2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
49 #include "xfs_utils.h"
51 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54 xlog_recover_item_t *item);
56 STATIC void xlog_recover_check_summary(xlog_t *);
58 #define xlog_recover_check_summary(log)
63 * Sector aligned buffer routines for buffer create/read/write/access
66 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
67 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
68 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
69 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
76 ASSERT(num_bblks > 0);
78 if (log->l_sectbb_log) {
80 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
81 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
95 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
106 if (log->l_sectbb_log) {
107 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
108 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
112 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
115 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
118 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
119 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121 xfsbdstrat(log->l_mp, bp);
122 error = xfs_iowait(bp);
124 xfs_ioerror_alert("xlog_bread", log->l_mp,
125 bp, XFS_BUF_ADDR(bp));
130 * Write out the buffer at the given block for the given number of blocks.
131 * The buffer is kept locked across the write and is returned locked.
132 * This can only be used for synchronous log writes.
143 if (log->l_sectbb_log) {
144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 XFS_BUF_ZEROFLAGS(bp);
155 XFS_BUF_PSEMA(bp, PRIBIO);
156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
159 if ((error = xfs_bwrite(log->l_mp, bp)))
160 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 bp, XFS_BUF_ADDR(bp));
174 if (!log->l_sectbb_log)
175 return XFS_BUF_PTR(bp);
177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 ASSERT(XFS_BUF_SIZE(bp) >=
179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
185 * dump debug superblock and log record information
188 xlog_header_check_dump(
190 xlog_rec_header_t *head)
194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
195 for (b = 0; b < 16; b++)
196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 cmn_err(CE_DEBUG, " log : uuid = ");
199 for (b = 0; b < 16; b++)
200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
204 #define xlog_header_check_dump(mp, head)
208 * check log record header for recovery
211 xlog_header_check_recover(
213 xlog_rec_header_t *head)
215 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
218 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 * a dirty log created in IRIX.
222 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
224 "XFS: dirty log written in incompatible format - can't recover");
225 xlog_header_check_dump(mp, head);
226 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 XFS_ERRLEVEL_HIGH, mp);
228 return XFS_ERROR(EFSCORRUPTED);
229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
231 "XFS: dirty log entry has mismatched uuid - can't recover");
232 xlog_header_check_dump(mp, head);
233 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 XFS_ERRLEVEL_HIGH, mp);
235 return XFS_ERROR(EFSCORRUPTED);
241 * read the head block of the log and check the header
244 xlog_header_check_mount(
246 xlog_rec_header_t *head)
248 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
250 if (uuid_is_nil(&head->h_fs_uuid)) {
252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 * h_fs_uuid is nil, we assume this log was last mounted
254 * by IRIX and continue.
256 xlog_warn("XFS: nil uuid in log - IRIX style log");
257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 xlog_warn("XFS: log has mismatched uuid - can't recover");
259 xlog_header_check_dump(mp, head);
260 XFS_ERROR_REPORT("xlog_header_check_mount",
261 XFS_ERRLEVEL_HIGH, mp);
262 return XFS_ERROR(EFSCORRUPTED);
273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
275 if (XFS_BUF_GETERROR(bp)) {
277 * We're not going to bother about retrying
278 * this during recovery. One strike!
280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 xfs_ioerror_alert("xlog_recover_iodone",
282 mp, bp, XFS_BUF_ADDR(bp));
283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
285 XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 XFS_BUF_CLR_IODONE_FUNC(bp);
291 * This routine finds (to an approximation) the first block in the physical
292 * log which contains the given cycle. It uses a binary search algorithm.
293 * Note that the algorithm can not be perfect because the disk will not
294 * necessarily be perfect.
297 xlog_find_cycle_start(
300 xfs_daddr_t first_blk,
301 xfs_daddr_t *last_blk,
309 mid_blk = BLK_AVG(first_blk, *last_blk);
310 while (mid_blk != first_blk && mid_blk != *last_blk) {
311 if ((error = xlog_bread(log, mid_blk, 1, bp)))
313 offset = xlog_align(log, mid_blk, 1, bp);
314 mid_cycle = xlog_get_cycle(offset);
315 if (mid_cycle == cycle) {
317 /* last_half_cycle == mid_cycle */
320 /* first_half_cycle == mid_cycle */
322 mid_blk = BLK_AVG(first_blk, *last_blk);
324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 (mid_blk == *last_blk && mid_blk-1 == first_blk));
331 * Check that the range of blocks does not contain the cycle number
332 * given. The scan needs to occur from front to back and the ptr into the
333 * region must be updated since a later routine will need to perform another
334 * test. If the region is completely good, we end up returning the same
337 * Set blkno to -1 if we encounter no errors. This is an invalid block number
338 * since we don't ever expect logs to get this large.
341 xlog_find_verify_cycle(
343 xfs_daddr_t start_blk,
345 uint stop_on_cycle_no,
346 xfs_daddr_t *new_blk)
352 xfs_caddr_t buf = NULL;
355 bufblks = 1 << ffs(nbblks);
357 while (!(bp = xlog_get_bp(log, bufblks))) {
358 /* can't get enough memory to do everything in one big buffer */
360 if (bufblks <= log->l_sectbb_log)
364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
367 bcount = min(bufblks, (start_blk + nbblks - i));
369 if ((error = xlog_bread(log, i, bcount, bp)))
372 buf = xlog_align(log, i, bcount, bp);
373 for (j = 0; j < bcount; j++) {
374 cycle = xlog_get_cycle(buf);
375 if (cycle == stop_on_cycle_no) {
392 * Potentially backup over partial log record write.
394 * In the typical case, last_blk is the number of the block directly after
395 * a good log record. Therefore, we subtract one to get the block number
396 * of the last block in the given buffer. extra_bblks contains the number
397 * of blocks we would have read on a previous read. This happens when the
398 * last log record is split over the end of the physical log.
400 * extra_bblks is the number of blocks potentially verified on a previous
401 * call to this routine.
404 xlog_find_verify_log_record(
406 xfs_daddr_t start_blk,
407 xfs_daddr_t *last_blk,
412 xfs_caddr_t offset = NULL;
413 xlog_rec_header_t *head = NULL;
416 int num_blks = *last_blk - start_blk;
419 ASSERT(start_blk != 0 || *last_blk != start_blk);
421 if (!(bp = xlog_get_bp(log, num_blks))) {
422 if (!(bp = xlog_get_bp(log, 1)))
426 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
428 offset = xlog_align(log, start_blk, num_blks, bp);
429 offset += ((num_blks - 1) << BBSHIFT);
432 for (i = (*last_blk) - 1; i >= 0; i--) {
434 /* valid log record not found */
436 "XFS: Log inconsistent (didn't find previous header)");
438 error = XFS_ERROR(EIO);
443 if ((error = xlog_bread(log, i, 1, bp)))
445 offset = xlog_align(log, i, 1, bp);
448 head = (xlog_rec_header_t *)offset;
450 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
458 * We hit the beginning of the physical log & still no header. Return
459 * to caller. If caller can handle a return of -1, then this routine
460 * will be called again for the end of the physical log.
468 * We have the final block of the good log (the first block
469 * of the log record _before_ the head. So we check the uuid.
471 if ((error = xlog_header_check_mount(log->l_mp, head)))
475 * We may have found a log record header before we expected one.
476 * last_blk will be the 1st block # with a given cycle #. We may end
477 * up reading an entire log record. In this case, we don't want to
478 * reset last_blk. Only when last_blk points in the middle of a log
479 * record do we update last_blk.
481 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
482 uint h_size = be32_to_cpu(head->h_size);
484 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
485 if (h_size % XLOG_HEADER_CYCLE_SIZE)
491 if (*last_blk - i + extra_bblks !=
492 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
501 * Head is defined to be the point of the log where the next log write
502 * write could go. This means that incomplete LR writes at the end are
503 * eliminated when calculating the head. We aren't guaranteed that previous
504 * LR have complete transactions. We only know that a cycle number of
505 * current cycle number -1 won't be present in the log if we start writing
506 * from our current block number.
508 * last_blk contains the block number of the first block with a given
511 * Return: zero if normal, non-zero if error.
516 xfs_daddr_t *return_head_blk)
520 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
522 uint first_half_cycle, last_half_cycle;
524 int error, log_bbnum = log->l_logBBsize;
526 /* Is the end of the log device zeroed? */
527 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
528 *return_head_blk = first_blk;
530 /* Is the whole lot zeroed? */
532 /* Linux XFS shouldn't generate totally zeroed logs -
533 * mkfs etc write a dummy unmount record to a fresh
534 * log so we can store the uuid in there
536 xlog_warn("XFS: totally zeroed log");
541 xlog_warn("XFS: empty log check failed");
545 first_blk = 0; /* get cycle # of 1st block */
546 bp = xlog_get_bp(log, 1);
549 if ((error = xlog_bread(log, 0, 1, bp)))
551 offset = xlog_align(log, 0, 1, bp);
552 first_half_cycle = xlog_get_cycle(offset);
554 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
555 if ((error = xlog_bread(log, last_blk, 1, bp)))
557 offset = xlog_align(log, last_blk, 1, bp);
558 last_half_cycle = xlog_get_cycle(offset);
559 ASSERT(last_half_cycle != 0);
562 * If the 1st half cycle number is equal to the last half cycle number,
563 * then the entire log is stamped with the same cycle number. In this
564 * case, head_blk can't be set to zero (which makes sense). The below
565 * math doesn't work out properly with head_blk equal to zero. Instead,
566 * we set it to log_bbnum which is an invalid block number, but this
567 * value makes the math correct. If head_blk doesn't changed through
568 * all the tests below, *head_blk is set to zero at the very end rather
569 * than log_bbnum. In a sense, log_bbnum and zero are the same block
570 * in a circular file.
572 if (first_half_cycle == last_half_cycle) {
574 * In this case we believe that the entire log should have
575 * cycle number last_half_cycle. We need to scan backwards
576 * from the end verifying that there are no holes still
577 * containing last_half_cycle - 1. If we find such a hole,
578 * then the start of that hole will be the new head. The
579 * simple case looks like
580 * x | x ... | x - 1 | x
581 * Another case that fits this picture would be
582 * x | x + 1 | x ... | x
583 * In this case the head really is somewhere at the end of the
584 * log, as one of the latest writes at the beginning was
587 * x | x + 1 | x ... | x - 1 | x
588 * This is really the combination of the above two cases, and
589 * the head has to end up at the start of the x-1 hole at the
592 * In the 256k log case, we will read from the beginning to the
593 * end of the log and search for cycle numbers equal to x-1.
594 * We don't worry about the x+1 blocks that we encounter,
595 * because we know that they cannot be the head since the log
598 head_blk = log_bbnum;
599 stop_on_cycle = last_half_cycle - 1;
602 * In this case we want to find the first block with cycle
603 * number matching last_half_cycle. We expect the log to be
606 * The first block with cycle number x (last_half_cycle) will
607 * be where the new head belongs. First we do a binary search
608 * for the first occurrence of last_half_cycle. The binary
609 * search may not be totally accurate, so then we scan back
610 * from there looking for occurrences of last_half_cycle before
611 * us. If that backwards scan wraps around the beginning of
612 * the log, then we look for occurrences of last_half_cycle - 1
613 * at the end of the log. The cases we're looking for look
615 * x + 1 ... | x | x + 1 | x ...
