors, failing device %s.\n",
1138                                mdname(conf->mddev), bdn);
1139                 else
1140                         retry = 1;
1141                 if (retry)
1142                         set_bit(R5_ReadError, &sh->dev[i].flags);
1143                 else {
1144                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1145                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1146                         md_error(conf->mddev, rdev);
1147                 }
1148         }
1149         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1150         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1151         set_bit(STRIPE_HANDLE, &sh->state);
1152         release_stripe(sh);
1153 }
1154
1155 static void raid5_end_write_request(struct bio *bi, int error)
1156 {
1157         struct stripe_head *sh = bi->bi_private;
1158         raid5_conf_t *conf = sh->raid_conf;
1159         int disks = sh->disks, i;
1160         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1161
1162         for (i=0 ; i<disks; i++)
1163                 if (bi == &sh->dev[i].req)
1164                         break;
1165
1166         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1167                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1168                 uptodate);
1169         if (i == disks) {
1170                 BUG();
1171                 return;
1172         }
1173
1174         if (!uptodate)
1175                 md_error(conf->mddev, conf->disks[i].rdev);
1176
1177         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1178         
1179         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1180         set_bit(STRIPE_HANDLE, &sh->state);
1181         release_stripe(sh);
1182 }
1183
1184
1185 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1186         
1187 static void raid5_build_block(struct stripe_head *sh, int i)
1188 {
1189         struct r5dev *dev = &sh->dev[i];
1190
1191         bio_init(&dev->req);
1192         dev->req.bi_io_vec = &dev->vec;
1193         dev->req.bi_vcnt++;
1194         dev->req.bi_max_vecs++;
1195         dev->vec.bv_page = dev->page;
1196         dev->vec.bv_len = STRIPE_SIZE;
1197         dev->vec.bv_offset = 0;
1198
1199         dev->req.bi_sector = sh->sector;
1200         dev->req.bi_private = sh;
1201
1202         dev->flags = 0;
1203         dev->sector = compute_blocknr(sh, i);
1204 }
1205
1206 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1207 {
1208         char b[BDEVNAME_SIZE];
1209         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1210         pr_debug("raid5: error called\n");
1211
1212         if (!test_bit(Faulty, &rdev->flags)) {
1213                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1214                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1215                         unsigned long flags;
1216                         spin_lock_irqsave(&conf->device_lock, flags);
1217                         mddev->degraded++;
1218                         spin_unlock_irqrestore(&conf->device_lock, flags);
1219                         /*
1220                          * if recovery was running, make sure it aborts.
1221                          */
1222                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1223                 }
1224                 set_bit(Faulty, &rdev->flags);
1225                 printk(KERN_ALERT
1226                        "raid5: Disk failure on %s, disabling device.\n"
1227                        "raid5: Operation continuing on %d devices.\n",
1228                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1229         }
1230 }
1231
1232 /*
1233  * Input: a 'big' sector number,
1234  * Output: index of the data and parity disk, and the sector # in them.
1235  */
1236 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1237                         unsigned int data_disks, unsigned int * dd_idx,
1238                         unsigned int * pd_idx, raid5_conf_t *conf)
1239 {
1240         long stripe;
1241         unsigned long chunk_number;
1242         unsigned int chunk_offset;
1243         sector_t new_sector;
1244         int sectors_per_chunk = conf->chunk_size >> 9;
1245
1246         /* First compute the information on this sector */
1247
1248         /*
1249          * Compute the chunk number and the sector offset inside the chunk
1250          */
1251         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1252         chunk_number = r_sector;
1253         BUG_ON(r_sector != chunk_number);
1254
1255         /*
1256          * Compute the stripe number
1257          */
1258         stripe = chunk_number / data_disks;
1259
1260         /*
1261          * Compute the data disk and parity disk indexes inside the stripe
1262          */
1263         *dd_idx = chunk_number % data_disks;
1264
1265         /*
1266          * Select the parity disk based on the user selected algorithm.
1267          */
1268         switch(conf->level) {
1269         case 4:
1270                 *pd_idx = data_disks;
1271                 break;
1272         case 5:
1273                 switch (conf->algorithm) {
1274                 case ALGORITHM_LEFT_ASYMMETRIC:
1275                         *pd_idx = data_disks - stripe % raid_disks;
1276                         if (*dd_idx >= *pd_idx)
1277                                 (*dd_idx)++;
1278                         break;
1279                 case ALGORITHM_RIGHT_ASYMMETRIC:
1280                         *pd_idx = stripe % raid_disks;
1281                         if (*dd_idx >= *pd_idx)
1282                                 (*dd_idx)++;
1283                         break;
1284                 case ALGORITHM_LEFT_SYMMETRIC:
1285                         *pd_idx = data_disks - stripe % raid_disks;
1286                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1287                         break;
1288                 case ALGORITHM_RIGHT_SYMMETRIC:
1289                         *pd_idx = stripe % raid_disks;
1290                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1291                         break;
1292                 default:
1293                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1294                                 conf->algorithm);
1295                 }
1296                 break;
1297         case 6:
1298
1299                 /**** FIX THIS ****/
1300                 switch (conf->algorithm) {
1301                 case ALGORITHM_LEFT_ASYMMETRIC:
1302                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1303                         if (*pd_idx == raid_disks-1)
1304                                 (*dd_idx)++;    /* Q D D D P */
1305                         else if (*dd_idx >= *pd_idx)
1306                                 (*dd_idx) += 2; /* D D P Q D */
1307                         break;
1308                 case ALGORITHM_RIGHT_ASYMMETRIC:
1309                         *pd_idx = stripe % raid_disks;
1310                         if (*pd_idx == raid_disks-1)
1311                                 (*dd_idx)++;    /* Q D D D P */
1312                         else if (*dd_idx >= *pd_idx)
1313                                 (*dd_idx) += 2; /* D D P Q D */
1314                         break;
1315                 case ALGORITHM_LEFT_SYMMETRIC:
1316                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1317                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1318                         break;
1319                 case ALGORITHM_RIGHT_SYMMETRIC:
1320                         *pd_idx = stripe % raid_disks;
1321                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1322                         break;
1323                 default:
1324                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1325                                conf->algorithm);
1326                 }
1327                 break;
1328         }
1329
1330         /*
1331          * Finally, compute the new sector number
1332          */
1333         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1334         return new_sector;
1335 }
1336
1337
1338 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1339 {
1340         raid5_conf_t *conf = sh->raid_conf;
1341         int raid_disks = sh->disks;
1342         int data_disks = raid_disks - conf->max_degraded;
1343         sector_t new_sector = sh->sector, check;
1344         int sectors_per_chunk = conf->chunk_size >> 9;
1345         sector_t stripe;
1346         int chunk_offset;
1347         int chunk_number, dummy1, dummy2, dd_idx = i;
1348         sector_t r_sector;
1349
1350
1351         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1352         stripe = new_sector;
1353         BUG_ON(new_sector != stripe);
1354
1355         if (i == sh->pd_idx)
1356                 return 0;
1357         switch(conf->level) {
1358         case 4: break;
1359         case 5:
1360                 switch (conf->algorithm) {
1361                 case ALGORITHM_LEFT_ASYMMETRIC:
1362                 case ALGORITHM_RIGHT_ASYMMETRIC:
1363                         if (i > sh->pd_idx)
1364                                 i--;
1365                         break;
1366                 case ALGORITHM_LEFT_SYMMETRIC:
1367                 case ALGORITHM_RIGHT_SYMMETRIC:
1368                         if (i < sh->pd_idx)
1369                                 i += raid_disks;
1370                         i -= (sh->pd_idx + 1);
1371                         break;
1372                 default:
1373                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1374                                conf->algorithm);
1375                 }
1376                 break;
1377         case 6:
1378                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1379                         return 0; /* It is the Q disk */
1380                 switch (conf->algorithm) {
1381                 case ALGORITHM_LEFT_ASYMMETRIC:
1382                 case ALGORITHM_RIGHT_ASYMMETRIC:
1383                         if (sh->pd_idx == raid_disks-1)
1384                                 i--;    /* Q D D D P */
1385                         else if (i > sh->pd_idx)
1386                                 i -= 2; /* D D P Q D */
1387                         break;
1388                 case ALGORITHM_LEFT_SYMMETRIC:
1389                 case ALGORITHM_RIGHT_SYMMETRIC:
1390                         if (sh->pd_idx == raid_disks-1)
1391                                 i--; /* Q D D D P */
1392                         else {
1393                                 /* D D P Q D */
1394                                 if (i < sh->pd_idx)
1395                                         i += raid_disks;
1396                                 i -= (sh->pd_idx + 2);
1397                         }
1398                         break;
1399                 default:
1400                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1401                                conf->algorithm);
1402                 }
1403                 break;
1404         }
1405
1406         chunk_number = stripe * data_disks + i;
1407         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1408
1409         check = raid5_compute_sector(r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1410         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1411                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1412                 return 0;
1413         }
1414         return r_sector;
1415 }
1416
1417
1418
1419 /*
1420  * Copy data between a page in the stripe cache, and one or more bion
1421  * The page could align with the middle of the bio, or there could be
1422  * several bion, each with several bio_vecs, which cover part of the page
1423  * Multiple bion are linked together on bi_next.  There may be extras
1424  * at the end of this list.  We ignore them.
1425  */
1426 static void copy_data(int frombio, struct bio *bio,
1427                      struct page *page,
1428                      sector_t sector)
1429 {
1430         char *pa = page_address(page);
1431         struct bio_vec *bvl;
1432         int i;
1433         int page_offset;
1434
1435         if (bio->bi_sector >= sector)
1436                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1437         else
1438                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1439         bio_for_each_segment(bvl, bio, i) {
1440                 int len = bio_iovec_idx(bio,i)->bv_len;
1441                 int clen;
1442                 int b_offset = 0;
1443
1444                 if (page_offset < 0) {
1445                         b_offset = -page_offset;
1446                         page_offset += b_offset;
1447                         len -= b_offset;
1448                 }
1449
1450                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1451                         clen = STRIPE_SIZE - page_offset;
1452                 else clen = len;
1453
1454                 if (clen > 0) {
1455                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1456                         if (frombio)
1457                                 memcpy(pa+page_offset, ba+b_offset, clen);
1458                         else
1459                                 memcpy(ba+b_offset, pa+page_offset, clen);
1460                         __bio_kunmap_atomic(ba, KM_USER0);
1461                 }
1462                 if (clen < len) /* hit end of page */
1463                         break;
1464                 page_offset +=  len;
1465         }
1466 }
1467
1468 #define check_xor()     do {                                              \
1469                                 if (count == MAX_XOR_BLOCKS) {            \
1470                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1471                                 count = 0;                                \
1472                            }                                              \
1473                         } while(0)
1474
1475 static void compute_parity6(struct stripe_head *sh, int method)
1476 {
1477         raid5_conf_t *conf = sh->raid_conf;
1478         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1479         struct bio *chosen;
1480         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1481         void *ptrs[disks];
1482
1483         qd_idx = raid6_next_disk(pd_idx, disks);
1484         d0_idx = raid6_next_disk(qd_idx, disks);
1485
1486         pr_debug("compute_parity, stripe %llu, method %d\n",
1487                 (unsigned long long)sh->sector, method);
1488
1489         switch(method) {
1490         case READ_MODIFY_WRITE:
1491                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1492         case RECONSTRUCT_WRITE:
1493                 for (i= disks; i-- ;)
1494                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1495                                 chosen = sh->dev[i].towrite;
1496                                 sh->dev[i].towrite = NULL;
1497
1498                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1499                                         wake_up(&conf->wait_for_overlap);
1500
1501                                 BUG_ON(sh->dev[i].written);
1502                                 sh->dev[i].written = chosen;
1503                         }
1504                 break;
1505         case CHECK_PARITY:
1506                 BUG();          /* Not implemented yet */
1507         }
1508
1509         for (i = disks; i--;)
1510                 if (sh->dev[i].written) {
1511                         sector_t sector = sh->dev[i].sector;
1512                         struct bio *wbi = sh->dev[i].written;
1513                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1514                                 copy_data(1, wbi, sh->dev[i].page, sector);
1515                                 wbi = r5_next_bio(wbi, sector);
1516                         }
1517
1518                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1519                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1520                 }
1521
1522 //      switch(method) {
1523 //      case RECONSTRUCT_WRITE:
1524 //      case CHECK_PARITY:
1525 //      case UPDATE_PARITY:
1526                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1527                 /* FIX: Is this ordering of drives even remotely optimal? */
1528                 count = 0;
1529                 i = d0_idx;
1530                 do {
1531                         ptrs[count++] = page_address(sh->dev[i].page);
1532                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1533                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1534                         i = raid6_next_disk(i, disks);
1535                 } while ( i != d0_idx );
1536 //              break;
1537 //      }
1538
1539         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1540
1541         switch(method) {
1542         case RECONSTRUCT_WRITE:
1543                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1544                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1545                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1546                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1547                 break;
1548         case UPDATE_PARITY:
1549                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1550                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1551                 break;
1552         }
1553 }
1554
1555
1556 /* Compute one missing block */
1557 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1558 {
1559         int i, count, disks = sh->disks;
1560         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1561         int pd_idx = sh->pd_idx;
1562         int qd_idx = raid6_next_disk(pd_idx, disks);
1563
1564         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1565                 (unsigned long long)sh->sector, dd_idx);
1566
1567         if ( dd_idx == qd_idx ) {
1568                 /* We're actually computing the Q drive */
1569                 compute_parity6(sh, UPDATE_PARITY);
1570         } else {
1571                 dest = page_address(sh->dev[dd_idx].page);
1572                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1573                 count = 0;
1574                 for (i = disks ; i--; ) {
1575                         if (i == dd_idx || i == qd_idx)
1576                                 continue;
1577                         p = page_address(sh->dev[i].page);
1578                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1579                                 ptr[count++] = p;
1580                         else
1581                                 printk("compute_block() %d, stripe %llu, %d"
1582                                        " not present\n", dd_idx,
1583                                        (unsigned long long)sh->sector, i);
1584
1585                         check_xor();
1586                 }
1587                 if (count)
1588                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1589                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1590                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1591         }
1592 }
1593
1594 /* Compute two missing blocks */
1595 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1596 {
1597         int i, count, disks = sh->disks;
1598         int pd_idx = sh->pd_idx;
1599         int qd_idx = raid6_next_disk(pd_idx, disks);
1600         int d0_idx = raid6_next_disk(qd_idx, disks);
1601         int faila, failb;
1602
1603         /* faila and failb are disk numbers relative to d0_idx */
1604         /* pd_idx become disks-2 and qd_idx become disks-1 */
1605         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1606         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1607
1608         BUG_ON(faila == failb);
1609         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1610
1611         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1612                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1613
1614         if ( failb == disks-1 ) {
1615                 /* Q disk is one of the missing disks */
1616                 if ( faila == disks-2 ) {
1617                         /* Missing P+Q, just recompute */
1618                         compute_parity6(sh, UPDATE_PARITY);
1619                         return;
1620                 } else {
1621                         /* We're missing D+Q; recompute D from P */
1622                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1623                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1624                         return;
1625                 }
1626         }
1627
1628         /* We're missing D+P or D+D; build pointer table */
1629         {
1630                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1631                 void *ptrs[disks];
1632
1633                 count = 0;
1634                 i = d0_idx;
1635                 do {
1636                         ptrs[count++] = page_address(sh->dev[i].page);
1637                         i = raid6_next_disk(i, disks);
1638                         if (i != dd_idx1 && i != dd_idx2 &&
1639                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1640                                 printk("compute_2 with missing block %d/%d\n", count, i);
1641                 } while ( i != d0_idx );
1642
1643                 if ( failb == disks-2 ) {
1644                         /* We're missing D+P. */
1645                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1646                 } else {
1647                         /* We're missing D+D. */
1648                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1649                 }
1650
1651                 /* Both the above update both missing blocks */
1652                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1653                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1654         }
1655 }
1656
1657 static void
1658 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1659                          int rcw, int expand)
1660 {
1661         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1662
1663         if (rcw) {
1664                 /* if we are not expanding this is a proper write request, and
1665                  * there will be bios with new data to be drained into the
1666                  * stripe cache
1667                  */
1668                 if (!expand) {
1669                         sh->reconstruct_state = reconstruct_state_drain_run;
1670                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1671                 } else
1672                         sh->reconstruct_state = reconstruct_state_run;
1673
1674                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1675
1676                 for (i = disks; i--; ) {
1677                         struct r5dev *dev = &sh->dev[i];
1678
1679                         if (dev->towrite) {
1680                                 set_bit(R5_LOCKED, &dev->flags);
1681                                 set_bit(R5_Wantdrain, &dev->flags);
1682                                 if (!expand)
1683                                         clear_bit(R5_UPTODATE, &dev->flags);
1684                                 s->locked++;
1685                         }
1686                 }
1687                 if (s->locked + 1 == disks)
1688                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1689                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1690         } else {
1691                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1692                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1693
1694                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1695                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1696                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1697                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1698
1699                 for (i = disks; i--; ) {
1700                         struct r5dev *dev = &sh->dev[i];
1701                         if (i == pd_idx)
1702                                 continue;
1703
1704                         if (dev->towrite &&
1705                             (test_bit(R5_UPTODATE, &dev->flags) ||
1706                              test_bit(R5_Wantcompute, &dev->flags))) {
1707                                 set_bit(R5_Wantdrain, &dev->flags);
1708                                 set_bit(R5_LOCKED, &dev->flags);
1709                                 clear_bit(R5_UPTODATE, &dev->flags);
1710                                 s->locked++;
1711                         }
1712                 }
1713         }
1714
1715         /* keep the parity disk locked while asynchronous operations
1716          * are in flight
1717          */
1718         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1719         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1720         s->locked++;
1721
1722         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1723                 __func__, (unsigned long long)sh->sector,
1724                 s->locked, s->ops_request);
1725 }
1726
1727 /*
1728  * Each stripe/dev can have one or more bion attached.
