[PATCH] sysctl: fix the selinux_sysctl_get_sid
[linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for sysctl_local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91
92 static int __init enforcing_setup(char *str)
93 {
94         selinux_enforcing = simple_strtol(str,NULL,0);
95         return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102
103 static int __init selinux_enabled_setup(char *str)
104 {
105         selinux_enabled = simple_strtol(str, NULL, 0);
106         return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115
116 /* Minimal support for a secondary security module,
117    just to allow the use of the dummy or capability modules.
118    The owlsm module can alternatively be used as a secondary
119    module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121
122 /* Lists of inode and superblock security structures initialized
123    before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /* Return security context for a given sid or just the context 
130    length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133         char *context;
134         unsigned len;
135         int rc;
136
137         rc = security_sid_to_context(sid, &context, &len);
138         if (rc)
139                 return rc;
140
141         if (!buffer || !size)
142                 goto getsecurity_exit;
143
144         if (size < len) {
145                 len = -ERANGE;
146                 goto getsecurity_exit;
147         }
148         memcpy(buffer, context, len);
149
150 getsecurity_exit:
151         kfree(context);
152         return len;
153 }
154
155 /* Allocate and free functions for each kind of security blob. */
156
157 static int task_alloc_security(struct task_struct *task)
158 {
159         struct task_security_struct *tsec;
160
161         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162         if (!tsec)
163                 return -ENOMEM;
164
165         tsec->task = task;
166         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
167         task->security = tsec;
168
169         return 0;
170 }
171
172 static void task_free_security(struct task_struct *task)
173 {
174         struct task_security_struct *tsec = task->security;
175         task->security = NULL;
176         kfree(tsec);
177 }
178
179 static int inode_alloc_security(struct inode *inode)
180 {
181         struct task_security_struct *tsec = current->security;
182         struct inode_security_struct *isec;
183
184         isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
185         if (!isec)
186                 return -ENOMEM;
187
188         mutex_init(&isec->lock);
189         INIT_LIST_HEAD(&isec->list);
190         isec->inode = inode;
191         isec->sid = SECINITSID_UNLABELED;
192         isec->sclass = SECCLASS_FILE;
193         isec->task_sid = tsec->sid;
194         inode->i_security = isec;
195
196         return 0;
197 }
198
199 static void inode_free_security(struct inode *inode)
200 {
201         struct inode_security_struct *isec = inode->i_security;
202         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203
204         spin_lock(&sbsec->isec_lock);
205         if (!list_empty(&isec->list))
206                 list_del_init(&isec->list);
207         spin_unlock(&sbsec->isec_lock);
208
209         inode->i_security = NULL;
210         kmem_cache_free(sel_inode_cache, isec);
211 }
212
213 static int file_alloc_security(struct file *file)
214 {
215         struct task_security_struct *tsec = current->security;
216         struct file_security_struct *fsec;
217
218         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219         if (!fsec)
220                 return -ENOMEM;
221
222         fsec->file = file;
223         fsec->sid = tsec->sid;
224         fsec->fown_sid = tsec->sid;
225         file->f_security = fsec;
226
227         return 0;
228 }
229
230 static void file_free_security(struct file *file)
231 {
232         struct file_security_struct *fsec = file->f_security;
233         file->f_security = NULL;
234         kfree(fsec);
235 }
236
237 static int superblock_alloc_security(struct super_block *sb)
238 {
239         struct superblock_security_struct *sbsec;
240
241         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242         if (!sbsec)
243                 return -ENOMEM;
244
245         mutex_init(&sbsec->lock);
246         INIT_LIST_HEAD(&sbsec->list);
247         INIT_LIST_HEAD(&sbsec->isec_head);
248         spin_lock_init(&sbsec->isec_lock);
249         sbsec->sb = sb;
250         sbsec->sid = SECINITSID_UNLABELED;
251         sbsec->def_sid = SECINITSID_FILE;
252         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253         sb->s_security = sbsec;
254
255         return 0;
256 }
257
258 static void superblock_free_security(struct super_block *sb)
259 {
260         struct superblock_security_struct *sbsec = sb->s_security;
261
262         spin_lock(&sb_security_lock);
263         if (!list_empty(&sbsec->list))
264                 list_del_init(&sbsec->list);
265         spin_unlock(&sb_security_lock);
266
267         sb->s_security = NULL;
268         kfree(sbsec);
269 }
270
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 {
273         struct sk_security_struct *ssec;
274
275         ssec = kzalloc(sizeof(*ssec), priority);
276         if (!ssec)
277                 return -ENOMEM;
278
279         ssec->sk = sk;
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_init(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304         "uses xattr",
305         "uses transition SIDs",
306         "uses task SIDs",
307         "uses genfs_contexts",
308         "not configured for labeling",
309         "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316         return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320         Opt_context = 1,
321         Opt_fscontext = 2,
322         Opt_defcontext = 4,
323         Opt_rootcontext = 8,
324 };
325
326 static match_table_t tokens = {
327         {Opt_context, "context=%s"},
328         {Opt_fscontext, "fscontext=%s"},
329         {Opt_defcontext, "defcontext=%s"},
330         {Opt_rootcontext, "rootcontext=%s"},
331 };
332
333 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
334
335 static int may_context_mount_sb_relabel(u32 sid,
336                         struct superblock_security_struct *sbsec,
337                         struct task_security_struct *tsec)
338 {
339         int rc;
340
341         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342                           FILESYSTEM__RELABELFROM, NULL);
343         if (rc)
344                 return rc;
345
346         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347                           FILESYSTEM__RELABELTO, NULL);
348         return rc;
349 }
350
351 static int may_context_mount_inode_relabel(u32 sid,
352                         struct superblock_security_struct *sbsec,
353                         struct task_security_struct *tsec)
354 {
355         int rc;
356         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357                           FILESYSTEM__RELABELFROM, NULL);
358         if (rc)
359                 return rc;
360
361         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362                           FILESYSTEM__ASSOCIATE, NULL);
363         return rc;
364 }
365
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368         char *context = NULL, *defcontext = NULL;
369         char *fscontext = NULL, *rootcontext = NULL;
370         const char *name;
371         u32 sid;
372         int alloc = 0, rc = 0, seen = 0;
373         struct task_security_struct *tsec = current->security;
374         struct superblock_security_struct *sbsec = sb->s_security;
375
376         if (!data)
377                 goto out;
378
379         name = sb->s_type->name;
380
381         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382
383                 /* NFS we understand. */
384                 if (!strcmp(name, "nfs")) {
385                         struct nfs_mount_data *d = data;
386
387                         if (d->version <  NFS_MOUNT_VERSION)
388                                 goto out;
389
390                         if (d->context[0]) {
391                                 context = d->context;
392                                 seen |= Opt_context;
393                         }
394                 } else
395                         goto out;
396
397         } else {
398                 /* Standard string-based options. */
399                 char *p, *options = data;
400
401                 while ((p = strsep(&options, "|")) != NULL) {
402                         int token;
403                         substring_t args[MAX_OPT_ARGS];
404
405                         if (!*p)
406                                 continue;
407
408                         token = match_token(p, tokens, args);
409
410                         switch (token) {
411                         case Opt_context:
412                                 if (seen & (Opt_context|Opt_defcontext)) {
413                                         rc = -EINVAL;
414                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415                                         goto out_free;
416                                 }
417                                 context = match_strdup(&args[0]);
418                                 if (!context) {
419                                         rc = -ENOMEM;
420                                         goto out_free;
421                                 }
422                                 if (!alloc)
423                                         alloc = 1;
424                                 seen |= Opt_context;
425                                 break;
426
427                         case Opt_fscontext:
428                                 if (seen & Opt_fscontext) {
429                                         rc = -EINVAL;
430                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431                                         goto out_free;
432                                 }
433                                 fscontext = match_strdup(&args[0]);
434                                 if (!fscontext) {
435                                         rc = -ENOMEM;
436                                         goto out_free;
437                                 }
438                                 if (!alloc)
439                                         alloc = 1;
440                                 seen |= Opt_fscontext;
441                                 break;
442
443                         case Opt_rootcontext:
444                                 if (seen & Opt_rootcontext) {
445                                         rc = -EINVAL;
446                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447                                         goto out_free;
448                                 }
449                                 rootcontext = match_strdup(&args[0]);
450                                 if (!rootcontext) {
451                                         rc = -ENOMEM;
452                                         goto out_free;
453                                 }
454                                 if (!alloc)
455                                         alloc = 1;
456                                 seen |= Opt_rootcontext;
457                                 break;
458
459                         case Opt_defcontext:
460                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461                                         rc = -EINVAL;
462                                         printk(KERN_WARNING "SELinux:  "
463                                                "defcontext option is invalid "
464                                                "for this filesystem type\n");
465                                         goto out_free;
466                                 }
467                                 if (seen & (Opt_context|Opt_defcontext)) {
468                                         rc = -EINVAL;
469                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470                                         goto out_free;
471                                 }
472                                 defcontext = match_strdup(&args[0]);
473                                 if (!defcontext) {
474                                         rc = -ENOMEM;
475                                         goto out_free;
476                                 }
477                                 if (!alloc)
478                                         alloc = 1;
479                                 seen |= Opt_defcontext;
480                                 break;
481
482                         default:
483                                 rc = -EINVAL;
484                                 printk(KERN_WARNING "SELinux:  unknown mount "
485                                        "option\n");
486                                 goto out_free;
487
488                         }
489                 }
490         }
491
492         if (!seen)
493                 goto out;
494
495         /* sets the context of the superblock for the fs being mounted. */
496         if (fscontext) {
497                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498                 if (rc) {
499                         printk(KERN_WARNING "SELinux: security_context_to_sid"
500                                "(%s) failed for (dev %s, type %s) errno=%d\n",
501                                fscontext, sb->s_id, name, rc);
502                         goto out_free;
503                 }
504
505                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506                 if (rc)
507                         goto out_free;
508
509                 sbsec->sid = sid;
510         }
511
512         /*
513          * Switch to using mount point labeling behavior.
514          * sets the label used on all file below the mountpoint, and will set
515          * the superblock context if not already set.
516          */
517         if (context) {
518                 rc = security_context_to_sid(context, strlen(context), &sid);
519                 if (rc) {
520                         printk(KERN_WARNING "SELinux: security_context_to_sid"
521                                "(%s) failed for (dev %s, type %s) errno=%d\n",
522                                context, sb->s_id, name, rc);
523                         goto out_free;
524                 }
525
526                 if (!fscontext) {
527                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528                         if (rc)
529                                 goto out_free;
530                         sbsec->sid = sid;
531                 } else {
532                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533                         if (rc)
534                                 goto out_free;
535                 }
536                 sbsec->mntpoint_sid = sid;
537
538                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539         }
540
541         if (rootcontext) {
542                 struct inode *inode = sb->s_root->d_inode;
543                 struct inode_security_struct *isec = inode->i_security;
544                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545                 if (rc) {
546                         printk(KERN_WARNING "SELinux: security_context_to_sid"
547                                "(%s) failed for (dev %s, type %s) errno=%d\n",
548                                rootcontext, sb->s_id, name, rc);
549                         goto out_free;
550                 }
551
552                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553                 if (rc)
554                         goto out_free;
555
556                 isec->sid = sid;
557                 isec->initialized = 1;
558         }
559
560         if (defcontext) {
561                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562                 if (rc) {
563                         printk(KERN_WARNING "SELinux: security_context_to_sid"
564                                "(%s) failed for (dev %s, type %s) errno=%d\n",
565                                defcontext, sb->s_id, name, rc);
566                         goto out_free;
567                 }
568
569                 if (sid == sbsec->def_sid)
570                         goto out_free;
571
572                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573                 if (rc)
574                         goto out_free;
575
576                 sbsec->def_sid = sid;
577         }
578
579 out_free:
580         if (alloc) {
581                 kfree(context);
582                 kfree(defcontext);
583                 kfree(fscontext);
584                 kfree(rootcontext);
585         }
586 out:
587         return rc;
588 }
589
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592         struct superblock_security_struct *sbsec = sb->s_security;
593         struct dentry *root = sb->s_root;
594         struct inode *inode = root->d_inode;
595         int rc = 0;
596
597         mutex_lock(&sbsec->lock);
598         if (sbsec->initialized)
599                 goto out;
600
601         if (!ss_initialized) {
602                 /* Defer initialization until selinux_complete_init,
603                    after the initial policy is loaded and the security
604                    server is ready to handle calls. */
605                 spin_lock(&sb_security_lock);
606                 if (list_empty(&sbsec->list))
607                         list_add(&sbsec->list, &superblock_security_head);
608                 spin_unlock(&sb_security_lock);
609                 goto out;
610         }
611
612         /* Determine the labeling behavior to use for this filesystem type. */
613         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614         if (rc) {
615                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
616                        __FUNCTION__, sb->s_type->name, rc);
617                 goto out;
618         }
619
620         rc = try_context_mount(sb, data);
621         if (rc)
622                 goto out;
623
624         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625                 /* Make sure that the xattr handler exists and that no
626                    error other than -ENODATA is returned by getxattr on
627                    the root directory.  -ENODATA is ok, as this may be
628                    the first boot of the SELinux kernel before we have
629                    assigned xattr values to the filesystem. */
630                 if (!inode->i_op->getxattr) {
631                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632                                "xattr support\n", sb->s_id, sb->s_type->name);
633                         rc = -EOPNOTSUPP;
634                         goto out;
635                 }
636                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637                 if (rc < 0 && rc != -ENODATA) {
638                         if (rc == -EOPNOTSUPP)
639                                 printk(KERN_WARNING "SELinux: (dev %s, type "
640                                        "%s) has no security xattr handler\n",
641                                        sb->s_id, sb->s_type->name);
642                         else
643                                 printk(KERN_WARNING "SELinux: (dev %s, type "
644                                        "%s) getxattr errno %d\n", sb->s_id,
645                                        sb->s_type->name, -rc);
646                         goto out;
647                 }
648         }
649
650         if (strcmp(sb->s_type->name, "proc") == 0)
651                 sbsec->proc = 1;
652
653         sbsec->initialized = 1;
654
655         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657                        sb->s_id, sb->s_type->name);
658         }
659         else {
660                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661                        sb->s_id, sb->s_type->name,
662                        labeling_behaviors[sbsec->behavior-1]);
663         }
664
665         /* Initialize the root inode. */
666         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667
668         /* Initialize any other inodes associated with the superblock, e.g.
669            inodes created prior to initial policy load or inodes created
670            during get_sb by a pseudo filesystem that directly
671            populates itself. */
672         spin_lock(&sbsec->isec_lock);
673 next_inode:
674         if (!list_empty(&sbsec->isec_head)) {
675                 struct inode_security_struct *isec =
676                                 list_entry(sbsec->isec_head.next,
677                                            struct inode_security_struct, list);
678                 struct inode *inode = isec->inode;
679                 spin_unlock(&sbsec->isec_lock);
680                 inode = igrab(inode);
681                 if (inode) {
682                         if (!IS_PRIVATE (inode))
683                                 inode_doinit(inode);
684                         iput(inode);
685                 }
686                 spin_lock(&sbsec->isec_lock);
687                 list_del_init(&isec->list);
688                 goto next_inode;
689         }
690         spin_unlock(&sbsec->isec_lock);
691 out:
692         mutex_unlock(&sbsec->lock);
693         return rc;
694 }
695
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698         switch (mode & S_IFMT) {
699         case S_IFSOCK:
700                 return SECCLASS_SOCK_FILE;
701         case S_IFLNK:
702                 return SECCLASS_LNK_FILE;
703         case S_IFREG:
704                 return SECCLASS_FILE;
705         case S_IFBLK:
706                 return SECCLASS_BLK_FILE;
707         case S_IFDIR:
708                 return SECCLASS_DIR;
709         case S_IFCHR:
710                 return SECCLASS_CHR_FILE;
711         case S_IFIFO:
712                 return SECCLASS_FIFO_FILE;
713
714         }
715
716         return SECCLASS_FILE;
717 }
718
719 static inline int default_protocol_stream(int protocol)
720 {
721         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723
724 static inline int default_protocol_dgram(int protocol)
725 {
726         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731         switch (family) {
732         case PF_UNIX:
733                 switch (type) {
734                 case SOCK_STREAM:
735                 case SOCK_SEQPACKET:
736                         return SECCLASS_UNIX_STREAM_SOCKET;
737                 case SOCK_DGRAM:
738                         return SECCLASS_UNIX_DGRAM_SOCKET;
739                 }
740                 break;
741         case PF_INET:
742         case PF_INET6:
743                 switch (type) {
744                 case SOCK_STREAM:
745                         if (default_protocol_stream(protocol))
746                                 return SECCLASS_TCP_SOCKET;
747                         else
748                                 return SECCLASS_RAWIP_SOCKET;
749                 case SOCK_DGRAM:
750                         if (default_protocol_dgram(protocol))
751                                 return SECCLASS_UDP_SOCKET;
752                         else
753                                 return SECCLASS_RAWIP_SOCKET;
754                 case SOCK_DCCP:
755                         return SECCLASS_DCCP_SOCKET;
756                 default:
757                         return SECCLASS_RAWIP_SOCKET;
758                 }
759                 break;
760         case PF_NETLINK:
761                 switch (protocol) {
762                 case NETLINK_ROUTE:
763                         return SECCLASS_NETLINK_ROUTE_SOCKET;
764                 case NETLINK_FIREWALL:
765                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
766                 case NETLINK_INET_DIAG:
767                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
768                 case NETLINK_NFLOG:
769                         return SECCLASS_NETLINK_NFLOG_SOCKET;
770                 case NETLINK_XFRM:
771                         return SECCLASS_NETLINK_XFRM_SOCKET;
772                 case NETLINK_SELINUX:
773                         return SECCLASS_NETLINK_SELINUX_SOCKET;
774                 case NETLINK_AUDIT:
775                         return SECCLASS_NETLINK_AUDIT_SOCKET;
776                 case NETLINK_IP6_FW:
777                         return SECCLASS_NETLINK_IP6FW_SOCKET;
778                 case NETLINK_DNRTMSG:
779                         return SECCLASS_NETLINK_DNRT_SOCKET;
780                 case NETLINK_KOBJECT_UEVENT:
781                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
782                 default:
783                         return SECCLASS_NETLINK_SOCKET;
784                 }
785         case PF_PACKET:
786                 return SECCLASS_PACKET_SOCKET;
787         case PF_KEY:
788                 return SECCLASS_KEY_SOCKET;
789         case PF_APPLETALK:
790                 return SECCLASS_APPLETALK_SOCKET;
791         }
792
793         return SECCLASS_SOCKET;
794 }
795
796 #ifdef CONFIG_PROC_FS
797 static int selinux_proc_get_sid(struct proc_dir_entry *de,
798                                 u16 tclass,
799                                 u32 *sid)
800 {
801         int buflen, rc;
802         char *buffer, *path, *end;
803
804         buffer = (char*)__get_free_page(GFP_KERNEL);
805         if (!buffer)
806                 return -ENOMEM;
807
808         buflen = PAGE_SIZE;
809         end = buffer+buflen;
810         *--end = '\0';
811         buflen--;
812         path = end-1;
813         *path = '/';
814         while (de && de != de->parent) {
815                 buflen -= de->namelen + 1;
816                 if (buflen < 0)
817                         break;
818                 end -= de->namelen;
819                 memcpy(end, de->name, de->namelen);
820                 *--end = '/';
821                 path = end;
822                 de = de->parent;
823         }
824         rc = security_genfs_sid("proc", path, tclass, sid);
825         free_page((unsigned long)buffer);
826         return rc;
827 }
828 #else
829 static int selinux_proc_get_sid(struct proc_dir_entry *de,
830                                 u16 tclass,
831                                 u32 *sid)
832 {
833         return -EINVAL;
834 }
835 #endif
836
837 /* The inode's security attributes must be initialized before first use. */
838 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
839 {
840         struct superblock_security_struct *sbsec = NULL;
841         struct inode_security_struct *isec = inode->i_security;
842         u32 sid;
843         struct dentry *dentry;
844 #define INITCONTEXTLEN 255
845         char *context = NULL;
846         unsigned len = 0;
847         int rc = 0;
848
849         if (isec->initialized)
850                 goto out;
851
852         mutex_lock(&isec->lock);
853         if (isec->initialized)
854                 goto out_unlock;
855
856         sbsec = inode->i_sb->s_security;
857         if (!sbsec->initialized) {
858                 /* Defer initialization until selinux_complete_init,
859                    after the initial policy is loaded and the security
860                    server is ready to handle calls. */
861                 spin_lock(&sbsec->isec_lock);
862                 if (list_empty(&isec->list))
863                         list_add(&isec->list, &sbsec->isec_head);
864                 spin_unlock(&sbsec->isec_lock);
865                 goto out_unlock;
866         }
867
868         switch (sbsec->behavior) {
869         case SECURITY_FS_USE_XATTR:
870                 if (!inode->i_op->getxattr) {
871                         isec->sid = sbsec->def_sid;
872                         break;
873                 }
874
875                 /* Need a dentry, since the xattr API requires one.