616 * ^ binary search stopped here
618 * x + 1 ... | x ... | x - 1 | x
619 * <---------> less than scan distance
621 stop_on_cycle = last_half_cycle;
622 if ((error = xlog_find_cycle_start(log, bp, first_blk,
623 &head_blk, last_half_cycle)))
628 * Now validate the answer. Scan back some number of maximum possible
629 * blocks and make sure each one has the expected cycle number. The
630 * maximum is determined by the total possible amount of buffering
631 * in the in-core log. The following number can be made tighter if
632 * we actually look at the block size of the filesystem.
634 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
635 if (head_blk >= num_scan_bblks) {
637 * We are guaranteed that the entire check can be performed
640 start_blk = head_blk - num_scan_bblks;
641 if ((error = xlog_find_verify_cycle(log,
642 start_blk, num_scan_bblks,
643 stop_on_cycle, &new_blk)))
647 } else { /* need to read 2 parts of log */
649 * We are going to scan backwards in the log in two parts.
650 * First we scan the physical end of the log. In this part
651 * of the log, we are looking for blocks with cycle number
652 * last_half_cycle - 1.
653 * If we find one, then we know that the log starts there, as
654 * we've found a hole that didn't get written in going around
655 * the end of the physical log. The simple case for this is
656 * x + 1 ... | x ... | x - 1 | x
657 * <---------> less than scan distance
658 * If all of the blocks at the end of the log have cycle number
659 * last_half_cycle, then we check the blocks at the start of
660 * the log looking for occurrences of last_half_cycle. If we
661 * find one, then our current estimate for the location of the
662 * first occurrence of last_half_cycle is wrong and we move
663 * back to the hole we've found. This case looks like
664 * x + 1 ... | x | x + 1 | x ...
665 * ^ binary search stopped here
666 * Another case we need to handle that only occurs in 256k
668 * x + 1 ... | x ... | x+1 | x ...
669 * ^ binary search stops here
670 * In a 256k log, the scan at the end of the log will see the
671 * x + 1 blocks. We need to skip past those since that is
672 * certainly not the head of the log. By searching for
673 * last_half_cycle-1 we accomplish that.
675 start_blk = log_bbnum - num_scan_bblks + head_blk;
676 ASSERT(head_blk <= INT_MAX &&
677 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
678 if ((error = xlog_find_verify_cycle(log, start_blk,
679 num_scan_bblks - (int)head_blk,
680 (stop_on_cycle - 1), &new_blk)))
688 * Scan beginning of log now. The last part of the physical
689 * log is good. This scan needs to verify that it doesn't find
690 * the last_half_cycle.
693 ASSERT(head_blk <= INT_MAX);
694 if ((error = xlog_find_verify_cycle(log,
695 start_blk, (int)head_blk,
696 stop_on_cycle, &new_blk)))
704 * Now we need to make sure head_blk is not pointing to a block in
705 * the middle of a log record.
707 num_scan_bblks = XLOG_REC_SHIFT(log);
708 if (head_blk >= num_scan_bblks) {
709 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711 /* start ptr at last block ptr before head_blk */
712 if ((error = xlog_find_verify_log_record(log, start_blk,
713 &head_blk, 0)) == -1) {
714 error = XFS_ERROR(EIO);
720 ASSERT(head_blk <= INT_MAX);
721 if ((error = xlog_find_verify_log_record(log, start_blk,
722 &head_blk, 0)) == -1) {
723 /* We hit the beginning of the log during our search */
724 start_blk = log_bbnum - num_scan_bblks + head_blk;
726 ASSERT(start_blk <= INT_MAX &&
727 (xfs_daddr_t) log_bbnum-start_blk >= 0);
728 ASSERT(head_blk <= INT_MAX);
729 if ((error = xlog_find_verify_log_record(log,
731 (int)head_blk)) == -1) {
732 error = XFS_ERROR(EIO);
736 if (new_blk != log_bbnum)
743 if (head_blk == log_bbnum)
744 *return_head_blk = 0;
746 *return_head_blk = head_blk;
748 * When returning here, we have a good block number. Bad block
749 * means that during a previous crash, we didn't have a clean break
750 * from cycle number N to cycle number N-1. In this case, we need
751 * to find the first block with cycle number N-1.
759 xlog_warn("XFS: failed to find log head");
764 * Find the sync block number or the tail of the log.
766 * This will be the block number of the last record to have its
767 * associated buffers synced to disk. Every log record header has
768 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
769 * to get a sync block number. The only concern is to figure out which
770 * log record header to believe.
772 * The following algorithm uses the log record header with the largest
773 * lsn. The entire log record does not need to be valid. We only care
774 * that the header is valid.
776 * We could speed up search by using current head_blk buffer, but it is not
782 xfs_daddr_t *head_blk,
783 xfs_daddr_t *tail_blk)
785 xlog_rec_header_t *rhead;
786 xlog_op_header_t *op_head;
787 xfs_caddr_t offset = NULL;
790 xfs_daddr_t umount_data_blk;
791 xfs_daddr_t after_umount_blk;
798 * Find previous log record
800 if ((error = xlog_find_head(log, head_blk)))
803 bp = xlog_get_bp(log, 1);
806 if (*head_blk == 0) { /* special case */
807 if ((error = xlog_bread(log, 0, 1, bp)))
809 offset = xlog_align(log, 0, 1, bp);
810 if (xlog_get_cycle(offset) == 0) {
812 /* leave all other log inited values alone */
818 * Search backwards looking for log record header block
820 ASSERT(*head_blk < INT_MAX);
821 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
822 if ((error = xlog_bread(log, i, 1, bp)))
824 offset = xlog_align(log, i, 1, bp);
825 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
831 * If we haven't found the log record header block, start looking
832 * again from the end of the physical log. XXXmiken: There should be
833 * a check here to make sure we didn't search more than N blocks in
837 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
838 if ((error = xlog_bread(log, i, 1, bp)))
840 offset = xlog_align(log, i, 1, bp);
841 if (XLOG_HEADER_MAGIC_NUM ==
842 be32_to_cpu(*(__be32 *)offset)) {
849 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
851 return XFS_ERROR(EIO);
854 /* find blk_no of tail of log */
855 rhead = (xlog_rec_header_t *)offset;
856 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
859 * Reset log values according to the state of the log when we
860 * crashed. In the case where head_blk == 0, we bump curr_cycle
861 * one because the next write starts a new cycle rather than
862 * continuing the cycle of the last good log record. At this
863 * point we have guaranteed that all partial log records have been
864 * accounted for. Therefore, we know that the last good log record
865 * written was complete and ended exactly on the end boundary
866 * of the physical log.
868 log->l_prev_block = i;
869 log->l_curr_block = (int)*head_blk;
870 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
873 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
874 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
875 log->l_grant_reserve_cycle = log->l_curr_cycle;
876 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
877 log->l_grant_write_cycle = log->l_curr_cycle;
878 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881 * Look for unmount record. If we find it, then we know there
882 * was a clean unmount. Since 'i' could be the last block in
883 * the physical log, we convert to a log block before comparing
886 * Save the current tail lsn to use to pass to
887 * xlog_clear_stale_blocks() below. We won't want to clear the
888 * unmount record if there is one, so we pass the lsn of the
889 * unmount record rather than the block after it.
891 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
892 int h_size = be32_to_cpu(rhead->h_size);
893 int h_version = be32_to_cpu(rhead->h_version);
895 if ((h_version & XLOG_VERSION_2) &&
896 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
897 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
898 if (h_size % XLOG_HEADER_CYCLE_SIZE)
906 after_umount_blk = (i + hblks + (int)
907 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
908 tail_lsn = log->l_tail_lsn;
909 if (*head_blk == after_umount_blk &&
910 be32_to_cpu(rhead->h_num_logops) == 1) {
911 umount_data_blk = (i + hblks) % log->l_logBBsize;
912 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 offset = xlog_align(log, umount_data_blk, 1, bp);
916 op_head = (xlog_op_header_t *)offset;
917 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
919 * Set tail and last sync so that newly written
920 * log records will point recovery to after the
921 * current unmount record.
924 xlog_assign_lsn(log->l_curr_cycle,
926 log->l_last_sync_lsn =
927 xlog_assign_lsn(log->l_curr_cycle,
929 *tail_blk = after_umount_blk;
932 * Note that the unmount was clean. If the unmount
933 * was not clean, we need to know this to rebuild the
934 * superblock counters from the perag headers if we
935 * have a filesystem using non-persistent counters.
937 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
942 * Make sure that there are no blocks in front of the head
943 * with the same cycle number as the head. This can happen
944 * because we allow multiple outstanding log writes concurrently,
945 * and the later writes might make it out before earlier ones.
947 * We use the lsn from before modifying it so that we'll never
948 * overwrite the unmount record after a clean unmount.
950 * Do this only if we are going to recover the filesystem
952 * NOTE: This used to say "if (!readonly)"
953 * However on Linux, we can & do recover a read-only filesystem.
954 * We only skip recovery if NORECOVERY is specified on mount,
955 * in which case we would not be here.
957 * But... if the -device- itself is readonly, just skip this.
958 * We can't recover this device anyway, so it won't matter.
960 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
961 error = xlog_clear_stale_blocks(log, tail_lsn);
969 xlog_warn("XFS: failed to locate log tail");
974 * Is the log zeroed at all?
976 * The last binary search should be changed to perform an X block read
977 * once X becomes small enough. You can then search linearly through
978 * the X blocks. This will cut down on the number of reads we need to do.
980 * If the log is partially zeroed, this routine will pass back the blkno
981 * of the first block with cycle number 0. It won't have a complete LR
985 * 0 => the log is completely written to
986 * -1 => use *blk_no as the first block of the log
987 * >0 => error has occurred
996 uint first_cycle, last_cycle;
997 xfs_daddr_t new_blk, last_blk, start_blk;
998 xfs_daddr_t num_scan_bblks;
999 int error, log_bbnum = log->l_logBBsize;
1003 /* check totally zeroed log */
1004 bp = xlog_get_bp(log, 1);
1007 if ((error = xlog_bread(log, 0, 1, bp)))
1009 offset = xlog_align(log, 0, 1, bp);
1010 first_cycle = xlog_get_cycle(offset);
1011 if (first_cycle == 0) { /* completely zeroed log */
1017 /* check partially zeroed log */
1018 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1020 offset = xlog_align(log, log_bbnum-1, 1, bp);
1021 last_cycle = xlog_get_cycle(offset);
1022 if (last_cycle != 0) { /* log completely written to */
1025 } else if (first_cycle != 1) {
1027 * If the cycle of the last block is zero, the cycle of
1028 * the first block must be 1. If it's not, maybe we're
1029 * not looking at a log... Bail out.