1729  * toread/towrite point to the first in a chain.
1730  * The bi_next chain must be in order.
1731  */
1732 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1733 {
1734         struct bio **bip;
1735         raid5_conf_t *conf = sh->raid_conf;
1736         int firstwrite=0;
1737
1738         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1739                 (unsigned long long)bi->bi_sector,
1740                 (unsigned long long)sh->sector);
1741
1742
1743         spin_lock(&sh->lock);
1744         spin_lock_irq(&conf->device_lock);
1745         if (forwrite) {
1746                 bip = &sh->dev[dd_idx].towrite;
1747                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1748                         firstwrite = 1;
1749         } else
1750                 bip = &sh->dev[dd_idx].toread;
1751         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1752                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1753                         goto overlap;
1754                 bip = & (*bip)->bi_next;
1755         }
1756         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1757                 goto overlap;
1758
1759         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1760         if (*bip)
1761                 bi->bi_next = *bip;
1762         *bip = bi;
1763         bi->bi_phys_segments++;
1764         spin_unlock_irq(&conf->device_lock);
1765         spin_unlock(&sh->lock);
1766
1767         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1768                 (unsigned long long)bi->bi_sector,
1769                 (unsigned long long)sh->sector, dd_idx);
1770
1771         if (conf->mddev->bitmap && firstwrite) {
1772                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1773                                   STRIPE_SECTORS, 0);
1774                 sh->bm_seq = conf->seq_flush+1;
1775                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1776         }
1777
1778         if (forwrite) {
1779                 /* check if page is covered */
1780                 sector_t sector = sh->dev[dd_idx].sector;
1781                 for (bi=sh->dev[dd_idx].towrite;
1782                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1783                              bi && bi->bi_sector <= sector;
1784                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1785                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1786                                 sector = bi->bi_sector + (bi->bi_size>>9);
1787                 }
1788                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1789                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1790         }
1791         return 1;
1792
1793  overlap:
1794         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1795         spin_unlock_irq(&conf->device_lock);
1796         spin_unlock(&sh->lock);
1797         return 0;
1798 }
1799
1800 static void end_reshape(raid5_conf_t *conf);
1801
1802 static int page_is_zero(struct page *p)
1803 {
1804         char *a = page_address(p);
1805         return ((*(u32*)a) == 0 &&
1806                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1807 }
1808
1809 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1810 {
1811         int sectors_per_chunk = conf->chunk_size >> 9;
1812         int pd_idx, dd_idx;
1813         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1814
1815         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1816                              *sectors_per_chunk + chunk_offset,
1817                              disks, disks - conf->max_degraded,
1818                              &dd_idx, &pd_idx, conf);
1819         return pd_idx;
1820 }
1821
1822 static void
1823 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1824                                 struct stripe_head_state *s, int disks,
1825                                 struct bio **return_bi)
1826 {
1827         int i;
1828         for (i = disks; i--; ) {
1829                 struct bio *bi;
1830                 int bitmap_end = 0;
1831
1832                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1833                         mdk_rdev_t *rdev;
1834                         rcu_read_lock();
1835                         rdev = rcu_dereference(conf->disks[i].rdev);
1836                         if (rdev && test_bit(In_sync, &rdev->flags))
1837                                 /* multiple read failures in one stripe */
1838                                 md_error(conf->mddev, rdev);
1839                         rcu_read_unlock();
1840                 }
1841                 spin_lock_irq(&conf->device_lock);
1842                 /* fail all writes first */
1843                 bi = sh->dev[i].towrite;
1844                 sh->dev[i].towrite = NULL;
1845                 if (bi) {
1846                         s->to_write--;
1847                         bitmap_end = 1;
1848                 }
1849
1850                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1851                         wake_up(&conf->wait_for_overlap);
1852
1853                 while (bi && bi->bi_sector <
1854                         sh->dev[i].sector + STRIPE_SECTORS) {
1855                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1856                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1857                         if (!raid5_dec_bi_phys_segments(bi)) {
1858                                 md_write_end(conf->mddev);
1859                                 bi->bi_next = *return_bi;
1860                                 *return_bi = bi;
1861                         }
1862                         bi = nextbi;
1863                 }
1864                 /* and fail all 'written' */
1865                 bi = sh->dev[i].written;
1866                 sh->dev[i].written = NULL;
1867                 if (bi) bitmap_end = 1;
1868                 while (bi && bi->bi_sector <
1869                        sh->dev[i].sector + STRIPE_SECTORS) {
1870                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1871                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1872                         if (!raid5_dec_bi_phys_segments(bi)) {
1873                                 md_write_end(conf->mddev);
1874                                 bi->bi_next = *return_bi;
1875                                 *return_bi = bi;
1876                         }
1877                         bi = bi2;
1878                 }
1879
1880                 /* fail any reads if this device is non-operational and
1881                  * the data has not reached the cache yet.
1882                  */
1883                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1884                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1885                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1886                         bi = sh->dev[i].toread;
1887                         sh->dev[i].toread = NULL;
1888                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1889                                 wake_up(&conf->wait_for_overlap);
1890                         if (bi) s->to_read--;
1891                         while (bi && bi->bi_sector <
1892                                sh->dev[i].sector + STRIPE_SECTORS) {
1893                                 struct bio *nextbi =
1894                                         r5_next_bio(bi, sh->dev[i].sector);
1895                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1896                                 if (!raid5_dec_bi_phys_segments(bi)) {
1897                                         bi->bi_next = *return_bi;
1898                                         *return_bi = bi;
1899                                 }
1900                                 bi = nextbi;
1901                         }
1902                 }
1903                 spin_unlock_irq(&conf->device_lock);
1904                 if (bitmap_end)
1905                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1906                                         STRIPE_SECTORS, 0, 0);
1907         }
1908
1909         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1910                 if (atomic_dec_and_test(&conf->pending_full_writes))
1911                         md_wakeup_thread(conf->mddev->thread);
1912 }
1913
1914 /* fetch_block5 - checks the given member device to see if its data needs
1915  * to be read or computed to satisfy a request.
1916  *
1917  * Returns 1 when no more member devices need to be checked, otherwise returns
1918  * 0 to tell the loop in handle_stripe_fill5 to continue
1919  */
1920 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1921                         int disk_idx, int disks)
1922 {
1923         struct r5dev *dev = &sh->dev[disk_idx];
1924         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1925
1926         /* is the data in this block needed, and can we get it? */
1927         if (!test_bit(R5_LOCKED, &dev->flags) &&
1928             !test_bit(R5_UPTODATE, &dev->flags) &&
1929             (dev->toread ||
1930              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1931              s->syncing || s->expanding ||
1932              (s->failed &&
1933               (failed_dev->toread ||
1934                (failed_dev->towrite &&
1935                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1936                 /* We would like to get this block, possibly by computing it,
1937                  * otherwise read it if the backing disk is insync
1938                  */
1939                 if ((s->uptodate == disks - 1) &&
1940                     (s->failed && disk_idx == s->failed_num)) {
1941                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1942                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1943                         set_bit(R5_Wantcompute, &dev->flags);
1944                         sh->ops.target = disk_idx;
1945                         s->req_compute = 1;
1946                         /* Careful: from this point on 'uptodate' is in the eye
1947                          * of raid5_run_ops which services 'compute' operations
1948                          * before writes. R5_Wantcompute flags a block that will
1949                          * be R5_UPTODATE by the time it is needed for a
1950                          * subsequent operation.
1951                          */
1952                         s->uptodate++;
1953                         return 1; /* uptodate + compute == disks */
1954                 } else if (test_bit(R5_Insync, &dev->flags)) {
1955                         set_bit(R5_LOCKED, &dev->flags);
1956                         set_bit(R5_Wantread, &dev->flags);
1957                         s->locked++;
1958                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1959                                 s->syncing);
1960                 }
1961         }
1962
1963         return 0;
1964 }
1965
1966 /**
1967  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1968  */
1969 static void handle_stripe_fill5(struct stripe_head *sh,
1970                         struct stripe_head_state *s, int disks)
1971 {
1972         int i;
1973
1974         /* look for blocks to read/compute, skip this if a compute
1975          * is already in flight, or if the stripe contents are in the
1976          * midst of changing due to a write
1977          */
1978         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1979             !sh->reconstruct_state)
1980                 for (i = disks; i--; )
1981                         if (fetch_block5(sh, s, i, disks))
1982                                 break;
1983         set_bit(STRIPE_HANDLE, &sh->state);
1984 }
1985
1986 static void handle_stripe_fill6(struct stripe_head *sh,
1987                         struct stripe_head_state *s, struct r6_state *r6s,
1988                         int disks)
1989 {
1990         int i;
1991         for (i = disks; i--; ) {
1992                 struct r5dev *dev = &sh->dev[i];
1993                 if (!test_bit(R5_LOCKED, &dev->flags) &&
1994                     !test_bit(R5_UPTODATE, &dev->flags) &&
1995                     (dev->toread || (dev->towrite &&
1996                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
1997                      s->syncing || s->expanding ||
1998                      (s->failed >= 1 &&
1999                       (sh->dev[r6s->failed_num[0]].toread ||
2000                        s->to_write)) ||
2001                      (s->failed >= 2 &&
2002                       (sh->dev[r6s->failed_num[1]].toread ||
2003                        s->to_write)))) {
2004                         /* we would like to get this block, possibly
2005                          * by computing it, but we might not be able to
2006                          */
2007                         if ((s->uptodate == disks - 1) &&
2008                             (s->failed && (i == r6s->failed_num[0] ||
2009                                            i == r6s->failed_num[1]))) {
2010                                 pr_debug("Computing stripe %llu block %d\n",
2011                                        (unsigned long long)sh->sector, i);
2012                                 compute_block_1(sh, i, 0);
2013                                 s->uptodate++;
2014                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2015                                 /* Computing 2-failure is *very* expensive; only
2016                                  * do it if failed >= 2
2017                                  */
2018                                 int other;
2019                                 for (other = disks; other--; ) {
2020                                         if (other == i)
2021                                                 continue;
2022                                         if (!test_bit(R5_UPTODATE,
2023                                               &sh->dev[other].flags))
2024                                                 break;
2025                                 }
2026                                 BUG_ON(other < 0);
2027                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2028                                        (unsigned long long)sh->sector,
2029                                        i, other);
2030                                 compute_block_2(sh, i, other);
2031                                 s->uptodate += 2;
2032                         } else if (test_bit(R5_Insync, &dev->flags)) {
2033                                 set_bit(R5_LOCKED, &dev->flags);
2034                                 set_bit(R5_Wantread, &dev->flags);
2035                                 s->locked++;
2036                                 pr_debug("Reading block %d (sync=%d)\n",
2037                                         i, s->syncing);
2038                         }
2039                 }
2040         }
2041         set_bit(STRIPE_HANDLE, &sh->state);
2042 }
2043
2044
2045 /* handle_stripe_clean_event
2046  * any written block on an uptodate or failed drive can be returned.
2047  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2048  * never LOCKED, so we don't need to test 'failed' directly.