876                    Life would be simpler if we could just pass the inode. */
877                 if (opt_dentry) {
878                         /* Called from d_instantiate or d_splice_alias. */
879                         dentry = dget(opt_dentry);
880                 } else {
881                         /* Called from selinux_complete_init, try to find a dentry. */
882                         dentry = d_find_alias(inode);
883                 }
884                 if (!dentry) {
885                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
886                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
887                                inode->i_ino);
888                         goto out_unlock;
889                 }
890
891                 len = INITCONTEXTLEN;
892                 context = kmalloc(len, GFP_KERNEL);
893                 if (!context) {
894                         rc = -ENOMEM;
895                         dput(dentry);
896                         goto out_unlock;
897                 }
898                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
899                                            context, len);
900                 if (rc == -ERANGE) {
901                         /* Need a larger buffer.  Query for the right size. */
902                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
903                                                    NULL, 0);
904                         if (rc < 0) {
905                                 dput(dentry);
906                                 goto out_unlock;
907                         }
908                         kfree(context);
909                         len = rc;
910                         context = kmalloc(len, GFP_KERNEL);
911                         if (!context) {
912                                 rc = -ENOMEM;
913                                 dput(dentry);
914                                 goto out_unlock;
915                         }
916                         rc = inode->i_op->getxattr(dentry,
917                                                    XATTR_NAME_SELINUX,
918                                                    context, len);
919                 }
920                 dput(dentry);
921                 if (rc < 0) {
922                         if (rc != -ENODATA) {
923                                 printk(KERN_WARNING "%s:  getxattr returned "
924                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
925                                        -rc, inode->i_sb->s_id, inode->i_ino);
926                                 kfree(context);
927                                 goto out_unlock;
928                         }
929                         /* Map ENODATA to the default file SID */
930                         sid = sbsec->def_sid;
931                         rc = 0;
932                 } else {
933                         rc = security_context_to_sid_default(context, rc, &sid,
934                                                              sbsec->def_sid);
935                         if (rc) {
936                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
937                                        "returned %d for dev=%s ino=%ld\n",
938                                        __FUNCTION__, context, -rc,
939                                        inode->i_sb->s_id, inode->i_ino);
940                                 kfree(context);
941                                 /* Leave with the unlabeled SID */
942                                 rc = 0;
943                                 break;
944                         }
945                 }
946                 kfree(context);
947                 isec->sid = sid;
948                 break;
949         case SECURITY_FS_USE_TASK:
950                 isec->sid = isec->task_sid;
951                 break;
952         case SECURITY_FS_USE_TRANS:
953                 /* Default to the fs SID. */
954                 isec->sid = sbsec->sid;
955
956                 /* Try to obtain a transition SID. */
957                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
958                 rc = security_transition_sid(isec->task_sid,
959                                              sbsec->sid,
960                                              isec->sclass,
961                                              &sid);
962                 if (rc)
963                         goto out_unlock;
964                 isec->sid = sid;
965                 break;
966         case SECURITY_FS_USE_MNTPOINT:
967                 isec->sid = sbsec->mntpoint_sid;
968                 break;
969         default:
970                 /* Default to the fs superblock SID. */
971                 isec->sid = sbsec->sid;
972
973                 if (sbsec->proc) {
974                         struct proc_inode *proci = PROC_I(inode);
975                         if (proci->pde) {
976                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
977                                 rc = selinux_proc_get_sid(proci->pde,
978                                                           isec->sclass,
979                                                           &sid);
980                                 if (rc)
981                                         goto out_unlock;
982                                 isec->sid = sid;
983                         }
984                 }
985                 break;
986         }
987
988         isec->initialized = 1;
989
990 out_unlock:
991         mutex_unlock(&isec->lock);
992 out:
993         if (isec->sclass == SECCLASS_FILE)
994                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
995         return rc;
996 }
997
998 /* Convert a Linux signal to an access vector. */
999 static inline u32 signal_to_av(int sig)
1000 {
1001         u32 perm = 0;
1002
1003         switch (sig) {
1004         case SIGCHLD:
1005                 /* Commonly granted from child to parent. */
1006                 perm = PROCESS__SIGCHLD;
1007                 break;
1008         case SIGKILL:
1009                 /* Cannot be caught or ignored */
1010                 perm = PROCESS__SIGKILL;
1011                 break;
1012         case SIGSTOP:
1013                 /* Cannot be caught or ignored */
1014                 perm = PROCESS__SIGSTOP;
1015                 break;
1016         default:
1017                 /* All other signals. */
1018                 perm = PROCESS__SIGNAL;
1019                 break;
1020         }
1021
1022         return perm;
1023 }
1024
1025 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1026    fork check, ptrace check, etc. */
1027 static int task_has_perm(struct task_struct *tsk1,
1028                          struct task_struct *tsk2,
1029                          u32 perms)
1030 {
1031         struct task_security_struct *tsec1, *tsec2;
1032
1033         tsec1 = tsk1->security;
1034         tsec2 = tsk2->security;
1035         return avc_has_perm(tsec1->sid, tsec2->sid,
1036                             SECCLASS_PROCESS, perms, NULL);
1037 }
1038
1039 /* Check whether a task is allowed to use a capability. */
1040 static int task_has_capability(struct task_struct *tsk,
1041                                int cap)
1042 {
1043         struct task_security_struct *tsec;
1044         struct avc_audit_data ad;
1045
1046         tsec = tsk->security;
1047
1048         AVC_AUDIT_DATA_INIT(&ad,CAP);
1049         ad.tsk = tsk;
1050         ad.u.cap = cap;
1051
1052         return avc_has_perm(tsec->sid, tsec->sid,
1053                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1054 }
1055
1056 /* Check whether a task is allowed to use a system operation. */
1057 static int task_has_system(struct task_struct *tsk,
1058                            u32 perms)
1059 {
1060         struct task_security_struct *tsec;
1061
1062         tsec = tsk->security;
1063
1064         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1065                             SECCLASS_SYSTEM, perms, NULL);
1066 }
1067
1068 /* Check whether a task has a particular permission to an inode.
1069    The 'adp' parameter is optional and allows other audit
1070    data to be passed (e.g. the dentry). */
1071 static int inode_has_perm(struct task_struct *tsk,
1072                           struct inode *inode,
1073                           u32 perms,
1074                           struct avc_audit_data *adp)
1075 {
1076         struct task_security_struct *tsec;
1077         struct inode_security_struct *isec;
1078         struct avc_audit_data ad;
1079
1080         tsec = tsk->security;
1081         isec = inode->i_security;
1082
1083         if (!adp) {
1084                 adp = &ad;
1085                 AVC_AUDIT_DATA_INIT(&ad, FS);
1086                 ad.u.fs.inode = inode;
1087         }
1088
1089         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1090 }
1091
1092 /* Same as inode_has_perm, but pass explicit audit data containing
1093    the dentry to help the auditing code to more easily generate the
1094    pathname if needed. */
1095 static inline int dentry_has_perm(struct task_struct *tsk,
1096                                   struct vfsmount *mnt,
1097                                   struct dentry *dentry,
1098                                   u32 av)
1099 {
1100         struct inode *inode = dentry->d_inode;
1101         struct avc_audit_data ad;
1102         AVC_AUDIT_DATA_INIT(&ad,FS);
1103         ad.u.fs.mnt = mnt;
1104         ad.u.fs.dentry = dentry;
1105         return inode_has_perm(tsk, inode, av, &ad);
1106 }
1107
1108 /* Check whether a task can use an open file descriptor to
1109    access an inode in a given way.  Check access to the
1110    descriptor itself, and then use dentry_has_perm to
1111    check a particular permission to the file.
1112    Access to the descriptor is implicitly granted if it
1113    has the same SID as the process.  If av is zero, then
1114    access to the file is not checked, e.g. for cases
1115    where only the descriptor is affected like seek. */
1116 static int file_has_perm(struct task_struct *tsk,
1117                                 struct file *file,
1118                                 u32 av)
1119 {
1120         struct task_security_struct *tsec = tsk->security;
1121         struct file_security_struct *fsec = file->f_security;
1122         struct vfsmount *mnt = file->f_path.mnt;
1123         struct dentry *dentry = file->f_path.dentry;
1124         struct inode *inode = dentry->d_inode;
1125         struct avc_audit_data ad;
1126         int rc;
1127
1128         AVC_AUDIT_DATA_INIT(&ad, FS);
1129         ad.u.fs.mnt = mnt;
1130         ad.u.fs.dentry = dentry;
1131
1132         if (tsec->sid != fsec->sid) {
1133                 rc = avc_has_perm(tsec->sid, fsec->sid,
1134                                   SECCLASS_FD,
1135                                   FD__USE,
1136                                   &ad);
1137                 if (rc)
1138                         return rc;
1139         }
1140
1141         /* av is zero if only checking access to the descriptor. */
1142         if (av)
1143                 return inode_has_perm(tsk, inode, av, &ad);
1144
1145         return 0;
1146 }
1147
1148 /* Check whether a task can create a file. */
1149 static int may_create(struct inode *dir,
1150                       struct dentry *dentry,
1151                       u16 tclass)
1152 {
1153         struct task_security_struct *tsec;
1154         struct inode_security_struct *dsec;
1155         struct superblock_security_struct *sbsec;
1156         u32 newsid;
1157         struct avc_audit_data ad;
1158         int rc;
1159
1160         tsec = current->security;
1161         dsec = dir->i_security;
1162         sbsec = dir->i_sb->s_security;
1163
1164         AVC_AUDIT_DATA_INIT(&ad, FS);
1165         ad.u.fs.dentry = dentry;
1166
1167         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1168                           DIR__ADD_NAME | DIR__SEARCH,
1169                           &ad);
1170         if (rc)
1171                 return rc;
1172
1173         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1174                 newsid = tsec->create_sid;
1175         } else {
1176                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1177                                              &newsid);
1178                 if (rc)
1179                         return rc;
1180         }
1181
1182         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1183         if (rc)
1184                 return rc;
1185
1186         return avc_has_perm(newsid, sbsec->sid,
1187                             SECCLASS_FILESYSTEM,
1188                             FILESYSTEM__ASSOCIATE, &ad);
1189 }
1190
1191 /* Check whether a task can create a key. */
1192 static int may_create_key(u32 ksid,
1193                           struct task_struct *ctx)
1194 {
1195         struct task_security_struct *tsec;
1196
1197         tsec = ctx->security;
1198
1199         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1200 }
1201
1202 #define MAY_LINK   0
1203 #define MAY_UNLINK 1
1204 #define MAY_RMDIR  2
1205
1206 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1207 static int may_link(struct inode *dir,
1208                     struct dentry *dentry,
1209                     int kind)
1210
1211 {
1212         struct task_security_struct *tsec;
1213         struct inode_security_struct *dsec, *isec;
1214         struct avc_audit_data ad;
1215         u32 av;
1216         int rc;
1217
1218         tsec = current->security;
1219         dsec = dir->i_security;
1220         isec = dentry->d_inode->i_security;
1221
1222         AVC_AUDIT_DATA_INIT(&ad, FS);
1223         ad.u.fs.dentry = dentry;
1224
1225         av = DIR__SEARCH;
1226         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1227         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1228         if (rc)
1229                 return rc;
1230
1231         switch (kind) {
1232         case MAY_LINK:
1233                 av = FILE__LINK;
1234                 break;
1235         case MAY_UNLINK:
1236                 av = FILE__UNLINK;
1237                 break;
1238         case MAY_RMDIR:
1239                 av = DIR__RMDIR;
1240                 break;
1241         default:
1242                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1243                 return 0;
1244         }
1245
1246         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1247         return rc;
1248 }
1249
1250 static inline int may_rename(struct inode *old_dir,
1251                              struct dentry *old_dentry,
1252                              struct inode *new_dir,
1253                              struct dentry *new_dentry)
1254 {
1255         struct task_security_struct *tsec;
1256         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1257         struct avc_audit_data ad;
1258         u32 av;
1259         int old_is_dir, new_is_dir;
1260         int rc;
1261
1262         tsec = current->security;
1263         old_dsec = old_dir->i_security;
1264         old_isec = old_dentry->d_inode->i_security;
1265         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1266         new_dsec = new_dir->i_security;
1267
1268         AVC_AUDIT_DATA_INIT(&ad, FS);
1269
1270         ad.u.fs.dentry = old_dentry;
1271         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1272                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1273         if (rc)
1274                 return rc;
1275         rc = avc_has_perm(tsec->sid, old_isec->sid,
1276                           old_isec->sclass, FILE__RENAME, &ad);
1277         if (rc)
1278                 return rc;
1279         if (old_is_dir && new_dir != old_dir) {
1280                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1281                                   old_isec->sclass, DIR__REPARENT, &ad);
1282                 if (rc)
1283                         return rc;
1284         }
1285
1286         ad.u.fs.dentry = new_dentry;
1287         av = DIR__ADD_NAME | DIR__SEARCH;
1288         if (new_dentry->d_inode)
1289                 av |= DIR__REMOVE_NAME;
1290         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1291         if (rc)
1292                 return rc;
1293         if (new_dentry->d_inode) {
1294                 new_isec = new_dentry->d_inode->i_security;
1295                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1296                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1297                                   new_isec->sclass,
1298                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1299                 if (rc)
1300                         return rc;
1301         }
1302
1303         return 0;
1304 }
1305
1306 /* Check whether a task can perform a filesystem operation. */
1307 static int superblock_has_perm(struct task_struct *tsk,
1308                                struct super_block *sb,
1309                                u32 perms,
1310                                struct avc_audit_data *ad)
1311 {
1312         struct task_security_struct *tsec;
1313         struct superblock_security_struct *sbsec;
1314
1315         tsec = tsk->security;
1316         sbsec = sb->s_security;
1317         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1318                             perms, ad);
1319 }
1320
1321 /* Convert a Linux mode and permission mask to an access vector. */
1322 static inline u32 file_mask_to_av(int mode, int mask)
1323 {
1324         u32 av = 0;
1325
1326         if ((mode & S_IFMT) != S_IFDIR) {
1327                 if (mask & MAY_EXEC)
1328                         av |= FILE__EXECUTE;
1329                 if (mask & MAY_READ)
1330                         av |= FILE__READ;
1331
1332                 if (mask & MAY_APPEND)
1333                         av |= FILE__APPEND;
1334                 else if (mask & MAY_WRITE)
1335                         av |= FILE__WRITE;
1336
1337         } else {
1338                 if (mask & MAY_EXEC)
1339                         av |= DIR__SEARCH;
1340                 if (mask & MAY_WRITE)
1341                         av |= DIR__WRITE;
1342                 if (mask & MAY_READ)
1343                         av |= DIR__READ;
1344         }
1345
1346         return av;
1347 }
1348
1349 /* Convert a Linux file to an access vector. */
1350 static inline u32 file_to_av(struct file *file)
1351 {
1352         u32 av = 0;
1353
1354         if (file->f_mode & FMODE_READ)
1355                 av |= FILE__READ;
1356         if (file->f_mode & FMODE_WRITE) {
1357                 if (file->f_flags & O_APPEND)
1358                         av |= FILE__APPEND;
1359                 else
1360                         av |= FILE__WRITE;
1361         }
1362
1363         return av;
1364 }
1365
1366 /* Hook functions begin here. */
1367
1368 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1369 {
1370         struct task_security_struct *psec = parent->security;
1371         struct task_security_struct *csec = child->security;
1372         int rc;
1373
1374         rc = secondary_ops->ptrace(parent,child);
1375         if (rc)
1376                 return rc;
1377
1378         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1379         /* Save the SID of the tracing process for later use in apply_creds. */
1380         if (!(child->ptrace & PT_PTRACED) && !rc)
1381                 csec->ptrace_sid = psec->sid;
1382         return rc;
1383 }
1384
1385 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1386                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1387 {
1388         int error;
1389
1390         error = task_has_perm(current, target, PROCESS__GETCAP);
1391         if (error)
1392                 return error;
1393
1394         return secondary_ops->capget(target, effective, inheritable, permitted);
1395 }
1396
1397 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1398                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1399 {
1400         int error;
1401
1402         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1403         if (error)
1404                 return error;
1405
1406         return task_has_perm(current, target, PROCESS__SETCAP);
1407 }
1408
