2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
35 #include <linux/rtc.h>
38 #include <asm/uaccess.h>
40 #include <asm/abs_addr.h>
41 #include <asm/iseries/vio.h>
42 #include <asm/iseries/mf.h>
43 #include <asm/iseries/hv_lp_config.h>
44 #include <asm/iseries/it_lp_queue.h>
48 extern int piranha_simulator;
51 * This is the structure layout for the Machine Facilites LPAR event
61 u64 state; /* GetStateOut */
62 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
63 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
64 u64 page[4]; /* GetSrcHistoryIn */
65 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
66 SetAutoIplWhenPrimaryIplsIn,
67 WhiteButtonPowerOffIn,
68 Function08FastPowerOffIn,
69 IsSpcnRackPowerIncompleteOut */
76 } kern; /* SetKernelImageIn, GetKernelImageIn,
77 SetKernelCmdLineIn, GetKernelCmdLineIn */
78 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
84 struct completion com;
85 struct vsp_cmd_data *response;
99 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
101 struct ce_msg_comp_data {
102 ce_msg_comp_hdlr handler;
109 struct ce_msg_comp_data *completion;
112 struct io_mf_lp_event {
113 struct HvLpEvent hp_lp_event;
114 u16 subtype_result_code;
118 struct alloc_data alloc;
119 struct ce_msg_data ce_msg;
120 struct vsp_cmd_data vsp_cmd;
124 #define subtype_data(a, b, c, d) \
125 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
128 * All outgoing event traffic is kept on a FIFO queue. The first
129 * pointer points to the one that is outstanding, and all new
130 * requests get stuck on the end. Also, we keep a certain number of
131 * preallocated pending events so that we can operate very early in
132 * the boot up sequence (before kmalloc is ready).
134 struct pending_event {
135 struct pending_event *next;
136 struct io_mf_lp_event event;
137 MFCompleteHandler hdlr;
139 unsigned dma_data_length;
140 unsigned remote_address;
142 static spinlock_t pending_event_spinlock;
143 static struct pending_event *pending_event_head;
144 static struct pending_event *pending_event_tail;
145 static struct pending_event *pending_event_avail;
146 static struct pending_event pending_event_prealloc[16];
149 * Put a pending event onto the available queue, so it can get reused.
150 * Attention! You must have the pending_event_spinlock before calling!
152 static void free_pending_event(struct pending_event *ev)
155 ev->next = pending_event_avail;
156 pending_event_avail = ev;
161 * Enqueue the outbound event onto the stack. If the queue was
162 * empty to begin with, we must also issue it via the Hypervisor
163 * interface. There is a section of code below that will touch
164 * the first stack pointer without the protection of the pending_event_spinlock.
165 * This is OK, because we know that nobody else will be modifying
166 * the first pointer when we do this.
168 static int signal_event(struct pending_event *ev)
173 struct pending_event *ev1;
176 /* enqueue the event */
179 spin_lock_irqsave(&pending_event_spinlock, flags);
180 if (pending_event_head == NULL)
181 pending_event_head = ev;
184 pending_event_tail->next = ev;
186 pending_event_tail = ev;
187 spin_unlock_irqrestore(&pending_event_spinlock, flags);
194 /* any DMA data to send beforehand? */
195 if (pending_event_head->dma_data_length > 0)
196 HvCallEvent_dmaToSp(pending_event_head->dma_data,
197 pending_event_head->remote_address,
198 pending_event_head->dma_data_length,
199 HvLpDma_Direction_LocalToRemote);
201 hv_rc = HvCallEvent_signalLpEvent(
202 &pending_event_head->event.hp_lp_event);
203 if (hv_rc != HvLpEvent_Rc_Good) {
204 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
205 "failed with %d\n", (int)hv_rc);
207 spin_lock_irqsave(&pending_event_spinlock, flags);
208 ev1 = pending_event_head;
209 pending_event_head = pending_event_head->next;
210 if (pending_event_head != NULL)
212 spin_unlock_irqrestore(&pending_event_spinlock, flags);
216 else if (ev1->hdlr != NULL)
217 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
219 spin_lock_irqsave(&pending_event_spinlock, flags);
220 free_pending_event(ev1);
221 spin_unlock_irqrestore(&pending_event_spinlock, flags);
229 * Allocate a new pending_event structure, and initialize it.