1031 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1032 return XFS_ERROR(EINVAL);
1035 /* we have a partially zeroed log */
1036 last_blk = log_bbnum-1;
1037 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1041 * Validate the answer. Because there is no way to guarantee that
1042 * the entire log is made up of log records which are the same size,
1043 * we scan over the defined maximum blocks. At this point, the maximum
1044 * is not chosen to mean anything special. XXXmiken
1046 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1047 ASSERT(num_scan_bblks <= INT_MAX);
1049 if (last_blk < num_scan_bblks)
1050 num_scan_bblks = last_blk;
1051 start_blk = last_blk - num_scan_bblks;
1054 * We search for any instances of cycle number 0 that occur before
1055 * our current estimate of the head. What we're trying to detect is
1056 * 1 ... | 0 | 1 | 0...
1057 * ^ binary search ends here
1059 if ((error = xlog_find_verify_cycle(log, start_blk,
1060 (int)num_scan_bblks, 0, &new_blk)))
1066 * Potentially backup over partial log record write. We don't need
1067 * to search the end of the log because we know it is zero.
1069 if ((error = xlog_find_verify_log_record(log, start_blk,
1070 &last_blk, 0)) == -1) {
1071 error = XFS_ERROR(EIO);
1085 * These are simple subroutines used by xlog_clear_stale_blocks() below
1086 * to initialize a buffer full of empty log record headers and write
1087 * them into the log.
1098 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1100 memset(buf, 0, BBSIZE);
1101 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1102 recp->h_cycle = cpu_to_be32(cycle);
1103 recp->h_version = cpu_to_be32(
1104 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1105 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1106 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1107 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1108 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1112 xlog_write_log_records(
1123 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1124 int end_block = start_block + blocks;
1129 bufblks = 1 << ffs(blocks);
1130 while (!(bp = xlog_get_bp(log, bufblks))) {
1132 if (bufblks <= log->l_sectbb_log)
1136 /* We may need to do a read at the start to fill in part of
1137 * the buffer in the starting sector not covered by the first
1140 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1141 if (balign != start_block) {
1142 if ((error = xlog_bread(log, start_block, 1, bp))) {
1146 j = start_block - balign;
1149 for (i = start_block; i < end_block; i += bufblks) {
1150 int bcount, endcount;
1152 bcount = min(bufblks, end_block - start_block);
1153 endcount = bcount - j;
1155 /* We may need to do a read at the end to fill in part of
1156 * the buffer in the final sector not covered by the write.
1157 * If this is the same sector as the above read, skip it.
1159 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1160 if (j == 0 && (start_block + endcount > ealign)) {
1161 offset = XFS_BUF_PTR(bp);
1162 balign = BBTOB(ealign - start_block);
1163 error = XFS_BUF_SET_PTR(bp, offset + balign,
1166 error = xlog_bread(log, ealign, sectbb, bp);
1168 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1173 offset = xlog_align(log, start_block, endcount, bp);
1174 for (; j < endcount; j++) {
1175 xlog_add_record(log, offset, cycle, i+j,
1176 tail_cycle, tail_block);
1179 error = xlog_bwrite(log, start_block, endcount, bp);
1182 start_block += endcount;
1190 * This routine is called to blow away any incomplete log writes out
1191 * in front of the log head. We do this so that we won't become confused
1192 * if we come up, write only a little bit more, and then crash again.
1193 * If we leave the partial log records out there, this situation could
1194 * cause us to think those partial writes are valid blocks since they
1195 * have the current cycle number. We get rid of them by overwriting them
1196 * with empty log records with the old cycle number rather than the
1199 * The tail lsn is passed in rather than taken from
1200 * the log so that we will not write over the unmount record after a
1201 * clean unmount in a 512 block log. Doing so would leave the log without
1202 * any valid log records in it until a new one was written. If we crashed
1203 * during that time we would not be able to recover.
1206 xlog_clear_stale_blocks(
1210 int tail_cycle, head_cycle;
1211 int tail_block, head_block;
1212 int tail_distance, max_distance;
1216 tail_cycle = CYCLE_LSN(tail_lsn);
1217 tail_block = BLOCK_LSN(tail_lsn);
1218 head_cycle = log->l_curr_cycle;
1219 head_block = log->l_curr_block;
1222 * Figure out the distance between the new head of the log
1223 * and the tail. We want to write over any blocks beyond the
1224 * head that we may have written just before the crash, but
1225 * we don't want to overwrite the tail of the log.
1227 if (head_cycle == tail_cycle) {
1229 * The tail is behind the head in the physical log,
1230 * so the distance from the head to the tail is the
1231 * distance from the head to the end of the log plus
1232 * the distance from the beginning of the log to the
1235 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1236 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1237 XFS_ERRLEVEL_LOW, log->l_mp);
1238 return XFS_ERROR(EFSCORRUPTED);
1240 tail_distance = tail_block + (log->l_logBBsize - head_block);
1243 * The head is behind the tail in the physical log,
1244 * so the distance from the head to the tail is just
1245 * the tail block minus the head block.
1247 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1248 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1249 XFS_ERRLEVEL_LOW, log->l_mp);
1250 return XFS_ERROR(EFSCORRUPTED);
1252 tail_distance = tail_block - head_block;
1256 * If the head is right up against the tail, we can't clear
1259 if (tail_distance <= 0) {
1260 ASSERT(tail_distance == 0);
1264 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1266 * Take the smaller of the maximum amount of outstanding I/O
1267 * we could have and the distance to the tail to clear out.
1268 * We take the smaller so that we don't overwrite the tail and
1269 * we don't waste all day writing from the head to the tail
1272 max_distance = MIN(max_distance, tail_distance);
1274 if ((head_block + max_distance) <= log->l_logBBsize) {
1276 * We can stomp all the blocks we need to without
1277 * wrapping around the end of the log. Just do it
1278 * in a single write. Use the cycle number of the
1279 * current cycle minus one so that the log will look like:
1282 error = xlog_write_log_records(log, (head_cycle - 1),
1283 head_block, max_distance, tail_cycle,
1289 * We need to wrap around the end of the physical log in
1290 * order to clear all the blocks. Do it in two separate
1291 * I/Os. The first write should be from the head to the
1292 * end of the physical log, and it should use the current
1293 * cycle number minus one just like above.
1295 distance = log->l_logBBsize - head_block;
1296 error = xlog_write_log_records(log, (head_cycle - 1),
1297 head_block, distance, tail_cycle,
1304 * Now write the blocks at the start of the physical log.
1305 * This writes the remainder of the blocks we want to clear.
1306 * It uses the current cycle number since we're now on the
1307 * same cycle as the head so that we get:
1308 * n ... n ... | n - 1 ...
1309 * ^^^^^ blocks we're writing
1311 distance = max_distance - (log->l_logBBsize - head_block);
1312 error = xlog_write_log_records(log, head_cycle, 0, distance,
1313 tail_cycle, tail_block);
1321 /******************************************************************************
1323 * Log recover routines
1325 ******************************************************************************
1328 STATIC xlog_recover_t *
1329 xlog_recover_find_tid(
1333 xlog_recover_t *p = q;
1336 if (p->r_log_tid == tid)
1344 xlog_recover_put_hashq(
1346 xlog_recover_t *trans)
1353 xlog_recover_add_item(
1354 xlog_recover_item_t **itemq)
1356 xlog_recover_item_t *item;
1358 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1359 xlog_recover_insert_item_backq(itemq, item);
1363 xlog_recover_add_to_cont_trans(
1364 xlog_recover_t *trans,
1368 xlog_recover_item_t *item;
1369 xfs_caddr_t ptr, old_ptr;
1372 item = trans->r_itemq;
1374 /* finish copying rest of trans header */
1375 xlog_recover_add_item(&trans->r_itemq);
1376 ptr = (xfs_caddr_t) &trans->r_theader +
1377 sizeof(xfs_trans_header_t) - len;
1378 memcpy(ptr, dp, len); /* d, s, l */
1381 item = item->ri_prev;
1383 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1384 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1386 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1387 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1388 item->ri_buf[item->ri_cnt-1].i_len += len;
1389 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1394 * The next region to add is the start of a new region. It could be
1395 * a whole region or it could be the first part of a new region. Because
1396 * of this, the assumption here is that the type and size fields of all
1397 * format structures fit into the first 32 bits of the structure.
1399 * This works because all regions must be 32 bit aligned. Therefore, we
1400 * either have both fields or we have neither field. In the case we have
1401 * neither field, the data part of the region is zero length. We only have
1402 * a log_op_header and can throw away the header since a new one will appear
1403 * later. If we have at least 4 bytes, then we can determine how many regions
1404 * will appear in the current log item.
1407 xlog_recover_add_to_trans(
1408 xlog_recover_t *trans,
1412 xfs_inode_log_format_t *in_f; /* any will do */
1413 xlog_recover_item_t *item;
1418 item = trans->r_itemq;
1420 /* we need to catch log corruptions here */
1421 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1422 xlog_warn("XFS: xlog_recover_add_to_trans: "
1423 "bad header magic number");
1425 return XFS_ERROR(EIO);
1427 if (len == sizeof(xfs_trans_header_t))
1428 xlog_recover_add_item(&trans->r_itemq);
1429 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1433 ptr = kmem_alloc(len, KM_SLEEP);
1434 memcpy(ptr, dp, len);
1435 in_f = (xfs_inode_log_format_t *)ptr;
1437 if (item->ri_prev->ri_total != 0 &&
1438 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1439 xlog_recover_add_item(&trans->r_itemq);
1441 item = trans->r_itemq;
1442 item = item->ri_prev;
1444 if (item->ri_total == 0) { /* first region to be added */
1445 item->ri_total = in_f->ilf_size;
1446 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1447 item->ri_buf = kmem_zalloc((item->ri_total *
1448 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1450 ASSERT(item->ri_total > item->ri_cnt);
1451 /* Description region is ri_buf[0] */
1452 item->ri_buf[item->ri_cnt].i_addr = ptr;
1453 item->ri_buf[item->ri_cnt].i_len = len;
1459 xlog_recover_new_tid(
1464 xlog_recover_t *trans;
1466 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1467 trans->r_log_tid = tid;
1469 xlog_recover_put_hashq(q, trans);
1473 xlog_recover_unlink_tid(
1475 xlog_recover_t *trans)
1480 ASSERT(trans != NULL);
1486 if (tp->r_next == trans) {
1494 "XFS: xlog_recover_unlink_tid: trans not found");
1496 return XFS_ERROR(EIO);
1498 tp->r_next = tp->r_next->r_next;
1504 xlog_recover_insert_item_backq(
1505 xlog_recover_item_t **q,
1506 xlog_recover_item_t *item)
1509 item->ri_prev = item->ri_next = item;
1513 item->ri_prev = (*q)->ri_prev;
1514 (*q)->ri_prev = item;
1515 item->ri_prev->ri_next = item;
1520 xlog_recover_insert_item_frontq(
1521 xlog_recover_item_t **q,
1522 xlog_recover_item_t *item)
1524 xlog_recover_insert_item_backq(q, item);
1529 xlog_recover_reorder_trans(
1530 xlog_recover_t *trans)
1532 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1533 xfs_buf_log_format_t *buf_f;
1536 first_item = itemq = trans->r_itemq;
1537 trans->r_itemq = NULL;
1539 itemq_next = itemq->ri_next;
1540 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1542 switch (ITEM_TYPE(itemq)) {
1544 flags = buf_f->blf_flags;
1545 if (!(flags & XFS_BLI_CANCEL)) {
1546 xlog_recover_insert_item_frontq(&trans->r_itemq,
1552 case XFS_LI_QUOTAOFF:
1555 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1559 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1561 return XFS_ERROR(EIO);
1564 } while (first_item != itemq);
1569 * Build up the table of buf cancel records so that we don't replay
1570 * cancelled data in the second pass. For buffer records that are
1571 * not cancel records, there is nothing to do here so we just return.
