2 * Handle caching attributes in page tables (PAT)
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/gfp.h>
19 #include <asm/cacheflush.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/pgtable.h>
23 #include <asm/fcntl.h>
32 int __read_mostly pat_enabled = 1;
34 void __cpuinit pat_disable(char *reason)
37 printk(KERN_INFO "%s\n", reason);
40 static int __init nopat(char *str)
42 pat_disable("PAT support disabled.");
45 early_param("nopat", nopat);
49 static int debug_enable;
51 static int __init pat_debug_setup(char *str)
56 __setup("debugpat", pat_debug_setup);
58 #define dprintk(fmt, arg...) \
59 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
62 static u64 __read_mostly boot_pat_state;
65 PAT_UC = 0, /* uncached */
66 PAT_WC = 1, /* Write combining */
67 PAT_WT = 4, /* Write Through */
68 PAT_WP = 5, /* Write Protected */
69 PAT_WB = 6, /* Write Back (default) */
70 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
73 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
83 if (!cpu_has_pat && boot_pat_state) {
85 * If this happens we are on a secondary CPU, but
86 * switched to PAT on the boot CPU. We have no way to
89 printk(KERN_ERR "PAT enabled, "
90 "but not supported by secondary CPU\n");
94 /* Set PWT to Write-Combining. All other bits stay the same */
96 * PTE encoding used in Linux:
101 * 000 WB _PAGE_CACHE_WB
102 * 001 WC _PAGE_CACHE_WC
103 * 010 UC- _PAGE_CACHE_UC_MINUS
104 * 011 UC _PAGE_CACHE_UC
107 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
108 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
112 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
114 wrmsrl(MSR_IA32_CR_PAT, pat);
115 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
116 smp_processor_id(), boot_pat_state, pat);
121 static char *cattr_name(unsigned long flags)
123 switch (flags & _PAGE_CACHE_MASK) {
124 case _PAGE_CACHE_UC: return "uncached";
125 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
126 case _PAGE_CACHE_WB: return "write-back";
127 case _PAGE_CACHE_WC: return "write-combining";
128 default: return "broken";
133 * The global memtype list keeps track of memory type for specific
134 * physical memory areas. Conflicting memory types in different
135 * mappings can cause CPU cache corruption. To avoid this we keep track.
137 * The list is sorted based on starting address and can contain multiple
138 * entries for each address (this allows reference counting for overlapping
139 * areas). All the aliases have the same cache attributes of course.
140 * Zero attributes are represented as holes.
142 * Currently the data structure is a list because the number of mappings
143 * are expected to be relatively small. If this should be a problem
144 * it could be changed to a rbtree or similar.
146 * memtype_lock protects the whole list.
156 static LIST_HEAD(memtype_list);
157 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
160 * Does intersection of PAT memory type and MTRR memory type and returns
161 * the resulting memory type as PAT understands it.
162 * (Type in pat and mtrr will not have same value)
163 * The intersection is based on "Effective Memory Type" tables in IA-32
166 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
169 * Look for MTRR hint to get the effective type in case where PAT
172 if (req_type == _PAGE_CACHE_WB) {
175 mtrr_type = mtrr_type_lookup(start, end);
176 if (mtrr_type == MTRR_TYPE_UNCACHABLE)
177 return _PAGE_CACHE_UC;
178 if (mtrr_type == MTRR_TYPE_WRCOMB)
179 return _PAGE_CACHE_WC;
186 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
188 if (new->type != entry->type) {
190 new->type = entry->type;
196 /* check overlaps with more than one entry in the list */
197 list_for_each_entry_continue(entry, &memtype_list, nd) {
198 if (new->end <= entry->start)
200 else if (new->type != entry->type)
206 printk(KERN_INFO "%s:%d conflicting memory types "
207 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
208 new->end, cattr_name(new->type), cattr_name(entry->type));
212 static struct memtype *cached_entry;
213 static u64 cached_start;
215 static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
217 int ram_page = 0, not_rampage = 0;
218 unsigned long page_nr;
220 for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
223 * For legacy reasons, physical address range in the legacy ISA
224 * region is tracked as non-RAM. This will allow users of
225 * /dev/mem to map portions of legacy ISA region, even when
226 * some of those portions are listed(or not even listed) with
227 * different e820 types(RAM/reserved/..)
229 if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
230 page_is_ram(page_nr))
235 if (ram_page == not_rampage)
243 * For RAM pages, mark the pages as non WB memory type using
244 * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
245 * set_memory_wc() on a RAM page at a time before marking it as WB again.
246 * This is ok, because only one driver will be owning the page and
247 * doing set_memory_*() calls.