231 static struct pending_event *new_pending_event(void)
233 struct pending_event *ev = NULL;
234 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
236 struct HvLpEvent *hev;
238 spin_lock_irqsave(&pending_event_spinlock, flags);
239 if (pending_event_avail != NULL) {
240 ev = pending_event_avail;
241 pending_event_avail = pending_event_avail->next;
243 spin_unlock_irqrestore(&pending_event_spinlock, flags);
245 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
247 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
248 sizeof(struct pending_event));
252 memset(ev, 0, sizeof(struct pending_event));
253 hev = &ev->event.hp_lp_event;
254 hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
255 hev->xType = HvLpEvent_Type_MachineFac;
256 hev->xSourceLp = HvLpConfig_getLpIndex();
257 hev->xTargetLp = primary_lp;
258 hev->xSizeMinus1 = sizeof(ev->event) - 1;
259 hev->xRc = HvLpEvent_Rc_Good;
260 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
261 HvLpEvent_Type_MachineFac);
262 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
263 HvLpEvent_Type_MachineFac);
268 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
270 struct pending_event *ev = new_pending_event();
272 struct vsp_rsp_data response;
277 init_completion(&response.com);
278 response.response = vsp_cmd;
279 ev->event.hp_lp_event.xSubtype = 6;
280 ev->event.hp_lp_event.x.xSubtypeData =
281 subtype_data('M', 'F', 'V', 'I');
282 ev->event.data.vsp_cmd.token = (u64)&response;
283 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
284 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
285 ev->event.data.vsp_cmd.result_code = 0xFF;
286 ev->event.data.vsp_cmd.reserved = 0;
287 memcpy(&(ev->event.data.vsp_cmd.sub_data),
288 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
291 rc = signal_event(ev);
293 wait_for_completion(&response.com);
299 * Send a 12-byte CE message to the primary partition VSP object
301 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
303 struct pending_event *ev = new_pending_event();
308 ev->event.hp_lp_event.xSubtype = 0;
309 ev->event.hp_lp_event.x.xSubtypeData =
310 subtype_data('M', 'F', 'C', 'E');
311 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
312 ev->event.data.ce_msg.completion = completion;
313 return signal_event(ev);
317 * Send a 12-byte CE message (with no data) to the primary partition VSP object
319 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
323 memset(ce_msg, 0, sizeof(ce_msg));
325 return signal_ce_msg(ce_msg, completion);
329 * Send a 12-byte CE message and DMA data to the primary partition VSP object
331 static int dma_and_signal_ce_msg(char *ce_msg,
332 struct ce_msg_comp_data *completion, void *dma_data,
333 unsigned dma_data_length, unsigned remote_address)
335 struct pending_event *ev = new_pending_event();
340 ev->event.hp_lp_event.xSubtype = 0;
341 ev->event.hp_lp_event.x.xSubtypeData =
342 subtype_data('M', 'F', 'C', 'E');
343 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
344 ev->event.data.ce_msg.completion = completion;
345 memcpy(ev->dma_data, dma_data, dma_data_length);
346 ev->dma_data_length = dma_data_length;
347 ev->remote_address = remote_address;
348 return signal_event(ev);
352 * Initiate a nice (hopefully) shutdown of Linux. We simply are
353 * going to try and send the init process a SIGINT signal. If
354 * this fails (why?), we'll simply force it off in a not-so-nice
357 static int shutdown(void)
359 int rc = kill_proc(1, SIGINT, 1);
362 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
363 "hard shutdown commencing\n", rc);
366 printk(KERN_INFO "mf.c: init has been successfully notified "
367 "to proceed with shutdown\n");
372 * The primary partition VSP object is sending us a new
373 * event flow. Handle it...