1409 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1410                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1411 {
1412         secondary_ops->capset_set(target, effective, inheritable, permitted);
1413 }
1414
1415 static int selinux_capable(struct task_struct *tsk, int cap)
1416 {
1417         int rc;
1418
1419         rc = secondary_ops->capable(tsk, cap);
1420         if (rc)
1421                 return rc;
1422
1423         return task_has_capability(tsk,cap);
1424 }
1425
1426 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1427 {
1428         int buflen, rc;
1429         char *buffer, *path, *end;
1430
1431         rc = -ENOMEM;
1432         buffer = (char*)__get_free_page(GFP_KERNEL);
1433         if (!buffer)
1434                 goto out;
1435
1436         buflen = PAGE_SIZE;
1437         end = buffer+buflen;
1438         *--end = '\0';
1439         buflen--;
1440         path = end-1;
1441         *path = '/';
1442         while (table) {
1443                 const char *name = table->procname;
1444                 size_t namelen = strlen(name);
1445                 buflen -= namelen + 1;
1446                 if (buflen < 0)
1447                         goto out_free;
1448                 end -= namelen;
1449                 memcpy(end, name, namelen);
1450                 *--end = '/';
1451                 path = end;
1452                 table = table->parent;
1453         }
1454         buflen -= 4;
1455         if (buflen < 0)
1456                 goto out_free;
1457         end -= 4;
1458         memcpy(end, "/sys", 4);
1459         path = end;
1460         rc = security_genfs_sid("proc", path, tclass, sid);
1461 out_free:
1462         free_page((unsigned long)buffer);
1463 out:
1464         return rc;
1465 }
1466
1467 static int selinux_sysctl(ctl_table *table, int op)
1468 {
1469         int error = 0;
1470         u32 av;
1471         struct task_security_struct *tsec;
1472         u32 tsid;
1473         int rc;
1474
1475         rc = secondary_ops->sysctl(table, op);
1476         if (rc)
1477                 return rc;
1478
1479         tsec = current->security;
1480
1481         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1482                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1483         if (rc) {
1484                 /* Default to the well-defined sysctl SID. */
1485                 tsid = SECINITSID_SYSCTL;
1486         }
1487
1488         /* The op values are "defined" in sysctl.c, thereby creating
1489          * a bad coupling between this module and sysctl.c */
1490         if(op == 001) {
1491                 error = avc_has_perm(tsec->sid, tsid,
1492                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1493         } else {
1494                 av = 0;
1495                 if (op & 004)
1496                         av |= FILE__READ;
1497                 if (op & 002)
1498                         av |= FILE__WRITE;
1499                 if (av)
1500                         error = avc_has_perm(tsec->sid, tsid,
1501                                              SECCLASS_FILE, av, NULL);
1502         }
1503
1504         return error;
1505 }
1506
1507 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1508 {
1509         int rc = 0;
1510
1511         if (!sb)
1512                 return 0;
1513
1514         switch (cmds) {
1515                 case Q_SYNC:
1516                 case Q_QUOTAON:
1517                 case Q_QUOTAOFF:
1518                 case Q_SETINFO:
1519                 case Q_SETQUOTA:
1520                         rc = superblock_has_perm(current,
1521                                                  sb,
1522                                                  FILESYSTEM__QUOTAMOD, NULL);
1523                         break;
1524                 case Q_GETFMT:
1525                 case Q_GETINFO:
1526                 case Q_GETQUOTA:
1527                         rc = superblock_has_perm(current,
1528                                                  sb,
1529                                                  FILESYSTEM__QUOTAGET, NULL);
1530                         break;
1531                 default:
1532                         rc = 0;  /* let the kernel handle invalid cmds */
1533                         break;
1534         }
1535         return rc;
1536 }
1537
1538 static int selinux_quota_on(struct dentry *dentry)
1539 {
1540         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1541 }
1542
1543 static int selinux_syslog(int type)
1544 {
1545         int rc;
1546
1547         rc = secondary_ops->syslog(type);
1548         if (rc)
1549                 return rc;
1550
1551         switch (type) {
1552                 case 3:         /* Read last kernel messages */
1553                 case 10:        /* Return size of the log buffer */
1554                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1555                         break;
1556                 case 6:         /* Disable logging to console */
1557                 case 7:         /* Enable logging to console */
1558                 case 8:         /* Set level of messages printed to console */
1559                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1560                         break;
1561                 case 0:         /* Close log */
1562                 case 1:         /* Open log */
1563                 case 2:         /* Read from log */
1564                 case 4:         /* Read/clear last kernel messages */
1565                 case 5:         /* Clear ring buffer */
1566                 default:
1567                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1568                         break;
1569         }
1570         return rc;
1571 }
1572
1573 /*
1574  * Check that a process has enough memory to allocate a new virtual
1575  * mapping. 0 means there is enough memory for the allocation to
1576  * succeed and -ENOMEM implies there is not.
1577  *
1578  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1579  * if the capability is granted, but __vm_enough_memory requires 1 if
1580  * the capability is granted.
1581  *
1582  * Do not audit the selinux permission check, as this is applied to all
1583  * processes that allocate mappings.
1584  */
1585 static int selinux_vm_enough_memory(long pages)
1586 {
1587         int rc, cap_sys_admin = 0;
1588         struct task_security_struct *tsec = current->security;
1589
1590         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1591         if (rc == 0)
1592                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1593                                         SECCLASS_CAPABILITY,
1594                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1595                                         NULL);
1596
1597         if (rc == 0)
1598                 cap_sys_admin = 1;
1599
1600         return __vm_enough_memory(pages, cap_sys_admin);
1601 }
1602
1603 /* binprm security operations */
1604
1605 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1606 {
1607         struct bprm_security_struct *bsec;
1608
1609         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1610         if (!bsec)
1611                 return -ENOMEM;
1612
1613         bsec->bprm = bprm;
1614         bsec->sid = SECINITSID_UNLABELED;
1615         bsec->set = 0;
1616
1617         bprm->security = bsec;
1618         return 0;
1619 }
1620
1621 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1622 {
1623         struct task_security_struct *tsec;
1624         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1625         struct inode_security_struct *isec;
1626         struct bprm_security_struct *bsec;
1627         u32 newsid;
1628         struct avc_audit_data ad;
1629         int rc;
1630
1631         rc = secondary_ops->bprm_set_security(bprm);
1632         if (rc)
1633                 return rc;
1634
1635         bsec = bprm->security;
1636
1637         if (bsec->set)
1638                 return 0;
1639
1640         tsec = current->security;
1641         isec = inode->i_security;
1642
1643         /* Default to the current task SID. */
1644         bsec->sid = tsec->sid;
1645
1646         /* Reset fs, key, and sock SIDs on execve. */
1647         tsec->create_sid = 0;
1648         tsec->keycreate_sid = 0;
1649         tsec->sockcreate_sid = 0;
1650
1651         if (tsec->exec_sid) {
1652                 newsid = tsec->exec_sid;
1653                 /* Reset exec SID on execve. */
1654                 tsec->exec_sid = 0;
1655         } else {
1656                 /* Check for a default transition on this program. */
1657                 rc = security_transition_sid(tsec->sid, isec->sid,
1658                                              SECCLASS_PROCESS, &newsid);
1659                 if (rc)
1660                         return rc;
1661         }
1662
1663         AVC_AUDIT_DATA_INIT(&ad, FS);
1664         ad.u.fs.mnt = bprm->file->f_path.mnt;
1665         ad.u.fs.dentry = bprm->file->f_path.dentry;
1666
1667         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1668                 newsid = tsec->sid;
1669
1670         if (tsec->sid == newsid) {
1671                 rc = avc_has_perm(tsec->sid, isec->sid,
1672                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1673                 if (rc)
1674                         return rc;
1675         } else {
1676                 /* Check permissions for the transition. */
1677                 rc = avc_has_perm(tsec->sid, newsid,
1678                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1679                 if (rc)
1680                         return rc;
1681
1682                 rc = avc_has_perm(newsid, isec->sid,
1683                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1684                 if (rc)
1685                         return rc;
1686
1687                 /* Clear any possibly unsafe personality bits on exec: */
1688                 current->personality &= ~PER_CLEAR_ON_SETID;
1689
1690                 /* Set the security field to the new SID. */
1691                 bsec->sid = newsid;
1692         }
1693
1694         bsec->set = 1;
1695         return 0;
1696 }
1697
1698 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1699 {
1700         return secondary_ops->bprm_check_security(bprm);
1701 }
1702
1703
1704 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1705 {
1706         struct task_security_struct *tsec = current->security;
1707         int atsecure = 0;
1708
1709         if (tsec->osid != tsec->sid) {
1710                 /* Enable secure mode for SIDs transitions unless
1711                    the noatsecure permission is granted between
1712                    the two SIDs, i.e. ahp returns 0. */
1713                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1714                                          SECCLASS_PROCESS,
1715                                          PROCESS__NOATSECURE, NULL);
1716         }
1717
1718         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1719 }
1720
1721 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1722 {
1723         kfree(bprm->security);
1724         bprm->security = NULL;
1725 }
1726
1727 extern struct vfsmount *selinuxfs_mount;
1728 extern struct dentry *selinux_null;
1729
1730 /* Derived from fs/exec.c:flush_old_files. */
1731 static inline void flush_unauthorized_files(struct files_struct * files)
1732 {
1733         struct avc_audit_data ad;
1734         struct file *file, *devnull = NULL;
1735         struct tty_struct *tty;
1736         struct fdtable *fdt;
1737         long j = -1;
1738         int drop_tty = 0;
1739
1740         mutex_lock(&tty_mutex);
1741         tty = get_current_tty();
1742         if (tty) {
1743                 file_list_lock();
1744                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1745                 if (file) {
1746                         /* Revalidate access to controlling tty.
1747                            Use inode_has_perm on the tty inode directly rather
1748                            than using file_has_perm, as this particular open
1749                            file may belong to another process and we are only
1750                            interested in the inode-based check here. */
1751                         struct inode *inode = file->f_path.dentry->d_inode;
1752                         if (inode_has_perm(current, inode,
1753                                            FILE__READ | FILE__WRITE, NULL)) {
1754                                 drop_tty = 1;
1755                         }
1756                 }
1757                 file_list_unlock();
1758
1759                 /* Reset controlling tty. */
1760                 if (drop_tty)
1761                         proc_set_tty(current, NULL);
1762         }
1763         mutex_unlock(&tty_mutex);
1764
1765         /* Revalidate access to inherited open files. */
1766
1767         AVC_AUDIT_DATA_INIT(&ad,FS);
1768
1769         spin_lock(&files->file_lock);
1770         for (;;) {
1771                 unsigned long set, i;
1772                 int fd;
1773
1774                 j++;
1775                 i = j * __NFDBITS;
1776                 fdt = files_fdtable(files);
1777                 if (i >= fdt->max_fds)
1778                         break;
1779                 set = fdt->open_fds->fds_bits[j];
1780                 if (!set)
1781                         continue;
1782                 spin_unlock(&files->file_lock);
1783                 for ( ; set ; i++,set >>= 1) {
1784                         if (set & 1) {
1785                                 file = fget(i);
1786                                 if (!file)
1787                                         continue;
1788                                 if (file_has_perm(current,
1789                                                   file,
1790                                                   file_to_av(file))) {
1791                                         sys_close(i);
1792                                         fd = get_unused_fd();
1793                                         if (fd != i) {
1794                                                 if (fd >= 0)
1795                                                         put_unused_fd(fd);
1796                                                 fput(file);
1797                                                 continue;
1798                                         }
1799                                         if (devnull) {
1800                                                 get_file(devnull);
1801                                         } else {
1802                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1803                                                 if (IS_ERR(devnull)) {
1804                                                         devnull = NULL;
1805                                                         put_unused_fd(fd);
1806                                                         fput(file);
1807                                                         continue;
1808                                                 }
1809                                         }
1810                                         fd_install(fd, devnull);
1811                                 }
1812                                 fput(file);
1813                         }
1814                 }
1815                 spin_lock(&files->file_lock);
1816
1817         }
1818         spin_unlock(&files->file_lock);
1819 }
1820
1821 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1822 {
1823         struct task_security_struct *tsec;
1824         struct bprm_security_struct *bsec;
1825         u32 sid;
1826         int rc;
1827
1828         secondary_ops->bprm_apply_creds(bprm, unsafe);
1829
1830         tsec = current->security;
1831
1832         bsec = bprm->security;
1833         sid = bsec->sid;
1834
1835         tsec->osid = tsec->sid;
1836         bsec->unsafe = 0;
1837         if (tsec->sid != sid) {
1838                 /* Check for shared state.  If not ok, leave SID
1839                    unchanged and kill. */
1840                 if (unsafe & LSM_UNSAFE_SHARE) {
1841                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1842                                         PROCESS__SHARE, NULL);
1843                         if (rc) {
1844                                 bsec->unsafe = 1;
1845                                 return;
1846                         }
1847                 }
1848
1849                 /* Check for ptracing, and update the task SID if ok.
1850                    Otherwise, leave SID unchanged and kill. */
1851                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1852                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1853                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1854                                           NULL);
1855                         if (rc) {
1856                                 bsec->unsafe = 1;
1857                                 return;
1858                         }
1859                 }
1860                 tsec->sid = sid;
1861         }
1862 }
1863
1864 /*
1865  * called after apply_creds without the task lock held
1866  */
1867 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1868 {
1869         struct task_security_struct *tsec;
1870         struct rlimit *rlim, *initrlim;
1871         struct itimerval itimer;
1872         struct bprm_security_struct *bsec;
1873         int rc, i;
1874
1875         tsec = current->security;
1876         bsec = bprm->security;
1877
1878         if (bsec->unsafe) {
1879                 force_sig_specific(SIGKILL, current);
1880                 return;
1881         }
1882         if (tsec->osid == tsec->sid)
1883                 return;
1884
1885         /* Close files for which the new task SID is not authorized. */
1886         flush_unauthorized_files(current->files);
1887
1888         /* Check whether the new SID can inherit signal state
1889            from the old SID.  If not, clear itimers to avoid
1890            subsequent signal generation and flush and unblock
1891            signals. This must occur _after_ the task SID has
1892           been updated so that any kill done after the flush
1893           will be checked against the new SID. */
1894         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1895                           PROCESS__SIGINH, NULL);
1896         if (rc) {
1897                 memset(&itimer, 0, sizeof itimer);
1898                 for (i = 0; i < 3; i++)
1899                         do_setitimer(i, &itimer, NULL);
1900                 flush_signals(current);
1901                 spin_lock_irq(&current->sighand->siglock);
1902                 flush_signal_handlers(current, 1);
1903                 sigemptyset(&current->blocked);
1904                 recalc_sigpending();
1905                 spin_unlock_irq(&current->sighand->siglock);
1906         }
1907
1908         /* Check whether the new SID can inherit resource limits
1909            from the old SID.  If not, reset all soft limits to
1910            the lower of the current task's hard limit and the init
1911            task's soft limit.  Note that the setting of hard limits
1912            (even to lower them) can be controlled by the setrlimit
1913            check. The inclusion of the init task's soft limit into
1914            the computation is to avoid resetting soft limits higher
1915            than the default soft limit for cases where the default
1916            is lower than the hard limit, e.g. RLIMIT_CORE or
1917            RLIMIT_STACK.*/
1918         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1919                           PROCESS__RLIMITINH, NULL);
1920         if (rc) {
1921                 for (i = 0; i < RLIM_NLIMITS; i++) {
1922                         rlim = current->signal->rlim + i;
1923                         initrlim = init_task.signal->rlim+i;
1924                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1925                 }
1926                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1927                         /*
1928                          * This will cause RLIMIT_CPU calculations
1929                          * to be refigured.