1573 * If we get a cancel record which is already in the table, this indicates
1574 * that the buffer was cancelled multiple times. In order to ensure
1575 * that during pass 2 we keep the record in the table until we reach its
1576 * last occurrence in the log, we keep a reference count in the cancel
1577 * record in the table to tell us how many times we expect to see this
1578 * record during the second pass.
1581 xlog_recover_do_buffer_pass1(
1583 xfs_buf_log_format_t *buf_f)
1585 xfs_buf_cancel_t *bcp;
1586 xfs_buf_cancel_t *nextp;
1587 xfs_buf_cancel_t *prevp;
1588 xfs_buf_cancel_t **bucket;
1589 xfs_daddr_t blkno = 0;
1593 switch (buf_f->blf_type) {
1595 blkno = buf_f->blf_blkno;
1596 len = buf_f->blf_len;
1597 flags = buf_f->blf_flags;
1602 * If this isn't a cancel buffer item, then just return.
1604 if (!(flags & XFS_BLI_CANCEL))
1608 * Insert an xfs_buf_cancel record into the hash table of
1609 * them. If there is already an identical record, bump
1610 * its reference count.
1612 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1613 XLOG_BC_TABLE_SIZE];
1615 * If the hash bucket is empty then just insert a new record into
1618 if (*bucket == NULL) {
1619 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1621 bcp->bc_blkno = blkno;
1623 bcp->bc_refcount = 1;
1624 bcp->bc_next = NULL;
1630 * The hash bucket is not empty, so search for duplicates of our
1631 * record. If we find one them just bump its refcount. If not
1632 * then add us at the end of the list.
1636 while (nextp != NULL) {
1637 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1638 nextp->bc_refcount++;
1642 nextp = nextp->bc_next;
1644 ASSERT(prevp != NULL);
1645 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1647 bcp->bc_blkno = blkno;
1649 bcp->bc_refcount = 1;
1650 bcp->bc_next = NULL;
1651 prevp->bc_next = bcp;
1655 * Check to see whether the buffer being recovered has a corresponding
1656 * entry in the buffer cancel record table. If it does then return 1
1657 * so that it will be cancelled, otherwise return 0. If the buffer is
1658 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1659 * the refcount on the entry in the table and remove it from the table
1660 * if this is the last reference.
1662 * We remove the cancel record from the table when we encounter its
1663 * last occurrence in the log so that if the same buffer is re-used
1664 * again after its last cancellation we actually replay the changes
1665 * made at that point.
1668 xlog_check_buffer_cancelled(
1674 xfs_buf_cancel_t *bcp;
1675 xfs_buf_cancel_t *prevp;
1676 xfs_buf_cancel_t **bucket;
1678 if (log->l_buf_cancel_table == NULL) {
1680 * There is nothing in the table built in pass one,
1681 * so this buffer must not be cancelled.
1683 ASSERT(!(flags & XFS_BLI_CANCEL));
1687 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1688 XLOG_BC_TABLE_SIZE];
1692 * There is no corresponding entry in the table built
1693 * in pass one, so this buffer has not been cancelled.
1695 ASSERT(!(flags & XFS_BLI_CANCEL));
1700 * Search for an entry in the buffer cancel table that
1701 * matches our buffer.
1704 while (bcp != NULL) {
1705 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1707 * We've go a match, so return 1 so that the
1708 * recovery of this buffer is cancelled.
1709 * If this buffer is actually a buffer cancel
1710 * log item, then decrement the refcount on the
1711 * one in the table and remove it if this is the
1714 if (flags & XFS_BLI_CANCEL) {
1716 if (bcp->bc_refcount == 0) {
1717 if (prevp == NULL) {
1718 *bucket = bcp->bc_next;
1720 prevp->bc_next = bcp->bc_next;
1731 * We didn't find a corresponding entry in the table, so
1732 * return 0 so that the buffer is NOT cancelled.
1734 ASSERT(!(flags & XFS_BLI_CANCEL));
1739 xlog_recover_do_buffer_pass2(
1741 xfs_buf_log_format_t *buf_f)
1743 xfs_daddr_t blkno = 0;
1747 switch (buf_f->blf_type) {
1749 blkno = buf_f->blf_blkno;
1750 flags = buf_f->blf_flags;
1751 len = buf_f->blf_len;
1755 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1759 * Perform recovery for a buffer full of inodes. In these buffers,
1760 * the only data which should be recovered is that which corresponds
1761 * to the di_next_unlinked pointers in the on disk inode structures.
1762 * The rest of the data for the inodes is always logged through the
1763 * inodes themselves rather than the inode buffer and is recovered
1764 * in xlog_recover_do_inode_trans().
1766 * The only time when buffers full of inodes are fully recovered is
1767 * when the buffer is full of newly allocated inodes. In this case
1768 * the buffer will not be marked as an inode buffer and so will be
1769 * sent to xlog_recover_do_reg_buffer() below during recovery.
1772 xlog_recover_do_inode_buffer(
1774 xlog_recover_item_t *item,
1776 xfs_buf_log_format_t *buf_f)
1784 int next_unlinked_offset;
1786 xfs_agino_t *logged_nextp;
1787 xfs_agino_t *buffer_nextp;
1788 unsigned int *data_map = NULL;
1789 unsigned int map_size = 0;
1791 switch (buf_f->blf_type) {
1793 data_map = buf_f->blf_data_map;
1794 map_size = buf_f->blf_map_size;
1798 * Set the variables corresponding to the current region to
1799 * 0 so that we'll initialize them on the first pass through
1807 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1808 for (i = 0; i < inodes_per_buf; i++) {
1809 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1810 offsetof(xfs_dinode_t, di_next_unlinked);
1812 while (next_unlinked_offset >=
1813 (reg_buf_offset + reg_buf_bytes)) {
1815 * The next di_next_unlinked field is beyond
1816 * the current logged region. Find the next
1817 * logged region that contains or is beyond
1818 * the current di_next_unlinked field.
1821 bit = xfs_next_bit(data_map, map_size, bit);
1824 * If there are no more logged regions in the
1825 * buffer, then we're done.
1831 nbits = xfs_contig_bits(data_map, map_size,
1834 reg_buf_offset = bit << XFS_BLI_SHIFT;
1835 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1840 * If the current logged region starts after the current
1841 * di_next_unlinked field, then move on to the next
1842 * di_next_unlinked field.
1844 if (next_unlinked_offset < reg_buf_offset) {
1848 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1849 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1850 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1853 * The current logged region contains a copy of the
1854 * current di_next_unlinked field. Extract its value
1855 * and copy it to the buffer copy.
1857 logged_nextp = (xfs_agino_t *)
1858 ((char *)(item->ri_buf[item_index].i_addr) +
1859 (next_unlinked_offset - reg_buf_offset));
1860 if (unlikely(*logged_nextp == 0)) {
1861 xfs_fs_cmn_err(CE_ALERT, mp,
1862 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1864 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1865 XFS_ERRLEVEL_LOW, mp);
1866 return XFS_ERROR(EFSCORRUPTED);
1869 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1870 next_unlinked_offset);
1871 *buffer_nextp = *logged_nextp;
1878 * Perform a 'normal' buffer recovery. Each logged region of the
1879 * buffer should be copied over the corresponding region in the
1880 * given buffer. The bitmap in the buf log format structure indicates
1881 * where to place the logged data.
1885 xlog_recover_do_reg_buffer(
1886 xlog_recover_item_t *item,
1888 xfs_buf_log_format_t *buf_f)
1893 unsigned int *data_map = NULL;
1894 unsigned int map_size = 0;
1897 switch (buf_f->blf_type) {
1899 data_map = buf_f->blf_data_map;
1900 map_size = buf_f->blf_map_size;
1904 i = 1; /* 0 is the buf format structure */
1906 bit = xfs_next_bit(data_map, map_size, bit);
1909 nbits = xfs_contig_bits(data_map, map_size, bit);
1911 ASSERT(item->ri_buf[i].i_addr != NULL);
1912 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1913 ASSERT(XFS_BUF_COUNT(bp) >=
1914 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1917 * Do a sanity check if this is a dquot buffer. Just checking
1918 * the first dquot in the buffer should do. XXXThis is
1919 * probably a good thing to do for other buf types also.
1922 if (buf_f->blf_flags &
1923 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1924 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1925 item->ri_buf[i].i_addr,
1926 -1, 0, XFS_QMOPT_DOWARN,
1927 "dquot_buf_recover");
1930 memcpy(xfs_buf_offset(bp,
1931 (uint)bit << XFS_BLI_SHIFT), /* dest */
1932 item->ri_buf[i].i_addr, /* source */
1933 nbits<<XFS_BLI_SHIFT); /* length */
1938 /* Shouldn't be any more regions */
1939 ASSERT(i == item->ri_total);
1943 * Do some primitive error checking on ondisk dquot data structures.
1947 xfs_disk_dquot_t *ddq,
1949 uint type, /* used only when IO_dorepair is true */
1953 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1957 * We can encounter an uninitialized dquot buffer for 2 reasons:
1958 * 1. If we crash while deleting the quotainode(s), and those blks got
1959 * used for user data. This is because we take the path of regular
1960 * file deletion; however, the size field of quotainodes is never
1961 * updated, so all the tricks that we play in itruncate_finish
1962 * don't quite matter.
1964 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1965 * But the allocation will be replayed so we'll end up with an
1966 * uninitialized quota block.
1968 * This is all fine; things are still consistent, and we haven't lost
1969 * any quota information. Just don't complain about bad dquot blks.