375 static void handle_int(struct io_mf_lp_event *event)
377 struct ce_msg_data *ce_msg_data;
378 struct ce_msg_data *pce_msg_data;
380 struct pending_event *pev;
382 /* ack the interrupt */
383 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
384 HvCallEvent_ackLpEvent(&event->hp_lp_event);
386 /* process interrupt */
387 switch (event->hp_lp_event.xSubtype) {
388 case 0: /* CE message */
389 ce_msg_data = &event->data.ce_msg;
390 switch (ce_msg_data->ce_msg[3]) {
391 case 0x5B: /* power control notification */
392 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
393 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
395 signal_ce_msg_simple(0xDB, NULL);
398 case 0xC0: /* get time */
399 spin_lock_irqsave(&pending_event_spinlock, flags);
400 pev = pending_event_head;
402 pending_event_head = pending_event_head->next;
403 spin_unlock_irqrestore(&pending_event_spinlock, flags);
406 pce_msg_data = &pev->event.data.ce_msg;
407 if (pce_msg_data->ce_msg[3] != 0x40)
409 if (pce_msg_data->completion != NULL) {
410 ce_msg_comp_hdlr handler =
411 pce_msg_data->completion->handler;
412 void *token = pce_msg_data->completion->token;
415 (*handler)(token, ce_msg_data);
417 spin_lock_irqsave(&pending_event_spinlock, flags);
418 free_pending_event(pev);
419 spin_unlock_irqrestore(&pending_event_spinlock, flags);
420 /* send next waiting event */
421 if (pending_event_head != NULL)
426 case 1: /* IT sys shutdown */
427 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
434 * The primary partition VSP object is acknowledging the receipt
435 * of a flow we sent to them. If there are other flows queued
436 * up, we must send another one now...
438 static void handle_ack(struct io_mf_lp_event *event)
441 struct pending_event *two = NULL;
442 unsigned long free_it = 0;
443 struct ce_msg_data *ce_msg_data;
444 struct ce_msg_data *pce_msg_data;
445 struct vsp_rsp_data *rsp;
447 /* handle current event */
448 if (pending_event_head == NULL) {
449 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
453 switch (event->hp_lp_event.xSubtype) {
455 ce_msg_data = &event->data.ce_msg;
456 if (ce_msg_data->ce_msg[3] != 0x40) {
460 if (ce_msg_data->ce_msg[2] == 0)
463 pce_msg_data = &pending_event_head->event.data.ce_msg;
464 if (pce_msg_data->completion != NULL) {
465 ce_msg_comp_hdlr handler =
466 pce_msg_data->completion->handler;
467 void *token = pce_msg_data->completion->token;
470 (*handler)(token, ce_msg_data);
473 case 4: /* allocate */
474 case 5: /* deallocate */
475 if (pending_event_head->hdlr != NULL)
476 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
481 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
483 printk(KERN_ERR "mf.c: no rsp\n");
486 if (rsp->response != NULL)
487 memcpy(rsp->response, &event->data.vsp_cmd,
488 sizeof(event->data.vsp_cmd));
493 /* remove from queue */
494 spin_lock_irqsave(&pending_event_spinlock, flags);
495 if ((pending_event_head != NULL) && (free_it == 1)) {
496 struct pending_event *oldHead = pending_event_head;
498 pending_event_head = pending_event_head->next;
499 two = pending_event_head;
500 free_pending_event(oldHead);
502 spin_unlock_irqrestore(&pending_event_spinlock, flags);
504 /* send next waiting event */
510 * This is the generic event handler we are registering with
511 * the Hypervisor. Ensure the flows are for us, and then
512 * parse it enough to know if it is an interrupt or an
515 static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
517 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
518 if (hvlpevent_is_ack(event))
519 handle_ack((struct io_mf_lp_event *)event);
521 handle_int((struct io_mf_lp_event *)event);
523 printk(KERN_ERR "mf.c: alien event received\n");
527 * Global kernel interface to allocate and seed events into the
530 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
531 unsigned size, unsigned count, MFCompleteHandler hdlr,
534 struct pending_event *ev = new_pending_event();
540 ev->event.hp_lp_event.xSubtype = 4;
541 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
542 ev->event.hp_lp_event.x.xSubtypeData =
543 subtype_data('M', 'F', 'M', 'A');
544 ev->event.data.alloc.target_lp = target_lp;
545 ev->event.data.alloc.type = type;
546 ev->event.data.alloc.size = size;
547 ev->event.data.alloc.count = count;
549 rc = signal_event(ev);
551 if ((rc != 0) && (hdlr != NULL))
552 (*hdlr)(user_token, rc);
554 EXPORT_SYMBOL(mf_allocate_lp_events);
557 * Global kernel interface to unseed and deallocate events already in
560 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
561 unsigned count, MFCompleteHandler hdlr, void *user_token)
563 struct pending_event *ev = new_pending_event();
569 ev->event.hp_lp_event.xSubtype = 5;
570 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
571 ev->event.hp_lp_event.x.xSubtypeData =
572 subtype_data('M', 'F', 'M', 'D');
573 ev->event.data.alloc.target_lp = target_lp;
574 ev->event.data.alloc.type = type;
575 ev->event.data.alloc.count = count;
577 rc = signal_event(ev);
579 if ((rc != 0) && (hdlr != NULL))
580 (*hdlr)(user_token, rc);
582 EXPORT_SYMBOL(mf_deallocate_lp_events);
585 * Global kernel interface to tell the VSP object in the primary
586 * partition to power this partition off.