2049  */
2050 static void handle_stripe_clean_event(raid5_conf_t *conf,
2051         struct stripe_head *sh, int disks, struct bio **return_bi)
2052 {
2053         int i;
2054         struct r5dev *dev;
2055
2056         for (i = disks; i--; )
2057                 if (sh->dev[i].written) {
2058                         dev = &sh->dev[i];
2059                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2060                                 test_bit(R5_UPTODATE, &dev->flags)) {
2061                                 /* We can return any write requests */
2062                                 struct bio *wbi, *wbi2;
2063                                 int bitmap_end = 0;
2064                                 pr_debug("Return write for disc %d\n", i);
2065                                 spin_lock_irq(&conf->device_lock);
2066                                 wbi = dev->written;
2067                                 dev->written = NULL;
2068                                 while (wbi && wbi->bi_sector <
2069                                         dev->sector + STRIPE_SECTORS) {
2070                                         wbi2 = r5_next_bio(wbi, dev->sector);
2071                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2072                                                 md_write_end(conf->mddev);
2073                                                 wbi->bi_next = *return_bi;
2074                                                 *return_bi = wbi;
2075                                         }
2076                                         wbi = wbi2;
2077                                 }
2078                                 if (dev->towrite == NULL)
2079                                         bitmap_end = 1;
2080                                 spin_unlock_irq(&conf->device_lock);
2081                                 if (bitmap_end)
2082                                         bitmap_endwrite(conf->mddev->bitmap,
2083                                                         sh->sector,
2084                                                         STRIPE_SECTORS,
2085                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2086                                                         0);
2087                         }
2088                 }
2089
2090         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2091                 if (atomic_dec_and_test(&conf->pending_full_writes))
2092                         md_wakeup_thread(conf->mddev->thread);
2093 }
2094
2095 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2096                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2097 {
2098         int rmw = 0, rcw = 0, i;
2099         for (i = disks; i--; ) {
2100                 /* would I have to read this buffer for read_modify_write */
2101                 struct r5dev *dev = &sh->dev[i];
2102                 if ((dev->towrite || i == sh->pd_idx) &&
2103                     !test_bit(R5_LOCKED, &dev->flags) &&
2104                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2105                       test_bit(R5_Wantcompute, &dev->flags))) {
2106                         if (test_bit(R5_Insync, &dev->flags))
2107                                 rmw++;
2108                         else
2109                                 rmw += 2*disks;  /* cannot read it */
2110                 }
2111                 /* Would I have to read this buffer for reconstruct_write */
2112                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2113                     !test_bit(R5_LOCKED, &dev->flags) &&
2114                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2115                     test_bit(R5_Wantcompute, &dev->flags))) {
2116                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2117                         else
2118                                 rcw += 2*disks;
2119                 }
2120         }
2121         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2122                 (unsigned long long)sh->sector, rmw, rcw);
2123         set_bit(STRIPE_HANDLE, &sh->state);
2124         if (rmw < rcw && rmw > 0)
2125                 /* prefer read-modify-write, but need to get some data */
2126                 for (i = disks; i--; ) {
2127                         struct r5dev *dev = &sh->dev[i];
2128                         if ((dev->towrite || i == sh->pd_idx) &&
2129                             !test_bit(R5_LOCKED, &dev->flags) &&
2130                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2131                             test_bit(R5_Wantcompute, &dev->flags)) &&
2132                             test_bit(R5_Insync, &dev->flags)) {
2133                                 if (
2134                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2135                                         pr_debug("Read_old block "
2136                                                 "%d for r-m-w\n", i);
2137                                         set_bit(R5_LOCKED, &dev->flags);
2138                                         set_bit(R5_Wantread, &dev->flags);
2139                                         s->locked++;
2140                                 } else {
2141                                         set_bit(STRIPE_DELAYED, &sh->state);
2142                                         set_bit(STRIPE_HANDLE, &sh->state);
2143                                 }
2144                         }
2145                 }
2146         if (rcw <= rmw && rcw > 0)
2147                 /* want reconstruct write, but need to get some data */
2148                 for (i = disks; i--; ) {
2149                         struct r5dev *dev = &sh->dev[i];
2150                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2151                             i != sh->pd_idx &&
2152                             !test_bit(R5_LOCKED, &dev->flags) &&
2153                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2154                             test_bit(R5_Wantcompute, &dev->flags)) &&
2155                             test_bit(R5_Insync, &dev->flags)) {
2156                                 if (
2157                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2158                                         pr_debug("Read_old block "
2159                                                 "%d for Reconstruct\n", i);
2160                                         set_bit(R5_LOCKED, &dev->flags);
2161                                         set_bit(R5_Wantread, &dev->flags);
2162                                         s->locked++;
2163                                 } else {
2164                                         set_bit(STRIPE_DELAYED, &sh->state);
2165                                         set_bit(STRIPE_HANDLE, &sh->state);
2166                                 }
2167                         }
2168                 }
2169         /* now if nothing is locked, and if we have enough data,
2170          * we can start a write request
2171          */
2172         /* since handle_stripe can be called at any time we need to handle the
2173          * case where a compute block operation has been submitted and then a
2174          * subsequent call wants to start a write request.  raid5_run_ops only
2175          * handles the case where compute block and postxor are requested
2176          * simultaneously.  If this is not the case then new writes need to be
2177          * held off until the compute completes.
2178          */
2179         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2180             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2181             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2182                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2183 }
2184
2185 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2186                 struct stripe_head *sh, struct stripe_head_state *s,
2187                 struct r6_state *r6s, int disks)
2188 {
2189         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2190         int qd_idx = r6s->qd_idx;
2191         for (i = disks; i--; ) {
2192                 struct r5dev *dev = &sh->dev[i];
2193                 /* Would I have to read this buffer for reconstruct_write */
2194                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2195                     && i != pd_idx && i != qd_idx
2196                     && (!test_bit(R5_LOCKED, &dev->flags)
2197                             ) &&
2198                     !test_bit(R5_UPTODATE, &dev->flags)) {
2199                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2200                         else {
2201                                 pr_debug("raid6: must_compute: "
2202                                         "disk %d flags=%#lx\n", i, dev->flags);
2203                                 must_compute++;
2204                         }
2205                 }
2206         }
2207         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2208                (unsigned long long)sh->sector, rcw, must_compute);
2209         set_bit(STRIPE_HANDLE, &sh->state);
2210
2211         if (rcw > 0)
2212                 /* want reconstruct write, but need to get some data */
2213                 for (i = disks; i--; ) {
2214                         struct r5dev *dev = &sh->dev[i];
2215                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2216                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2217                             && !test_bit(R5_LOCKED, &dev->flags) &&
2218                             !test_bit(R5_UPTODATE, &dev->flags) &&
2219                             test_bit(R5_Insync, &dev->flags)) {
2220                                 if (
2221                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2222                                         pr_debug("Read_old stripe %llu "
2223                                                 "block %d for Reconstruct\n",
2224                                              (unsigned long long)sh->sector, i);
2225                                         set_bit(R5_LOCKED, &dev->flags);
2226                                         set_bit(R5_Wantread, &dev->flags);
2227                                         s->locked++;
2228                                 } else {
2229                                         pr_debug("Request delayed stripe %llu "
2230                                                 "block %d for Reconstruct\n",
2231                                              (unsigned long long)sh->sector, i);
2232                                         set_bit(STRIPE_DELAYED, &sh->state);
2233                                         set_bit(STRIPE_HANDLE, &sh->state);
2234                                 }
2235                         }
2236                 }
2237         /* now if nothing is locked, and if we have enough data, we can start a
2238          * write request
2239          */
2240         if (s->locked == 0 && rcw == 0 &&
2241             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2242                 if (must_compute > 0) {
2243                         /* We have failed blocks and need to compute them */
2244                         switch (s->failed) {
2245                         case 0:
2246                                 BUG();
2247                         case 1:
2248                                 compute_block_1(sh, r6s->failed_num[0], 0);
2249                                 break;
2250                         case 2:
2251                                 compute_block_2(sh, r6s->failed_num[0],
2252                                                 r6s->failed_num[1]);
2253                                 break;
2254                         default: /* This request should have been failed? */
2255                                 BUG();
2256                         }
2257                 }
2258
2259                 pr_debug("Computing parity for stripe %llu\n",
2260                         (unsigned long long)sh->sector);
2261                 compute_parity6(sh, RECONSTRUCT_WRITE);
2262                 /* now every locked buffer is ready to be written */
2263                 for (i = disks; i--; )
2264                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2265                                 pr_debug("Writing stripe %llu block %d\n",
2266                                        (unsigned long long)sh->sector, i);
2267                                 s->locked++;
2268                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2269                         }
2270                 if (s->locked == disks)
2271                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2272                                 atomic_inc(&conf->pending_full_writes);
2273                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2274                 set_bit(STRIPE_INSYNC, &sh->state);
2275
2276                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2277                         atomic_dec(&conf->preread_active_stripes);
2278                         if (atomic_read(&conf->preread_active_stripes) <
2279                             IO_THRESHOLD)
2280                                 md_wakeup_thread(conf->mddev->thread);
2281                 }
2282         }
2283 }
2284
2285 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2286                                 struct stripe_head_state *s, int disks)
2287 {
2288         struct r5dev *dev = NULL;
2289
2290         set_bit(STRIPE_HANDLE, &sh->state);
2291
2292         switch (sh->check_state) {
2293         case check_state_idle:
2294                 /* start a new check operation if there are no failures */
2295                 if (s->failed == 0) {
2296                         BUG_ON(s->uptodate != disks);
2297                         sh->check_state = check_state_run;
2298                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2299                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2300                         s->uptodate--;
2301                         break;
2302                 }
2303                 dev = &sh->dev[s->failed_num];
2304                 /* fall through */
2305         case check_state_compute_result:
2306                 sh->check_state = check_state_idle;
2307                 if (!dev)
2308                         dev = &sh->dev[sh->pd_idx];
2309
2310                 /* check that a write has not made the stripe insync */
2311                 if (test_bit(STRIPE_INSYNC, &sh->state))
2312                         break;
2313
2314                 /* either failed parity check, or recovery is happening */
2315                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2316                 BUG_ON(s->uptodate != disks);
2317
2318                 set_bit(R5_LOCKED, &dev->flags);
2319                 s->locked++;
2320                 set_bit(R5_Wantwrite, &dev->flags);
2321
2322                 clear_bit(STRIPE_DEGRADED, &sh->state);
2323                 set_bit(STRIPE_INSYNC, &sh->state);
2324                 break;
2325         case check_state_run:
2326                 break; /* we will be called again upon completion */
2327         case check_state_check_result:
2328                 sh->check_state = check_state_idle;
2329
2330                 /* if a failure occurred during the check operation, leave
2331                  * STRIPE_INSYNC not set and let the stripe be handled again
2332                  */
2333                 if (s->failed)
2334                         break;
2335
2336                 /* handle a successful check operation, if parity is correct
2337                  * we are done.  Otherwise update the mismatch count and repair
2338                  * parity if !MD_RECOVERY_CHECK
2339                  */
2340                 if (sh->ops.zero_sum_result == 0)
2341                         /* parity is correct (on disc,
2342                          * not in buffer any more)
2343                          */
2344                         set_bit(STRIPE_INSYNC, &sh->state);
2345                 else {
2346                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2347                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2348                                 /* don't try to repair!! */
2349                                 set_bit(STRIPE_INSYNC, &sh->state);
2350                         else {
2351                                 sh->check_state = check_state_compute_run;
2352                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2353                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2354                                 set_bit(R5_Wantcompute,
2355                                         &sh->dev[sh->pd_idx].flags);
2356                                 sh->ops.target = sh->pd_idx;
2357                                 s->uptodate++;
2358                         }
2359                 }
2360                 break;
2361         case check_state_compute_run:
2362                 break;
2363         default:
2364                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2365                        __func__, sh->check_state,
2366                        (unsigned long long) sh->sector);
2367                 BUG();
2368         }
2369 }
2370
2371
2372 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2373                                 struct stripe_head_state *s,
2374                                 struct r6_state *r6s, struct page *tmp_page,
2375                                 int disks)
2376 {
2377         int update_p = 0, update_q = 0;
2378         struct r5dev *dev;
2379         int pd_idx = sh->pd_idx;
2380         int qd_idx = r6s->qd_idx;
2381
2382         set_bit(STRIPE_HANDLE, &sh->state);
2383
2384         BUG_ON(s->failed > 2);
2385         BUG_ON(s->uptodate < disks);
2386         /* Want to check and possibly repair P and Q.
2387          * However there could be one 'failed' device, in which
2388          * case we can only check one of them, possibly using the
2389          * other to generate missing data
2390          */
2391
2392         /* If !tmp_page, we cannot do the calculations,
2393          * but as we have set STRIPE_HANDLE, we will soon be called
2394          * by stripe_handle with a tmp_page - just wait until then.
2395          */
2396         if (tmp_page) {
2397                 if (s->failed == r6s->q_failed) {
2398                         /* The only possible failed device holds 'Q', so it
2399                          * makes sense to check P (If anything else were failed,
2400                          * we would have used P to recreate it).
2401                          */
2402                         compute_block_1(sh, pd_idx, 1);
2403                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2404                                 compute_block_1(sh, pd_idx, 0);
2405                                 update_p = 1;
2406                         }
2407                 }
2408                 if (!r6s->q_failed && s->failed < 2) {
2409                         /* q is not failed, and we didn't use it to generate
2410                          * anything, so it makes sense to check it
2411                          */
2412                         memcpy(page_address(tmp_page),
2413                                page_address(sh->dev[qd_idx].page),
2414                                STRIPE_SIZE);
2415                         compute_parity6(sh, UPDATE_PARITY);
2416                         if (memcmp(page_address(tmp_page),
2417                                    page_address(sh->dev[qd_idx].page),
2418                                    STRIPE_SIZE) != 0) {
2419                                 clear_bit(STRIPE_INSYNC, &sh->state);
2420                                 update_q = 1;
2421                         }
2422                 }
2423                 if (update_p || update_q) {
2424                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2425                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2426                                 /* don't try to repair!! */
2427                                 update_p = update_q = 0;
2428                 }
2429
2430                 /* now write out any block on a failed drive,
2431                  * or P or Q if they need it
2432                  */
2433
2434                 if (s->failed == 2) {
2435                         dev = &sh->dev[r6s->failed_num[1]];
2436                         s->locked++;
2437                         set_bit(R5_LOCKED, &dev->flags);
2438                         set_bit(R5_Wantwrite, &dev->flags);
2439                 }
2440                 if (s->failed >= 1) {
2441                         dev = &sh->dev[r6s->failed_num[0]];
2442                         s->locked++;
2443                         set_bit(R5_LOCKED, &dev->flags);
2444                         set_bit(R5_Wantwrite, &dev->flags);
2445                 }
2446
2447                 if (update_p) {
2448                         dev = &sh->dev[pd_idx];
2449                         s->locked++;
2450                         set_bit(R5_LOCKED, &dev->flags);
2451                         set_bit(R5_Wantwrite, &dev->flags);
2452                 }
2453                 if (update_q) {
2454                         dev = &sh->dev[qd_idx];
2455                         s->locked++;
2456                         set_bit(R5_LOCKED, &dev->flags);
2457                         set_bit(R5_Wantwrite, &dev->flags);
2458                 }
2459                 clear_bit(STRIPE_DEGRADED, &sh->state);
2460
2461                 set_bit(STRIPE_INSYNC, &sh->state);
2462         }
2463 }
2464
2465 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2466                                 struct r6_state *r6s)
2467 {
2468         int i;
2469
2470         /* We have read all the blocks in this stripe and now we need to
2471          * copy some of them into a target stripe for expand.
2472          */
2473         struct dma_async_tx_descriptor *tx = NULL;
2474         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2475         for (i = 0; i < sh->disks; i++)
2476                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2477                         int dd_idx, pd_idx, j;
2478                         struct stripe_head *sh2;
2479
2480                         sector_t bn = compute_blocknr(sh, i);
2481                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2482                                                 conf->raid_disks -
2483                                                 conf->max_degraded, &dd_idx,
2484                                                 &pd_idx, conf);
2485                         sh2 = get_active_stripe(conf, s, 0, 1);
2486                         if (sh2 == NULL)
2487                                 /* so far only the early blocks of this stripe
2488                                  * have been requested.  When later blocks
2489                                  * get requested, we will try again
2490                                  */
2491                                 continue;
2492                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2493                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2494                                 /* must have already done this block */
2495                                 release_stripe(sh2);
2496                                 continue;
2497                         }
2498
2499                         /* place all the copies on one channel */
2500                         tx = async_memcpy(sh2->dev[dd_idx].page,
2501                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2502                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2503
2504                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2505                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2506                         for (j = 0; j < conf->raid_disks; j++)
2507                                 if (j != sh2->pd_idx &&
2508                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2509                                                                  sh2->disks)) &&
2510                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2511                                         break;
2512                         if (j == conf->raid_disks) {
2513                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2514                                 set_bit(STRIPE_HANDLE, &sh2->state);
2515                         }
2516                         release_stripe(sh2);
2517
2518                 }
2519         /* done submitting copies, wait for them to complete */
2520         if (tx) {
2521                 async_tx_ack(tx);
2522                 dma_wait_for_async_tx(tx);
2523         }
2524 }
2525
2526
2527 /*
2528  * handle_stripe - do things to a stripe.