249 * For now, we use PageNonWB to track that the RAM page is being mapped
250 * as non WB. In future, we will have to use one more flag
251 * (or some other mechanism in page_struct) to distinguish between
254 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
255 unsigned long *new_type)
260 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
261 page = pfn_to_page(pfn);
262 if (page_mapped(page) || PageNonWB(page))
271 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
272 page = pfn_to_page(pfn);
273 ClearPageNonWB(page);
279 static int free_ram_pages_type(u64 start, u64 end)
284 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
285 page = pfn_to_page(pfn);
286 if (page_mapped(page) || !PageNonWB(page))
289 ClearPageNonWB(page);
295 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
296 page = pfn_to_page(pfn);
303 * req_type typically has one of the:
306 * - _PAGE_CACHE_UC_MINUS
309 * req_type will have a special case value '-1', when requester want to inherit
310 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
312 * If new_type is NULL, function will return an error if it cannot reserve the
313 * region with req_type. If new_type is non-NULL, function will return
314 * available type in new_type in case of no error. In case of any error
315 * it will return a negative return value.
317 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
318 unsigned long *new_type)
320 struct memtype *new, *entry;
321 unsigned long actual_type;
322 struct list_head *where;
326 BUG_ON(start >= end); /* end is exclusive */
329 /* This is identical to page table setting without PAT */
332 *new_type = _PAGE_CACHE_WB;
334 *new_type = req_type & _PAGE_CACHE_MASK;
339 /* Low ISA region is always mapped WB in page table. No need to track */
340 if (is_ISA_range(start, end - 1)) {
342 *new_type = _PAGE_CACHE_WB;
346 if (req_type == -1) {
348 * Call mtrr_lookup to get the type hint. This is an
349 * optimization for /dev/mem mmap'ers into WB memory (BIOS
350 * tools and ACPI tools). Use WB request for WB memory and use
351 * UC_MINUS otherwise.
353 u8 mtrr_type = mtrr_type_lookup(start, end);
355 if (mtrr_type == MTRR_TYPE_WRBACK)
356 actual_type = _PAGE_CACHE_WB;
358 actual_type = _PAGE_CACHE_UC_MINUS;
360 actual_type = pat_x_mtrr_type(start, end,
361 req_type & _PAGE_CACHE_MASK);
365 *new_type = actual_type;
367 is_range_ram = pat_pagerange_is_ram(start, end);
368 if (is_range_ram == 1)
369 return reserve_ram_pages_type(start, end, req_type,
371 else if (is_range_ram < 0)
374 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
380 new->type = actual_type;
382 spin_lock(&memtype_lock);
384 if (cached_entry && start >= cached_start)
385 entry = cached_entry;
387 entry = list_entry(&memtype_list, struct memtype, nd);
389 /* Search for existing mapping that overlaps the current range */
391 list_for_each_entry_continue(entry, &memtype_list, nd) {
392 if (end <= entry->start) {
393 where = entry->nd.prev;
394 cached_entry = list_entry(where, struct memtype, nd);
396 } else if (start <= entry->start) { /* end > entry->start */
397 err = chk_conflict(new, entry, new_type);
399 dprintk("Overlap at 0x%Lx-0x%Lx\n",
400 entry->start, entry->end);
401 where = entry->nd.prev;
402 cached_entry = list_entry(where,
406 } else if (start < entry->end) { /* start > entry->start */
407 err = chk_conflict(new, entry, new_type);
409 dprintk("Overlap at 0x%Lx-0x%Lx\n",
410 entry->start, entry->end);
411 cached_entry = list_entry(entry->nd.prev,
415 * Move to right position in the linked
416 * list to add this new entry
418 list_for_each_entry_continue(entry,
420 if (start <= entry->start) {
421 where = entry->nd.prev;
431 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
432 "track %s, req %s\n",
433 start, end, cattr_name(new->type), cattr_name(req_type));
435 spin_unlock(&memtype_lock);
440 cached_start = start;
443 list_add(&new->nd, where);
445 list_add_tail(&new->nd, &memtype_list);
447 spin_unlock(&memtype_lock);
449 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
450 start, end, cattr_name(new->type), cattr_name(req_type),
451 new_type ? cattr_name(*new_type) : "-");
456 int free_memtype(u64 start, u64 end)
458 struct memtype *entry;
465 /* Low ISA region is always mapped WB. No need to track */
466 if (is_ISA_range(start, end - 1))
469 is_range_ram = pat_pagerange_is_ram(start, end);
470 if (is_range_ram == 1)
471 return free_ram_pages_type(start, end);
472 else if (is_range_ram < 0)
475 spin_lock(&memtype_lock);
476 list_for_each_entry(entry, &memtype_list, nd) {
477 if (entry->start == start && entry->end == end) {
478 if (cached_entry == entry || cached_start == start)
481 list_del(&entry->nd);
487 spin_unlock(&memtype_lock);
490 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
491 current->comm, current->pid, start, end);
494 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
500 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
501 unsigned long size, pgprot_t vma_prot)
506 #ifdef CONFIG_STRICT_DEVMEM
507 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
508 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