588 void mf_power_off(void)
590 printk(KERN_INFO "mf.c: Down it goes...\n");
591 signal_ce_msg_simple(0x4d, NULL);
597 * Global kernel interface to tell the VSP object in the primary
598 * partition to reboot this partition.
602 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
603 signal_ce_msg_simple(0x4e, NULL);
609 * Display a single word SRC onto the VSP control panel.
611 void mf_display_src(u32 word)
615 memset(ce, 0, sizeof(ce));
622 signal_ce_msg(ce, NULL);
626 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
628 void mf_display_progress(u16 value)
633 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
634 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
635 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
636 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
637 "\x00\x00\x00\x00PROGxxxx ",
640 src[7] = value & 255;
641 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
642 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
643 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
644 src[47] = "0123456789ABCDEF"[value & 15];
645 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
649 * Clear the VSP control panel. Used to "erase" an SRC that was
650 * previously displayed.
652 void mf_clear_src(void)
654 signal_ce_msg_simple(0x4b, NULL);
658 * Initialization code here.
665 spin_lock_init(&pending_event_spinlock);
667 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
669 free_pending_event(&pending_event_prealloc[i]);
670 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
672 /* virtual continue ack */
673 signal_ce_msg_simple(0x57, NULL);
675 /* initialization complete */
676 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
680 struct rtc_time_data {
681 struct completion com;
682 struct ce_msg_data ce_msg;
686 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
688 struct rtc_time_data *rtc = token;
690 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
695 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
710 if ((ce_msg[2] == 0xa9) ||
711 (ce_msg[2] == 0xaf)) {
712 /* TOD clock is not set */
750 int mf_get_rtc(struct rtc_time *tm)
752 struct ce_msg_comp_data ce_complete;
753 struct rtc_time_data rtc_data;
756 memset(&ce_complete, 0, sizeof(ce_complete));
757 memset(&rtc_data, 0, sizeof(rtc_data));
758 init_completion(&rtc_data.com);
759 ce_complete.handler = &get_rtc_time_complete;
760 ce_complete.token = &rtc_data;
761 rc = signal_ce_msg_simple(0x40, &ce_complete);
764 wait_for_completion(&rtc_data.com);
765 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
768 struct boot_rtc_time_data {
770 struct ce_msg_data ce_msg;
774 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
776 struct boot_rtc_time_data *rtc = token;
778 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
783 int mf_get_boot_rtc(struct rtc_time *tm)
785 struct ce_msg_comp_data ce_complete;
786 struct boot_rtc_time_data rtc_data;
789 memset(&ce_complete, 0, sizeof(ce_complete));
790 memset(&rtc_data, 0, sizeof(rtc_data));
792 ce_complete.handler = &get_boot_rtc_time_complete;
793 ce_complete.token = &rtc_data;
794 rc = signal_ce_msg_simple(0x40, &ce_complete);
797 /* We need to poll here as we are not yet taking interrupts */
798 while (rtc_data.busy) {
799 if (hvlpevent_is_pending())
800 process_hvlpevents(NULL);
802 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
805 int mf_set_rtc(struct rtc_time *tm)
808 u8 day, mon, hour, min, sec, y1, y2;
811 year = 1900 + tm->tm_year;
819 mon = tm->tm_mon + 1;
829 memset(ce_time, 0, sizeof(ce_time));
839 return signal_ce_msg(ce_time, NULL);
842 #ifdef CONFIG_PROC_FS
844 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
845 int count, int *eof, void *data)
849 struct vsp_cmd_data vsp_cmd;
853 /* The HV appears to return no more than 256 bytes of command line */
856 if ((off + count) > 256)