2529  *
2530  * We lock the stripe and then examine the state of various bits
2531  * to see what needs to be done.
2532  * Possible results:
2533  *    return some read request which now have data
2534  *    return some write requests which are safely on disc
2535  *    schedule a read on some buffers
2536  *    schedule a write of some buffers
2537  *    return confirmation of parity correctness
2538  *
2539  * buffers are taken off read_list or write_list, and bh_cache buffers
2540  * get BH_Lock set before the stripe lock is released.
2541  *
2542  */
2543
2544 static bool handle_stripe5(struct stripe_head *sh)
2545 {
2546         raid5_conf_t *conf = sh->raid_conf;
2547         int disks = sh->disks, i;
2548         struct bio *return_bi = NULL;
2549         struct stripe_head_state s;
2550         struct r5dev *dev;
2551         mdk_rdev_t *blocked_rdev = NULL;
2552         int prexor;
2553
2554         memset(&s, 0, sizeof(s));
2555         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2556                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2557                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2558                  sh->reconstruct_state);
2559
2560         spin_lock(&sh->lock);
2561         clear_bit(STRIPE_HANDLE, &sh->state);
2562         clear_bit(STRIPE_DELAYED, &sh->state);
2563
2564         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2565         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2566         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2567
2568         /* Now to look around and see what can be done */
2569         rcu_read_lock();
2570         for (i=disks; i--; ) {
2571                 mdk_rdev_t *rdev;
2572                 struct r5dev *dev = &sh->dev[i];
2573                 clear_bit(R5_Insync, &dev->flags);
2574
2575                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2576                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2577                         dev->towrite, dev->written);
2578
2579                 /* maybe we can request a biofill operation
2580                  *
2581                  * new wantfill requests are only permitted while
2582                  * ops_complete_biofill is guaranteed to be inactive
2583                  */
2584                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2585                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2586                         set_bit(R5_Wantfill, &dev->flags);
2587
2588                 /* now count some things */
2589                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2590                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2591                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2592
2593                 if (test_bit(R5_Wantfill, &dev->flags))
2594                         s.to_fill++;
2595                 else if (dev->toread)
2596                         s.to_read++;
2597                 if (dev->towrite) {
2598                         s.to_write++;
2599                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2600                                 s.non_overwrite++;
2601                 }
2602                 if (dev->written)
2603                         s.written++;
2604                 rdev = rcu_dereference(conf->disks[i].rdev);
2605                 if (blocked_rdev == NULL &&
2606                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2607                         blocked_rdev = rdev;
2608                         atomic_inc(&rdev->nr_pending);
2609                 }
2610                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2611                         /* The ReadError flag will just be confusing now */
2612                         clear_bit(R5_ReadError, &dev->flags);
2613                         clear_bit(R5_ReWrite, &dev->flags);
2614                 }
2615                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2616                     || test_bit(R5_ReadError, &dev->flags)) {
2617                         s.failed++;
2618                         s.failed_num = i;
2619                 } else
2620                         set_bit(R5_Insync, &dev->flags);
2621         }
2622         rcu_read_unlock();
2623
2624         if (unlikely(blocked_rdev)) {
2625                 if (s.syncing || s.expanding || s.expanded ||
2626                     s.to_write || s.written) {
2627                         set_bit(STRIPE_HANDLE, &sh->state);
2628                         goto unlock;
2629                 }
2630                 /* There is nothing for the blocked_rdev to block */
2631                 rdev_dec_pending(blocked_rdev, conf->mddev);
2632                 blocked_rdev = NULL;
2633         }
2634
2635         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2636                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2637                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2638         }
2639
2640         pr_debug("locked=%d uptodate=%d to_read=%d"
2641                 " to_write=%d failed=%d failed_num=%d\n",
2642                 s.locked, s.uptodate, s.to_read, s.to_write,
2643                 s.failed, s.failed_num);
2644         /* check if the array has lost two devices and, if so, some requests might
2645          * need to be failed
2646          */
2647         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2648                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2649         if (s.failed > 1 && s.syncing) {
2650                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2651                 clear_bit(STRIPE_SYNCING, &sh->state);
2652                 s.syncing = 0;
2653         }
2654
2655         /* might be able to return some write requests if the parity block
2656          * is safe, or on a failed drive
2657          */
2658         dev = &sh->dev[sh->pd_idx];
2659         if ( s.written &&
2660              ((test_bit(R5_Insync, &dev->flags) &&
2661                !test_bit(R5_LOCKED, &dev->flags) &&
2662                test_bit(R5_UPTODATE, &dev->flags)) ||
2663                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2664                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2665
2666         /* Now we might consider reading some blocks, either to check/generate
2667          * parity, or to satisfy requests
2668          * or to load a block that is being partially written.
2669          */
2670         if (s.to_read || s.non_overwrite ||
2671             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2672                 handle_stripe_fill5(sh, &s, disks);
2673
2674         /* Now we check to see if any write operations have recently
2675          * completed
2676          */
2677         prexor = 0;
2678         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2679                 prexor = 1;
2680         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2681             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2682                 sh->reconstruct_state = reconstruct_state_idle;
2683
2684                 /* All the 'written' buffers and the parity block are ready to
2685                  * be written back to disk
2686                  */
2687                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2688                 for (i = disks; i--; ) {
2689                         dev = &sh->dev[i];
2690                         if (test_bit(R5_LOCKED, &dev->flags) &&
2691                                 (i == sh->pd_idx || dev->written)) {
2692                                 pr_debug("Writing block %d\n", i);
2693                                 set_bit(R5_Wantwrite, &dev->flags);
2694                                 if (prexor)
2695                                         continue;
2696                                 if (!test_bit(R5_Insync, &dev->flags) ||
2697                                     (i == sh->pd_idx && s.failed == 0))
2698                                         set_bit(STRIPE_INSYNC, &sh->state);
2699                         }
2700                 }
2701                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2702                         atomic_dec(&conf->preread_active_stripes);
2703                         if (atomic_read(&conf->preread_active_stripes) <
2704                                 IO_THRESHOLD)
2705                                 md_wakeup_thread(conf->mddev->thread);
2706                 }
2707         }
2708
2709         /* Now to consider new write requests and what else, if anything
2710          * should be read.  We do not handle new writes when:
2711          * 1/ A 'write' operation (copy+xor) is already in flight.
2712          * 2/ A 'check' operation is in flight, as it may clobber the parity
2713          *    block.
2714          */
2715         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2716                 handle_stripe_dirtying5(conf, sh, &s, disks);
2717
2718         /* maybe we need to check and possibly fix the parity for this stripe
2719          * Any reads will already have been scheduled, so we just see if enough
2720          * data is available.  The parity check is held off while parity
2721          * dependent operations are in flight.
2722          */
2723         if (sh->check_state ||
2724             (s.syncing && s.locked == 0 &&
2725              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2726              !test_bit(STRIPE_INSYNC, &sh->state)))
2727                 handle_parity_checks5(conf, sh, &s, disks);
2728
2729         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2730                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2731                 clear_bit(STRIPE_SYNCING, &sh->state);
2732         }
2733
2734         /* If the failed drive is just a ReadError, then we might need to progress
2735          * the repair/check process
2736          */
2737         if (s.failed == 1 && !conf->mddev->ro &&
2738             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2739             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2740             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2741                 ) {
2742                 dev = &sh->dev[s.failed_num];
2743                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2744                         set_bit(R5_Wantwrite, &dev->flags);
2745                         set_bit(R5_ReWrite, &dev->flags);
2746                         set_bit(R5_LOCKED, &dev->flags);
2747                         s.locked++;
2748                 } else {
2749                         /* let's read it back */
2750                         set_bit(R5_Wantread, &dev->flags);
2751                         set_bit(R5_LOCKED, &dev->flags);
2752                         s.locked++;
2753                 }
2754         }
2755
2756         /* Finish reconstruct operations initiated by the expansion process */
2757         if (sh->reconstruct_state == reconstruct_state_result) {
2758                 sh->reconstruct_state = reconstruct_state_idle;
2759                 clear_bit(STRIPE_EXPANDING, &sh->state);
2760                 for (i = conf->raid_disks; i--; ) {
2761                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2762                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2763                         s.locked++;
2764                 }
2765         }
2766
2767         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2768             !sh->reconstruct_state) {
2769                 /* Need to write out all blocks after computing parity */
2770                 sh->disks = conf->raid_disks;
2771                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2772                         conf->raid_disks);
2773                 schedule_reconstruction5(sh, &s, 1, 1);
2774         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2775                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2776                 atomic_dec(&conf->reshape_stripes);
2777                 wake_up(&conf->wait_for_overlap);
2778                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2779         }
2780
2781         if (s.expanding && s.locked == 0 &&
2782             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2783                 handle_stripe_expansion(conf, sh, NULL);
2784
2785  unlock:
2786         spin_unlock(&sh->lock);
2787
2788         /* wait for this device to become unblocked */
2789         if (unlikely(blocked_rdev))
2790                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2791
2792         if (s.ops_request)
2793                 raid5_run_ops(sh, s.ops_request);
2794
2795         ops_run_io(sh, &s);
2796
2797         return_io(return_bi);
2798
2799         return blocked_rdev == NULL;
2800 }
2801
2802 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2803 {
2804         raid5_conf_t *conf = sh->raid_conf;
2805         int disks = sh->disks;
2806         struct bio *return_bi = NULL;
2807         int i, pd_idx = sh->pd_idx;
2808         struct stripe_head_state s;
2809         struct r6_state r6s;
2810         struct r5dev *dev, *pdev, *qdev;
2811         mdk_rdev_t *blocked_rdev = NULL;
2812
2813         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2814         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2815                 "pd_idx=%d, qd_idx=%d\n",
2816                (unsigned long long)sh->sector, sh->state,
2817                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2818         memset(&s, 0, sizeof(s));
2819
2820         spin_lock(&sh->lock);
2821         clear_bit(STRIPE_HANDLE, &sh->state);
2822         clear_bit(STRIPE_DELAYED, &sh->state);
2823
2824         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2825         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2826         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2827         /* Now to look around and see what can be done */
2828
2829         rcu_read_lock();
2830         for (i=disks; i--; ) {
2831                 mdk_rdev_t *rdev;
2832                 dev = &sh->dev[i];
2833                 clear_bit(R5_Insync, &dev->flags);
2834
2835                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2836                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2837                 /* maybe we can reply to a read */
2838                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2839                         struct bio *rbi, *rbi2;
2840                         pr_debug("Return read for disc %d\n", i);
2841                         spin_lock_irq(&conf->device_lock);
2842                         rbi = dev->toread;
2843                         dev->toread = NULL;
2844                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2845                                 wake_up(&conf->wait_for_overlap);
2846                         spin_unlock_irq(&conf->device_lock);
2847                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2848                                 copy_data(0, rbi, dev->page, dev->sector);
2849                                 rbi2 = r5_next_bio(rbi, dev->sector);
2850                                 spin_lock_irq(&conf->device_lock);
2851                                 if (!raid5_dec_bi_phys_segments(rbi)) {
2852                                         rbi->bi_next = return_bi;
2853                                         return_bi = rbi;
2854                                 }
2855                                 spin_unlock_irq(&conf->device_lock);
2856                                 rbi = rbi2;
2857                         }
2858                 }
2859
2860                 /* now count some things */
2861                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2862                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2863
2864
2865                 if (dev->toread)
2866                         s.to_read++;
2867                 if (dev->towrite) {
2868                         s.to_write++;
2869                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2870                                 s.non_overwrite++;
2871                 }
2872                 if (dev->written)
2873                         s.written++;
2874                 rdev = rcu_dereference(conf->disks[i].rdev);
2875                 if (blocked_rdev == NULL &&
2876                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2877                         blocked_rdev = rdev;
2878                         atomic_inc(&rdev->nr_pending);
2879                 }
2880                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2881                         /* The ReadError flag will just be confusing now */
2882                         clear_bit(R5_ReadError, &dev->flags);
2883                         clear_bit(R5_ReWrite, &dev->flags);
2884                 }
2885                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2886                     || test_bit(R5_ReadError, &dev->flags)) {
2887                         if (s.failed < 2)
2888                                 r6s.failed_num[s.failed] = i;
2889                         s.failed++;
2890                 } else
2891                         set_bit(R5_Insync, &dev->flags);
2892         }
2893         rcu_read_unlock();
2894
2895         if (unlikely(blocked_rdev)) {
2896                 if (s.syncing || s.expanding || s.expanded ||
2897                     s.to_write || s.written) {
2898                         set_bit(STRIPE_HANDLE, &sh->state);
2899                         goto unlock;
2900                 }
2901                 /* There is nothing for the blocked_rdev to block */
2902                 rdev_dec_pending(blocked_rdev, conf->mddev);
2903                 blocked_rdev = NULL;
2904         }
2905
2906         pr_debug("locked=%d uptodate=%d to_read=%d"
2907                " to_write=%d failed=%d failed_num=%d,%d\n",
2908                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2909                r6s.failed_num[0], r6s.failed_num[1]);
2910         /* check if the array has lost >2 devices and, if so, some requests
2911          * might need to be failed
2912          */
2913         if (s.failed > 2 && s.to_read+s.to_write+s.written)
2914                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2915         if (s.failed > 2 && s.syncing) {
2916                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2917                 clear_bit(STRIPE_SYNCING, &sh->state);
2918                 s.syncing = 0;
2919         }
2920
2921         /*
2922          * might be able to return some write requests if the parity blocks
2923          * are safe, or on a failed drive
2924          */
2925         pdev = &sh->dev[pd_idx];
2926         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2927                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2928         qdev = &sh->dev[r6s.qd_idx];
2929         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2930                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2931
2932         if ( s.written &&
2933              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2934                              && !test_bit(R5_LOCKED, &pdev->flags)
2935                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2936              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2937                              && !test_bit(R5_LOCKED, &qdev->flags)
2938                              && test_bit(R5_UPTODATE, &qdev->flags)))))
2939                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2940
2941         /* Now we might consider reading some blocks, either to check/generate
2942          * parity, or to satisfy requests
2943          * or to load a block that is being partially written.