1930                          */
1931                         current->it_prof_expires = jiffies_to_cputime(1);
1932                 }
1933         }
1934
1935         /* Wake up the parent if it is waiting so that it can
1936            recheck wait permission to the new task SID. */
1937         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1938 }
1939
1940 /* superblock security operations */
1941
1942 static int selinux_sb_alloc_security(struct super_block *sb)
1943 {
1944         return superblock_alloc_security(sb);
1945 }
1946
1947 static void selinux_sb_free_security(struct super_block *sb)
1948 {
1949         superblock_free_security(sb);
1950 }
1951
1952 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1953 {
1954         if (plen > olen)
1955                 return 0;
1956
1957         return !memcmp(prefix, option, plen);
1958 }
1959
1960 static inline int selinux_option(char *option, int len)
1961 {
1962         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1963                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1964                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1965                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1966 }
1967
1968 static inline void take_option(char **to, char *from, int *first, int len)
1969 {
1970         if (!*first) {
1971                 **to = ',';
1972                 *to += 1;
1973         } else
1974                 *first = 0;
1975         memcpy(*to, from, len);
1976         *to += len;
1977 }
1978
1979 static inline void take_selinux_option(char **to, char *from, int *first, 
1980                                        int len)
1981 {
1982         int current_size = 0;
1983
1984         if (!*first) {
1985                 **to = '|';
1986                 *to += 1;
1987         }
1988         else
1989                 *first = 0;
1990
1991         while (current_size < len) {
1992                 if (*from != '"') {
1993                         **to = *from;
1994                         *to += 1;
1995                 }
1996                 from += 1;
1997                 current_size += 1;
1998         }
1999 }
2000
2001 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2002 {
2003         int fnosec, fsec, rc = 0;
2004         char *in_save, *in_curr, *in_end;
2005         char *sec_curr, *nosec_save, *nosec;
2006         int open_quote = 0;
2007
2008         in_curr = orig;
2009         sec_curr = copy;
2010
2011         /* Binary mount data: just copy */
2012         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2013                 copy_page(sec_curr, in_curr);
2014                 goto out;
2015         }
2016
2017         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2018         if (!nosec) {
2019                 rc = -ENOMEM;
2020                 goto out;
2021         }
2022
2023         nosec_save = nosec;
2024         fnosec = fsec = 1;
2025         in_save = in_end = orig;
2026
2027         do {
2028                 if (*in_end == '"')
2029                         open_quote = !open_quote;
2030                 if ((*in_end == ',' && open_quote == 0) ||
2031                                 *in_end == '\0') {
2032                         int len = in_end - in_curr;
2033
2034                         if (selinux_option(in_curr, len))
2035                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2036                         else
2037                                 take_option(&nosec, in_curr, &fnosec, len);
2038
2039                         in_curr = in_end + 1;
2040                 }
2041         } while (*in_end++);
2042
2043         strcpy(in_save, nosec_save);
2044         free_page((unsigned long)nosec_save);
2045 out:
2046         return rc;
2047 }
2048
2049 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2050 {
2051         struct avc_audit_data ad;
2052         int rc;
2053
2054         rc = superblock_doinit(sb, data);
2055         if (rc)
2056                 return rc;
2057
2058         AVC_AUDIT_DATA_INIT(&ad,FS);
2059         ad.u.fs.dentry = sb->s_root;
2060         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2061 }
2062
2063 static int selinux_sb_statfs(struct dentry *dentry)
2064 {
2065         struct avc_audit_data ad;
2066
2067         AVC_AUDIT_DATA_INIT(&ad,FS);
2068         ad.u.fs.dentry = dentry->d_sb->s_root;
2069         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2070 }
2071
2072 static int selinux_mount(char * dev_name,
2073                          struct nameidata *nd,
2074                          char * type,
2075                          unsigned long flags,
2076                          void * data)
2077 {
2078         int rc;
2079
2080         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2081         if (rc)
2082                 return rc;
2083
2084         if (flags & MS_REMOUNT)
2085                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2086                                            FILESYSTEM__REMOUNT, NULL);
2087         else
2088                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2089                                        FILE__MOUNTON);
2090 }
2091
2092 static int selinux_umount(struct vfsmount *mnt, int flags)
2093 {
2094         int rc;
2095
2096         rc = secondary_ops->sb_umount(mnt, flags);
2097         if (rc)
2098                 return rc;
2099
2100         return superblock_has_perm(current,mnt->mnt_sb,
2101                                    FILESYSTEM__UNMOUNT,NULL);
2102 }
2103
2104 /* inode security operations */
2105
2106 static int selinux_inode_alloc_security(struct inode *inode)
2107 {
2108         return inode_alloc_security(inode);
2109 }
2110
2111 static void selinux_inode_free_security(struct inode *inode)
2112 {
2113         inode_free_security(inode);
2114 }
2115
2116 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2117                                        char **name, void **value,
2118                                        size_t *len)
2119 {
2120         struct task_security_struct *tsec;
2121         struct inode_security_struct *dsec;
2122         struct superblock_security_struct *sbsec;
2123         u32 newsid, clen;
2124         int rc;
2125         char *namep = NULL, *context;
2126
2127         tsec = current->security;
2128         dsec = dir->i_security;
2129         sbsec = dir->i_sb->s_security;
2130
2131         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2132                 newsid = tsec->create_sid;
2133         } else {
2134                 rc = security_transition_sid(tsec->sid, dsec->sid,
2135                                              inode_mode_to_security_class(inode->i_mode),
2136                                              &newsid);
2137                 if (rc) {
2138                         printk(KERN_WARNING "%s:  "
2139                                "security_transition_sid failed, rc=%d (dev=%s "
2140                                "ino=%ld)\n",
2141                                __FUNCTION__,
2142                                -rc, inode->i_sb->s_id, inode->i_ino);
2143                         return rc;
2144                 }
2145         }
2146
2147         /* Possibly defer initialization to selinux_complete_init. */
2148         if (sbsec->initialized) {
2149                 struct inode_security_struct *isec = inode->i_security;
2150                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2151                 isec->sid = newsid;
2152                 isec->initialized = 1;
2153         }
2154
2155         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2156                 return -EOPNOTSUPP;
2157
2158         if (name) {
2159                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2160                 if (!namep)
2161                         return -ENOMEM;
2162                 *name = namep;
2163         }
2164
2165         if (value && len) {
2166                 rc = security_sid_to_context(newsid, &context, &clen);
2167                 if (rc) {
2168                         kfree(namep);
2169                         return rc;
2170                 }
2171                 *value = context;
2172                 *len = clen;
2173         }
2174
2175         return 0;
2176 }
2177
2178 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2179 {
2180         return may_create(dir, dentry, SECCLASS_FILE);
2181 }
2182
2183 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2184 {
2185         int rc;
2186
2187         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2188         if (rc)
2189                 return rc;
2190         return may_link(dir, old_dentry, MAY_LINK);
2191 }
2192
2193 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2194 {
2195         int rc;
2196
2197         rc = secondary_ops->inode_unlink(dir, dentry);
2198         if (rc)
2199                 return rc;
2200         return may_link(dir, dentry, MAY_UNLINK);
2201 }
2202
2203 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2204 {
2205         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2206 }
2207
2208 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2209 {
2210         return may_create(dir, dentry, SECCLASS_DIR);
2211 }
2212
2213 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2214 {
2215         return may_link(dir, dentry, MAY_RMDIR);
2216 }
2217
2218 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2219 {
2220         int rc;
2221
2222         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2223         if (rc)
2224                 return rc;
2225
2226         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2227 }
2228
2229 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2230                                 struct inode *new_inode, struct dentry *new_dentry)
2231 {
2232         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2233 }
2234
2235 static int selinux_inode_readlink(struct dentry *dentry)
2236 {
2237         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2238 }
2239
2240 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2241 {
2242         int rc;
2243
2244         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2245         if (rc)
2246                 return rc;
2247         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2248 }
2249
2250 static int selinux_inode_permission(struct inode *inode, int mask,
2251                                     struct nameidata *nd)
2252 {
2253         int rc;
2254
2255         rc = secondary_ops->inode_permission(inode, mask, nd);
2256         if (rc)
2257                 return rc;
2258
2259         if (!mask) {
2260                 /* No permission to check.  Existence test. */
2261                 return 0;
2262         }
2263
2264         return inode_has_perm(current, inode,
2265                                file_mask_to_av(inode->i_mode, mask), NULL);
2266 }
2267
2268 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2269 {
2270         int rc;
2271
2272         rc = secondary_ops->inode_setattr(dentry, iattr);
2273         if (rc)
2274                 return rc;
2275
2276         if (iattr->ia_valid & ATTR_FORCE)
2277                 return 0;
2278
2279         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2280                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2281                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2282
2283         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2284 }
2285
2286 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2287 {
2288         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2289 }
2290
2291 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2292 {
2293         struct task_security_struct *tsec = current->security;
2294         struct inode *inode = dentry->d_inode;
2295         struct inode_security_struct *isec = inode->i_security;
2296         struct superblock_security_struct *sbsec;
2297         struct avc_audit_data ad;
2298         u32 newsid;
2299         int rc = 0;
2300
2301         if (strcmp(name, XATTR_NAME_SELINUX)) {
2302                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2303                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2304                     !capable(CAP_SYS_ADMIN)) {
2305                         /* A different attribute in the security namespace.
2306                            Restrict to administrator. */
2307                         return -EPERM;
2308                 }
2309
2310                 /* Not an attribute we recognize, so just check the
2311                    ordinary setattr permission. */
2312                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2313         }
2314
2315         sbsec = inode->i_sb->s_security;
2316         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2317                 return -EOPNOTSUPP;
2318
2319         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2320                 return -EPERM;
2321
2322         AVC_AUDIT_DATA_INIT(&ad,FS);
2323         ad.u.fs.dentry = dentry;
2324
2325         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2326                           FILE__RELABELFROM, &ad);
2327         if (rc)
2328                 return rc;
2329
2330         rc = security_context_to_sid(value, size, &newsid);
2331         if (rc)
2332                 return rc;
2333
2334         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2335                           FILE__RELABELTO, &ad);
2336         if (rc)
2337                 return rc;
2338
2339         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2340                                           isec->sclass);
2341         if (rc)
2342                 return rc;
2343
2344         return avc_has_perm(newsid,
2345                             sbsec->sid,
2346                             SECCLASS_FILESYSTEM,
2347                             FILESYSTEM__ASSOCIATE,
2348                             &ad);
2349 }
2350
2351 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2352                                         void *value, size_t size, int flags)
2353 {
2354         struct inode *inode = dentry->d_inode;
2355         struct inode_security_struct *isec = inode->i_security;
2356         u32 newsid;
2357         int rc;
2358
2359         if (strcmp(name, XATTR_NAME_SELINUX)) {
2360                 /* Not an attribute we recognize, so nothing to do. */
2361                 return;
2362         }
2363
2364         rc = security_context_to_sid(value, size, &newsid);
2365         if (rc) {
2366                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2367                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2368                 return;
2369         }
2370
2371         isec->sid = newsid;
2372         return;
2373 }
2374
2375 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2376 {
2377         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2378 }
2379
2380 static int selinux_inode_listxattr (struct dentry *dentry)
2381 {
2382         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2383 }
2384
2385 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2386 {
2387         if (strcmp(name, XATTR_NAME_SELINUX)) {
2388                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2389                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2390                     !capable(CAP_SYS_ADMIN)) {
2391                         /* A different attribute in the security namespace.
2392                            Restrict to administrator. */
2393                         return -EPERM;
2394                 }
2395
2396                 /* Not an attribute we recognize, so just check the
2397                    ordinary setattr permission. Might want a separate
2398                    permission for removexattr. */
2399                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2400         }
2401
2402         /* No one is allowed to remove a SELinux security label.
2403            You can change the label, but all data must be labeled. */
2404         return -EACCES;
2405 }
2406
2407 static const char *selinux_inode_xattr_getsuffix(void)
2408 {
2409       return XATTR_SELINUX_SUFFIX;
2410 }
2411
2412 /*
2413  * Copy the in-core inode security context value to the user.  If the
2414  * getxattr() prior to this succeeded, check to see if we need to
2415  * canonicalize the value to be finally returned to the user.
2416  *
2417  * Permission check is handled by selinux_inode_getxattr hook.
2418  */
2419 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2420 {
2421         struct inode_security_struct *isec = inode->i_security;
2422
2423         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2424                 return -EOPNOTSUPP;
2425
2426         return selinux_getsecurity(isec->sid, buffer, size);
2427 }
2428
2429 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2430                                      const void *value, size_t size, int flags)
2431 {
2432         struct inode_security_struct *isec = inode->i_security;
2433         u32 newsid;
2434         int rc;
2435
2436         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2437                 return -EOPNOTSUPP;
2438
2439         if (!value || !size)
2440                 return -EACCES;
2441
2442         rc = security_context_to_sid((void*)value, size, &newsid);
2443         if (rc)
2444                 return rc;
2445
2446         isec->sid = newsid;
2447         return 0;
2448 }
2449
2450 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2451 {
2452         const int len = sizeof(XATTR_NAME_SELINUX);
2453         if (buffer && len <= buffer_size)
2454                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2455         return len;
2456 }
2457
2458 /* file security operations */
2459
2460 static int selinux_file_permission(struct file *file, int mask)
2461 {
2462         int rc;
2463         struct inode *inode = file->f_path.dentry->d_inode;
2464
2465         if (!mask) {
2466                 /* No permission to check.  Existence test. */
2467                 return 0;
2468         }
2469
2470         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2471         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2472                 mask |= MAY_APPEND;
2473
2474         rc = file_has_perm(current, file,
2475                            file_mask_to_av(inode->i_mode, mask));
2476         if (rc)
2477                 return rc;
2478
2479         return selinux_netlbl_inode_permission(inode, mask);
2480 }
2481
2482 static int selinux_file_alloc_security(struct file *file)
2483 {
2484         return file_alloc_security(file);
2485 }
2486
2487 static void selinux_file_free_security(struct file *file)
2488 {
2489         file_free_security(file);
2490 }
2491
2492 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2493                               unsigned long arg)
2494 {
2495         int error = 0;
2496
2497         switch (cmd) {
2498                 case FIONREAD:
2499                 /* fall through */
2500                 case FIBMAP:
2501                 /* fall through */
2502                 case FIGETBSZ:
2503                 /* fall through */
2504                 case EXT2_IOC_GETFLAGS:
2505                 /* fall through */
2506                 case EXT2_IOC_GETVERSION:
2507                         error = file_has_perm(current, file, FILE__GETATTR);
2508                         break;
2509
2510                 case EXT2_IOC_SETFLAGS:
2511                 /* fall through */
2512                 case EXT2_IOC_SETVERSION:
2513                         error = file_has_perm(current, file, FILE__SETATTR);
2514                         break;
2515
2516                 /* sys_ioctl() checks */
2517                 case FIONBIO:
2518                 /* fall through */
2519                 case FIOASYNC:
2520                         error = file_has_perm(current, file, 0);
2521                         break;
2522
2523                 case KDSKBENT:
2524                 case KDSKBSENT:
2525                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2526                         break;
2527
2528                 /* default case assumes that the command will go
2529                  * to the file's ioctl() function.
2530                  */
2531                 default:
2532                         error = file_has_perm(current, file, FILE__IOCTL);
2533
2534         }
2535         return error;
2536 }
2537
2538 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2539 {
2540 #ifndef CONFIG_PPC32
2541         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2542                 /*
2543                  * We are making executable an anonymous mapping or a
2544                  * private file mapping that will also be writable.
2545                  * This has an additional check.
2546                  */
2547                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2548                 if (rc)
2549                         return rc;
2550         }
2551 #endif
2552
2553         if (file) {
2554                 /* read access is always possible with a mapping */
2555                 u32 av = FILE__READ;
2556
2557                 /* write access only matters if the mapping is shared */
2558                 if (shared && (prot & PROT_WRITE))
2559                         av |= FILE__WRITE;
2560
2561                 if (prot & PROT_EXEC)
2562                         av |= FILE__EXECUTE;
2563
2564                 return file_has_perm(current, file, av);
2565         }
2566         return 0;
2567 }
2568
2569 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2570                              unsigned long prot, unsigned long flags)
2571 {
2572         int rc;
2573
2574         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2575         if (rc)
2576                 return rc;
2577
2578         if (selinux_checkreqprot)
2579                 prot = reqprot;
2580
2581         return file_map_prot_check(file, prot,
2582                                    (flags & MAP_TYPE) == MAP_SHARED);
2583 }
2584
2585 static int selinux_file_mprotect(struct vm_area_struct *vma,
2586                                  unsigned long reqprot,
2587                                  unsigned long prot)
2588 {
2589         int rc;
2590
2591         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2592         if (rc)
2593                 return rc;
2594
2595         if (selinux_checkreqprot)
2596                 prot = reqprot;
2597
2598 #ifndef CONFIG_PPC32
2599         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2600                 rc = 0;
2601                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2602                     vma->vm_end <= vma->vm_mm->brk) {
2603                         rc = task_has_perm(current, current,
2604                                            PROCESS__EXECHEAP);
2605                 } else if (!vma->vm_file &&
2606                            vma->vm_start <= vma->vm_mm->start_stack &&
2607                            vma->vm_end >= vma->vm_mm->start_stack) {
2608                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2609                 } else if (vma->vm_file && vma->anon_vma) {
2610                         /*
2611                          * We are making executable a file mapping that has
2612                          * had some COW done. Since pages might have been
2613                          * written, check ability to execute the possibly
2614                          * modified content.  This typically should only
2615                          * occur for text relocations.