859 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
861 if (dma_mapping_error(dma_addr))
863 memset(page, 0, off + count);
864 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
866 vsp_cmd.sub_data.kern.token = dma_addr;
867 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
868 vsp_cmd.sub_data.kern.side = (u64)data;
869 vsp_cmd.sub_data.kern.length = off + count;
871 rc = signal_vsp_instruction(&vsp_cmd);
872 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
876 if (vsp_cmd.result_code != 0)
880 while (len < (off + count)) {
881 if ((*p == '\0') || (*p == '\n')) {
901 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
903 struct vsp_cmd_data vsp_cmd;
908 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
910 memset(buffer, 0, len);
911 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
913 vsp_cmd.sub_data.kern.token = dma_addr;
914 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
915 vsp_cmd.sub_data.kern.side = side;
916 vsp_cmd.sub_data.kern.offset = offset;
917 vsp_cmd.sub_data.kern.length = len;
919 rc = signal_vsp_instruction(&vsp_cmd);
921 if (vsp_cmd.result_code == 0)
922 *size = vsp_cmd.sub_data.length_out;
927 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
932 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
933 int count, int *eof, void *data)
935 int sizeToGet = count;
937 if (!capable(CAP_SYS_ADMIN))
940 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
941 if (sizeToGet != 0) {
953 static int proc_mf_dump_side(char *page, char **start, off_t off,
954 int count, int *eof, void *data)
957 char mf_current_side = ' ';
958 struct vsp_cmd_data vsp_cmd;
960 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
962 vsp_cmd.sub_data.ipl_type = 0;
965 if (signal_vsp_instruction(&vsp_cmd) == 0) {
966 if (vsp_cmd.result_code == 0) {
967 switch (vsp_cmd.sub_data.ipl_type) {
968 case 0: mf_current_side = 'A';
970 case 1: mf_current_side = 'B';
972 case 2: mf_current_side = 'C';
974 default: mf_current_side = 'D';
980 len = sprintf(page, "%c\n", mf_current_side);
982 if (len <= (off + count))
993 static int proc_mf_change_side(struct file *file, const char __user *buffer,
994 unsigned long count, void *data)
998 struct vsp_cmd_data vsp_cmd;
1000 if (!capable(CAP_SYS_ADMIN))
1006 if (get_user(side, buffer))
1010 case 'A': newSide = 0;
1012 case 'B': newSide = 1;
1014 case 'C': newSide = 2;
1016 case 'D': newSide = 3;
1019 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1023 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1024 vsp_cmd.sub_data.ipl_type = newSide;
1027 (void)signal_vsp_instruction(&vsp_cmd);
1033 static void mf_getSrcHistory(char *buffer, int size)
1035 struct IplTypeReturnStuff return_stuff;
1036 struct pending_event *ev = new_pending_event();
1040 pages[0] = kmalloc(4096, GFP_ATOMIC);
1041 pages[1] = kmalloc(4096, GFP_ATOMIC);
1042 pages[2] = kmalloc(4096, GFP_ATOMIC);
1043 pages[3] = kmalloc(4096, GFP_ATOMIC);
1044 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1045 || (pages[2] == NULL) || (pages[3] == NULL))
1048 return_stuff.xType = 0;
1049 return_stuff.xRc = 0;
1050 return_stuff.xDone = 0;
1051 ev->event.hp_lp_event.xSubtype = 6;
1052 ev->event.hp_lp_event.x.xSubtypeData =
1053 subtype_data('M', 'F', 'V', 'I');
1054 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1055 ev->event.data.vsp_cmd.cmd = 4;
1056 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1057 ev->event.data.vsp_cmd.result_code = 0xFF;
1058 ev->event.data.vsp_cmd.reserved = 0;
1059 ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1060 ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1061 ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1062 ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1064 if (signal_event(ev) != 0)
1067 while (return_stuff.xDone != 1)
1069 if (return_stuff.xRc == 0)
1070 memcpy(buffer, pages[0], size);