2944          */
2945         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2946             (s.syncing && (s.uptodate < disks)) || s.expanding)
2947                 handle_stripe_fill6(sh, &s, &r6s, disks);
2948
2949         /* now to consider writing and what else, if anything should be read */
2950         if (s.to_write)
2951                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2952
2953         /* maybe we need to check and possibly fix the parity for this stripe
2954          * Any reads will already have been scheduled, so we just see if enough
2955          * data is available
2956          */
2957         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2958                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2959
2960         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2961                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2962                 clear_bit(STRIPE_SYNCING, &sh->state);
2963         }
2964
2965         /* If the failed drives are just a ReadError, then we might need
2966          * to progress the repair/check process
2967          */
2968         if (s.failed <= 2 && !conf->mddev->ro)
2969                 for (i = 0; i < s.failed; i++) {
2970                         dev = &sh->dev[r6s.failed_num[i]];
2971                         if (test_bit(R5_ReadError, &dev->flags)
2972                             && !test_bit(R5_LOCKED, &dev->flags)
2973                             && test_bit(R5_UPTODATE, &dev->flags)
2974                                 ) {
2975                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2976                                         set_bit(R5_Wantwrite, &dev->flags);
2977                                         set_bit(R5_ReWrite, &dev->flags);
2978                                         set_bit(R5_LOCKED, &dev->flags);
2979                                 } else {
2980                                         /* let's read it back */
2981                                         set_bit(R5_Wantread, &dev->flags);
2982                                         set_bit(R5_LOCKED, &dev->flags);
2983                                 }
2984                         }
2985                 }
2986
2987         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2988                 /* Need to write out all blocks after computing P&Q */
2989                 sh->disks = conf->raid_disks;
2990                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2991                                              conf->raid_disks);
2992                 compute_parity6(sh, RECONSTRUCT_WRITE);
2993                 for (i = conf->raid_disks ; i-- ;  ) {
2994                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2995                         s.locked++;
2996                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2997                 }
2998                 clear_bit(STRIPE_EXPANDING, &sh->state);
2999         } else if (s.expanded) {
3000                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3001                 atomic_dec(&conf->reshape_stripes);
3002                 wake_up(&conf->wait_for_overlap);
3003                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3004         }
3005
3006         if (s.expanding && s.locked == 0 &&
3007             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3008                 handle_stripe_expansion(conf, sh, &r6s);
3009
3010  unlock:
3011         spin_unlock(&sh->lock);
3012
3013         /* wait for this device to become unblocked */
3014         if (unlikely(blocked_rdev))
3015                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3016
3017         ops_run_io(sh, &s);
3018
3019         return_io(return_bi);
3020
3021         return blocked_rdev == NULL;
3022 }
3023
3024 /* returns true if the stripe was handled */
3025 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3026 {
3027         if (sh->raid_conf->level == 6)
3028                 return handle_stripe6(sh, tmp_page);
3029         else
3030                 return handle_stripe5(sh);
3031 }
3032
3033
3034
3035 static void raid5_activate_delayed(raid5_conf_t *conf)
3036 {
3037         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3038                 while (!list_empty(&conf->delayed_list)) {
3039                         struct list_head *l = conf->delayed_list.next;
3040                         struct stripe_head *sh;
3041                         sh = list_entry(l, struct stripe_head, lru);
3042                         list_del_init(l);
3043                         clear_bit(STRIPE_DELAYED, &sh->state);
3044                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3045                                 atomic_inc(&conf->preread_active_stripes);
3046                         list_add_tail(&sh->lru, &conf->hold_list);
3047                 }
3048         } else
3049                 blk_plug_device(conf->mddev->queue);
3050 }
3051
3052 static void activate_bit_delay(raid5_conf_t *conf)
3053 {
3054         /* device_lock is held */
3055         struct list_head head;
3056         list_add(&head, &conf->bitmap_list);
3057         list_del_init(&conf->bitmap_list);
3058         while (!list_empty(&head)) {
3059                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3060                 list_del_init(&sh->lru);
3061                 atomic_inc(&sh->count);
3062                 __release_stripe(conf, sh);
3063         }
3064 }
3065
3066 static void unplug_slaves(mddev_t *mddev)
3067 {
3068         raid5_conf_t *conf = mddev_to_conf(mddev);
3069         int i;
3070
3071         rcu_read_lock();
3072         for (i=0; i<mddev->raid_disks; i++) {
3073                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3074                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3075                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3076
3077                         atomic_inc(&rdev->nr_pending);
3078                         rcu_read_unlock();
3079
3080                         blk_unplug(r_queue);
3081
3082                         rdev_dec_pending(rdev, mddev);
3083                         rcu_read_lock();
3084                 }
3085         }
3086         rcu_read_unlock();
3087 }
3088
3089 static void raid5_unplug_device(struct request_queue *q)
3090 {
3091         mddev_t *mddev = q->queuedata;
3092         raid5_conf_t *conf = mddev_to_conf(mddev);
3093         unsigned long flags;
3094
3095         spin_lock_irqsave(&conf->device_lock, flags);
3096
3097         if (blk_remove_plug(q)) {
3098                 conf->seq_flush++;
3099                 raid5_activate_delayed(conf);
3100         }
3101         md_wakeup_thread(mddev->thread);
3102
3103         spin_unlock_irqrestore(&conf->device_lock, flags);
3104
3105         unplug_slaves(mddev);
3106 }
3107
3108 static int raid5_congested(void *data, int bits)
3109 {
3110         mddev_t *mddev = data;
3111         raid5_conf_t *conf = mddev_to_conf(mddev);
3112
3113         /* No difference between reads and writes.  Just check
3114          * how busy the stripe_cache is
3115          */
3116         if (conf->inactive_blocked)
3117                 return 1;
3118         if (conf->quiesce)
3119                 return 1;
3120         if (list_empty_careful(&conf->inactive_list))
3121                 return 1;
3122
3123         return 0;
3124 }
3125
3126 /* We want read requests to align with chunks where possible,
3127  * but write requests don't need to.
3128  */
3129 static int raid5_mergeable_bvec(struct request_queue *q,
3130                                 struct bvec_merge_data *bvm,
3131                                 struct bio_vec *biovec)
3132 {
3133         mddev_t *mddev = q->queuedata;
3134         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3135         int max;
3136         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3137         unsigned int bio_sectors = bvm->bi_size >> 9;
3138
3139         if ((bvm->bi_rw & 1) == WRITE)
3140                 return biovec->bv_len; /* always allow writes to be mergeable */
3141
3142         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3143         if (max < 0) max = 0;
3144         if (max <= biovec->bv_len && bio_sectors == 0)
3145                 return biovec->bv_len;
3146         else
3147                 return max;
3148 }
3149
3150
3151 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3152 {
3153         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3154         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3155         unsigned int bio_sectors = bio->bi_size >> 9;
3156
3157         return  chunk_sectors >=
3158                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3159 }
3160
3161 /*
3162  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3163  *  later sampled by raid5d.
3164  */
3165 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3166 {
3167         unsigned long flags;
3168
3169         spin_lock_irqsave(&conf->device_lock, flags);
3170
3171         bi->bi_next = conf->retry_read_aligned_list;
3172         conf->retry_read_aligned_list = bi;
3173
3174         spin_unlock_irqrestore(&conf->device_lock, flags);
3175         md_wakeup_thread(conf->mddev->thread);
3176 }
3177
3178
3179 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3180 {
3181         struct bio *bi;
3182
3183         bi = conf->retry_read_aligned;
3184         if (bi) {
3185                 conf->retry_read_aligned = NULL;
3186                 return bi;
3187         }
3188         bi = conf->retry_read_aligned_list;
3189         if(bi) {
3190                 conf->retry_read_aligned_list = bi->bi_next;
3191                 bi->bi_next = NULL;
3192                 /*
3193                  * this sets the active strip count to 1 and the processed
3194                  * strip count to zero (upper 8 bits)
3195                  */
3196                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3197         }
3198
3199         return bi;
3200 }
3201
3202
3203 /*
3204  *  The "raid5_align_endio" should check if the read succeeded and if it
3205  *  did, call bio_endio on the original bio (having bio_put the new bio
3206  *  first).
3207  *  If the read failed..
3208  */
3209 static void raid5_align_endio(struct bio *bi, int error)
3210 {
3211         struct bio* raid_bi  = bi->bi_private;
3212         mddev_t *mddev;
3213         raid5_conf_t *conf;
3214         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3215         mdk_rdev_t *rdev;
3216
3217         bio_put(bi);
3218
3219         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3220         conf = mddev_to_conf(mddev);
3221         rdev = (void*)raid_bi->bi_next;
3222         raid_bi->bi_next = NULL;
3223
3224         rdev_dec_pending(rdev, conf->mddev);
3225
3226         if (!error && uptodate) {
3227                 bio_endio(raid_bi, 0);
3228                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3229                         wake_up(&conf->wait_for_stripe);
3230                 return;
3231         }
3232
3233
3234         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3235
3236         add_bio_to_retry(raid_bi, conf);
3237 }
3238
3239 static int bio_fits_rdev(struct bio *bi)
3240 {
3241         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3242
3243         if ((bi->bi_size>>9) > q->max_sectors)
3244                 return 0;
3245         blk_recount_segments(q, bi);
3246         if (bi->bi_phys_segments > q->max_phys_segments)
3247                 return 0;
3248
3249         if (q->merge_bvec_fn)
3250                 /* it's too hard to apply the merge_bvec_fn at this stage,
3251                  * just just give up
3252                  */
3253                 return 0;
3254
3255         return 1;
3256 }
3257
3258
3259 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3260 {
3261         mddev_t *mddev = q->queuedata;
3262         raid5_conf_t *conf = mddev_to_conf(mddev);
3263         const unsigned int raid_disks = conf->raid_disks;
3264         const unsigned int data_disks = raid_disks - conf->max_degraded;
3265         unsigned int dd_idx, pd_idx;
3266         struct bio* align_bi;
3267         mdk_rdev_t *rdev;
3268
3269         if (!in_chunk_boundary(mddev, raid_bio)) {
3270                 pr_debug("chunk_aligned_read : non aligned\n");
3271                 return 0;
3272         }
3273         /*
3274          * use bio_clone to make a copy of the bio
3275          */
3276         align_bi = bio_clone(raid_bio, GFP_NOIO);
3277         if (!align_bi)
3278                 return 0;
3279         /*
3280          *   set bi_end_io to a new function, and set bi_private to the
3281          *     original bio.
3282          */
3283         align_bi->bi_end_io  = raid5_align_endio;
3284         align_bi->bi_private = raid_bio;
3285         /*
3286          *      compute position
3287          */
3288         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3289                                         raid_disks,
3290                                         data_disks,
3291                                         &dd_idx,
3292                                         &pd_idx,
3293                                         conf);
3294
3295         rcu_read_lock();
3296         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3297         if (rdev && test_bit(In_sync, &rdev->flags)) {
3298                 atomic_inc(&rdev->nr_pending);
3299                 rcu_read_unlock();
3300                 raid_bio->bi_next = (void*)rdev;
3301                 align_bi->bi_bdev =  rdev->bdev;
3302                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3303                 align_bi->bi_sector += rdev->data_offset;
3304
3305                 if (!bio_fits_rdev(align_bi)) {
3306                         /* too big in some way */
3307                         bio_put(align_bi);
3308                         rdev_dec_pending(rdev, mddev);
3309                         return 0;
3310                 }
3311
3312                 spin_lock_irq(&conf->device_lock);
3313                 wait_event_lock_irq(conf->wait_for_stripe,
3314                                     conf->quiesce == 0,
3315                                     conf->device_lock, /* nothing */);
3316                 atomic_inc(&conf->active_aligned_reads);
3317                 spin_unlock_irq(&conf->device_lock);
3318
3319                 generic_make_request(align_bi);
3320                 return 1;
3321         } else {
3322                 rcu_read_unlock();
3323                 bio_put(align_bi);
3324                 return 0;
3325         }
3326 }
3327
3328 /* __get_priority_stripe - get the next stripe to process
3329  *
3330  * Full stripe writes are allowed to pass preread active stripes up until
3331  * the bypass_threshold is exceeded.  In general the bypass_count
3332  * increments when the handle_list is handled before the hold_list; however, it
3333  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3334  * stripe with in flight i/o.  The bypass_count will be reset when the
3335  * head of the hold_list has changed, i.e. the head was promoted to the
3336  * handle_list.
3337  */
3338 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3339 {
3340         struct stripe_head *sh;
3341
3342         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3343                   __func__,
3344                   list_empty(&conf->handle_list) ? "empty" : "busy",
3345                   list_empty(&conf->hold_list) ? "empty" : "busy",
3346                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3347
3348         if (!list_empty(&conf->handle_list)) {
3349                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3350
3351                 if (list_empty(&conf->hold_list))
3352                         conf->bypass_count = 0;
3353                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3354                         if (conf->hold_list.next == conf->last_hold)
3355                                 conf->bypass_count++;
3356                         else {
3357                                 conf->last_hold = conf->hold_list.next;
3358                                 conf->bypass_count -= conf->bypass_threshold;
3359                                 if (conf->bypass_count < 0)
3360                                         conf->bypass_count = 0;
3361                         }
3362                 }
3363         } else if (!list_empty(&conf->hold_list) &&
3364                    ((conf->bypass_threshold &&
3365                      conf->bypass_count > conf->bypass_threshold) ||
3366                     atomic_read(&conf->pending_full_writes) == 0)) {
3367                 sh = list_entry(conf->hold_list.next,
3368                                 typeof(*sh), lru);
3369                 conf->bypass_count -= conf->bypass_threshold;
3370                 if (conf->bypass_count < 0)
3371                         conf->bypass_count = 0;
3372         } else
3373                 return NULL;
3374
3375         list_del_init(&sh->lru);
3376         atomic_inc(&sh->count);
3377         BUG_ON(atomic_read(&sh->count) != 1);
3378         return sh;
3379 }
3380
3381 static int make_request(struct request_queue *q, struct bio * bi)
3382 {
3383         mddev_t *mddev = q->queuedata;
3384         raid5_conf_t *conf = mddev_to_conf(mddev);
3385         unsigned int dd_idx, pd_idx;
3386         sector_t new_sector;
3387         sector_t logical_sector, last_sector;
3388         struct stripe_head *sh;
3389         const int rw = bio_data_dir(bi);
3390         int cpu, remaining;
3391
3392         if (unlikely(bio_barrier(bi))) {
3393                 bio_endio(bi, -EOPNOTSUPP);
3394                 return 0;
3395         }
3396
3397         md_write_start(mddev, bi);
3398
3399         cpu = part_stat_lock();
3400         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3401         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3402                       bio_sectors(bi));
3403         part_stat_unlock();
3404
3405         if (rw == READ &&
3406              mddev->reshape_position == MaxSector &&
3407              chunk_aligned_read(q,bi))
3408                 return 0;
3409
3410         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3411         last_sector = bi->bi_sector + (bi->bi_size>>9);
3412         bi->bi_next = NULL;
3413         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3414
3415         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3416                 DEFINE_WAIT(w);
3417                 int disks, data_disks;
3418                 int previous;
3419
3420         retry:
3421                 previous = 0;
3422                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3423                 if (likely(conf->expand_progress == MaxSector))
3424                         disks = conf->raid_disks;
3425                 else {
3426                         /* spinlock is needed as expand_progress may be
3427                          * 64bit on a 32bit platform, and so it might be
3428                          * possible to see a half-updated value
3429                          * Ofcourse expand_progress could change after
3430                          * the lock is dropped, so once we get a reference
3431                          * to the stripe that we think it is, we will have
3432                          * to check again.