2616                          */
2617                         rc = file_has_perm(current, vma->vm_file,
2618                                            FILE__EXECMOD);
2619                 }
2620                 if (rc)
2621                         return rc;
2622         }
2623 #endif
2624
2625         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2626 }
2627
2628 static int selinux_file_lock(struct file *file, unsigned int cmd)
2629 {
2630         return file_has_perm(current, file, FILE__LOCK);
2631 }
2632
2633 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2634                               unsigned long arg)
2635 {
2636         int err = 0;
2637
2638         switch (cmd) {
2639                 case F_SETFL:
2640                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2641                                 err = -EINVAL;
2642                                 break;
2643                         }
2644
2645                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2646                                 err = file_has_perm(current, file,FILE__WRITE);
2647                                 break;
2648                         }
2649                         /* fall through */
2650                 case F_SETOWN:
2651                 case F_SETSIG:
2652                 case F_GETFL:
2653                 case F_GETOWN:
2654                 case F_GETSIG:
2655                         /* Just check FD__USE permission */
2656                         err = file_has_perm(current, file, 0);
2657                         break;
2658                 case F_GETLK:
2659                 case F_SETLK:
2660                 case F_SETLKW:
2661 #if BITS_PER_LONG == 32
2662                 case F_GETLK64:
2663                 case F_SETLK64:
2664                 case F_SETLKW64:
2665 #endif
2666                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2667                                 err = -EINVAL;
2668                                 break;
2669                         }
2670                         err = file_has_perm(current, file, FILE__LOCK);
2671                         break;
2672         }
2673
2674         return err;
2675 }
2676
2677 static int selinux_file_set_fowner(struct file *file)
2678 {
2679         struct task_security_struct *tsec;
2680         struct file_security_struct *fsec;
2681
2682         tsec = current->security;
2683         fsec = file->f_security;
2684         fsec->fown_sid = tsec->sid;
2685
2686         return 0;
2687 }
2688
2689 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2690                                        struct fown_struct *fown, int signum)
2691 {
2692         struct file *file;
2693         u32 perm;
2694         struct task_security_struct *tsec;
2695         struct file_security_struct *fsec;
2696
2697         /* struct fown_struct is never outside the context of a struct file */
2698         file = container_of(fown, struct file, f_owner);
2699
2700         tsec = tsk->security;
2701         fsec = file->f_security;
2702
2703         if (!signum)
2704                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2705         else
2706                 perm = signal_to_av(signum);
2707
2708         return avc_has_perm(fsec->fown_sid, tsec->sid,
2709                             SECCLASS_PROCESS, perm, NULL);
2710 }
2711
2712 static int selinux_file_receive(struct file *file)
2713 {
2714         return file_has_perm(current, file, file_to_av(file));
2715 }
2716
2717 /* task security operations */
2718
2719 static int selinux_task_create(unsigned long clone_flags)
2720 {
2721         int rc;
2722
2723         rc = secondary_ops->task_create(clone_flags);
2724         if (rc)
2725                 return rc;
2726
2727         return task_has_perm(current, current, PROCESS__FORK);
2728 }
2729
2730 static int selinux_task_alloc_security(struct task_struct *tsk)
2731 {
2732         struct task_security_struct *tsec1, *tsec2;
2733         int rc;
2734
2735         tsec1 = current->security;
2736
2737         rc = task_alloc_security(tsk);
2738         if (rc)
2739                 return rc;
2740         tsec2 = tsk->security;
2741
2742         tsec2->osid = tsec1->osid;
2743         tsec2->sid = tsec1->sid;
2744
2745         /* Retain the exec, fs, key, and sock SIDs across fork */
2746         tsec2->exec_sid = tsec1->exec_sid;
2747         tsec2->create_sid = tsec1->create_sid;
2748         tsec2->keycreate_sid = tsec1->keycreate_sid;
2749         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2750
2751         /* Retain ptracer SID across fork, if any.
2752            This will be reset by the ptrace hook upon any
2753            subsequent ptrace_attach operations. */
2754         tsec2->ptrace_sid = tsec1->ptrace_sid;
2755
2756         return 0;
2757 }
2758
2759 static void selinux_task_free_security(struct task_struct *tsk)
2760 {
2761         task_free_security(tsk);
2762 }
2763
2764 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2765 {
2766         /* Since setuid only affects the current process, and
2767            since the SELinux controls are not based on the Linux
2768            identity attributes, SELinux does not need to control
2769            this operation.  However, SELinux does control the use
2770            of the CAP_SETUID and CAP_SETGID capabilities using the
2771            capable hook. */
2772         return 0;
2773 }
2774
2775 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2776 {
2777         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2778 }
2779
2780 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2781 {
2782         /* See the comment for setuid above. */
2783         return 0;
2784 }
2785
2786 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2787 {
2788         return task_has_perm(current, p, PROCESS__SETPGID);
2789 }
2790
2791 static int selinux_task_getpgid(struct task_struct *p)
2792 {
2793         return task_has_perm(current, p, PROCESS__GETPGID);
2794 }
2795
2796 static int selinux_task_getsid(struct task_struct *p)
2797 {
2798         return task_has_perm(current, p, PROCESS__GETSESSION);
2799 }
2800
2801 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2802 {
2803         selinux_get_task_sid(p, secid);
2804 }
2805
2806 static int selinux_task_setgroups(struct group_info *group_info)
2807 {
2808         /* See the comment for setuid above. */
2809         return 0;
2810 }
2811
2812 static int selinux_task_setnice(struct task_struct *p, int nice)
2813 {
2814         int rc;
2815
2816         rc = secondary_ops->task_setnice(p, nice);
2817         if (rc)
2818                 return rc;
2819
2820         return task_has_perm(current,p, PROCESS__SETSCHED);
2821 }
2822
2823 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2824 {
2825         return task_has_perm(current, p, PROCESS__SETSCHED);
2826 }
2827
2828 static int selinux_task_getioprio(struct task_struct *p)
2829 {
2830         return task_has_perm(current, p, PROCESS__GETSCHED);
2831 }
2832
2833 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2834 {
2835         struct rlimit *old_rlim = current->signal->rlim + resource;
2836         int rc;
2837
2838         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2839         if (rc)
2840                 return rc;
2841
2842         /* Control the ability to change the hard limit (whether
2843            lowering or raising it), so that the hard limit can
2844            later be used as a safe reset point for the soft limit
2845            upon context transitions. See selinux_bprm_apply_creds. */
2846         if (old_rlim->rlim_max != new_rlim->rlim_max)
2847                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2848
2849         return 0;
2850 }
2851
2852 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2853 {
2854         return task_has_perm(current, p, PROCESS__SETSCHED);
2855 }
2856
2857 static int selinux_task_getscheduler(struct task_struct *p)
2858 {
2859         return task_has_perm(current, p, PROCESS__GETSCHED);
2860 }
2861
2862 static int selinux_task_movememory(struct task_struct *p)
2863 {
2864         return task_has_perm(current, p, PROCESS__SETSCHED);
2865 }
2866
2867 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2868                                 int sig, u32 secid)
2869 {
2870         u32 perm;
2871         int rc;
2872         struct task_security_struct *tsec;
2873
2874         rc = secondary_ops->task_kill(p, info, sig, secid);
2875         if (rc)
2876                 return rc;
2877
2878         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2879                 return 0;
2880
2881         if (!sig)
2882                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2883         else
2884                 perm = signal_to_av(sig);
2885         tsec = p->security;
2886         if (secid)
2887                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2888         else
2889                 rc = task_has_perm(current, p, perm);
2890         return rc;
2891 }
2892
2893 static int selinux_task_prctl(int option,
2894                               unsigned long arg2,
2895                               unsigned long arg3,
2896                               unsigned long arg4,
2897                               unsigned long arg5)
2898 {
2899         /* The current prctl operations do not appear to require
2900            any SELinux controls since they merely observe or modify
2901            the state of the current process. */
2902         return 0;
2903 }
2904
2905 static int selinux_task_wait(struct task_struct *p)
2906 {
2907         u32 perm;
2908
2909         perm = signal_to_av(p->exit_signal);
2910
2911         return task_has_perm(p, current, perm);
2912 }
2913
2914 static void selinux_task_reparent_to_init(struct task_struct *p)
2915 {
2916         struct task_security_struct *tsec;
2917
2918         secondary_ops->task_reparent_to_init(p);
2919
2920         tsec = p->security;
2921         tsec->osid = tsec->sid;
2922         tsec->sid = SECINITSID_KERNEL;
2923         return;
2924 }
2925
2926 static void selinux_task_to_inode(struct task_struct *p,
2927                                   struct inode *inode)
2928 {
2929         struct task_security_struct *tsec = p->security;
2930         struct inode_security_struct *isec = inode->i_security;
2931
2932         isec->sid = tsec->sid;
2933         isec->initialized = 1;
2934         return;
2935 }
2936
2937 /* Returns error only if unable to parse addresses */
2938 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2939                         struct avc_audit_data *ad, u8 *proto)
2940 {
2941         int offset, ihlen, ret = -EINVAL;
2942         struct iphdr _iph, *ih;
2943
2944         offset = skb->nh.raw - skb->data;
2945         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2946         if (ih == NULL)
2947                 goto out;
2948
2949         ihlen = ih->ihl * 4;
2950         if (ihlen < sizeof(_iph))
2951                 goto out;
2952
2953         ad->u.net.v4info.saddr = ih->saddr;
2954         ad->u.net.v4info.daddr = ih->daddr;
2955         ret = 0;
2956
2957         if (proto)
2958                 *proto = ih->protocol;
2959
2960         switch (ih->protocol) {
2961         case IPPROTO_TCP: {
2962                 struct tcphdr _tcph, *th;
2963
2964                 if (ntohs(ih->frag_off) & IP_OFFSET)
2965                         break;
2966
2967                 offset += ihlen;
2968                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2969                 if (th == NULL)
2970                         break;
2971
2972                 ad->u.net.sport = th->source;
2973                 ad->u.net.dport = th->dest;
2974                 break;
2975         }
2976         
2977         case IPPROTO_UDP: {
2978                 struct udphdr _udph, *uh;
2979                 
2980                 if (ntohs(ih->frag_off) & IP_OFFSET)
2981                         break;
2982                         
2983                 offset += ihlen;
2984                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2985                 if (uh == NULL)
2986                         break;  
2987
2988                 ad->u.net.sport = uh->source;
2989                 ad->u.net.dport = uh->dest;
2990                 break;
2991         }
2992
2993         case IPPROTO_DCCP: {
2994                 struct dccp_hdr _dccph, *dh;
2995
2996                 if (ntohs(ih->frag_off) & IP_OFFSET)
2997                         break;
2998
2999                 offset += ihlen;
3000                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3001                 if (dh == NULL)
3002                         break;
3003
3004                 ad->u.net.sport = dh->dccph_sport;
3005                 ad->u.net.dport = dh->dccph_dport;
3006                 break;
3007         }
3008
3009         default:
3010                 break;
3011         }
3012 out:
3013         return ret;
3014 }
3015
3016 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3017
3018 /* Returns error only if unable to parse addresses */
3019 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3020                         struct avc_audit_data *ad, u8 *proto)
3021 {
3022         u8 nexthdr;
3023         int ret = -EINVAL, offset;
3024         struct ipv6hdr _ipv6h, *ip6;
3025
3026         offset = skb->nh.raw - skb->data;
3027         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3028         if (ip6 == NULL)
3029                 goto out;
3030
3031         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3032         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3033         ret = 0;
3034
3035         nexthdr = ip6->nexthdr;
3036         offset += sizeof(_ipv6h);
3037         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3038         if (offset < 0)
3039                 goto out;
3040
3041         if (proto)
3042                 *proto = nexthdr;
3043
3044         switch (nexthdr) {
3045         case IPPROTO_TCP: {
3046                 struct tcphdr _tcph, *th;
3047
3048                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3049                 if (th == NULL)
3050                         break;
3051
3052                 ad->u.net.sport = th->source;
3053                 ad->u.net.dport = th->dest;
3054                 break;
3055         }
3056
3057         case IPPROTO_UDP: {
3058                 struct udphdr _udph, *uh;
3059
3060                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3061                 if (uh == NULL)
3062                         break;
3063
3064                 ad->u.net.sport = uh->source;
3065                 ad->u.net.dport = uh->dest;
3066                 break;
3067         }
3068
3069         case IPPROTO_DCCP: {
3070                 struct dccp_hdr _dccph, *dh;
3071
3072                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3073                 if (dh == NULL)
3074                         break;
3075
3076                 ad->u.net.sport = dh->dccph_sport;
3077                 ad->u.net.dport = dh->dccph_dport;
3078                 break;
3079         }
3080
3081         /* includes fragments */
3082         default:
3083                 break;
3084         }
3085 out:
3086         return ret;
3087 }
3088
3089 #endif /* IPV6 */
3090
3091 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3092                              char **addrp, int *len, int src, u8 *proto)
3093 {
3094         int ret = 0;
3095
3096         switch (ad->u.net.family) {
3097         case PF_INET:
3098                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3099                 if (ret || !addrp)
3100                         break;
3101                 *len = 4;
3102                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3103                                         &ad->u.net.v4info.daddr);
3104                 break;
3105
3106 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3107         case PF_INET6:
3108                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3109                 if (ret || !addrp)
3110                         break;
3111                 *len = 16;
3112                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3113                                         &ad->u.net.v6info.daddr);
3114                 break;
3115 #endif  /* IPV6 */
3116         default:
3117                 break;
3118         }
3119
3120         return ret;
3121 }
3122
3123 /* socket security operations */
3124 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3125                            u32 perms)
3126 {
3127         struct inode_security_struct *isec;
3128         struct task_security_struct *tsec;
3129         struct avc_audit_data ad;
3130         int err = 0;
3131
3132         tsec = task->security;
3133         isec = SOCK_INODE(sock)->i_security;
3134
3135         if (isec->sid == SECINITSID_KERNEL)
3136                 goto out;
3137
3138         AVC_AUDIT_DATA_INIT(&ad,NET);
3139         ad.u.net.sk = sock->sk;
3140         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3141
3142 out:
3143         return err;
3144 }
3145
3146 static int selinux_socket_create(int family, int type,
3147                                  int protocol, int kern)
3148 {
3149         int err = 0;
3150         struct task_security_struct *tsec;
3151         u32 newsid;
3152
3153         if (kern)
3154                 goto out;
3155
3156         tsec = current->security;
3157         newsid = tsec->sockcreate_sid ? : tsec->sid;
3158         err = avc_has_perm(tsec->sid, newsid,
3159                            socket_type_to_security_class(family, type,
3160                            protocol), SOCKET__CREATE, NULL);
3161
3162 out:
3163         return err;
3164 }
3165
3166 static int selinux_socket_post_create(struct socket *sock, int family,
3167                                       int type, int protocol, int kern)
3168 {
3169         int err = 0;
3170         struct inode_security_struct *isec;
3171         struct task_security_struct *tsec;
3172         struct sk_security_struct *sksec;
3173         u32 newsid;
3174
3175         isec = SOCK_INODE(sock)->i_security;
3176
3177         tsec = current->security;
3178         newsid = tsec->sockcreate_sid ? : tsec->sid;
3179         isec->sclass = socket_type_to_security_class(family, type, protocol);
3180         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3181         isec->initialized = 1;
3182
3183         if (sock->sk) {
3184                 sksec = sock->sk->sk_security;
3185                 sksec->sid = isec->sid;
3186                 err = selinux_netlbl_socket_post_create(sock);
3187         }
3188
3189         return err;
3190 }
3191
3192 /* Range of port numbers used to automatically bind.
3193    Need to determine whether we should perform a name_bind
3194    permission check between the socket and the port number. */
3195 #define ip_local_port_range_0 sysctl_local_port_range[0]
3196 #define ip_local_port_range_1 sysctl_local_port_range[1]
3197
3198 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3199 {
3200         u16 family;
3201         int err;
3202
3203         err = socket_has_perm(current, sock, SOCKET__BIND);
3204         if (err)
3205                 goto out;
3206
3207         /*
3208          * If PF_INET or PF_INET6, check name_bind permission for the port.
3209          * Multiple address binding for SCTP is not supported yet: we just
3210          * check the first address now.
3211          */
3212         family = sock->sk->sk_family;
3213         if (family == PF_INET || family == PF_INET6) {
3214                 char *addrp;
3215                 struct inode_security_struct *isec;
3216                 struct task_security_struct *tsec;
3217                 struct avc_audit_data ad;
3218                 struct sockaddr_in *addr4 = NULL;
3219                 struct sockaddr_in6 *addr6 = NULL;
3220                 unsigned short snum;
3221                 struct sock *sk = sock->sk;
3222                 u32 sid, node_perm, addrlen;
3223
3224                 tsec = current->security;
3225                 isec = SOCK_INODE(sock)->i_security;
3226
3227                 if (family == PF_INET) {
3228                         addr4 = (struct sockaddr_in *)address;
3229                         snum = ntohs(addr4->sin_port);
3230                         addrlen = sizeof(addr4->sin_addr.s_addr);
3231                         addrp = (char *)&addr4->sin_addr.s_addr;
3232                 } else {
3233                         addr6 = (struct sockaddr_in6 *)address;
3234                         snum = ntohs(addr6->sin6_port);
3235                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3236                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3237                 }
3238
3239                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3240                            snum > ip_local_port_range_1)) {
3241                         err = security_port_sid(sk->sk_family, sk->sk_type,
3242                                                 sk->sk_protocol, snum, &sid);
3243                         if (err)
3244                                 goto out;
3245                         AVC_AUDIT_DATA_INIT(&ad,NET);
3246                         ad.u.net.sport = htons(snum);
3247                         ad.u.net.family = family;
3248                         err = avc_has_perm(isec->sid, sid,
3249                                            isec->sclass,
3250                                            SOCKET__NAME_BIND, &ad);
3251                         if (err)
3252                                 goto out;
3253                 }
3254                 
3255                 switch(isec->sclass) {
3256                 case SECCLASS_TCP_SOCKET:
3257                         node_perm = TCP_SOCKET__NODE_BIND;
3258                         break;
3259                         
3260                 case SECCLASS_UDP_SOCKET:
3261                         node_perm = UDP_SOCKET__NODE_BIND;
3262                         break;
3263
3264                 case SECCLASS_DCCP_SOCKET:
3265                         node_perm = DCCP_SOCKET__NODE_BIND;
3266                         break;
3267
3268                 default:
3269                         node_perm = RAWIP_SOCKET__NODE_BIND;
3270                         break;
3271                 }
3272                 
3273                 err = security_node_sid(family, addrp, addrlen, &sid);
3274                 if (err)
3275                         goto out;
3276                 
3277                 AVC_AUDIT_DATA_INIT(&ad,NET);
3278                 ad.u.net.sport = htons(snum);
3279                 ad.u.net.family = family;
3280
3281                 if (family == PF_INET)
3282                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3283                 else
3284                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3285
3286                 err = avc_has_perm(isec->sid, sid,
3287                                    isec->sclass, node_perm, &ad);
3288                 if (err)
3289                         goto out;
3290         }
3291 out:
3292         return err;
3293 }
3294
3295 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3296 {
3297         struct inode_security_struct *isec;
3298         int err;
3299
3300         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3301         if (err)
3302                 return err;
3303
3304         /*
3305          * If a TCP or DCCP socket, check name_connect permission for the port.