1971 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1972 if (flags & XFS_QMOPT_DOWARN)
1974 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1975 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1978 if (ddq->d_version != XFS_DQUOT_VERSION) {
1979 if (flags & XFS_QMOPT_DOWARN)
1981 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1982 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1986 if (ddq->d_flags != XFS_DQ_USER &&
1987 ddq->d_flags != XFS_DQ_PROJ &&
1988 ddq->d_flags != XFS_DQ_GROUP) {
1989 if (flags & XFS_QMOPT_DOWARN)
1991 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1992 str, id, ddq->d_flags);
1996 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1997 if (flags & XFS_QMOPT_DOWARN)
1999 "%s : ondisk-dquot 0x%p, ID mismatch: "
2000 "0x%x expected, found id 0x%x",
2001 str, ddq, id, be32_to_cpu(ddq->d_id));
2005 if (!errs && ddq->d_id) {
2006 if (ddq->d_blk_softlimit &&
2007 be64_to_cpu(ddq->d_bcount) >=
2008 be64_to_cpu(ddq->d_blk_softlimit)) {
2009 if (!ddq->d_btimer) {
2010 if (flags & XFS_QMOPT_DOWARN)
2012 "%s : Dquot ID 0x%x (0x%p) "
2013 "BLK TIMER NOT STARTED",
2014 str, (int)be32_to_cpu(ddq->d_id), ddq);
2018 if (ddq->d_ino_softlimit &&
2019 be64_to_cpu(ddq->d_icount) >=
2020 be64_to_cpu(ddq->d_ino_softlimit)) {
2021 if (!ddq->d_itimer) {
2022 if (flags & XFS_QMOPT_DOWARN)
2024 "%s : Dquot ID 0x%x (0x%p) "
2025 "INODE TIMER NOT STARTED",
2026 str, (int)be32_to_cpu(ddq->d_id), ddq);
2030 if (ddq->d_rtb_softlimit &&
2031 be64_to_cpu(ddq->d_rtbcount) >=
2032 be64_to_cpu(ddq->d_rtb_softlimit)) {
2033 if (!ddq->d_rtbtimer) {
2034 if (flags & XFS_QMOPT_DOWARN)
2036 "%s : Dquot ID 0x%x (0x%p) "
2037 "RTBLK TIMER NOT STARTED",
2038 str, (int)be32_to_cpu(ddq->d_id), ddq);
2044 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2047 if (flags & XFS_QMOPT_DOWARN)
2048 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2051 * Typically, a repair is only requested by quotacheck.
2054 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2055 memset(d, 0, sizeof(xfs_dqblk_t));
2057 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2058 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2059 d->dd_diskdq.d_flags = type;
2060 d->dd_diskdq.d_id = cpu_to_be32(id);
2066 * Perform a dquot buffer recovery.
2067 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2068 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2069 * Else, treat it as a regular buffer and do recovery.
2072 xlog_recover_do_dquot_buffer(
2075 xlog_recover_item_t *item,
2077 xfs_buf_log_format_t *buf_f)
2082 * Filesystems are required to send in quota flags at mount time.
2084 if (mp->m_qflags == 0) {
2089 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2090 type |= XFS_DQ_USER;
2091 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2092 type |= XFS_DQ_PROJ;
2093 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2094 type |= XFS_DQ_GROUP;
2096 * This type of quotas was turned off, so ignore this buffer
2098 if (log->l_quotaoffs_flag & type)
2101 xlog_recover_do_reg_buffer(item, bp, buf_f);
2105 * This routine replays a modification made to a buffer at runtime.
2106 * There are actually two types of buffer, regular and inode, which
2107 * are handled differently. Inode buffers are handled differently
2108 * in that we only recover a specific set of data from them, namely
2109 * the inode di_next_unlinked fields. This is because all other inode
2110 * data is actually logged via inode records and any data we replay
2111 * here which overlaps that may be stale.
2113 * When meta-data buffers are freed at run time we log a buffer item
2114 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2115 * of the buffer in the log should not be replayed at recovery time.
2116 * This is so that if the blocks covered by the buffer are reused for
2117 * file data before we crash we don't end up replaying old, freed
2118 * meta-data into a user's file.
2120 * To handle the cancellation of buffer log items, we make two passes
2121 * over the log during recovery. During the first we build a table of
2122 * those buffers which have been cancelled, and during the second we
2123 * only replay those buffers which do not have corresponding cancel
2124 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2125 * for more details on the implementation of the table of cancel records.
2128 xlog_recover_do_buffer_trans(
2130 xlog_recover_item_t *item,
2133 xfs_buf_log_format_t *buf_f;
2142 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2144 if (pass == XLOG_RECOVER_PASS1) {
2146 * In this pass we're only looking for buf items
2147 * with the XFS_BLI_CANCEL bit set.
2149 xlog_recover_do_buffer_pass1(log, buf_f);
2153 * In this pass we want to recover all the buffers
2154 * which have not been cancelled and are not
2155 * cancellation buffers themselves. The routine
2156 * we call here will tell us whether or not to
2157 * continue with the replay of this buffer.
2159 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2164 switch (buf_f->blf_type) {
2166 blkno = buf_f->blf_blkno;
2167 len = buf_f->blf_len;
2168 flags = buf_f->blf_flags;
2171 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2172 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2173 buf_f->blf_type, log->l_mp->m_logname ?
2174 log->l_mp->m_logname : "internal");
2175 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2176 XFS_ERRLEVEL_LOW, log->l_mp);
2177 return XFS_ERROR(EFSCORRUPTED);
2181 if (flags & XFS_BLI_INODE_BUF) {
2182 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2185 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2187 if (XFS_BUF_ISERROR(bp)) {
2188 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2190 error = XFS_BUF_GETERROR(bp);
2196 if (flags & XFS_BLI_INODE_BUF) {
2197 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2199 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2200 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2202 xlog_recover_do_reg_buffer(item, bp, buf_f);
2205 return XFS_ERROR(error);
2208 * Perform delayed write on the buffer. Asynchronous writes will be
2209 * slower when taking into account all the buffers to be flushed.
2211 * Also make sure that only inode buffers with good sizes stay in
2212 * the buffer cache. The kernel moves inodes in buffers of 1 block
2213 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2214 * buffers in the log can be a different size if the log was generated
2215 * by an older kernel using unclustered inode buffers or a newer kernel
2216 * running with a different inode cluster size. Regardless, if the
2217 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2218 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2219 * the buffer out of the buffer cache so that the buffer won't
2220 * overlap with future reads of those inodes.
2222 if (XFS_DINODE_MAGIC ==
2223 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2224 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2225 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2227 error = xfs_bwrite(mp, bp);
2229 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2230 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2231 XFS_BUF_SET_FSPRIVATE(bp, mp);
2232 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2233 xfs_bdwrite(mp, bp);
2240 xlog_recover_do_inode_trans(
2242 xlog_recover_item_t *item,
2245 xfs_inode_log_format_t *in_f;
2257 xfs_icdinode_t *dicp;
2260 if (pass == XLOG_RECOVER_PASS1) {
2264 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2265 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2267 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2268 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2270 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2274 ino = in_f->ilf_ino;
2276 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2277 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2278 imap.im_len = in_f->ilf_len;
2279 imap.im_boffset = in_f->ilf_boffset;
2282 * It's an old inode format record. We don't know where
2283 * its cluster is located on disk, and we can't allow
2284 * xfs_imap() to figure it out because the inode btrees
2285 * are not ready to be used. Therefore do not pass the
2286 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2287 * us only the single block in which the inode lives
2288 * rather than its cluster, so we must make sure to
2289 * invalidate the buffer when we write it out below.
2292 error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2298 * Inode buffers can be freed, look out for it,
2299 * and do not replay the inode.
2301 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2306 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2308 if (XFS_BUF_ISERROR(bp)) {
2309 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2311 error = XFS_BUF_GETERROR(bp);
2316 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2317 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2320 * Make sure the place we're flushing out to really looks
2323 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
2325 xfs_fs_cmn_err(CE_ALERT, mp,
2326 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2328 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2329 XFS_ERRLEVEL_LOW, mp);
2330 error = EFSCORRUPTED;
2333 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2334 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2336 xfs_fs_cmn_err(CE_ALERT, mp,
2337 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2339 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2340 XFS_ERRLEVEL_LOW, mp);
2341 error = EFSCORRUPTED;
2345 /* Skip replay when the on disk inode is newer than the log one */
2346 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
2348 * Deal with the wrap case, DI_MAX_FLUSH is less
2349 * than smaller numbers
2351 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2352 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2360 /* Take the opportunity to reset the flush iteration count */
2361 dicp->di_flushiter = 0;
2363 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2364 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2365 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2366 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2367 XFS_ERRLEVEL_LOW, mp, dicp);
2369 xfs_fs_cmn_err(CE_ALERT, mp,
2370 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2371 item, dip, bp, ino);
2372 error = EFSCORRUPTED;
2375 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2376 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2377 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2378 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2379 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2380 XFS_ERRLEVEL_LOW, mp, dicp);
2382 xfs_fs_cmn_err(CE_ALERT, mp,
2383 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2384 item, dip, bp, ino);
2385 error = EFSCORRUPTED;
2389 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2390 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2391 XFS_ERRLEVEL_LOW, mp, dicp);
2393 xfs_fs_cmn_err(CE_ALERT, mp,
2394 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2396 dicp->di_nextents + dicp->di_anextents,
2398 error = EFSCORRUPTED;
2401 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2402 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2403 XFS_ERRLEVEL_LOW, mp, dicp);
2405 xfs_fs_cmn_err(CE_ALERT, mp,
2406 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2407 item, dip, bp, ino, dicp->di_forkoff);
2408 error = EFSCORRUPTED;
2411 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2412 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2413 XFS_ERRLEVEL_LOW, mp, dicp);
2415 xfs_fs_cmn_err(CE_ALERT, mp,
2416 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2417 item->ri_buf[1].i_len, item);
2418 error = EFSCORRUPTED;
2422 /* The core is in in-core format */
2423 xfs_dinode_to_disk(&dip->di_core,
2424 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2426 /* the rest is in on-disk format */
2427 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2428 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2429 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2430 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2433 fields = in_f->ilf_fields;
2434 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2436 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
2439 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2443 if (in_f->ilf_size == 2)
2444 goto write_inode_buffer;
2445 len = item->ri_buf[2].i_len;
2446 src = item->ri_buf[2].i_addr;
2447 ASSERT(in_f->ilf_size <= 4);
2448 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2449 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2450 (len == in_f->ilf_dsize));
2452 switch (fields & XFS_ILOG_DFORK) {
2453 case XFS_ILOG_DDATA:
2455 memcpy(&dip->di_u, src, len);
2458 case XFS_ILOG_DBROOT:
2459 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2461 XFS_DFORK_DSIZE(dip, mp));
2466 * There are no data fork flags set.
2468 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2473 * If we logged any attribute data, recover it. There may or
2474 * may not have been any other non-core data logged in this
2477 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2478 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2483 len = item->ri_buf[attr_index].i_len;
2484 src = item->ri_buf[attr_index].i_addr;
2485 ASSERT(len == in_f->ilf_asize);
2487 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2488 case XFS_ILOG_ADATA:
2490 dest = XFS_DFORK_APTR(dip);
2491 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2492 memcpy(dest, src, len);
2495 case XFS_ILOG_ABROOT:
2496 dest = XFS_DFORK_APTR(dip);
2497 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2498 len, (xfs_bmdr_block_t*)dest,
2499 XFS_DFORK_ASIZE(dip, mp));
2503 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2512 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2513 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2514 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2515 XFS_BUF_SET_FSPRIVATE(bp, mp);
2516 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2517 xfs_bdwrite(mp, bp);
2520 error = xfs_bwrite(mp, bp);
2526 return XFS_ERROR(error);
2530 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2531 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2535 xlog_recover_do_quotaoff_trans(
2537 xlog_recover_item_t *item,
2540 xfs_qoff_logformat_t *qoff_f;
2542 if (pass == XLOG_RECOVER_PASS2) {
2546 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2550 * The logitem format's flag tells us if this was user quotaoff,
2551 * group/project quotaoff or both.