3433                          */
3434                         spin_lock_irq(&conf->device_lock);
3435                         disks = conf->raid_disks;
3436                         if (logical_sector >= conf->expand_progress) {
3437                                 disks = conf->previous_raid_disks;
3438                                 previous = 1;
3439                         } else {
3440                                 if (logical_sector >= conf->expand_lo) {
3441                                         spin_unlock_irq(&conf->device_lock);
3442                                         schedule();
3443                                         goto retry;
3444                                 }
3445                         }
3446                         spin_unlock_irq(&conf->device_lock);
3447                 }
3448                 data_disks = disks - conf->max_degraded;
3449
3450                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3451                                                   &dd_idx, &pd_idx, conf);
3452                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3453                         (unsigned long long)new_sector, 
3454                         (unsigned long long)logical_sector);
3455
3456                 sh = get_active_stripe(conf, new_sector, previous,
3457                                        (bi->bi_rw&RWA_MASK));
3458                 if (sh) {
3459                         if (unlikely(conf->expand_progress != MaxSector)) {
3460                                 /* expansion might have moved on while waiting for a
3461                                  * stripe, so we must do the range check again.
3462                                  * Expansion could still move past after this
3463                                  * test, but as we are holding a reference to
3464                                  * 'sh', we know that if that happens,
3465                                  *  STRIPE_EXPANDING will get set and the expansion
3466                                  * won't proceed until we finish with the stripe.
3467                                  */
3468                                 int must_retry = 0;
3469                                 spin_lock_irq(&conf->device_lock);
3470                                 if (logical_sector <  conf->expand_progress &&
3471                                     disks == conf->previous_raid_disks)
3472                                         /* mismatch, need to try again */
3473                                         must_retry = 1;
3474                                 spin_unlock_irq(&conf->device_lock);
3475                                 if (must_retry) {
3476                                         release_stripe(sh);
3477                                         goto retry;
3478                                 }
3479                         }
3480                         /* FIXME what if we get a false positive because these
3481                          * are being updated.
3482                          */
3483                         if (logical_sector >= mddev->suspend_lo &&
3484                             logical_sector < mddev->suspend_hi) {
3485                                 release_stripe(sh);
3486                                 schedule();
3487                                 goto retry;
3488                         }
3489
3490                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3491                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3492                                 /* Stripe is busy expanding or
3493                                  * add failed due to overlap.  Flush everything
3494                                  * and wait a while
3495                                  */
3496                                 raid5_unplug_device(mddev->queue);
3497                                 release_stripe(sh);
3498                                 schedule();
3499                                 goto retry;
3500                         }
3501                         finish_wait(&conf->wait_for_overlap, &w);
3502                         set_bit(STRIPE_HANDLE, &sh->state);
3503                         clear_bit(STRIPE_DELAYED, &sh->state);
3504                         release_stripe(sh);
3505                 } else {
3506                         /* cannot get stripe for read-ahead, just give-up */
3507                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3508                         finish_wait(&conf->wait_for_overlap, &w);
3509                         break;
3510                 }
3511                         
3512         }
3513         spin_lock_irq(&conf->device_lock);
3514         remaining = raid5_dec_bi_phys_segments(bi);
3515         spin_unlock_irq(&conf->device_lock);
3516         if (remaining == 0) {
3517
3518                 if ( rw == WRITE )
3519                         md_write_end(mddev);
3520
3521                 bio_endio(bi, 0);
3522         }
3523         return 0;
3524 }
3525
3526 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3527 {
3528         /* reshaping is quite different to recovery/resync so it is
3529          * handled quite separately ... here.
3530          *
3531          * On each call to sync_request, we gather one chunk worth of
3532          * destination stripes and flag them as expanding.
3533          * Then we find all the source stripes and request reads.
3534          * As the reads complete, handle_stripe will copy the data
3535          * into the destination stripe and release that stripe.
3536          */
3537         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3538         struct stripe_head *sh;
3539         int pd_idx;
3540         sector_t first_sector, last_sector;
3541         int raid_disks = conf->previous_raid_disks;
3542         int data_disks = raid_disks - conf->max_degraded;
3543         int new_data_disks = conf->raid_disks - conf->max_degraded;
3544         int i;
3545         int dd_idx;
3546         sector_t writepos, safepos, gap;
3547
3548         if (sector_nr == 0 &&
3549             conf->expand_progress != 0) {
3550                 /* restarting in the middle, skip the initial sectors */
3551                 sector_nr = conf->expand_progress;
3552                 sector_div(sector_nr, new_data_disks);
3553                 *skipped = 1;
3554                 return sector_nr;
3555         }
3556
3557         /* we update the metadata when there is more than 3Meg
3558          * in the block range (that is rather arbitrary, should
3559          * probably be time based) or when the data about to be
3560          * copied would over-write the source of the data at
3561          * the front of the range.
3562          * i.e. one new_stripe forward from expand_progress new_maps
3563          * to after where expand_lo old_maps to
3564          */
3565         writepos = conf->expand_progress +
3566                 conf->chunk_size/512*(new_data_disks);
3567         sector_div(writepos, new_data_disks);
3568         safepos = conf->expand_lo;
3569         sector_div(safepos, data_disks);
3570         gap = conf->expand_progress - conf->expand_lo;
3571
3572         if (writepos >= safepos ||
3573             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3574                 /* Cannot proceed until we've updated the superblock... */
3575                 wait_event(conf->wait_for_overlap,
3576                            atomic_read(&conf->reshape_stripes)==0);
3577                 mddev->reshape_position = conf->expand_progress;
3578                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3579                 md_wakeup_thread(mddev->thread);
3580                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3581                            kthread_should_stop());
3582                 spin_lock_irq(&conf->device_lock);
3583                 conf->expand_lo = mddev->reshape_position;
3584                 spin_unlock_irq(&conf->device_lock);
3585                 wake_up(&conf->wait_for_overlap);
3586         }
3587
3588         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3589                 int j;
3590                 int skipped = 0;
3591                 sh = get_active_stripe(conf, sector_nr+i, 0, 0);
3592                 set_bit(STRIPE_EXPANDING, &sh->state);
3593                 atomic_inc(&conf->reshape_stripes);
3594                 /* If any of this stripe is beyond the end of the old
3595                  * array, then we need to zero those blocks
3596                  */
3597                 for (j=sh->disks; j--;) {
3598                         sector_t s;
3599                         if (j == sh->pd_idx)
3600                                 continue;
3601                         if (conf->level == 6 &&
3602                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3603                                 continue;
3604                         s = compute_blocknr(sh, j);
3605                         if (s < mddev->array_sectors) {
3606                                 skipped = 1;
3607                                 continue;
3608                         }
3609                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3610                         set_bit(R5_Expanded, &sh->dev[j].flags);
3611                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3612                 }
3613                 if (!skipped) {
3614                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3615                         set_bit(STRIPE_HANDLE, &sh->state);
3616                 }
3617                 release_stripe(sh);
3618         }
3619         spin_lock_irq(&conf->device_lock);
3620         conf->expand_progress = (sector_nr + i) * new_data_disks;
3621         spin_unlock_irq(&conf->device_lock);
3622         /* Ok, those stripe are ready. We can start scheduling
3623          * reads on the source stripes.
3624          * The source stripes are determined by mapping the first and last
3625          * block on the destination stripes.
3626          */
3627         first_sector =
3628                 raid5_compute_sector(sector_nr*(new_data_disks),
3629                                      raid_disks, data_disks,
3630                                      &dd_idx, &pd_idx, conf);
3631         last_sector =
3632                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3633                                      *(new_data_disks) -1,
3634                                      raid_disks, data_disks,
3635                                      &dd_idx, &pd_idx, conf);
3636         if (last_sector >= mddev->dev_sectors)
3637                 last_sector = mddev->dev_sectors - 1;
3638         while (first_sector <= last_sector) {
3639                 sh = get_active_stripe(conf, first_sector, 1, 0);
3640                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3641                 set_bit(STRIPE_HANDLE, &sh->state);
3642                 release_stripe(sh);
3643                 first_sector += STRIPE_SECTORS;
3644         }
3645         /* If this takes us to the resync_max point where we have to pause,
3646          * then we need to write out the superblock.
3647          */
3648         sector_nr += conf->chunk_size>>9;
3649         if (sector_nr >= mddev->resync_max) {
3650                 /* Cannot proceed until we've updated the superblock... */
3651                 wait_event(conf->wait_for_overlap,
3652                            atomic_read(&conf->reshape_stripes) == 0);
3653                 mddev->reshape_position = conf->expand_progress;
3654                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3655                 md_wakeup_thread(mddev->thread);
3656                 wait_event(mddev->sb_wait,
3657                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3658                            || kthread_should_stop());
3659                 spin_lock_irq(&conf->device_lock);
3660                 conf->expand_lo = mddev->reshape_position;
3661                 spin_unlock_irq(&conf->device_lock);
3662                 wake_up(&conf->wait_for_overlap);
3663         }
3664         return conf->chunk_size>>9;
3665 }
3666
3667 /* FIXME go_faster isn't used */
3668 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3669 {
3670         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3671         struct stripe_head *sh;
3672         int pd_idx;
3673         int raid_disks = conf->raid_disks;
3674         sector_t max_sector = mddev->dev_sectors;
3675         int sync_blocks;
3676         int still_degraded = 0;
3677         int i;
3678
3679         if (sector_nr >= max_sector) {
3680                 /* just being told to finish up .. nothing much to do */
3681                 unplug_slaves(mddev);
3682                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3683                         end_reshape(conf);
3684                         return 0;
3685                 }
3686
3687                 if (mddev->curr_resync < max_sector) /* aborted */
3688                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3689                                         &sync_blocks, 1);
3690                 else /* completed sync */
3691                         conf->fullsync = 0;
3692                 bitmap_close_sync(mddev->bitmap);
3693
3694                 return 0;
3695         }
3696
3697         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3698                 return reshape_request(mddev, sector_nr, skipped);
3699
3700         /* No need to check resync_max as we never do more than one
3701          * stripe, and as resync_max will always be on a chunk boundary,
3702          * if the check in md_do_sync didn't fire, there is no chance
3703          * of overstepping resync_max here
3704          */
3705
3706         /* if there is too many failed drives and we are trying
3707          * to resync, then assert that we are finished, because there is
3708          * nothing we can do.
3709          */
3710         if (mddev->degraded >= conf->max_degraded &&
3711             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3712                 sector_t rv = mddev->dev_sectors - sector_nr;
3713                 *skipped = 1;
3714                 return rv;
3715         }
3716         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3717             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3718             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3719                 /* we can skip this block, and probably more */
3720                 sync_blocks /= STRIPE_SECTORS;
3721                 *skipped = 1;
3722                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3723         }
3724
3725
3726         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3727
3728         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3729         sh = get_active_stripe(conf, sector_nr, 0, 1);
3730         if (sh == NULL) {
3731                 sh = get_active_stripe(conf, sector_nr, 0, 0);
3732                 /* make sure we don't swamp the stripe cache if someone else
3733                  * is trying to get access
3734                  */
3735                 schedule_timeout_uninterruptible(1);
3736         }
3737         /* Need to check if array will still be degraded after recovery/resync
3738          * We don't need to check the 'failed' flag as when that gets set,
3739          * recovery aborts.
3740          */
3741         for (i=0; i<mddev->raid_disks; i++)
3742                 if (conf->disks[i].rdev == NULL)
3743                         still_degraded = 1;
3744
3745         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3746
3747         spin_lock(&sh->lock);
3748         set_bit(STRIPE_SYNCING, &sh->state);
3749         clear_bit(STRIPE_INSYNC, &sh->state);
3750         spin_unlock(&sh->lock);
3751
3752         /* wait for any blocked device to be handled */
3753         while(unlikely(!handle_stripe(sh, NULL)))
3754                 ;
3755         release_stripe(sh);
3756
3757         return STRIPE_SECTORS;
3758 }
3759
3760 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3761 {
3762         /* We may not be able to submit a whole bio at once as there
3763          * may not be enough stripe_heads available.
3764          * We cannot pre-allocate enough stripe_heads as we may need
3765          * more than exist in the cache (if we allow ever large chunks).
3766          * So we do one stripe head at a time and record in
3767          * ->bi_hw_segments how many have been done.
3768          *
3769          * We *know* that this entire raid_bio is in one chunk, so
3770          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3771          */
3772         struct stripe_head *sh;
3773         int dd_idx, pd_idx;
3774         sector_t sector, logical_sector, last_sector;
3775         int scnt = 0;
3776         int remaining;
3777         int handled = 0;
3778
3779         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3780         sector = raid5_compute_sector(  logical_sector,
3781                                         conf->raid_disks,
3782                                         conf->raid_disks - conf->max_degraded,
3783                                         &dd_idx,
3784                                         &pd_idx,
3785                                         conf);
3786         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3787
3788         for (; logical_sector < last_sector;
3789              logical_sector += STRIPE_SECTORS,
3790                      sector += STRIPE_SECTORS,
3791                      scnt++) {
3792
3793                 if (scnt < raid5_bi_hw_segments(raid_bio))
3794                         /* already done this stripe */
3795                         continue;
3796
3797                 sh = get_active_stripe(conf, sector, 0, 1);
3798
3799                 if (!sh) {
3800                         /* failed to get a stripe - must wait */
3801                         raid5_set_bi_hw_segments(raid_bio, scnt);
3802                         conf->retry_read_aligned = raid_bio;
3803                         return handled;
3804                 }
3805
3806                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3807                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3808                         release_stripe(sh);
3809                         raid5_set_bi_hw_segments(raid_bio, scnt);
3810                         conf->retry_read_aligned = raid_bio;
3811                         return handled;
3812                 }
3813
3814                 handle_stripe(sh, NULL);
3815                 release_stripe(sh);
3816                 handled++;
3817         }
3818         spin_lock_irq(&conf->device_lock);
3819         remaining = raid5_dec_bi_phys_segments(raid_bio);
3820         spin_unlock_irq(&conf->device_lock);
3821         if (remaining == 0)
3822                 bio_endio(raid_bio, 0);
3823         if (atomic_dec_and_test(&conf->active_aligned_reads))
3824                 wake_up(&conf->wait_for_stripe);
3825         return handled;
3826 }
3827
3828
3829
3830 /*
3831  * This is our raid5 kernel thread.
3832  *
3833  * We scan the hash table for stripes which can be handled now.
3834  * During the scan, completed stripes are saved for us by the interrupt
3835  * handler, so that they will not have to wait for our next wakeup.