3306          */
3307         isec = SOCK_INODE(sock)->i_security;
3308         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3309             isec->sclass == SECCLASS_DCCP_SOCKET) {
3310                 struct sock *sk = sock->sk;
3311                 struct avc_audit_data ad;
3312                 struct sockaddr_in *addr4 = NULL;
3313                 struct sockaddr_in6 *addr6 = NULL;
3314                 unsigned short snum;
3315                 u32 sid, perm;
3316
3317                 if (sk->sk_family == PF_INET) {
3318                         addr4 = (struct sockaddr_in *)address;
3319                         if (addrlen < sizeof(struct sockaddr_in))
3320                                 return -EINVAL;
3321                         snum = ntohs(addr4->sin_port);
3322                 } else {
3323                         addr6 = (struct sockaddr_in6 *)address;
3324                         if (addrlen < SIN6_LEN_RFC2133)
3325                                 return -EINVAL;
3326                         snum = ntohs(addr6->sin6_port);
3327                 }
3328
3329                 err = security_port_sid(sk->sk_family, sk->sk_type,
3330                                         sk->sk_protocol, snum, &sid);
3331                 if (err)
3332                         goto out;
3333
3334                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3335                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3336
3337                 AVC_AUDIT_DATA_INIT(&ad,NET);
3338                 ad.u.net.dport = htons(snum);
3339                 ad.u.net.family = sk->sk_family;
3340                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3341                 if (err)
3342                         goto out;
3343         }
3344
3345 out:
3346         return err;
3347 }
3348
3349 static int selinux_socket_listen(struct socket *sock, int backlog)
3350 {
3351         return socket_has_perm(current, sock, SOCKET__LISTEN);
3352 }
3353
3354 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3355 {
3356         int err;
3357         struct inode_security_struct *isec;
3358         struct inode_security_struct *newisec;
3359
3360         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3361         if (err)
3362                 return err;
3363
3364         newisec = SOCK_INODE(newsock)->i_security;
3365
3366         isec = SOCK_INODE(sock)->i_security;
3367         newisec->sclass = isec->sclass;
3368         newisec->sid = isec->sid;
3369         newisec->initialized = 1;
3370
3371         return 0;
3372 }
3373
3374 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3375                                   int size)
3376 {
3377         int rc;
3378
3379         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3380         if (rc)
3381                 return rc;
3382
3383         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3384 }
3385
3386 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3387                                   int size, int flags)
3388 {
3389         return socket_has_perm(current, sock, SOCKET__READ);
3390 }
3391
3392 static int selinux_socket_getsockname(struct socket *sock)
3393 {
3394         return socket_has_perm(current, sock, SOCKET__GETATTR);
3395 }
3396
3397 static int selinux_socket_getpeername(struct socket *sock)
3398 {
3399         return socket_has_perm(current, sock, SOCKET__GETATTR);
3400 }
3401
3402 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3403 {
3404         int err;
3405
3406         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3407         if (err)
3408                 return err;
3409
3410         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3411 }
3412
3413 static int selinux_socket_getsockopt(struct socket *sock, int level,
3414                                      int optname)
3415 {
3416         return socket_has_perm(current, sock, SOCKET__GETOPT);
3417 }
3418
3419 static int selinux_socket_shutdown(struct socket *sock, int how)
3420 {
3421         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3422 }
3423
3424 static int selinux_socket_unix_stream_connect(struct socket *sock,
3425                                               struct socket *other,
3426                                               struct sock *newsk)
3427 {
3428         struct sk_security_struct *ssec;
3429         struct inode_security_struct *isec;
3430         struct inode_security_struct *other_isec;
3431         struct avc_audit_data ad;
3432         int err;
3433
3434         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3435         if (err)
3436                 return err;
3437
3438         isec = SOCK_INODE(sock)->i_security;
3439         other_isec = SOCK_INODE(other)->i_security;
3440
3441         AVC_AUDIT_DATA_INIT(&ad,NET);
3442         ad.u.net.sk = other->sk;
3443
3444         err = avc_has_perm(isec->sid, other_isec->sid,
3445                            isec->sclass,
3446                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3447         if (err)
3448                 return err;
3449
3450         /* connecting socket */
3451         ssec = sock->sk->sk_security;
3452         ssec->peer_sid = other_isec->sid;
3453         
3454         /* server child socket */
3455         ssec = newsk->sk_security;
3456         ssec->peer_sid = isec->sid;
3457         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3458
3459         return err;
3460 }
3461
3462 static int selinux_socket_unix_may_send(struct socket *sock,
3463                                         struct socket *other)
3464 {
3465         struct inode_security_struct *isec;
3466         struct inode_security_struct *other_isec;
3467         struct avc_audit_data ad;
3468         int err;
3469
3470         isec = SOCK_INODE(sock)->i_security;
3471         other_isec = SOCK_INODE(other)->i_security;
3472
3473         AVC_AUDIT_DATA_INIT(&ad,NET);
3474         ad.u.net.sk = other->sk;
3475
3476         err = avc_has_perm(isec->sid, other_isec->sid,
3477                            isec->sclass, SOCKET__SENDTO, &ad);
3478         if (err)
3479                 return err;
3480
3481         return 0;
3482 }
3483
3484 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3485                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3486 {
3487         int err = 0;
3488         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3489         struct socket *sock;
3490         u16 sock_class = 0;
3491         u32 sock_sid = 0;
3492
3493         read_lock_bh(&sk->sk_callback_lock);
3494         sock = sk->sk_socket;
3495         if (sock) {
3496                 struct inode *inode;
3497                 inode = SOCK_INODE(sock);
3498                 if (inode) {
3499                         struct inode_security_struct *isec;
3500                         isec = inode->i_security;
3501                         sock_sid = isec->sid;
3502                         sock_class = isec->sclass;
3503                 }
3504         }
3505         read_unlock_bh(&sk->sk_callback_lock);
3506         if (!sock_sid)
3507                 goto out;
3508
3509         if (!skb->dev)
3510                 goto out;
3511
3512         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3513         if (err)
3514                 goto out;
3515
3516         switch (sock_class) {
3517         case SECCLASS_UDP_SOCKET:
3518                 netif_perm = NETIF__UDP_RECV;
3519                 node_perm = NODE__UDP_RECV;
3520                 recv_perm = UDP_SOCKET__RECV_MSG;
3521                 break;
3522         
3523         case SECCLASS_TCP_SOCKET:
3524                 netif_perm = NETIF__TCP_RECV;
3525                 node_perm = NODE__TCP_RECV;
3526                 recv_perm = TCP_SOCKET__RECV_MSG;
3527                 break;
3528
3529         case SECCLASS_DCCP_SOCKET:
3530                 netif_perm = NETIF__DCCP_RECV;
3531                 node_perm = NODE__DCCP_RECV;
3532                 recv_perm = DCCP_SOCKET__RECV_MSG;
3533                 break;
3534
3535         default:
3536                 netif_perm = NETIF__RAWIP_RECV;
3537                 node_perm = NODE__RAWIP_RECV;
3538                 break;
3539         }
3540
3541         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3542         if (err)
3543                 goto out;
3544         
3545         err = security_node_sid(family, addrp, len, &node_sid);
3546         if (err)
3547                 goto out;
3548         
3549         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3550         if (err)
3551                 goto out;
3552
3553         if (recv_perm) {
3554                 u32 port_sid;
3555
3556                 err = security_port_sid(sk->sk_family, sk->sk_type,
3557                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3558                                         &port_sid);
3559                 if (err)
3560                         goto out;
3561
3562                 err = avc_has_perm(sock_sid, port_sid,
3563                                    sock_class, recv_perm, ad);
3564         }
3565
3566 out:
3567         return err;
3568 }
3569
3570 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3571 {
3572         u16 family;
3573         char *addrp;
3574         int len, err = 0;
3575         struct avc_audit_data ad;
3576         struct sk_security_struct *sksec = sk->sk_security;
3577
3578         family = sk->sk_family;
3579         if (family != PF_INET && family != PF_INET6)
3580                 goto out;
3581
3582         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3583         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3584                 family = PF_INET;
3585
3586         AVC_AUDIT_DATA_INIT(&ad, NET);
3587         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3588         ad.u.net.family = family;
3589
3590         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3591         if (err)
3592                 goto out;
3593
3594         if (selinux_compat_net)
3595                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3596                                                   addrp, len);
3597         else
3598                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3599                                    PACKET__RECV, &ad);
3600         if (err)
3601                 goto out;
3602
3603         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3604         if (err)
3605                 goto out;
3606
3607         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3608 out:    
3609         return err;
3610 }
3611
3612 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3613                                             int __user *optlen, unsigned len)
3614 {
3615         int err = 0;
3616         char *scontext;
3617         u32 scontext_len;
3618         struct sk_security_struct *ssec;
3619         struct inode_security_struct *isec;
3620         u32 peer_sid = SECSID_NULL;
3621
3622         isec = SOCK_INODE(sock)->i_security;
3623
3624         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3625             isec->sclass == SECCLASS_TCP_SOCKET) {
3626                 ssec = sock->sk->sk_security;
3627                 peer_sid = ssec->peer_sid;
3628         }
3629         if (peer_sid == SECSID_NULL) {
3630                 err = -ENOPROTOOPT;
3631                 goto out;
3632         }
3633
3634         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3635
3636         if (err)
3637                 goto out;
3638
3639         if (scontext_len > len) {
3640                 err = -ERANGE;
3641                 goto out_len;
3642         }
3643
3644         if (copy_to_user(optval, scontext, scontext_len))
3645                 err = -EFAULT;
3646
3647 out_len:
3648         if (put_user(scontext_len, optlen))
3649                 err = -EFAULT;
3650
3651         kfree(scontext);
3652 out:    
3653         return err;
3654 }
3655
3656 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3657 {
3658         u32 peer_secid = SECSID_NULL;
3659         int err = 0;
3660
3661         if (sock && sock->sk->sk_family == PF_UNIX)
3662                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3663         else if (skb)
3664                 security_skb_extlbl_sid(skb,
3665                                         SECINITSID_UNLABELED,
3666                                         &peer_secid);
3667
3668         if (peer_secid == SECSID_NULL)
3669                 err = -EINVAL;
3670         *secid = peer_secid;
3671
3672         return err;
3673 }
3674
3675 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3676 {
3677         return sk_alloc_security(sk, family, priority);
3678 }
3679
3680 static void selinux_sk_free_security(struct sock *sk)
3681 {
3682         sk_free_security(sk);
3683 }
3684
3685 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3686 {
3687         struct sk_security_struct *ssec = sk->sk_security;
3688         struct sk_security_struct *newssec = newsk->sk_security;
3689
3690         newssec->sid = ssec->sid;
3691         newssec->peer_sid = ssec->peer_sid;
3692
3693         selinux_netlbl_sk_security_clone(ssec, newssec);
3694 }
3695
3696 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3697 {
3698         if (!sk)
3699                 *secid = SECINITSID_ANY_SOCKET;
3700         else {
3701                 struct sk_security_struct *sksec = sk->sk_security;
3702
3703                 *secid = sksec->sid;
3704         }
3705 }
3706
3707 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3708 {
3709         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3710         struct sk_security_struct *sksec = sk->sk_security;
3711
3712         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3713             sk->sk_family == PF_UNIX)
3714                 isec->sid = sksec->sid;
3715
3716         selinux_netlbl_sock_graft(sk, parent);
3717 }
3718
3719 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3720                                      struct request_sock *req)
3721 {
3722         struct sk_security_struct *sksec = sk->sk_security;
3723         int err;
3724         u32 newsid;
3725         u32 peersid;
3726
3727         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3728         if (peersid == SECSID_NULL) {
3729                 req->secid = sksec->sid;
3730                 req->peer_secid = SECSID_NULL;
3731                 return 0;
3732         }
3733
3734         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3735         if (err)
3736                 return err;
3737
3738         req->secid = newsid;
3739         req->peer_secid = peersid;
3740         return 0;
3741 }
3742
3743 static void selinux_inet_csk_clone(struct sock *newsk,
3744                                    const struct request_sock *req)
3745 {
3746         struct sk_security_struct *newsksec = newsk->sk_security;
3747
3748         newsksec->sid = req->secid;
3749         newsksec->peer_sid = req->peer_secid;
3750         /* NOTE: Ideally, we should also get the isec->sid for the
3751            new socket in sync, but we don't have the isec available yet.