1078 static int proc_mf_dump_src(char *page, char **start, off_t off,
1079 int count, int *eof, void *data)
1084 mf_getSrcHistory(page, count);
1093 *start = page + off;
1100 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1101 unsigned long count, void *data)
1105 if (!capable(CAP_SYS_ADMIN))
1108 if ((count < 4) && (count != 1)) {
1109 printk(KERN_ERR "mf_proc: invalid src\n");
1113 if (count > (sizeof(stkbuf) - 1))
1114 count = sizeof(stkbuf) - 1;
1115 if (copy_from_user(stkbuf, buffer, count))
1118 if ((count == 1) && (*stkbuf == '\0'))
1121 mf_display_src(*(u32 *)stkbuf);
1126 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1127 unsigned long count, void *data)
1129 struct vsp_cmd_data vsp_cmd;
1130 dma_addr_t dma_addr;
1134 if (!capable(CAP_SYS_ADMIN))
1138 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1145 if (copy_from_user(page, buffer, count))
1148 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1150 vsp_cmd.sub_data.kern.token = dma_addr;
1151 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1152 vsp_cmd.sub_data.kern.side = (u64)data;
1153 vsp_cmd.sub_data.kern.length = count;
1155 (void)signal_vsp_instruction(&vsp_cmd);
1159 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1164 static ssize_t proc_mf_change_vmlinux(struct file *file,
1165 const char __user *buf,
1166 size_t count, loff_t *ppos)
1168 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1170 dma_addr_t dma_addr;
1172 struct vsp_cmd_data vsp_cmd;
1175 if (!capable(CAP_SYS_ADMIN))
1179 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1183 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1187 if (copy_from_user(page, buf, count))
1190 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1192 vsp_cmd.sub_data.kern.token = dma_addr;
1193 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1194 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1195 vsp_cmd.sub_data.kern.offset = *ppos;
1196 vsp_cmd.sub_data.kern.length = count;
1198 rc = signal_vsp_instruction(&vsp_cmd);
1202 if (vsp_cmd.result_code != 0)
1208 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1213 static struct file_operations proc_vmlinux_operations = {
1214 .write = proc_mf_change_vmlinux,
1217 static int __init mf_proc_init(void)
1219 struct proc_dir_entry *mf_proc_root;
1220 struct proc_dir_entry *ent;
1221 struct proc_dir_entry *mf;
1225 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1230 for (i = 0; i < 4; i++) {
1232 mf = proc_mkdir(name, mf_proc_root);
1236 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1240 ent->data = (void *)(long)i;
1241 ent->read_proc = proc_mf_dump_cmdline;
1242 ent->write_proc = proc_mf_change_cmdline;
1244 if (i == 3) /* no vmlinux entry for 'D' */
1247 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1251 ent->data = (void *)(long)i;
1252 ent->proc_fops = &proc_vmlinux_operations;
1255 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1259 ent->data = (void *)0;
1260 ent->read_proc = proc_mf_dump_side;
1261 ent->write_proc = proc_mf_change_side;
1263 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1267 ent->data = (void *)0;
1268 ent->read_proc = proc_mf_dump_src;
1269 ent->write_proc = proc_mf_change_src;
1274 __initcall(mf_proc_init);
1276 #endif /* CONFIG_PROC_FS */
1279 * Get the RTC from the virtual service processor
1280 * This requires flowing LpEvents to the primary partition
1282 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1284 if (piranha_simulator)
1292 * Set the RTC in the virtual service processor
1293 * This requires flowing LpEvents to the primary partition
1295 int iSeries_set_rtc_time(struct rtc_time *tm)
1301 unsigned long iSeries_get_boot_time(void)
1305 if (piranha_simulator)
1308 mf_get_boot_rtc(&tm);
1309 return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1310 tm.tm_hour, tm.tm_min, tm.tm_sec);