2553 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2554 log->l_quotaoffs_flag |= XFS_DQ_USER;
2555 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2556 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2557 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2558 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2564 * Recover a dquot record
2567 xlog_recover_do_dquot_trans(
2569 xlog_recover_item_t *item,
2574 struct xfs_disk_dquot *ddq, *recddq;
2576 xfs_dq_logformat_t *dq_f;
2579 if (pass == XLOG_RECOVER_PASS1) {
2585 * Filesystems are required to send in quota flags at mount time.
2587 if (mp->m_qflags == 0)
2590 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2593 * This type of quotas was turned off, so ignore this record.
2595 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2597 if (log->l_quotaoffs_flag & type)
2601 * At this point we know that quota was _not_ turned off.
2602 * Since the mount flags are not indicating to us otherwise, this
2603 * must mean that quota is on, and the dquot needs to be replayed.
2604 * Remember that we may not have fully recovered the superblock yet,
2605 * so we can't do the usual trick of looking at the SB quota bits.
2607 * The other possibility, of course, is that the quota subsystem was
2608 * removed since the last mount - ENOSYS.
2610 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2612 if ((error = xfs_qm_dqcheck(recddq,
2614 0, XFS_QMOPT_DOWARN,
2615 "xlog_recover_do_dquot_trans (log copy)"))) {
2616 return XFS_ERROR(EIO);
2618 ASSERT(dq_f->qlf_len == 1);
2620 error = xfs_read_buf(mp, mp->m_ddev_targp,
2622 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2625 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2626 bp, dq_f->qlf_blkno);
2630 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2633 * At least the magic num portion should be on disk because this
2634 * was among a chunk of dquots created earlier, and we did some
2635 * minimal initialization then.
2637 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2638 "xlog_recover_do_dquot_trans")) {
2640 return XFS_ERROR(EIO);
2643 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2645 ASSERT(dq_f->qlf_size == 2);
2646 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2647 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2648 XFS_BUF_SET_FSPRIVATE(bp, mp);
2649 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2650 xfs_bdwrite(mp, bp);
2656 * This routine is called to create an in-core extent free intent
2657 * item from the efi format structure which was logged on disk.
2658 * It allocates an in-core efi, copies the extents from the format
2659 * structure into it, and adds the efi to the AIL with the given
2663 xlog_recover_do_efi_trans(
2665 xlog_recover_item_t *item,
2671 xfs_efi_log_item_t *efip;
2672 xfs_efi_log_format_t *efi_formatp;
2674 if (pass == XLOG_RECOVER_PASS1) {
2678 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2681 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2682 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2683 &(efip->efi_format)))) {
2684 xfs_efi_item_free(efip);
2687 efip->efi_next_extent = efi_formatp->efi_nextents;
2688 efip->efi_flags |= XFS_EFI_COMMITTED;
2690 spin_lock(&log->l_ailp->xa_lock);
2692 * xfs_trans_ail_update() drops the AIL lock.
2694 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2700 * This routine is called when an efd format structure is found in
2701 * a committed transaction in the log. It's purpose is to cancel
2702 * the corresponding efi if it was still in the log. To do this
2703 * it searches the AIL for the efi with an id equal to that in the
2704 * efd format structure. If we find it, we remove the efi from the
2708 xlog_recover_do_efd_trans(
2710 xlog_recover_item_t *item,
2713 xfs_efd_log_format_t *efd_formatp;
2714 xfs_efi_log_item_t *efip = NULL;
2715 xfs_log_item_t *lip;
2717 struct xfs_ail_cursor cur;
2718 struct xfs_ail *ailp = log->l_ailp;
2720 if (pass == XLOG_RECOVER_PASS1) {
2724 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2725 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2726 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2727 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2728 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2729 efi_id = efd_formatp->efd_efi_id;
2732 * Search for the efi with the id in the efd format structure
2735 spin_lock(&ailp->xa_lock);
2736 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2737 while (lip != NULL) {
2738 if (lip->li_type == XFS_LI_EFI) {
2739 efip = (xfs_efi_log_item_t *)lip;
2740 if (efip->efi_format.efi_id == efi_id) {
2742 * xfs_trans_ail_delete() drops the
2745 xfs_trans_ail_delete(ailp, lip);
2746 xfs_efi_item_free(efip);
2747 spin_lock(&ailp->xa_lock);
2751 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2753 xfs_trans_ail_cursor_done(ailp, &cur);
2754 spin_unlock(&ailp->xa_lock);
2758 * Perform the transaction
2760 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2761 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2764 xlog_recover_do_trans(
2766 xlog_recover_t *trans,
2770 xlog_recover_item_t *item, *first_item;
2772 if ((error = xlog_recover_reorder_trans(trans)))
2774 first_item = item = trans->r_itemq;
2777 * we don't need to worry about the block number being
2778 * truncated in > 1 TB buffers because in user-land,
2779 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2780 * the blknos will get through the user-mode buffer
2781 * cache properly. The only bad case is o32 kernels
2782 * where xfs_daddr_t is 32-bits but mount will warn us
2783 * off a > 1 TB filesystem before we get here.
2785 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2786 if ((error = xlog_recover_do_buffer_trans(log, item,
2789 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2790 if ((error = xlog_recover_do_inode_trans(log, item,
2793 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2794 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2797 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2798 xlog_recover_do_efd_trans(log, item, pass);
2799 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2800 if ((error = xlog_recover_do_dquot_trans(log, item,
2803 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2804 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2808 xlog_warn("XFS: xlog_recover_do_trans");
2810 error = XFS_ERROR(EIO);
2813 item = item->ri_next;
2814 } while (first_item != item);
2820 * Free up any resources allocated by the transaction
2822 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2825 xlog_recover_free_trans(
2826 xlog_recover_t *trans)
2828 xlog_recover_item_t *first_item, *item, *free_item;
2831 item = first_item = trans->r_itemq;
2834 item = item->ri_next;
2835 /* Free the regions in the item. */
2836 for (i = 0; i < free_item->ri_cnt; i++) {
2837 kmem_free(free_item->ri_buf[i].i_addr);
2839 /* Free the item itself */
2840 kmem_free(free_item->ri_buf);
2841 kmem_free(free_item);
2842 } while (first_item != item);
2843 /* Free the transaction recover structure */
2848 xlog_recover_commit_trans(
2851 xlog_recover_t *trans,
2856 if ((error = xlog_recover_unlink_tid(q, trans)))
2858 if ((error = xlog_recover_do_trans(log, trans, pass)))
2860 xlog_recover_free_trans(trans); /* no error */
2865 xlog_recover_unmount_trans(
2866 xlog_recover_t *trans)
2868 /* Do nothing now */
2869 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2874 * There are two valid states of the r_state field. 0 indicates that the
2875 * transaction structure is in a normal state. We have either seen the
2876 * start of the transaction or the last operation we added was not a partial
2877 * operation. If the last operation we added to the transaction was a
2878 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2880 * NOTE: skip LRs with 0 data length.
2883 xlog_recover_process_data(
2885 xlog_recover_t *rhash[],
2886 xlog_rec_header_t *rhead,
2892 xlog_op_header_t *ohead;
2893 xlog_recover_t *trans;
2899 lp = dp + be32_to_cpu(rhead->h_len);
2900 num_logops = be32_to_cpu(rhead->h_num_logops);
2902 /* check the log format matches our own - else we can't recover */
2903 if (xlog_header_check_recover(log->l_mp, rhead))
2904 return (XFS_ERROR(EIO));
2906 while ((dp < lp) && num_logops) {
2907 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2908 ohead = (xlog_op_header_t *)dp;
2909 dp += sizeof(xlog_op_header_t);
2910 if (ohead->oh_clientid != XFS_TRANSACTION &&
2911 ohead->oh_clientid != XFS_LOG) {
2913 "XFS: xlog_recover_process_data: bad clientid");
2915 return (XFS_ERROR(EIO));
2917 tid = be32_to_cpu(ohead->oh_tid);
2918 hash = XLOG_RHASH(tid);
2919 trans = xlog_recover_find_tid(rhash[hash], tid);
2920 if (trans == NULL) { /* not found; add new tid */
2921 if (ohead->oh_flags & XLOG_START_TRANS)
2922 xlog_recover_new_tid(&rhash[hash], tid,
2923 be64_to_cpu(rhead->h_lsn));
2925 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2927 "XFS: xlog_recover_process_data: bad length");
2929 return (XFS_ERROR(EIO));
2931 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2932 if (flags & XLOG_WAS_CONT_TRANS)
2933 flags &= ~XLOG_CONTINUE_TRANS;
2935 case XLOG_COMMIT_TRANS:
2936 error = xlog_recover_commit_trans(log,
2937 &rhash[hash], trans, pass);
2939 case XLOG_UNMOUNT_TRANS:
2940 error = xlog_recover_unmount_trans(trans);
2942 case XLOG_WAS_CONT_TRANS:
2943 error = xlog_recover_add_to_cont_trans(trans,
2944 dp, be32_to_cpu(ohead->oh_len));
2946 case XLOG_START_TRANS:
2948 "XFS: xlog_recover_process_data: bad transaction");
2950 error = XFS_ERROR(EIO);
2953 case XLOG_CONTINUE_TRANS:
2954 error = xlog_recover_add_to_trans(trans,
2955 dp, be32_to_cpu(ohead->oh_len));
2959 "XFS: xlog_recover_process_data: bad flag");
2961 error = XFS_ERROR(EIO);
2967 dp += be32_to_cpu(ohead->oh_len);
2974 * Process an extent free intent item that was recovered from
2975 * the log. We need to free the extents that it describes.
2978 xlog_recover_process_efi(
2980 xfs_efi_log_item_t *efip)
2982 xfs_efd_log_item_t *efdp;
2987 xfs_fsblock_t startblock_fsb;
2989 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2992 * First check the validity of the extents described by the
2993 * EFI. If any are bad, then assume that all are bad and
2994 * just toss the EFI.
2996 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2997 extp = &(efip->efi_format.efi_extents[i]);
2998 startblock_fsb = XFS_BB_TO_FSB(mp,
2999 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3000 if ((startblock_fsb == 0) ||
3001 (extp->ext_len == 0) ||
3002 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3003 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3005 * This will pull the EFI from the AIL and
3006 * free the memory associated with it.
3008 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3009 return XFS_ERROR(EIO);
3013 tp = xfs_trans_alloc(mp, 0);
3014 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3017 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3019 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3020 extp = &(efip->efi_format.efi_extents[i]);
3021 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3024 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3028 efip->efi_flags |= XFS_EFI_RECOVERED;
3029 error = xfs_trans_commit(tp, 0);
3033 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3038 * When this is called, all of the EFIs which did not have
3039 * corresponding EFDs should be in the AIL. What we do now
3040 * is free the extents associated with each one.
3042 * Since we process the EFIs in normal transactions, they
3043 * will be removed at some point after the commit. This prevents
3044 * us from just walking down the list processing each one.
3045 * We'll use a flag in the EFI to skip those that we've already
3046 * processed and use the AIL iteration mechanism's generation
3047 * count to try to speed this up at least a bit.