3752            So we will wait until sock_graft to do it, by which
3753            time it will have been created and available. */
3754
3755         /* We don't need to take any sort of lock here as we are the only
3756          * thread with access to newsksec */
3757         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3758 }
3759
3760 static void selinux_inet_conn_established(struct sock *sk,
3761                                 struct sk_buff *skb)
3762 {
3763         struct sk_security_struct *sksec = sk->sk_security;
3764
3765         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3766 }
3767
3768 static void selinux_req_classify_flow(const struct request_sock *req,
3769                                       struct flowi *fl)
3770 {
3771         fl->secid = req->secid;
3772 }
3773
3774 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3775 {
3776         int err = 0;
3777         u32 perm;
3778         struct nlmsghdr *nlh;
3779         struct socket *sock = sk->sk_socket;
3780         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3781         
3782         if (skb->len < NLMSG_SPACE(0)) {
3783                 err = -EINVAL;
3784                 goto out;
3785         }
3786         nlh = (struct nlmsghdr *)skb->data;
3787         
3788         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3789         if (err) {
3790                 if (err == -EINVAL) {
3791                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3792                                   "SELinux:  unrecognized netlink message"
3793                                   " type=%hu for sclass=%hu\n",
3794                                   nlh->nlmsg_type, isec->sclass);
3795                         if (!selinux_enforcing)
3796                                 err = 0;
3797                 }
3798
3799                 /* Ignore */
3800                 if (err == -ENOENT)
3801                         err = 0;
3802                 goto out;
3803         }
3804
3805         err = socket_has_perm(current, sock, perm);
3806 out:
3807         return err;
3808 }
3809
3810 #ifdef CONFIG_NETFILTER
3811
3812 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3813                                             struct avc_audit_data *ad,
3814                                             u16 family, char *addrp, int len)
3815 {
3816         int err = 0;
3817         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3818         struct socket *sock;
3819         struct inode *inode;
3820         struct inode_security_struct *isec;
3821
3822         sock = sk->sk_socket;
3823         if (!sock)
3824                 goto out;
3825
3826         inode = SOCK_INODE(sock);
3827         if (!inode)
3828                 goto out;
3829
3830         isec = inode->i_security;
3831         
3832         err = sel_netif_sids(dev, &if_sid, NULL);
3833         if (err)
3834                 goto out;
3835
3836         switch (isec->sclass) {
3837         case SECCLASS_UDP_SOCKET:
3838                 netif_perm = NETIF__UDP_SEND;
3839                 node_perm = NODE__UDP_SEND;
3840                 send_perm = UDP_SOCKET__SEND_MSG;
3841                 break;
3842         
3843         case SECCLASS_TCP_SOCKET:
3844                 netif_perm = NETIF__TCP_SEND;
3845                 node_perm = NODE__TCP_SEND;
3846                 send_perm = TCP_SOCKET__SEND_MSG;
3847                 break;
3848
3849         case SECCLASS_DCCP_SOCKET:
3850                 netif_perm = NETIF__DCCP_SEND;
3851                 node_perm = NODE__DCCP_SEND;
3852                 send_perm = DCCP_SOCKET__SEND_MSG;
3853                 break;
3854
3855         default:
3856                 netif_perm = NETIF__RAWIP_SEND;
3857                 node_perm = NODE__RAWIP_SEND;
3858                 break;
3859         }
3860
3861         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3862         if (err)
3863                 goto out;
3864                 
3865         err = security_node_sid(family, addrp, len, &node_sid);
3866         if (err)
3867                 goto out;
3868         
3869         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3870         if (err)
3871                 goto out;
3872
3873         if (send_perm) {
3874                 u32 port_sid;
3875                 
3876                 err = security_port_sid(sk->sk_family,
3877                                         sk->sk_type,
3878                                         sk->sk_protocol,
3879                                         ntohs(ad->u.net.dport),
3880                                         &port_sid);
3881                 if (err)
3882                         goto out;
3883
3884                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3885                                    send_perm, ad);
3886         }
3887 out:
3888         return err;
3889 }
3890
3891 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3892                                               struct sk_buff **pskb,
3893                                               const struct net_device *in,
3894                                               const struct net_device *out,
3895                                               int (*okfn)(struct sk_buff *),
3896                                               u16 family)
3897 {
3898         char *addrp;
3899         int len, err = 0;
3900         struct sock *sk;
3901         struct sk_buff *skb = *pskb;
3902         struct avc_audit_data ad;
3903         struct net_device *dev = (struct net_device *)out;
3904         struct sk_security_struct *sksec;
3905         u8 proto;
3906
3907         sk = skb->sk;
3908         if (!sk)
3909                 goto out;
3910
3911         sksec = sk->sk_security;
3912
3913         AVC_AUDIT_DATA_INIT(&ad, NET);
3914         ad.u.net.netif = dev->name;
3915         ad.u.net.family = family;
3916
3917         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3918         if (err)
3919                 goto out;
3920
3921         if (selinux_compat_net)
3922                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3923                                                        family, addrp, len);
3924         else
3925                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3926                                    PACKET__SEND, &ad);
3927
3928         if (err)
3929                 goto out;
3930
3931         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3932 out:
3933         return err ? NF_DROP : NF_ACCEPT;
3934 }
3935
3936 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3937                                                 struct sk_buff **pskb,
3938                                                 const struct net_device *in,
3939                                                 const struct net_device *out,
3940                                                 int (*okfn)(struct sk_buff *))
3941 {
3942         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3943 }
3944
3945 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3946
3947 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3948                                                 struct sk_buff **pskb,
3949                                                 const struct net_device *in,
3950                                                 const struct net_device *out,
3951                                                 int (*okfn)(struct sk_buff *))
3952 {
3953         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3954 }
3955
3956 #endif  /* IPV6 */
3957
3958 #endif  /* CONFIG_NETFILTER */
3959
3960 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3961 {
3962         int err;
3963
3964         err = secondary_ops->netlink_send(sk, skb);
3965         if (err)
3966                 return err;
3967
3968         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3969                 err = selinux_nlmsg_perm(sk, skb);
3970
3971         return err;
3972 }
3973
3974 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3975 {
3976         int err;
3977         struct avc_audit_data ad;
3978
3979         err = secondary_ops->netlink_recv(skb, capability);
3980         if (err)
3981                 return err;
3982
3983         AVC_AUDIT_DATA_INIT(&ad, CAP);
3984         ad.u.cap = capability;
3985
3986         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3987                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3988 }
3989
3990 static int ipc_alloc_security(struct task_struct *task,
3991                               struct kern_ipc_perm *perm,
3992                               u16 sclass)
3993 {
3994         struct task_security_struct *tsec = task->security;
3995         struct ipc_security_struct *isec;
3996
3997         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3998         if (!isec)
3999                 return -ENOMEM;
4000
4001         isec->sclass = sclass;
4002         isec->ipc_perm = perm;
4003         isec->sid = tsec->sid;
4004         perm->security = isec;
4005
4006         return 0;
4007 }
4008
4009 static void ipc_free_security(struct kern_ipc_perm *perm)
4010 {
4011         struct ipc_security_struct *isec = perm->security;
4012         perm->security = NULL;
4013         kfree(isec);
4014 }
4015
4016 static int msg_msg_alloc_security(struct msg_msg *msg)
4017 {
4018         struct msg_security_struct *msec;
4019
4020         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4021         if (!msec)
4022                 return -ENOMEM;
4023
4024         msec->msg = msg;
4025         msec->sid = SECINITSID_UNLABELED;
4026         msg->security = msec;
4027
4028         return 0;
4029 }
4030
4031 static void msg_msg_free_security(struct msg_msg *msg)
4032 {
4033         struct msg_security_struct *msec = msg->security;
4034
4035         msg->security = NULL;
4036         kfree(msec);
4037 }
4038
4039 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4040                         u32 perms)
4041 {
4042         struct task_security_struct *tsec;
4043         struct ipc_security_struct *isec;
4044         struct avc_audit_data ad;
4045
4046         tsec = current->security;
4047         isec = ipc_perms->security;
4048
4049         AVC_AUDIT_DATA_INIT(&ad, IPC);
4050         ad.u.ipc_id = ipc_perms->key;
4051
4052         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4053 }
4054
4055 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4056 {
4057         return msg_msg_alloc_security(msg);
4058 }
4059
4060 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4061 {
4062         msg_msg_free_security(msg);
4063 }
4064
4065 /* message queue security operations */
4066 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4067 {
4068         struct task_security_struct *tsec;
4069         struct ipc_security_struct *isec;
4070         struct avc_audit_data ad;
4071         int rc;
4072
4073         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4074         if (rc)
4075                 return rc;
4076
4077         tsec = current->security;
4078         isec = msq->q_perm.security;
4079
4080         AVC_AUDIT_DATA_INIT(&ad, IPC);
4081         ad.u.ipc_id = msq->q_perm.key;
4082
4083         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4084                           MSGQ__CREATE, &ad);
4085         if (rc) {
4086                 ipc_free_security(&msq->q_perm);
4087                 return rc;
4088         }
4089         return 0;
4090 }
4091
4092 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4093 {
4094         ipc_free_security(&msq->q_perm);
4095 }
4096
4097 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4098 {
4099         struct task_security_struct *tsec;
4100         struct ipc_security_struct *isec;
4101         struct avc_audit_data ad;
4102
4103         tsec = current->security;
4104         isec = msq->q_perm.security;
4105
4106         AVC_AUDIT_DATA_INIT(&ad, IPC);
4107         ad.u.ipc_id = msq->q_perm.key;
4108
4109         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4110                             MSGQ__ASSOCIATE, &ad);
4111 }
4112
4113 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4114 {
4115         int err;
4116         int perms;
4117
4118         switch(cmd) {
4119         case IPC_INFO:
4120         case MSG_INFO:
4121                 /* No specific object, just general system-wide information. */
4122                 return task_has_system(current, SYSTEM__IPC_INFO);
4123         case IPC_STAT:
4124         case MSG_STAT:
4125                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4126                 break;
4127         case IPC_SET:
4128                 perms = MSGQ__SETATTR;
4129                 break;
4130         case IPC_RMID:
4131                 perms = MSGQ__DESTROY;
4132                 break;
4133         default:
4134                 return 0;
4135         }
4136
4137         err = ipc_has_perm(&msq->q_perm, perms);
4138         return err;
4139 }
4140
4141 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4142 {
4143         struct task_security_struct *tsec;
4144         struct ipc_security_struct *isec;
4145         struct msg_security_struct *msec;
4146         struct avc_audit_data ad;
4147         int rc;
4148
4149         tsec = current->security;
4150         isec = msq->q_perm.security;
4151         msec = msg->security;
4152
4153         /*
4154          * First time through, need to assign label to the message
4155          */
4156         if (msec->sid == SECINITSID_UNLABELED) {
4157                 /*
4158                  * Compute new sid based on current process and
4159                  * message queue this message will be stored in
4160                  */
4161                 rc = security_transition_sid(tsec->sid,
4162                                              isec->sid,
4163                                              SECCLASS_MSG,
4164                                              &msec->sid);
4165                 if (rc)
4166                         return rc;
4167         }
4168
4169         AVC_AUDIT_DATA_INIT(&ad, IPC);
4170         ad.u.ipc_id = msq->q_perm.key;
4171
4172         /* Can this process write to the queue? */
4173         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4174                           MSGQ__WRITE, &ad);
4175         if (!rc)
4176                 /* Can this process send the message */
4177                 rc = avc_has_perm(tsec->sid, msec->sid,
4178                                   SECCLASS_MSG, MSG__SEND, &ad);
4179         if (!rc)
4180                 /* Can the message be put in the queue? */
4181                 rc = avc_has_perm(msec->sid, isec->sid,
4182                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4183
4184         return rc;
4185 }
4186
4187 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4188                                     struct task_struct *target,
4189                                     long type, int mode)
4190 {
4191         struct task_security_struct *tsec;
4192         struct ipc_security_struct *isec;
4193         struct msg_security_struct *msec;
4194         struct avc_audit_data ad;
4195         int rc;
4196
4197         tsec = target->security;
4198         isec = msq->q_perm.security;
4199         msec = msg->security;
4200
4201         AVC_AUDIT_DATA_INIT(&ad, IPC);
4202         ad.u.ipc_id = msq->q_perm.key;
4203
4204         rc = avc_has_perm(tsec->sid, isec->sid,
4205                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4206         if (!rc)
4207                 rc = avc_has_perm(tsec->sid, msec->sid,
4208                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4209         return rc;
4210 }
4211
4212 /* Shared Memory security operations */
4213 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4214 {
4215         struct task_security_struct *tsec;
4216         struct ipc_security_struct *isec;
4217         struct avc_audit_data ad;
4218         int rc;
4219
4220         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4221         if (rc)
4222                 return rc;
4223
4224         tsec = current->security;
4225         isec = shp->shm_perm.security;
4226
4227         AVC_AUDIT_DATA_INIT(&ad, IPC);
4228         ad.u.ipc_id = shp->shm_perm.key;
4229
4230         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4231                           SHM__CREATE, &ad);
4232         if (rc) {
4233                 ipc_free_security(&shp->shm_perm);
4234                 return rc;
4235         }
4236         return 0;
4237 }
4238
4239 static void selinux_shm_free_security(struct shmid_kernel *shp)
4240 {
4241         ipc_free_security(&shp->shm_perm);
4242 }
4243
4244 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4245 {
4246         struct task_security_struct *tsec;
4247         struct ipc_security_struct *isec;
4248         struct avc_audit_data ad;
4249
4250         tsec = current->security;
4251         isec = shp->shm_perm.security;
4252
4253         AVC_AUDIT_DATA_INIT(&ad, IPC);
4254         ad.u.ipc_id = shp->shm_perm.key;
4255
4256         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4257                             SHM__ASSOCIATE, &ad);
4258 }
4259
4260 /* Note, at this point, shp is locked down */
4261 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4262 {
4263         int perms;
4264         int err;
4265
4266         switch(cmd) {
4267         case IPC_INFO:
4268         case SHM_INFO:
4269                 /* No specific object, just general system-wide information. */
4270                 return task_has_system(current, SYSTEM__IPC_INFO);
4271         case IPC_STAT:
4272         case SHM_STAT:
4273                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4274                 break;
4275         case IPC_SET:
4276                 perms = SHM__SETATTR;
4277                 break;
4278         case SHM_LOCK:
4279         case SHM_UNLOCK:
4280                 perms = SHM__LOCK;
4281                 break;
4282         case IPC_RMID:
4283                 perms = SHM__DESTROY;
4284                 break;
4285         default:
4286                 return 0;
4287         }
4288
4289         err = ipc_has_perm(&shp->shm_perm, perms);
4290         return err;
4291 }
4292
4293 static int selinux_shm_shmat(struct shmid_kernel *shp,
4294                              char __user *shmaddr, int shmflg)
4295 {
4296         u32 perms;
4297         int rc;
4298
4299         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4300         if (rc)
4301                 return rc;
4302
4303         if (shmflg & SHM_RDONLY)
4304                 perms = SHM__READ;
4305         else
4306                 perms = SHM__READ | SHM__WRITE;
4307
4308         return ipc_has_perm(&shp->shm_perm, perms);
4309 }
4310
4311 /* Semaphore security operations */
4312 static int selinux_sem_alloc_security(struct sem_array *sma)
4313 {
4314         struct task_security_struct *tsec;
4315         struct ipc_security_struct *isec;
4316         struct avc_audit_data ad;
4317         int rc;
4318
4319         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4320         if (rc)
4321                 return rc;
4322
4323         tsec = current->security;
4324         isec = sma->sem_perm.security;
4325
4326         AVC_AUDIT_DATA_INIT(&ad, IPC);
4327         ad.u.ipc_id = sma->sem_perm.key;
4328
4329         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4330                           SEM__CREATE, &ad);
4331         if (rc) {
4332                 ipc_free_security(&sma->sem_perm);
4333                 return rc;
4334         }
4335         return 0;
4336 }
4337
4338 static void selinux_sem_free_security(struct sem_array *sma)
4339 {
4340         ipc_free_security(&sma->sem_perm);
4341 }
4342
4343 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4344 {
4345         struct task_security_struct *tsec;
4346         struct ipc_security_struct *isec;
4347         struct avc_audit_data ad;
4348
4349         tsec = current->security;
4350         isec = sma->sem_perm.security;
4351
4352         AVC_AUDIT_DATA_INIT(&ad, IPC);
4353         ad.u.ipc_id = sma->sem_perm.key;
4354
4355         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4356                             SEM__ASSOCIATE, &ad);
4357 }
4358
4359 /* Note, at this point, sma is locked down */
4360 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4361 {
4362         int err;
4363         u32 perms;
4364
4365         switch(cmd) {
4366         case IPC_INFO:
4367         case SEM_INFO:
4368                 /* No specific object, just general system-wide information. */
4369                 return task_has_system(current, SYSTEM__IPC_INFO);
4370         case GETPID:
4371         case GETNCNT:
4372         case GETZCNT:
4373                 perms = SEM__GETATTR;
4374                 break;
4375         case GETVAL:
4376         case GETALL:
4377                 perms = SEM__READ;
4378                 break;
4379         case SETVAL:
4380         case SETALL:
4381                 perms = SEM__WRITE;
4382                 break;
4383         case IPC_RMID:
4384                 perms = SEM__DESTROY;
4385                 break;
4386         case IPC_SET:
4387                 perms = SEM__SETATTR;
4388                 break;
4389         case IPC_STAT:
4390         case SEM_STAT:
4391                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4392                 break;
4393         default:
4394                 return 0;
4395         }
4396
4397         err = ipc_has_perm(&sma->sem_perm, perms);
4398         return err;
4399 }
4400
4401 static int selinux_sem_semop(struct sem_array *sma,
4402                              struct sembuf *sops, unsigned nsops, int alter)
4403 {
4404         u32 perms;
4405
4406         if (alter)
4407                 perms = SEM__READ | SEM__WRITE;
4408         else
4409                 perms = SEM__READ;
4410
4411         return ipc_has_perm(&sma->sem_perm, perms);
4412 }
4413
4414 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4415 {
4416         u32 av = 0;
4417
4418         av = 0;
4419         if (flag & S_IRUGO)
4420                 av |= IPC__UNIX_READ;
4421         if (flag & S_IWUGO)
4422                 av |= IPC__UNIX_WRITE;
4423
4424         if (av == 0)
4425                 return 0;
4426
4427         return ipc_has_perm(ipcp, av);
4428 }
4429
4430 /* module stacking operations */
4431 static int selinux_register_security (const char *name, struct security_operations *ops)
4432 {
4433         if (secondary_ops != original_ops) {
4434                 printk(KERN_INFO "%s:  There is already a secondary security "
4435                        "module registered.\n", __FUNCTION__);
4436                 return -EINVAL;
4437         }
4438
4439         secondary_ops = ops;
4440
4441         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4442                __FUNCTION__,
4443                name);
4444
4445         return 0;
4446 }
4447
4448 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4449 {
4450         if (ops != secondary_ops) {
4451                 printk (KERN_INFO "%s:  trying to unregister a security module "
4452                         "that is not registered.\n", __FUNCTION__);
4453                 return -EINVAL;
4454         }
4455
4456         secondary_ops = original_ops;
4457
4458         return 0;
4459 }
4460
4461 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4462 {
4463         if (inode)
4464                 inode_doinit_with_dentry(inode, dentry);
4465 }
4466
4467 static int selinux_getprocattr(struct task_struct *p,
4468                                char *name, void *value, size_t size)
4469 {
4470         struct task_security_struct *tsec;
4471         u32 sid;
4472         int error;
4473
4474         if (current != p) {
4475                 error = task_has_perm(current, p, PROCESS__GETATTR);
4476                 if (error)
4477                         return error;
4478         }
4479
4480         tsec = p->security;
4481
4482         if (!strcmp(name, "current"))
4483                 sid = tsec->sid;
4484         else if (!strcmp(name, "prev"))
4485                 sid = tsec->osid;
4486         else if (!strcmp(name, "exec"))
4487                 sid = tsec->exec_sid;
4488         else if (!strcmp(name, "fscreate"))
4489                 sid = tsec->create_sid;
4490         else if (!strcmp(name, "keycreate"))
4491                 sid = tsec->keycreate_sid;
4492         else if (!strcmp(name, "sockcreate"))
4493                 sid = tsec->sockcreate_sid;
4494         else
4495                 return -EINVAL;
4496
4497         if (!sid)
4498                 return 0;
4499
4500         return selinux_getsecurity(sid, value, size);
4501 }
4502
4503 static int selinux_setprocattr(struct task_struct *p,
4504                                char *name, void *value, size_t size)
4505 {
4506         struct task_security_struct *tsec;
4507         u32 sid = 0;
4508         int error;
4509         char *str = value;
4510
4511         if (current != p) {
4512                 /* SELinux only allows a process to change its own
4513                    security attributes. */
4514                 return -EACCES;
4515         }
4516
4517         /*
4518          * Basic control over ability to set these attributes at all.
4519          * current == p, but we'll pass them separately in case the
4520          * above restriction is ever removed.