513 /* This check is needed to avoid cache aliasing when PAT is enabled */
514 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
516 u64 from = ((u64)pfn) << PAGE_SHIFT;
517 u64 to = from + size;
523 while (cursor < to) {
524 if (!devmem_is_allowed(pfn)) {
526 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
527 current->comm, from, to);
535 #endif /* CONFIG_STRICT_DEVMEM */
537 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
538 unsigned long size, pgprot_t *vma_prot)
540 u64 offset = ((u64) pfn) << PAGE_SHIFT;
541 unsigned long flags = -1;
544 if (!range_is_allowed(pfn, size))
547 if (file->f_flags & O_SYNC) {
548 flags = _PAGE_CACHE_UC_MINUS;
553 * On the PPro and successors, the MTRRs are used to set
554 * memory types for physical addresses outside main memory,
555 * so blindly setting UC or PWT on those pages is wrong.
556 * For Pentiums and earlier, the surround logic should disable
557 * caching for the high addresses through the KEN pin, but
558 * we maintain the tradition of paranoia in this code.
561 !(boot_cpu_has(X86_FEATURE_MTRR) ||
562 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
563 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
564 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
565 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
566 flags = _PAGE_CACHE_UC;
571 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
573 * Without O_SYNC, we want to get
574 * - WB for WB-able memory and no other conflicting mappings
575 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
576 * - Inherit from confliting mappings otherwise
579 retval = reserve_memtype(offset, offset + size, flags, NULL);
581 retval = reserve_memtype(offset, offset + size, -1, &flags);
587 if (((pfn < max_low_pfn_mapped) ||
588 (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
589 ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
590 free_memtype(offset, offset + size);
592 "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
593 current->comm, current->pid,
595 offset, (unsigned long long)(offset + size));
599 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
604 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
606 unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
607 u64 addr = (u64)pfn << PAGE_SHIFT;
610 reserve_memtype(addr, addr + size, want_flags, &flags);
611 if (flags != want_flags) {
613 "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
614 current->comm, current->pid,
615 cattr_name(want_flags),
616 addr, (unsigned long long)(addr + size),
621 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
623 u64 addr = (u64)pfn << PAGE_SHIFT;
625 free_memtype(addr, addr + size);
629 * Internal interface to reserve a range of physical memory with prot.
630 * Reserved non RAM regions only and after successful reserve_memtype,
631 * this func also keeps identity mapping (if any) in sync with this new prot.
633 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
639 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
641 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
644 * reserve_pfn_range() doesn't support RAM pages.
649 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
653 if (flags != want_flags) {
654 if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
655 free_memtype(paddr, paddr + size);
656 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
657 " for %Lx-%Lx, got %s\n",
658 current->comm, current->pid,
659 cattr_name(want_flags),
660 (unsigned long long)paddr,
661 (unsigned long long)(paddr + size),
666 * We allow returning different type than the one requested in
669 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
670 (~_PAGE_CACHE_MASK)) |
674 /* Need to keep identity mapping in sync */
675 if (paddr >= __pa(high_memory))
678 id_sz = (__pa(high_memory) < paddr + size) ?
679 __pa(high_memory) - paddr :
682 if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
683 free_memtype(paddr, paddr + size);
685 "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
687 current->comm, current->pid,
689 (unsigned long long)paddr,
690 (unsigned long long)(paddr + size));
697 * Internal interface to free a range of physical memory.
698 * Frees non RAM regions only.
700 static void free_pfn_range(u64 paddr, unsigned long size)
704 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
706 free_memtype(paddr, paddr + size);
710 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
711 * copied through copy_page_range().
713 * If the vma has a linear pfn mapping for the entire range, we get the prot
714 * from pte and reserve the entire vma range with single reserve_pfn_range call.
715 * Otherwise, we reserve the entire vma range, my ging through the PTEs page
716 * by page to get physical address and protection.
718 int track_pfn_vma_copy(struct vm_area_struct *vma)
722 resource_size_t paddr;
724 unsigned long vma_start = vma->vm_start;
725 unsigned long vma_end = vma->vm_end;
726 unsigned long vma_size = vma_end - vma_start;
732 if (is_linear_pfn_mapping(vma)) {
734 * reserve the whole chunk covered by vma. We need the
735 * starting address and protection from pte.