3049 * When we start, we know that the EFIs are the only things in
3050 * the AIL. As we process them, however, other items are added
3051 * to the AIL. Since everything added to the AIL must come after
3052 * everything already in the AIL, we stop processing as soon as
3053 * we see something other than an EFI in the AIL.
3056 xlog_recover_process_efis(
3059 xfs_log_item_t *lip;
3060 xfs_efi_log_item_t *efip;
3062 struct xfs_ail_cursor cur;
3063 struct xfs_ail *ailp;
3066 spin_lock(&ailp->xa_lock);
3067 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3068 while (lip != NULL) {
3070 * We're done when we see something other than an EFI.
3071 * There should be no EFIs left in the AIL now.
3073 if (lip->li_type != XFS_LI_EFI) {
3075 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3076 ASSERT(lip->li_type != XFS_LI_EFI);
3082 * Skip EFIs that we've already processed.
3084 efip = (xfs_efi_log_item_t *)lip;
3085 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3086 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3090 spin_unlock(&ailp->xa_lock);
3091 error = xlog_recover_process_efi(log->l_mp, efip);
3092 spin_lock(&ailp->xa_lock);
3095 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3098 xfs_trans_ail_cursor_done(ailp, &cur);
3099 spin_unlock(&ailp->xa_lock);
3104 * This routine performs a transaction to null out a bad inode pointer
3105 * in an agi unlinked inode hash bucket.
3108 xlog_recover_clear_agi_bucket(
3110 xfs_agnumber_t agno,
3119 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3120 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3122 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3123 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3124 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3129 agi = XFS_BUF_TO_AGI(agibp);
3130 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
3133 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3134 offset = offsetof(xfs_agi_t, agi_unlinked) +
3135 (sizeof(xfs_agino_t) * bucket);
3136 xfs_trans_log_buf(tp, agibp, offset,
3137 (offset + sizeof(xfs_agino_t) - 1));
3139 error = xfs_trans_commit(tp, 0);
3145 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3147 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3148 "failed to clear agi %d. Continuing.", agno);
3153 * xlog_iunlink_recover
3155 * This is called during recovery to process any inodes which
3156 * we unlinked but not freed when the system crashed. These
3157 * inodes will be on the lists in the AGI blocks. What we do
3158 * here is scan all the AGIs and fully truncate and free any
3159 * inodes found on the lists. Each inode is removed from the
3160 * lists when it has been fully truncated and is freed. The
3161 * freeing of the inode and its removal from the list must be
3165 xlog_recover_process_iunlinks(
3169 xfs_agnumber_t agno;
3184 * Prevent any DMAPI event from being sent while in this function.
3186 mp_dmevmask = mp->m_dmevmask;
3189 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3191 * Find the agi for this ag.
3193 agibp = xfs_buf_read(mp->m_ddev_targp,
3194 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3195 XFS_FSS_TO_BB(mp, 1), 0);
3196 if (XFS_BUF_ISERROR(agibp)) {
3197 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3199 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3201 agi = XFS_BUF_TO_AGI(agibp);
3202 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3204 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3206 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3207 while (agino != NULLAGINO) {
3210 * Release the agi buffer so that it can
3211 * be acquired in the normal course of the
3212 * transaction to truncate and free the inode.
3214 xfs_buf_relse(agibp);
3216 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3217 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3218 ASSERT(error || (ip != NULL));
3222 * Get the on disk inode to find the
3223 * next inode in the bucket.
3225 error = xfs_itobp(mp, NULL, ip, &dip,
3228 ASSERT(error || (dip != NULL));
3232 ASSERT(ip->i_d.di_nlink == 0);
3234 /* setup for the next pass */
3235 agino = be32_to_cpu(
3236 dip->di_next_unlinked);
3239 * Prevent any DMAPI event from
3240 * being sent when the
3241 * reference on the inode is
3244 ip->i_d.di_dmevmask = 0;
3247 * If this is a new inode, handle
3248 * it specially. Otherwise,
3249 * just drop our reference to the
3250 * inode. If there are no
3251 * other references, this will
3253 * xfs_inactive() which will
3254 * truncate the file and free
3257 if (ip->i_d.di_mode == 0)
3258 xfs_iput_new(ip, 0);
3263 * We can't read in the inode
3264 * this bucket points to, or
3265 * this inode is messed up. Just
3266 * ditch this bucket of inodes. We
3267 * will lose some inodes and space,
3268 * but at least we won't hang. Call
3269 * xlog_recover_clear_agi_bucket()
3270 * to perform a transaction to clear
3271 * the inode pointer in the bucket.
3273 xlog_recover_clear_agi_bucket(mp, agno,
3280 * Reacquire the agibuffer and continue around
3283 agibp = xfs_buf_read(mp->m_ddev_targp,
3284 XFS_AG_DADDR(mp, agno,
3286 XFS_FSS_TO_BB(mp, 1), 0);
3287 if (XFS_BUF_ISERROR(agibp)) {
3289 "xlog_recover_process_iunlinks(#2)",
3291 XFS_AG_DADDR(mp, agno,
3292 XFS_AGI_DADDR(mp)));
3294 agi = XFS_BUF_TO_AGI(agibp);
3295 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3296 agi->agi_magicnum));
3301 * Release the buffer for the current agi so we can
3302 * go on to the next one.
3304 xfs_buf_relse(agibp);
3307 mp->m_dmevmask = mp_dmevmask;
3313 xlog_pack_data_checksum(
3315 xlog_in_core_t *iclog,
3322 up = (__be32 *)iclog->ic_datap;
3323 /* divide length by 4 to get # words */
3324 for (i = 0; i < (size >> 2); i++) {
3325 chksum ^= be32_to_cpu(*up);
3328 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3331 #define xlog_pack_data_checksum(log, iclog, size)
3335 * Stamp cycle number in every block
3340 xlog_in_core_t *iclog,
3344 int size = iclog->ic_offset + roundoff;
3347 xlog_in_core_2_t *xhdr;
3349 xlog_pack_data_checksum(log, iclog, size);
3351 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3353 dp = iclog->ic_datap;
3354 for (i = 0; i < BTOBB(size) &&
3355 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3356 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3357 *(__be32 *)dp = cycle_lsn;
3361 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3362 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3363 for ( ; i < BTOBB(size); i++) {
3364 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3365 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3366 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3367 *(__be32 *)dp = cycle_lsn;
3371 for (i = 1; i < log->l_iclog_heads; i++) {
3372 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3377 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3379 xlog_unpack_data_checksum(
3380 xlog_rec_header_t *rhead,
3384 __be32 *up = (__be32 *)dp;
3388 /* divide length by 4 to get # words */
3389 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3390 chksum ^= be32_to_cpu(*up);
3393 if (chksum != be32_to_cpu(rhead->h_chksum)) {
3394 if (rhead->h_chksum ||
3395 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3397 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3398 be32_to_cpu(rhead->h_chksum), chksum);
3400 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3401 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3403 "XFS: LogR this is a LogV2 filesystem\n");
3405 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3410 #define xlog_unpack_data_checksum(rhead, dp, log)
3415 xlog_rec_header_t *rhead,
3420 xlog_in_core_2_t *xhdr;
3422 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3423 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3424 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3428 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3429 xhdr = (xlog_in_core_2_t *)rhead;
3430 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3431 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3432 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3433 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3438 xlog_unpack_data_checksum(rhead, dp, log);
3442 xlog_valid_rec_header(
3444 xlog_rec_header_t *rhead,
3449 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3450 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3451 XFS_ERRLEVEL_LOW, log->l_mp);
3452 return XFS_ERROR(EFSCORRUPTED);
3455 (!rhead->h_version ||
3456 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3457 xlog_warn("XFS: %s: unrecognised log version (%d).",
3458 __func__, be32_to_cpu(rhead->h_version));
3459 return XFS_ERROR(EIO);
3462 /* LR body must have data or it wouldn't have been written */
3463 hlen = be32_to_cpu(rhead->h_len);
3464 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3465 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3466 XFS_ERRLEVEL_LOW, log->l_mp);
3467 return XFS_ERROR(EFSCORRUPTED);
3469 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3470 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3471 XFS_ERRLEVEL_LOW, log->l_mp);
3472 return XFS_ERROR(EFSCORRUPTED);
3478 * Read the log from tail to head and process the log records found.
3479 * Handle the two cases where the tail and head are in the same cycle
3480 * and where the active portion of the log wraps around the end of
3481 * the physical log separately. The pass parameter is passed through
3482 * to the routines called to process the data and is not looked at
3486 xlog_do_recovery_pass(
3488 xfs_daddr_t head_blk,
3489 xfs_daddr_t tail_blk,
3492 xlog_rec_header_t *rhead;
3494 xfs_caddr_t bufaddr, offset;
3495 xfs_buf_t *hbp, *dbp;
3496 int error = 0, h_size;
3497 int bblks, split_bblks;
3498 int hblks, split_hblks, wrapped_hblks;
3499 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3501 ASSERT(head_blk != tail_blk);
3504 * Read the header of the tail block and get the iclog buffer size from
3505 * h_size. Use this to tell how many sectors make up the log header.
3507 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3509 * When using variable length iclogs, read first sector of
3510 * iclog header and extract the header size from it. Get a
3511 * new hbp that is the correct size.
3513 hbp = xlog_get_bp(log, 1);
3516 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3518 offset = xlog_align(log, tail_blk, 1, hbp);
3519 rhead = (xlog_rec_header_t *)offset;
3520 error = xlog_valid_rec_header(log, rhead, tail_blk);
3523 h_size = be32_to_cpu(rhead->h_size);
3524 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3525 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3526 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3527 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3530 hbp = xlog_get_bp(log, hblks);
3535 ASSERT(log->l_sectbb_log == 0);
3537 hbp = xlog_get_bp(log, 1);
3538 h_size = XLOG_BIG_RECORD_BSIZE;
3543 dbp = xlog_get_bp(log, BTOBB(h_size));
3549 memset(rhash, 0, sizeof(rhash));
3550 if (tail_blk <= head_blk) {
3551 for (blk_no = tail_blk; blk_no < head_blk; ) {
3552 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3554 offset = xlog_align(log, blk_no, hblks, hbp);
3555 rhead = (xlog_rec_header_t *)offset;
3556 error = xlog_valid_rec_header(log, rhead, blk_no);
3560 /* blocks in data section */
3561 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3562 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3565 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3566 xlog_unpack_data(rhead, offset, log);
3567 if ((error = xlog_recover_process_data(log,
3568 rhash, rhead, offset, pass)))
3570 blk_no += bblks + hblks;
3574 * Perform recovery around the end of the physical log.
3575 * When the head is not on the same cycle number as the tail,
3576 * we can't do a sequential recovery as above.
3579 while (blk_no < log->l_logBBsize) {
3581 * Check for header wrapping around physical end-of-log
3586 if (blk_no + hblks <= log->l_logBBsize) {
3587 /* Read header in one read */
3588 error = xlog_bread(log, blk_no, hblks, hbp);
3591 offset = xlog_align(log, blk_no, hblks, hbp);
3593 /* This LR is split across physical log end */
3594 if (blk_no != log->l_logBBsize) {
3595 /* some data before physical log end */
3596 ASSERT(blk_no <= INT_MAX);
3597 split_hblks = log->l_logBBsize - (int)blk_no;
3598 ASSERT(split_hblks > 0);
3599 if ((error = xlog_bread(log, blk_no,
3602 offset = xlog_align(log, blk_no,
3606 * Note: this black magic still works with
3607 * large sector sizes (non-512) only because:
3608 * - we increased the buffer size originally
3609 * by 1 sector giving us enough extra space
3610 * for the second read;
3611 * - the log start is guaranteed to be sector
3613 * - we read the log end (LR header start)
3614 * _first_, then the log start (LR header end)
3615 * - order is important.
3617 wrapped_hblks = hblks - split_hblks;
3618 bufaddr = XFS_BUF_PTR(hbp);
3619 error = XFS_BUF_SET_PTR(hbp,
3620 bufaddr + BBTOB(split_hblks),
3621 BBTOB(hblks - split_hblks));
3623 error = xlog_bread(log, 0,
3624 wrapped_hblks, hbp);
3626 error = XFS_BUF_SET_PTR(hbp, bufaddr,
3631 offset = xlog_align(log, 0,
3632 wrapped_hblks, hbp);
3634 rhead = (xlog_rec_header_t *)offset;
3635 error = xlog_valid_rec_header(log, rhead,
3636 split_hblks ? blk_no : 0);
3640 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3643 /* Read in data for log record */
3644 if (blk_no + bblks <= log->l_logBBsize) {
3645 error = xlog_bread(log, blk_no, bblks, dbp);
3648 offset = xlog_align(log, blk_no, bblks, dbp);
3650 /* This log record is split across the
3651 * physical end of log */
3654 if (blk_no != log->l_logBBsize) {
3655 /* some data is before the physical
3657 ASSERT(!wrapped_hblks);
3658 ASSERT(blk_no <= INT_MAX);
3660 log->l_logBBsize - (int)blk_no;
3661 ASSERT(split_bblks > 0);
3662 if ((error = xlog_bread(log, blk_no,
3665 offset = xlog_align(log, blk_no,
3669 * Note: this black magic still works with
3670 * large sector sizes (non-512) only because:
3671 * - we increased the buffer size originally
3672 * by 1 sector giving us enough extra space
3673 * for the second read;
3674 * - the log start is guaranteed to be sector
3676 * - we read the log end (LR header start)
3677 * _first_, then the log start (LR header end)
3678 * - order is important.
3680 bufaddr = XFS_BUF_PTR(dbp);
3681 error = XFS_BUF_SET_PTR(dbp,
3682 bufaddr + BBTOB(split_bblks),
3683 BBTOB(bblks - split_bblks));
3685 error = xlog_bread(log, wrapped_hblks,
3686 bblks - split_bblks,
3689 error = XFS_BUF_SET_PTR(dbp, bufaddr,
3694 offset = xlog_align(log, wrapped_hblks,
3695 bblks - split_bblks, dbp);
3697 xlog_unpack_data(rhead, offset, log);
3698 if ((error = xlog_recover_process_data(log, rhash,
3699 rhead, offset, pass)))
3704 ASSERT(blk_no >= log->l_logBBsize);
3705 blk_no -= log->l_logBBsize;
3707 /* read first part of physical log */
3708 while (blk_no < head_blk) {
3709 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3711 offset = xlog_align(log, blk_no, hblks, hbp);
3712 rhead = (xlog_rec_header_t *)offset;
3713 error = xlog_valid_rec_header(log, rhead, blk_no);
3716 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3717 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3719 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3720 xlog_unpack_data(rhead, offset, log);
3721 if ((error = xlog_recover_process_data(log, rhash,
3722 rhead, offset, pass)))
3724 blk_no += bblks + hblks;
3736 * Do the recovery of the log. We actually do this in two phases.
3737 * The two passes are necessary in order to implement the function
3738 * of cancelling a record written into the log. The first pass
3739 * determines those things which have been cancelled, and the
3740 * second pass replays log items normally except for those which
3741 * have been cancelled. The handling of the replay and cancellations
3742 * takes place in the log item type specific routines.
3744 * The table of items which have cancel records in the log is allocated
3745 * and freed at this level, since only here do we know when all of
3746 * the log recovery has been completed.
3749 xlog_do_log_recovery(
3751 xfs_daddr_t head_blk,
3752 xfs_daddr_t tail_blk)
3756 ASSERT(head_blk != tail_blk);
3759 * First do a pass to find all of the cancelled buf log items.
3760 * Store them in the buf_cancel_table for use in the second pass.
3762 log->l_buf_cancel_table =
3763 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3764 sizeof(xfs_buf_cancel_t*),
3766 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3767 XLOG_RECOVER_PASS1);
3769 kmem_free(log->l_buf_cancel_table);
3770 log->l_buf_cancel_table = NULL;
3774 * Then do a second pass to actually recover the items in the log.
3775 * When it is complete free the table of buf cancel items.
3777 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3778 XLOG_RECOVER_PASS2);
3783 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3784 ASSERT(log->l_buf_cancel_table[i] == NULL);
3788 kmem_free(log->l_buf_cancel_table);
3789 log->l_buf_cancel_table = NULL;
3795 * Do the actual recovery
3800 xfs_daddr_t head_blk,
3801 xfs_daddr_t tail_blk)
3808 * First replay the images in the log.
3810 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3815 XFS_bflush(log->l_mp->m_ddev_targp);
3818 * If IO errors happened during recovery, bail out.
3820 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3825 * We now update the tail_lsn since much of the recovery has completed
3826 * and there may be space available to use. If there were no extent
3827 * or iunlinks, we can free up the entire log and set the tail_lsn to
3828 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3829 * lsn of the last known good LR on disk. If there are extent frees
3830 * or iunlinks they will have some entries in the AIL; so we look at
3831 * the AIL to determine how to set the tail_lsn.
3833 xlog_assign_tail_lsn(log->l_mp);
3836 * Now that we've finished replaying all buffer and inode
3837 * updates, re-read in the superblock.
3839 bp = xfs_getsb(log->l_mp, 0);
3841 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3842 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3844 XFS_BUF_UNASYNC(bp);
3845 xfsbdstrat(log->l_mp, bp);
3846 error = xfs_iowait(bp);
3848 xfs_ioerror_alert("xlog_do_recover",
3849 log->l_mp, bp, XFS_BUF_ADDR(bp));
3855 /* Convert superblock from on-disk format */
3856 sbp = &log->l_mp->m_sb;
3857 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3858 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3859 ASSERT(xfs_sb_good_version(sbp));
3862 /* We've re-read the superblock so re-initialize per-cpu counters */
3863 xfs_icsb_reinit_counters(log->l_mp);
3865 xlog_recover_check_summary(log);
3867 /* Normal transactions can now occur */
3868 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3873 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3875 * Return error or zero.
3881 xfs_daddr_t head_blk, tail_blk;
3884 /* find the tail of the log */
3885 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3888 if (tail_blk != head_blk) {
3889 /* There used to be a comment here:
3891 * disallow recovery on read-only mounts. note -- mount
3892 * checks for ENOSPC and turns it into an intelligent
3894 * ...but this is no longer true. Now, unless you specify
3895 * NORECOVERY (in which case this function would never be
3896 * called), we just go ahead and recover. We do this all
3897 * under the vfs layer, so we can get away with it unless
3898 * the device itself is read-only, in which case we fail.
3900 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3905 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3906 log->l_mp->m_fsname, log->l_mp->m_logname ?
3907 log->l_mp->m_logname : "internal");
3909 error = xlog_do_recover(log, head_blk, tail_blk);
3910 log->l_flags |= XLOG_RECOVERY_NEEDED;
3916 * In the first part of recovery we replay inodes and buffers and build
3917 * up the list of extent free items which need to be processed. Here
3918 * we process the extent free items and clean up the on disk unlinked
3919 * inode lists. This is separated from the first part of recovery so
3920 * that the root and real-time bitmap inodes can be read in from disk in
3921 * between the two stages. This is necessary so that we can free space
3922 * in the real-time portion of the file system.
3925 xlog_recover_finish(
3929 * Now we're ready to do the transactions needed for the
3930 * rest of recovery. Start with completing all the extent
3931 * free intent records and then process the unlinked inode
3932 * lists. At this point, we essentially run in normal mode
3933 * except that we're still performing recovery actions
3934 * rather than accepting new requests.
3936 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3938 error = xlog_recover_process_efis(log);
3941 "Failed to recover EFIs on filesystem: %s",
3942 log->l_mp->m_fsname);
3946 * Sync the log to get all the EFIs out of the AIL.
3947 * This isn't absolutely necessary, but it helps in
3948 * case the unlink transactions would have problems
3949 * pushing the EFIs out of the way.
3951 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3952 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3954 xlog_recover_process_iunlinks(log);
3956 xlog_recover_check_summary(log);
3959 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3960 log->l_mp->m_fsname, log->l_mp->m_logname ?
3961 log->l_mp->m_logname : "internal");
3962 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3965 "!Ending clean XFS mount for filesystem: %s\n",
3966 log->l_mp->m_fsname);
3974 * Read all of the agf and agi counters and check that they
3975 * are consistent with the superblock counters.
3978 xlog_recover_check_summary(
3986 xfs_daddr_t agfdaddr;
3987 xfs_daddr_t agidaddr;
3989 #ifdef XFS_LOUD_RECOVERY
3992 xfs_agnumber_t agno;
3993 __uint64_t freeblks;
4002 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4003 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4004 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4005 XFS_FSS_TO_BB(mp, 1), 0);
4006 if (XFS_BUF_ISERROR(agfbp)) {
4007 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4008 mp, agfbp, agfdaddr);
4010 agfp = XFS_BUF_TO_AGF(agfbp);
4011 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4012 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4013 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4015 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4016 be32_to_cpu(agfp->agf_flcount);
4017 xfs_buf_relse(agfbp);
4019 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4020 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4021 XFS_FSS_TO_BB(mp, 1), 0);
4022 if (XFS_BUF_ISERROR(agibp)) {
4023 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4024 mp, agibp, agidaddr);
4026 agip = XFS_BUF_TO_AGI(agibp);
4027 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4028 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4029 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4031 itotal += be32_to_cpu(agip->agi_count);
4032 ifree += be32_to_cpu(agip->agi_freecount);
4033 xfs_buf_relse(agibp);
4036 sbbp = xfs_getsb(mp, 0);
4037 #ifdef XFS_LOUD_RECOVERY
4039 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4041 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4042 sbp->sb_icount, itotal);
4044 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4045 sbp->sb_ifree, ifree);
4047 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4048 sbp->sb_fdblocks, freeblks);
4051 * This is turned off until I account for the allocation
4052 * btree blocks which live in free space.
4054 ASSERT(sbp->sb_icount == itotal);
4055 ASSERT(sbp->sb_ifree == ifree);
4056 ASSERT(sbp->sb_fdblocks == freeblks);
4059 xfs_buf_relse(sbbp);