4521          */
4522         if (!strcmp(name, "exec"))
4523                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4524         else if (!strcmp(name, "fscreate"))
4525                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4526         else if (!strcmp(name, "keycreate"))
4527                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4528         else if (!strcmp(name, "sockcreate"))
4529                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4530         else if (!strcmp(name, "current"))
4531                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4532         else
4533                 error = -EINVAL;
4534         if (error)
4535                 return error;
4536
4537         /* Obtain a SID for the context, if one was specified. */
4538         if (size && str[1] && str[1] != '\n') {
4539                 if (str[size-1] == '\n') {
4540                         str[size-1] = 0;
4541                         size--;
4542                 }
4543                 error = security_context_to_sid(value, size, &sid);
4544                 if (error)
4545                         return error;
4546         }
4547
4548         /* Permission checking based on the specified context is
4549            performed during the actual operation (execve,
4550            open/mkdir/...), when we know the full context of the
4551            operation.  See selinux_bprm_set_security for the execve
4552            checks and may_create for the file creation checks. The
4553            operation will then fail if the context is not permitted. */
4554         tsec = p->security;
4555         if (!strcmp(name, "exec"))
4556                 tsec->exec_sid = sid;
4557         else if (!strcmp(name, "fscreate"))
4558                 tsec->create_sid = sid;
4559         else if (!strcmp(name, "keycreate")) {
4560                 error = may_create_key(sid, p);
4561                 if (error)
4562                         return error;
4563                 tsec->keycreate_sid = sid;
4564         } else if (!strcmp(name, "sockcreate"))
4565                 tsec->sockcreate_sid = sid;
4566         else if (!strcmp(name, "current")) {
4567                 struct av_decision avd;
4568
4569                 if (sid == 0)
4570                         return -EINVAL;
4571
4572                 /* Only allow single threaded processes to change context */
4573                 if (atomic_read(&p->mm->mm_users) != 1) {
4574                         struct task_struct *g, *t;
4575                         struct mm_struct *mm = p->mm;
4576                         read_lock(&tasklist_lock);
4577                         do_each_thread(g, t)
4578                                 if (t->mm == mm && t != p) {
4579                                         read_unlock(&tasklist_lock);
4580                                         return -EPERM;
4581                                 }
4582                         while_each_thread(g, t);
4583                         read_unlock(&tasklist_lock);
4584                 }
4585
4586                 /* Check permissions for the transition. */
4587                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4588                                      PROCESS__DYNTRANSITION, NULL);
4589                 if (error)
4590                         return error;
4591
4592                 /* Check for ptracing, and update the task SID if ok.
4593                    Otherwise, leave SID unchanged and fail. */
4594                 task_lock(p);
4595                 if (p->ptrace & PT_PTRACED) {
4596                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4597                                                      SECCLASS_PROCESS,
4598                                                      PROCESS__PTRACE, &avd);
4599                         if (!error)
4600                                 tsec->sid = sid;
4601                         task_unlock(p);
4602                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4603                                   PROCESS__PTRACE, &avd, error, NULL);
4604                         if (error)
4605                                 return error;
4606                 } else {
4607                         tsec->sid = sid;
4608                         task_unlock(p);
4609                 }
4610         }
4611         else
4612                 return -EINVAL;
4613
4614         return size;
4615 }
4616
4617 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4618 {
4619         return security_sid_to_context(secid, secdata, seclen);
4620 }
4621
4622 static void selinux_release_secctx(char *secdata, u32 seclen)
4623 {
4624         if (secdata)
4625                 kfree(secdata);
4626 }
4627
4628 #ifdef CONFIG_KEYS
4629
4630 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4631                              unsigned long flags)
4632 {
4633         struct task_security_struct *tsec = tsk->security;
4634         struct key_security_struct *ksec;
4635
4636         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4637         if (!ksec)
4638                 return -ENOMEM;
4639
4640         ksec->obj = k;
4641         if (tsec->keycreate_sid)
4642                 ksec->sid = tsec->keycreate_sid;
4643         else
4644                 ksec->sid = tsec->sid;
4645         k->security = ksec;
4646
4647         return 0;
4648 }
4649
4650 static void selinux_key_free(struct key *k)
4651 {
4652         struct key_security_struct *ksec = k->security;
4653
4654         k->security = NULL;
4655         kfree(ksec);
4656 }
4657
4658 static int selinux_key_permission(key_ref_t key_ref,
4659                             struct task_struct *ctx,
4660                             key_perm_t perm)
4661 {
4662         struct key *key;
4663         struct task_security_struct *tsec;
4664         struct key_security_struct *ksec;
4665
4666         key = key_ref_to_ptr(key_ref);
4667
4668         tsec = ctx->security;
4669         ksec = key->security;
4670
4671         /* if no specific permissions are requested, we skip the
4672            permission check. No serious, additional covert channels
4673            appear to be created. */
4674         if (perm == 0)
4675                 return 0;
4676
4677         return avc_has_perm(tsec->sid, ksec->sid,
4678                             SECCLASS_KEY, perm, NULL);
4679 }
4680
4681 #endif
4682
4683 static struct security_operations selinux_ops = {
4684         .ptrace =                       selinux_ptrace,
4685         .capget =                       selinux_capget,
4686         .capset_check =                 selinux_capset_check,
4687         .capset_set =                   selinux_capset_set,
4688         .sysctl =                       selinux_sysctl,
4689         .capable =                      selinux_capable,
4690         .quotactl =                     selinux_quotactl,
4691         .quota_on =                     selinux_quota_on,
4692         .syslog =                       selinux_syslog,
4693         .vm_enough_memory =             selinux_vm_enough_memory,
4694
4695         .netlink_send =                 selinux_netlink_send,
4696         .netlink_recv =                 selinux_netlink_recv,
4697
4698         .bprm_alloc_security =          selinux_bprm_alloc_security,
4699         .bprm_free_security =           selinux_bprm_free_security,
4700         .bprm_apply_creds =             selinux_bprm_apply_creds,
4701         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4702         .bprm_set_security =            selinux_bprm_set_security,
4703         .bprm_check_security =          selinux_bprm_check_security,
4704         .bprm_secureexec =              selinux_bprm_secureexec,
4705
4706         .sb_alloc_security =            selinux_sb_alloc_security,
4707         .sb_free_security =             selinux_sb_free_security,
4708         .sb_copy_data =                 selinux_sb_copy_data,
4709         .sb_kern_mount =                selinux_sb_kern_mount,
4710         .sb_statfs =                    selinux_sb_statfs,
4711         .sb_mount =                     selinux_mount,
4712         .sb_umount =                    selinux_umount,
4713
4714         .inode_alloc_security =         selinux_inode_alloc_security,
4715         .inode_free_security =          selinux_inode_free_security,
4716         .inode_init_security =          selinux_inode_init_security,
4717         .inode_create =                 selinux_inode_create,
4718         .inode_link =                   selinux_inode_link,
4719         .inode_unlink =                 selinux_inode_unlink,
4720         .inode_symlink =                selinux_inode_symlink,
4721         .inode_mkdir =                  selinux_inode_mkdir,
4722         .inode_rmdir =                  selinux_inode_rmdir,
4723         .inode_mknod =                  selinux_inode_mknod,
4724         .inode_rename =                 selinux_inode_rename,
4725         .inode_readlink =               selinux_inode_readlink,
4726         .inode_follow_link =            selinux_inode_follow_link,
4727         .inode_permission =             selinux_inode_permission,
4728         .inode_setattr =                selinux_inode_setattr,
4729         .inode_getattr =                selinux_inode_getattr,
4730         .inode_setxattr =               selinux_inode_setxattr,
4731         .inode_post_setxattr =          selinux_inode_post_setxattr,
4732         .inode_getxattr =               selinux_inode_getxattr,
4733         .inode_listxattr =              selinux_inode_listxattr,
4734         .inode_removexattr =            selinux_inode_removexattr,
4735         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4736         .inode_getsecurity =            selinux_inode_getsecurity,
4737         .inode_setsecurity =            selinux_inode_setsecurity,
4738         .inode_listsecurity =           selinux_inode_listsecurity,
4739
4740         .file_permission =              selinux_file_permission,
4741         .file_alloc_security =          selinux_file_alloc_security,
4742         .file_free_security =           selinux_file_free_security,
4743         .file_ioctl =                   selinux_file_ioctl,
4744         .file_mmap =                    selinux_file_mmap,
4745         .file_mprotect =                selinux_file_mprotect,
4746         .file_lock =                    selinux_file_lock,
4747         .file_fcntl =                   selinux_file_fcntl,
4748         .file_set_fowner =              selinux_file_set_fowner,
4749         .file_send_sigiotask =          selinux_file_send_sigiotask,
4750         .file_receive =                 selinux_file_receive,
4751
4752         .task_create =                  selinux_task_create,
4753         .task_alloc_security =          selinux_task_alloc_security,
4754         .task_free_security =           selinux_task_free_security,
4755         .task_setuid =                  selinux_task_setuid,
4756         .task_post_setuid =             selinux_task_post_setuid,
4757         .task_setgid =                  selinux_task_setgid,
4758         .task_setpgid =                 selinux_task_setpgid,
4759         .task_getpgid =                 selinux_task_getpgid,
4760         .task_getsid =                  selinux_task_getsid,
4761         .task_getsecid =                selinux_task_getsecid,
4762         .task_setgroups =               selinux_task_setgroups,
4763         .task_setnice =                 selinux_task_setnice,
4764         .task_setioprio =               selinux_task_setioprio,
4765         .task_getioprio =               selinux_task_getioprio,
4766         .task_setrlimit =               selinux_task_setrlimit,
4767         .task_setscheduler =            selinux_task_setscheduler,
4768         .task_getscheduler =            selinux_task_getscheduler,
4769         .task_movememory =              selinux_task_movememory,
4770         .task_kill =                    selinux_task_kill,
4771         .task_wait =                    selinux_task_wait,
4772         .task_prctl =                   selinux_task_prctl,
4773         .task_reparent_to_init =        selinux_task_reparent_to_init,
4774         .task_to_inode =                selinux_task_to_inode,
4775
4776         .ipc_permission =               selinux_ipc_permission,
4777
4778         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4779         .msg_msg_free_security =        selinux_msg_msg_free_security,
4780
4781         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4782         .msg_queue_free_security =      selinux_msg_queue_free_security,
4783         .msg_queue_associate =          selinux_msg_queue_associate,
4784         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4785         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4786         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4787
4788         .shm_alloc_security =           selinux_shm_alloc_security,
4789         .shm_free_security =            selinux_shm_free_security,
4790         .shm_associate =                selinux_shm_associate,
4791         .shm_shmctl =                   selinux_shm_shmctl,
4792         .shm_shmat =                    selinux_shm_shmat,
4793
4794         .sem_alloc_security =           selinux_sem_alloc_security,
4795         .sem_free_security =            selinux_sem_free_security,
4796         .sem_associate =                selinux_sem_associate,
4797         .sem_semctl =                   selinux_sem_semctl,
4798         .sem_semop =                    selinux_sem_semop,
4799
4800         .register_security =            selinux_register_security,
4801         .unregister_security =          selinux_unregister_security,
4802
4803         .d_instantiate =                selinux_d_instantiate,
4804
4805         .getprocattr =                  selinux_getprocattr,
4806         .setprocattr =                  selinux_setprocattr,
4807
4808         .secid_to_secctx =              selinux_secid_to_secctx,
4809         .release_secctx =               selinux_release_secctx,
4810
4811         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4812         .unix_may_send =                selinux_socket_unix_may_send,
4813
4814         .socket_create =                selinux_socket_create,
4815         .socket_post_create =           selinux_socket_post_create,
4816         .socket_bind =                  selinux_socket_bind,
4817         .socket_connect =               selinux_socket_connect,
4818         .socket_listen =                selinux_socket_listen,
4819         .socket_accept =                selinux_socket_accept,
4820         .socket_sendmsg =               selinux_socket_sendmsg,
4821         .socket_recvmsg =               selinux_socket_recvmsg,
4822         .socket_getsockname =           selinux_socket_getsockname,
4823         .socket_getpeername =           selinux_socket_getpeername,
4824         .socket_getsockopt =            selinux_socket_getsockopt,
4825         .socket_setsockopt =            selinux_socket_setsockopt,
4826         .socket_shutdown =              selinux_socket_shutdown,
4827         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4828         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4829         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4830         .sk_alloc_security =            selinux_sk_alloc_security,
4831         .sk_free_security =             selinux_sk_free_security,
4832         .sk_clone_security =            selinux_sk_clone_security,
4833         .sk_getsecid =                  selinux_sk_getsecid,
4834         .sock_graft =                   selinux_sock_graft,
4835         .inet_conn_request =            selinux_inet_conn_request,
4836         .inet_csk_clone =               selinux_inet_csk_clone,
4837         .inet_conn_established =        selinux_inet_conn_established,
4838         .req_classify_flow =            selinux_req_classify_flow,
4839
4840 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4841         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4842         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4843         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4844         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4845         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4846         .xfrm_state_free_security =     selinux_xfrm_state_free,
4847         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4848         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4849         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4850         .xfrm_decode_session =          selinux_xfrm_decode_session,
4851 #endif
4852
4853 #ifdef CONFIG_KEYS
4854         .key_alloc =                    selinux_key_alloc,
4855         .key_free =                     selinux_key_free,
4856         .key_permission =               selinux_key_permission,
4857 #endif
4858 };
4859
4860 static __init int selinux_init(void)
4861 {
4862         struct task_security_struct *tsec;
4863
4864         if (!selinux_enabled) {
4865                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4866                 return 0;
4867         }
4868
4869         printk(KERN_INFO "SELinux:  Initializing.\n");
4870
4871         /* Set the security state for the initial task. */
4872         if (task_alloc_security(current))
4873                 panic("SELinux:  Failed to initialize initial task.\n");
4874         tsec = current->security;
4875         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4876
4877         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4878                                             sizeof(struct inode_security_struct),
4879                                             0, SLAB_PANIC, NULL, NULL);
4880         avc_init();
4881
4882         original_ops = secondary_ops = security_ops;
4883         if (!secondary_ops)
4884                 panic ("SELinux: No initial security operations\n");
4885         if (register_security (&selinux_ops))
4886                 panic("SELinux: Unable to register with kernel.\n");
4887
4888         if (selinux_enforcing) {
4889                 printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4890         } else {
4891                 printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4892         }
4893
4894 #ifdef CONFIG_KEYS
4895         /* Add security information to initial keyrings */
4896         selinux_key_alloc(&root_user_keyring, current,
4897                           KEY_ALLOC_NOT_IN_QUOTA);
4898         selinux_key_alloc(&root_session_keyring, current,
4899                           KEY_ALLOC_NOT_IN_QUOTA);
4900 #endif
4901
4902         return 0;
4903 }
4904
4905 void selinux_complete_init(void)
4906 {
4907         printk(KERN_INFO "SELinux:  Completing initialization.\n");
4908
4909         /* Set up any superblocks initialized prior to the policy load. */
4910         printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4911         spin_lock(&sb_lock);
4912         spin_lock(&sb_security_lock);
4913 next_sb:
4914         if (!list_empty(&superblock_security_head)) {
4915                 struct superblock_security_struct *sbsec =
4916                                 list_entry(superblock_security_head.next,
4917                                            struct superblock_security_struct,
4918                                            list);
4919                 struct super_block *sb = sbsec->sb;
4920                 sb->s_count++;
4921                 spin_unlock(&sb_security_lock);
4922                 spin_unlock(&sb_lock);
4923                 down_read(&sb->s_umount);
4924                 if (sb->s_root)
4925                         superblock_doinit(sb, NULL);
4926                 drop_super(sb);
4927                 spin_lock(&sb_lock);
4928                 spin_lock(&sb_security_lock);
4929                 list_del_init(&sbsec->list);
4930                 goto next_sb;
4931         }
4932         spin_unlock(&sb_security_lock);
4933         spin_unlock(&sb_lock);
4934 }
4935
4936 /* SELinux requires early initialization in order to label
4937    all processes and objects when they are created. */
4938 security_initcall(selinux_init);
4939
4940 #if defined(CONFIG_NETFILTER)
4941
4942 static struct nf_hook_ops selinux_ipv4_op = {
4943         .hook =         selinux_ipv4_postroute_last,
4944         .owner =        THIS_MODULE,
4945         .pf =           PF_INET,
4946         .hooknum =      NF_IP_POST_ROUTING,
4947         .priority =     NF_IP_PRI_SELINUX_LAST,
4948 };
4949
4950 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4951
4952 static struct nf_hook_ops selinux_ipv6_op = {
4953         .hook =         selinux_ipv6_postroute_last,
4954         .owner =        THIS_MODULE,
4955         .pf =           PF_INET6,
4956         .hooknum =      NF_IP6_POST_ROUTING,
4957         .priority =     NF_IP6_PRI_SELINUX_LAST,
4958 };
4959
4960 #endif  /* IPV6 */
4961
4962 static int __init selinux_nf_ip_init(void)
4963 {
4964         int err = 0;
4965
4966         if (!selinux_enabled)
4967                 goto out;
4968                 
4969         printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4970         
4971         err = nf_register_hook(&selinux_ipv4_op);
4972         if (err)
4973                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4974
4975 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4976
4977         err = nf_register_hook(&selinux_ipv6_op);
4978         if (err)
4979                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4980
4981 #endif  /* IPV6 */
4982
4983 out:
4984         return err;
4985 }
4986
4987 __initcall(selinux_nf_ip_init);
4988
4989 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4990 static void selinux_nf_ip_exit(void)
4991 {
4992         printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4993
4994         nf_unregister_hook(&selinux_ipv4_op);
4995 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4996         nf_unregister_hook(&selinux_ipv6_op);
4997 #endif  /* IPV6 */
4998 }
4999 #endif
5000
5001 #else /* CONFIG_NETFILTER */
5002
5003 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5004 #define selinux_nf_ip_exit()
5005 #endif
5006
5007 #endif /* CONFIG_NETFILTER */
5008
5009 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5010 int selinux_disable(void)
5011 {
5012         extern void exit_sel_fs(void);
5013         static int selinux_disabled = 0;
5014
5015         if (ss_initialized) {
5016                 /* Not permitted after initial policy load. */
5017                 return -EINVAL;
5018         }
5019
5020         if (selinux_disabled) {
5021                 /* Only do this once. */
5022                 return -EINVAL;
5023         }
5024
5025         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5026
5027         selinux_disabled = 1;
5028         selinux_enabled = 0;
5029
5030         /* Reset security_ops to the secondary module, dummy or capability. */
5031         security_ops = secondary_ops;
5032
5033         /* Unregister netfilter hooks. */
5034         selinux_nf_ip_exit();
5035
5036         /* Unregister selinuxfs. */
5037         exit_sel_fs();
5038
5039         return 0;
5040 }
5041 #endif
5042
5043