3836  */
3837 static void raid5d(mddev_t *mddev)
3838 {
3839         struct stripe_head *sh;
3840         raid5_conf_t *conf = mddev_to_conf(mddev);
3841         int handled;
3842
3843         pr_debug("+++ raid5d active\n");
3844
3845         md_check_recovery(mddev);
3846
3847         handled = 0;
3848         spin_lock_irq(&conf->device_lock);
3849         while (1) {
3850                 struct bio *bio;
3851
3852                 if (conf->seq_flush != conf->seq_write) {
3853                         int seq = conf->seq_flush;
3854                         spin_unlock_irq(&conf->device_lock);
3855                         bitmap_unplug(mddev->bitmap);
3856                         spin_lock_irq(&conf->device_lock);
3857                         conf->seq_write = seq;
3858                         activate_bit_delay(conf);
3859                 }
3860
3861                 while ((bio = remove_bio_from_retry(conf))) {
3862                         int ok;
3863                         spin_unlock_irq(&conf->device_lock);
3864                         ok = retry_aligned_read(conf, bio);
3865                         spin_lock_irq(&conf->device_lock);
3866                         if (!ok)
3867                                 break;
3868                         handled++;
3869                 }
3870
3871                 sh = __get_priority_stripe(conf);
3872
3873                 if (!sh)
3874                         break;
3875                 spin_unlock_irq(&conf->device_lock);
3876                 
3877                 handled++;
3878                 handle_stripe(sh, conf->spare_page);
3879                 release_stripe(sh);
3880
3881                 spin_lock_irq(&conf->device_lock);
3882         }
3883         pr_debug("%d stripes handled\n", handled);
3884
3885         spin_unlock_irq(&conf->device_lock);
3886
3887         async_tx_issue_pending_all();
3888         unplug_slaves(mddev);
3889
3890         pr_debug("--- raid5d inactive\n");
3891 }
3892
3893 static ssize_t
3894 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3895 {
3896         raid5_conf_t *conf = mddev_to_conf(mddev);
3897         if (conf)
3898                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3899         else
3900                 return 0;
3901 }
3902
3903 static ssize_t
3904 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3905 {
3906         raid5_conf_t *conf = mddev_to_conf(mddev);
3907         unsigned long new;
3908         int err;
3909
3910         if (len >= PAGE_SIZE)
3911                 return -EINVAL;
3912         if (!conf)
3913                 return -ENODEV;
3914
3915         if (strict_strtoul(page, 10, &new))
3916                 return -EINVAL;
3917         if (new <= 16 || new > 32768)
3918                 return -EINVAL;
3919         while (new < conf->max_nr_stripes) {
3920                 if (drop_one_stripe(conf))
3921                         conf->max_nr_stripes--;
3922                 else
3923                         break;
3924         }
3925         err = md_allow_write(mddev);
3926         if (err)
3927                 return err;
3928         while (new > conf->max_nr_stripes) {
3929                 if (grow_one_stripe(conf))
3930                         conf->max_nr_stripes++;
3931                 else break;
3932         }
3933         return len;
3934 }
3935
3936 static struct md_sysfs_entry
3937 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3938                                 raid5_show_stripe_cache_size,
3939                                 raid5_store_stripe_cache_size);
3940
3941 static ssize_t
3942 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3943 {
3944         raid5_conf_t *conf = mddev_to_conf(mddev);
3945         if (conf)
3946                 return sprintf(page, "%d\n", conf->bypass_threshold);
3947         else
3948                 return 0;
3949 }
3950
3951 static ssize_t
3952 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3953 {
3954         raid5_conf_t *conf = mddev_to_conf(mddev);
3955         unsigned long new;
3956         if (len >= PAGE_SIZE)
3957                 return -EINVAL;
3958         if (!conf)
3959                 return -ENODEV;
3960
3961         if (strict_strtoul(page, 10, &new))
3962                 return -EINVAL;
3963         if (new > conf->max_nr_stripes)
3964                 return -EINVAL;
3965         conf->bypass_threshold = new;
3966         return len;
3967 }
3968
3969 static struct md_sysfs_entry
3970 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3971                                         S_IRUGO | S_IWUSR,
3972                                         raid5_show_preread_threshold,
3973                                         raid5_store_preread_threshold);
3974
3975 static ssize_t
3976 stripe_cache_active_show(mddev_t *mddev, char *page)
3977 {
3978         raid5_conf_t *conf = mddev_to_conf(mddev);
3979         if (conf)
3980                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3981         else
3982                 return 0;
3983 }
3984
3985 static struct md_sysfs_entry
3986 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3987
3988 static struct attribute *raid5_attrs[] =  {
3989         &raid5_stripecache_size.attr,
3990         &raid5_stripecache_active.attr,
3991         &raid5_preread_bypass_threshold.attr,
3992         NULL,
3993 };
3994 static struct attribute_group raid5_attrs_group = {
3995         .name = NULL,
3996         .attrs = raid5_attrs,
3997 };
3998
3999 static int run(mddev_t *mddev)
4000 {
4001         raid5_conf_t *conf;
4002         int raid_disk, memory;
4003         mdk_rdev_t *rdev;
4004         struct disk_info *disk;
4005         int working_disks = 0;
4006
4007         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4008                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4009                        mdname(mddev), mddev->level);
4010                 return -EIO;
4011         }
4012
4013         if (mddev->chunk_size < PAGE_SIZE) {
4014                 printk(KERN_ERR "md/raid5: chunk_size must be at least "
4015                        "PAGE_SIZE but %d < %ld\n",
4016                        mddev->chunk_size, PAGE_SIZE);
4017                 return -EINVAL;
4018         }
4019
4020         if (mddev->reshape_position != MaxSector) {
4021                 /* Check that we can continue the reshape.
4022                  * Currently only disks can change, it must
4023                  * increase, and we must be past the point where
4024                  * a stripe over-writes itself
4025                  */
4026                 sector_t here_new, here_old;
4027                 int old_disks;
4028                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4029
4030                 if (mddev->new_level != mddev->level ||
4031                     mddev->new_layout != mddev->layout ||
4032                     mddev->new_chunk != mddev->chunk_size) {
4033                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4034                                "required - aborting.\n",
4035                                mdname(mddev));
4036                         return -EINVAL;
4037                 }
4038                 if (mddev->delta_disks <= 0) {
4039                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4040                                "(reduce disks) required - aborting.\n",
4041                                mdname(mddev));
4042                         return -EINVAL;
4043                 }
4044                 old_disks = mddev->raid_disks - mddev->delta_disks;
4045                 /* reshape_position must be on a new-stripe boundary, and one
4046                  * further up in new geometry must map after here in old
4047                  * geometry.
4048                  */
4049                 here_new = mddev->reshape_position;
4050                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4051                                (mddev->raid_disks - max_degraded))) {
4052                         printk(KERN_ERR "raid5: reshape_position not "
4053                                "on a stripe boundary\n");
4054                         return -EINVAL;
4055                 }
4056                 /* here_new is the stripe we will write to */
4057                 here_old = mddev->reshape_position;
4058                 sector_div(here_old, (mddev->chunk_size>>9)*
4059                            (old_disks-max_degraded));
4060                 /* here_old is the first stripe that we might need to read
4061                  * from */
4062                 if (here_new >= here_old) {
4063                         /* Reading from the same stripe as writing to - bad */
4064                         printk(KERN_ERR "raid5: reshape_position too early for "
4065                                "auto-recovery - aborting.\n");
4066                         return -EINVAL;
4067                 }
4068                 printk(KERN_INFO "raid5: reshape will continue\n");
4069                 /* OK, we should be able to continue; */
4070         }
4071
4072
4073         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4074         if ((conf = mddev->private) == NULL)
4075                 goto abort;
4076         if (mddev->reshape_position == MaxSector) {
4077                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4078         } else {
4079                 conf->raid_disks = mddev->raid_disks;
4080                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4081         }
4082
4083         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4084                               GFP_KERNEL);
4085         if (!conf->disks)
4086                 goto abort;
4087
4088         conf->mddev = mddev;
4089
4090         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4091                 goto abort;
4092
4093         if (mddev->level == 6) {
4094                 conf->spare_page = alloc_page(GFP_KERNEL);
4095                 if (!conf->spare_page)
4096                         goto abort;
4097         }
4098         spin_lock_init(&conf->device_lock);
4099         mddev->queue->queue_lock = &conf->device_lock;
4100         init_waitqueue_head(&conf->wait_for_stripe);
4101         init_waitqueue_head(&conf->wait_for_overlap);
4102         INIT_LIST_HEAD(&conf->handle_list);
4103         INIT_LIST_HEAD(&conf->hold_list);
4104         INIT_LIST_HEAD(&conf->delayed_list);
4105         INIT_LIST_HEAD(&conf->bitmap_list);
4106         INIT_LIST_HEAD(&conf->inactive_list);
4107         atomic_set(&conf->active_stripes, 0);
4108         atomic_set(&conf->preread_active_stripes, 0);
4109         atomic_set(&conf->active_aligned_reads, 0);
4110         conf->bypass_threshold = BYPASS_THRESHOLD;
4111
4112         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4113
4114         list_for_each_entry(rdev, &mddev->disks, same_set) {
4115                 raid_disk = rdev->raid_disk;
4116                 if (raid_disk >= conf->raid_disks
4117                     || raid_disk < 0)
4118                         continue;
4119                 disk = conf->disks + raid_disk;
4120
4121                 disk->rdev = rdev;
4122
4123                 if (test_bit(In_sync, &rdev->flags)) {
4124                         char b[BDEVNAME_SIZE];
4125                         printk(KERN_INFO "raid5: device %s operational as raid"
4126                                 " disk %d\n", bdevname(rdev->bdev,b),
4127                                 raid_disk);
4128                         working_disks++;
4129                 } else
4130                         /* Cannot rely on bitmap to complete recovery */
4131                         conf->fullsync = 1;
4132         }
4133
4134         /*
4135          * 0 for a fully functional array, 1 or 2 for a degraded array.
4136          */
4137         mddev->degraded = conf->raid_disks - working_disks;
4138         conf->mddev = mddev;
4139         conf->chunk_size = mddev->chunk_size;
4140         conf->level = mddev->level;
4141         if (conf->level == 6)
4142                 conf->max_degraded = 2;
4143         else
4144                 conf->max_degraded = 1;
4145         conf->algorithm = mddev->layout;
4146         conf->max_nr_stripes = NR_STRIPES;
4147         conf->expand_progress = mddev->reshape_position;
4148
4149         /* device size must be a multiple of chunk size */
4150         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4151         mddev->resync_max_sectors = mddev->dev_sectors;
4152
4153         if (conf->level == 6 && conf->raid_disks < 4) {
4154                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4155                        mdname(mddev), conf->raid_disks);
4156                 goto abort;
4157         }
4158         if (!conf->chunk_size || conf->chunk_size % 4) {
4159                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4160                         conf->chunk_size, mdname(mddev));
4161                 goto abort;
4162         }
4163         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4164                 printk(KERN_ERR 
4165                         "raid5: unsupported parity algorithm %d for %s\n",
4166                         conf->algorithm, mdname(mddev));
4167                 goto abort;
4168         }
4169         if (mddev->degraded > conf->max_degraded) {
4170                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4171                         " (%d/%d failed)\n",
4172                         mdname(mddev), mddev->degraded, conf->raid_disks);
4173                 goto abort;
4174         }
4175
4176         if (mddev->degraded > 0 &&
4177             mddev->recovery_cp != MaxSector) {
4178                 if (mddev->ok_start_degraded)
4179                         printk(KERN_WARNING
4180                                "raid5: starting dirty degraded array: %s"
4181                                "- data corruption possible.\n",
4182                                mdname(mddev));
4183                 else {
4184                         printk(KERN_ERR
4185                                "raid5: cannot start dirty degraded array for %s\n",
4186                                mdname(mddev));
4187                         goto abort;
4188                 }
4189         }
4190
4191         {
4192                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4193                 if (!mddev->thread) {
4194                         printk(KERN_ERR 
4195                                 "raid5: couldn't allocate thread for %s\n",
4196                                 mdname(mddev));
4197                         goto abort;
4198                 }
4199         }
4200         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4201                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4202         if (grow_stripes(conf, conf->max_nr_stripes)) {
4203                 printk(KERN_ERR 
4204                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4205                 shrink_stripes(conf);
4206                 md_unregister_thread(mddev->thread);
4207                 goto abort;
4208         } else
4209                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4210                         memory, mdname(mddev));
4211
4212         if (mddev->degraded == 0)
4213                 printk("raid5: raid level %d set %s active with %d out of %d"
4214                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4215                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4216                         conf->algorithm);
4217         else
4218                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4219                         " out of %d devices, algorithm %d\n", conf->level,
4220                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4221                         mddev->raid_disks, conf->algorithm);
4222
4223         print_raid5_conf(conf);
4224
4225         if (conf->expand_progress != MaxSector) {
4226                 printk("...ok start reshape thread\n");
4227                 conf->expand_lo = conf->expand_progress;
4228                 atomic_set(&conf->reshape_stripes, 0);
4229                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4230                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4231                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4232                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4233                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4234                                                         "%s_reshape");
4235         }
4236
4237         /* read-ahead size must cover two whole stripes, which is
4238          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4239          */
4240         {
4241                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4242                 int stripe = data_disks *
4243                         (mddev->chunk_size / PAGE_SIZE);
4244                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4245                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4246         }
4247
4248         /* Ok, everything is just fine now */
4249         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4250                 printk(KERN_WARNING
4251                        "raid5: failed to create sysfs attributes for %s\n",
4252                        mdname(mddev));
4253
4254         mddev->queue->unplug_fn = raid5_unplug_device;
4255         mddev->queue->backing_dev_info.congested_data = mddev;
4256         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4257
4258         mddev->array_sectors = mddev->dev_sectors *
4259                 (conf->previous_raid_disks - conf->max_degraded);
4260
4261         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4262
4263         return 0;
4264 abort:
4265         if (conf) {
4266                 print_raid5_conf(conf);
4267                 safe_put_page(conf->spare_page);
4268                 kfree(conf->disks);
4269                 kfree(conf->stripe_hashtbl);
4270                 kfree(conf);
4271         }
4272         mddev->private = NULL;
4273         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4274         return -EIO;
4275 }
4276
4277
4278
4279 static int stop(mddev_t *mddev)
4280 {
4281         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4282
4283         md_unregister_thread(mddev->thread);
4284         mddev->thread = NULL;
4285         shrink_stripes(conf);
4286         kfree(conf->stripe_hashtbl);
4287         mddev->queue->backing_dev_info.congested_fn = NULL;
4288         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4289         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4290         kfree(conf->disks);
4291         kfree(conf);
4292         mddev->private = NULL;
4293         return 0;
4294 }
4295
4296 #ifdef DEBUG
4297 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4298 {
4299         int i;
4300
4301         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4302                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4303         seq_printf(seq, "sh %llu,  count %d.\n",
4304                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4305         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4306         for (i = 0; i < sh->disks; i++) {
4307                 seq_printf(seq, "(cache%d: %p %ld) ",
4308                            i, sh->dev[i].page, sh->dev[i].flags);
4309         }
4310         seq_printf(seq, "\n");
4311 }
4312
4313 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4314 {
4315         struct stripe_head *sh;
4316         struct hlist_node *hn;
4317         int i;
4318
4319         spin_lock_irq(&conf->device_lock);
4320         for (i = 0; i < NR_HASH; i++) {
4321                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4322                         if (sh->raid_conf != conf)
4323                                 continue;
4324                         print_sh(seq, sh);
4325                 }
4326         }
4327         spin_unlock_irq(&conf->device_lock);
4328 }
4329 #endif
4330
4331 static void status(struct seq_file *seq, mddev_t *mddev)
4332 {
4333         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4334         int i;
4335
4336         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4337         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4338         for (i = 0; i < conf->raid_disks; i++)
4339                 seq_printf (seq, "%s",
4340                                conf->disks[i].rdev &&
4341                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4342         seq_printf (seq, "]");
4343 #ifdef DEBUG
4344         seq_printf (seq, "\n");
4345         printall(seq, conf);
4346 #endif
4347 }
4348
4349 static void print_raid5_conf (raid5_conf_t *conf)
4350 {
4351         int i;
4352         struct disk_info *tmp;
4353
4354         printk("RAID5 conf printout:\n");
4355         if (!conf) {
4356                 printk("(conf==NULL)\n");
4357                 return;
4358         }
4359         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4360                  conf->raid_disks - conf->mddev->degraded);
4361
4362         for (i = 0; i < conf->raid_disks; i++) {
4363                 char b[BDEVNAME_SIZE];
4364                 tmp = conf->disks + i;
4365                 if (tmp->rdev)
4366                 printk(" disk %d, o:%d, dev:%s\n",
4367                         i, !test_bit(Faulty, &tmp->rdev->flags),
4368                         bdevname(tmp->rdev->bdev,b));
4369         }
4370 }
4371
4372 static int raid5_spare_active(mddev_t *mddev)
4373 {
4374         int i;
4375         raid5_conf_t *conf = mddev->private;
4376         struct disk_info *tmp;
4377
4378         for (i = 0; i < conf->raid_disks; i++) {
4379                 tmp = conf->disks + i;
4380                 if (tmp->rdev
4381                     && !test_bit(Faulty, &tmp->rdev->flags)
4382                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4383                         unsigned long flags;
4384                         spin_lock_irqsave(&conf->device_lock, flags);
4385                         mddev->degraded--;
4386                         spin_unlock_irqrestore(&conf->device_lock, flags);
4387                 }
4388         }
4389         print_raid5_conf(conf);
4390         return 0;
4391 }
4392
4393 static int raid5_remove_disk(mddev_t *mddev, int number)
4394 {
4395         raid5_conf_t *conf = mddev->private;
4396         int err = 0;
4397         mdk_rdev_t *rdev;
4398         struct disk_info *p = conf->disks + number;
4399
4400         print_raid5_conf(conf);
4401         rdev = p->rdev;
4402         if (rdev) {
4403                 if (test_bit(In_sync, &rdev->flags) ||
4404                     atomic_read(&rdev->nr_pending)) {
4405                         err = -EBUSY;
4406                         goto abort;
4407                 }
4408                 /* Only remove non-faulty devices if recovery
4409                  * isn't possible.
4410                  */
4411                 if (!test_bit(Faulty, &rdev->flags) &&
4412                     mddev->degraded <= conf->max_degraded) {
4413                         err = -EBUSY;
4414                         goto abort;
4415                 }
4416                 p->rdev = NULL;
4417                 synchronize_rcu();
4418                 if (atomic_read(&rdev->nr_pending)) {
4419                         /* lost the race, try later */
4420                         err = -EBUSY;
4421                         p->rdev = rdev;
4422                 }
4423         }
4424 abort:
4425
4426         print_raid5_conf(conf);
4427         return err;
4428 }
4429
4430 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4431 {
4432         raid5_conf_t *conf = mddev->private;
4433         int err = -EEXIST;
4434         int disk;
4435         struct disk_info *p;
4436         int first = 0;
4437         int last = conf->raid_disks - 1;
4438
4439         if (mddev->degraded > conf->max_degraded)
4440                 /* no point adding a device */
4441                 return -EINVAL;
4442
4443         if (rdev->raid_disk >= 0)
4444                 first = last = rdev->raid_disk;
4445
4446         /*
4447          * find the disk ... but prefer rdev->saved_raid_disk
4448          * if possible.
4449          */
4450         if (rdev->saved_raid_disk >= 0 &&
4451             rdev->saved_raid_disk >= first &&
4452             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4453                 disk = rdev->saved_raid_disk;
4454         else
4455                 disk = first;
4456         for ( ; disk <= last ; disk++)
4457                 if ((p=conf->disks + disk)->rdev == NULL) {
4458                         clear_bit(In_sync, &rdev->flags);
4459                         rdev->raid_disk = disk;
4460                         err = 0;
4461                         if (rdev->saved_raid_disk != disk)
4462                                 conf->fullsync = 1;
4463                         rcu_assign_pointer(p->rdev, rdev);
4464                         break;
4465                 }
4466         print_raid5_conf(conf);
4467         return err;
4468 }
4469
4470 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4471 {
4472         /* no resync is happening, and there is enough space
4473          * on all devices, so we can resize.
4474          * We need to make sure resync covers any new space.
4475          * If the array is shrinking we should possibly wait until
4476          * any io in the removed space completes, but it hardly seems
4477          * worth it.
4478          */
4479         raid5_conf_t *conf = mddev_to_conf(mddev);
4480
4481         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4482         mddev->array_sectors = sectors * (mddev->raid_disks
4483                                           - conf->max_degraded);
4484         set_capacity(mddev->gendisk, mddev->array_sectors);
4485         mddev->changed = 1;
4486         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4487                 mddev->recovery_cp = mddev->dev_sectors;
4488                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4489         }
4490         mddev->dev_sectors = sectors;
4491         mddev->resync_max_sectors = sectors;
4492         return 0;
4493 }
4494
4495 #ifdef CONFIG_MD_RAID5_RESHAPE
4496 static int raid5_check_reshape(mddev_t *mddev)
4497 {
4498         raid5_conf_t *conf = mddev_to_conf(mddev);
4499         int err;
4500
4501         if (mddev->delta_disks < 0 ||
4502             mddev->new_level != mddev->level)
4503                 return -EINVAL; /* Cannot shrink array or change level yet */
4504         if (mddev->delta_disks == 0)
4505                 return 0; /* nothing to do */
4506         if (mddev->bitmap)
4507                 /* Cannot grow a bitmap yet */
4508                 return -EBUSY;
4509
4510         /* Can only proceed if there are plenty of stripe_heads.
4511          * We need a minimum of one full stripe,, and for sensible progress
4512          * it is best to have about 4 times that.
4513          * If we require 4 times, then the default 256 4K stripe_heads will
4514          * allow for chunk sizes up to 256K, which is probably OK.
4515          * If the chunk size is greater, user-space should request more
4516          * stripe_heads first.
4517          */
4518         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4519             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4520                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4521                        (mddev->chunk_size / STRIPE_SIZE)*4);
4522                 return -ENOSPC;
4523         }
4524
4525         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4526         if (err)
4527                 return err;
4528
4529         if (mddev->degraded > conf->max_degraded)
4530                 return -EINVAL;
4531         /* looks like we might be able to manage this */
4532         return 0;
4533 }
4534
4535 static int raid5_start_reshape(mddev_t *mddev)
4536 {
4537         raid5_conf_t *conf = mddev_to_conf(mddev);
4538         mdk_rdev_t *rdev;
4539         int spares = 0;
4540         int added_devices = 0;
4541         unsigned long flags;
4542
4543         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4544                 return -EBUSY;
4545
4546         list_for_each_entry(rdev, &mddev->disks, same_set)
4547                 if (rdev->raid_disk < 0 &&
4548                     !test_bit(Faulty, &rdev->flags))
4549                         spares++;
4550
4551         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4552                 /* Not enough devices even to make a degraded array
4553                  * of that size
4554                  */
4555                 return -EINVAL;
4556
4557         atomic_set(&conf->reshape_stripes, 0);
4558         spin_lock_irq(&conf->device_lock);
4559         conf->previous_raid_disks = conf->raid_disks;
4560         conf->raid_disks += mddev->delta_disks;
4561         conf->expand_progress = 0;
4562         conf->expand_lo = 0;
4563         spin_unlock_irq(&conf->device_lock);
4564
4565         /* Add some new drives, as many as will fit.
4566          * We know there are enough to make the newly sized array work.
4567          */
4568         list_for_each_entry(rdev, &mddev->disks, same_set)
4569                 if (rdev->raid_disk < 0 &&
4570                     !test_bit(Faulty, &rdev->flags)) {
4571                         if (raid5_add_disk(mddev, rdev) == 0) {
4572                                 char nm[20];
4573                                 set_bit(In_sync, &rdev->flags);
4574                                 added_devices++;
4575                                 rdev->recovery_offset = 0;
4576                                 sprintf(nm, "rd%d", rdev->raid_disk);
4577                                 if (sysfs_create_link(&mddev->kobj,
4578                                                       &rdev->kobj, nm))
4579                                         printk(KERN_WARNING
4580                                                "raid5: failed to create "
4581                                                " link %s for %s\n",
4582                                                nm, mdname(mddev));
4583                         } else
4584                                 break;
4585                 }
4586
4587         spin_lock_irqsave(&conf->device_lock, flags);
4588         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4589         spin_unlock_irqrestore(&conf->device_lock, flags);
4590         mddev->raid_disks = conf->raid_disks;
4591         mddev->reshape_position = 0;
4592         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4593
4594         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4595         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4596         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4597         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4598         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4599                                                 "%s_reshape");
4600         if (!mddev->sync_thread) {
4601                 mddev->recovery = 0;
4602                 spin_lock_irq(&conf->device_lock);
4603                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4604                 conf->expand_progress = MaxSector;
4605                 spin_unlock_irq(&conf->device_lock);
4606                 return -EAGAIN;
4607         }
4608         md_wakeup_thread(mddev->sync_thread);
4609         md_new_event(mddev);
4610         return 0;
4611 }
4612 #endif
4613
4614 static void end_reshape(raid5_conf_t *conf)
4615 {
4616         struct block_device *bdev;
4617
4618         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4619                 conf->mddev->array_sectors = conf->mddev->dev_sectors *
4620                         (conf->raid_disks - conf->max_degraded);
4621                 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4622                 conf->mddev->changed = 1;
4623
4624                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4625                 if (bdev) {
4626                         mutex_lock(&bdev->bd_inode->i_mutex);
4627                         i_size_write(bdev->bd_inode,
4628                                      (loff_t)conf->mddev->array_sectors << 9);
4629                         mutex_unlock(&bdev->bd_inode->i_mutex);
4630                         bdput(bdev);
4631                 }
4632                 spin_lock_irq(&conf->device_lock);
4633                 conf->expand_progress = MaxSector;
4634                 spin_unlock_irq(&conf->device_lock);
4635                 conf->mddev->reshape_position = MaxSector;
4636
4637                 /* read-ahead size must cover two whole stripes, which is
4638                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4639                  */
4640                 {
4641                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4642                         int stripe = data_disks *
4643                                 (conf->mddev->chunk_size / PAGE_SIZE);
4644                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4645                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4646                 }
4647         }
4648 }
4649
4650 static void raid5_quiesce(mddev_t *mddev, int state)
4651 {
4652         raid5_conf_t *conf = mddev_to_conf(mddev);
4653
4654         switch(state) {
4655         case 2: /* resume for a suspend */
4656                 wake_up(&conf->wait_for_overlap);
4657                 break;
4658
4659         case 1: /* stop all writes */
4660                 spin_lock_irq(&conf->device_lock);
4661                 conf->quiesce = 1;
4662                 wait_event_lock_irq(conf->wait_for_stripe,
4663                                     atomic_read(&conf->active_stripes) == 0 &&
4664                                     atomic_read(&conf->active_aligned_reads) == 0,
4665                                     conf->device_lock, /* nothing */);
4666                 spin_unlock_irq(&conf->device_lock);
4667                 break;
4668
4669         case 0: /* re-enable writes */
4670                 spin_lock_irq(&conf->device_lock);
4671                 conf->quiesce = 0;
4672                 wake_up(&conf->wait_for_stripe);
4673                 wake_up(&conf->wait_for_overlap);
4674                 spin_unlock_irq(&conf->device_lock);
4675                 break;
4676         }
4677 }
4678
4679 static struct mdk_personality raid6_personality =
4680 {
4681         .name           = "raid6",
4682         .level          = 6,
4683         .owner          = THIS_MODULE,
4684         .make_request   = make_request,
4685         .run            = run,
4686         .stop           = stop,
4687         .status         = status,
4688         .error_handler  = error,
4689         .hot_add_disk   = raid5_add_disk,
4690         .hot_remove_disk= raid5_remove_disk,
4691         .spare_active   = raid5_spare_active,
4692         .sync_request   = sync_request,
4693         .resize         = raid5_resize,
4694 #ifdef CONFIG_MD_RAID5_RESHAPE
4695         .check_reshape  = raid5_check_reshape,
4696         .start_reshape  = raid5_start_reshape,
4697 #endif
4698         .quiesce        = raid5_quiesce,
4699 };
4700 static struct mdk_personality raid5_personality =
4701 {
4702         .name           = "raid5",
4703         .level          = 5,
4704         .owner          = THIS_MODULE,
4705         .make_request   = make_request,
4706         .run            = run,
4707         .stop           = stop,
4708         .status         = status,
4709         .error_handler  = error,
4710         .hot_add_disk   = raid5_add_disk,
4711         .hot_remove_disk= raid5_remove_disk,
4712         .spare_active   = raid5_spare_active,
4713         .sync_request   = sync_request,
4714         .resize         = raid5_resize,
4715 #ifdef CONFIG_MD_RAID5_RESHAPE
4716         .check_reshape  = raid5_check_reshape,
4717         .start_reshape  = raid5_start_reshape,
4718 #endif
4719         .quiesce        = raid5_quiesce,
4720 };
4721
4722 static struct mdk_personality raid4_personality =
4723 {
4724         .name           = "raid4",
4725         .level          = 4,
4726         .owner          = THIS_MODULE,
4727         .make_request   = make_request,
4728         .run            = run,
4729         .stop           = stop,
4730         .status         = status,
4731         .error_handler  = error,
4732         .hot_add_disk   = raid5_add_disk,
4733         .hot_remove_disk= raid5_remove_disk,
4734         .spare_active   = raid5_spare_active,
4735         .sync_request   = sync_request,
4736         .resize         = raid5_resize,
4737 #ifdef CONFIG_MD_RAID5_RESHAPE
4738         .check_reshape  = raid5_check_reshape,
4739         .start_reshape  = raid5_start_reshape,
4740 #endif
4741         .quiesce        = raid5_quiesce,
4742 };
4743
4744 static int __init raid5_init(void)
4745 {
4746         int e;
4747
4748         e = raid6_select_algo();
4749         if ( e )
4750                 return e;
4751         register_md_personality(&raid6_personality);
4752         register_md_personality(&raid5_personality);
4753         register_md_personality(&raid4_personality);
4754         return 0;
4755 }
4756
4757 static void raid5_exit(void)
4758 {
4759         unregister_md_personality(&raid6_personality);
4760         unregister_md_personality(&raid5_personality);
4761         unregister_md_personality(&raid4_personality);
4762 }
4763
4764 module_init(raid5_init);
4765 module_exit(raid5_exit);
4766 MODULE_LICENSE("GPL");
4767 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4768 MODULE_ALIAS("md-raid5");
4769 MODULE_ALIAS("md-raid4");
4770 MODULE_ALIAS("md-level-5");
4771 MODULE_ALIAS("md-level-4");
4772 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4773 MODULE_ALIAS("md-raid6");
4774 MODULE_ALIAS("md-level-6");
4775
4776 /* This used to be two separate modules, they were: */
4777 MODULE_ALIAS("raid5");
4778 MODULE_ALIAS("raid6");