737 if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
741 pgprot = __pgprot(prot);
742 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
745 /* reserve entire vma page by page, using pfn and prot from pte */
746 for (i = 0; i < vma_size; i += PAGE_SIZE) {
747 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
750 pgprot = __pgprot(prot);
751 retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
758 /* Reserve error: Cleanup partial reservation and return error */
759 for (j = 0; j < i; j += PAGE_SIZE) {
760 if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
763 free_pfn_range(paddr, PAGE_SIZE);
770 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
771 * for physical range indicated by pfn and size.
773 * prot is passed in as a parameter for the new mapping. If the vma has a
774 * linear pfn mapping for the entire range reserve the entire vma range with
775 * single reserve_pfn_range call.
776 * Otherwise, we look t the pfn and size and reserve only the specified range
779 * Note that this function can be called with caller trying to map only a
780 * subrange/page inside the vma.
782 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
783 unsigned long pfn, unsigned long size)
787 resource_size_t base_paddr;
788 resource_size_t paddr;
789 unsigned long vma_start = vma->vm_start;
790 unsigned long vma_end = vma->vm_end;
791 unsigned long vma_size = vma_end - vma_start;
796 if (is_linear_pfn_mapping(vma)) {
797 /* reserve the whole chunk starting from vm_pgoff */
798 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
799 return reserve_pfn_range(paddr, vma_size, prot, 0);
802 /* reserve page by page using pfn and size */
803 base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
804 for (i = 0; i < size; i += PAGE_SIZE) {
805 paddr = base_paddr + i;
806 retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
813 /* Reserve error: Cleanup partial reservation and return error */
814 for (j = 0; j < i; j += PAGE_SIZE) {
815 paddr = base_paddr + j;
816 free_pfn_range(paddr, PAGE_SIZE);
823 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
824 * untrack can be called for a specific region indicated by pfn and size or
825 * can be for the entire vma (in which case size can be zero).
827 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
831 resource_size_t paddr;
833 unsigned long vma_start = vma->vm_start;
834 unsigned long vma_end = vma->vm_end;
835 unsigned long vma_size = vma_end - vma_start;
840 if (is_linear_pfn_mapping(vma)) {
841 /* free the whole chunk starting from vm_pgoff */
842 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
843 free_pfn_range(paddr, vma_size);
847 if (size != 0 && size != vma_size) {
848 /* free page by page, using pfn and size */
849 paddr = (resource_size_t)pfn << PAGE_SHIFT;
850 for (i = 0; i < size; i += PAGE_SIZE) {
852 free_pfn_range(paddr, PAGE_SIZE);
855 /* free entire vma, page by page, using the pfn from pte */
856 for (i = 0; i < vma_size; i += PAGE_SIZE) {
857 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
860 free_pfn_range(paddr, PAGE_SIZE);
865 pgprot_t pgprot_writecombine(pgprot_t prot)
868 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
870 return pgprot_noncached(prot);
872 EXPORT_SYMBOL_GPL(pgprot_writecombine);
874 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
876 /* get Nth element of the linked list */
877 static struct memtype *memtype_get_idx(loff_t pos)
879 struct memtype *list_node, *print_entry;
882 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
886 spin_lock(&memtype_lock);
887 list_for_each_entry(list_node, &memtype_list, nd) {
889 *print_entry = *list_node;
890 spin_unlock(&memtype_lock);
895 spin_unlock(&memtype_lock);
901 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
905 seq_printf(seq, "PAT memtype list:\n");
908 return memtype_get_idx(*pos);
911 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
914 return memtype_get_idx(*pos);
917 static void memtype_seq_stop(struct seq_file *seq, void *v)
921 static int memtype_seq_show(struct seq_file *seq, void *v)
923 struct memtype *print_entry = (struct memtype *)v;
925 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
926 print_entry->start, print_entry->end);
932 static struct seq_operations memtype_seq_ops = {
933 .start = memtype_seq_start,
934 .next = memtype_seq_next,
935 .stop = memtype_seq_stop,
936 .show = memtype_seq_show,
939 static int memtype_seq_open(struct inode *inode, struct file *file)
941 return seq_open(file, &memtype_seq_ops);
944 static const struct file_operations memtype_fops = {
945 .open = memtype_seq_open,
948 .release = seq_release,
951 static int __init pat_memtype_list_init(void)
953 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
954 NULL, &memtype_fops);
958 late_initcall(pat_memtype_list_init);
960 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */