1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
51 #define DRV_VERSION "0.3.3.4-k2"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
55 static const struct e1000_info *e1000_info_tbl[] = {
56 [board_82571] = &e1000_82571_info,
57 [board_82572] = &e1000_82572_info,
58 [board_82573] = &e1000_82573_info,
59 [board_82574] = &e1000_82574_info,
60 [board_82583] = &e1000_82583_info,
61 [board_80003es2lan] = &e1000_es2_info,
62 [board_ich8lan] = &e1000_ich8_info,
63 [board_ich9lan] = &e1000_ich9_info,
64 [board_ich10lan] = &e1000_ich10_info,
69 * e1000_get_hw_dev_name - return device name string
70 * used by hardware layer to print debugging information
72 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
74 return hw->adapter->netdev->name;
79 * e1000_desc_unused - calculate if we have unused descriptors
81 static int e1000_desc_unused(struct e1000_ring *ring)
83 if (ring->next_to_clean > ring->next_to_use)
84 return ring->next_to_clean - ring->next_to_use - 1;
86 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
90 * e1000_receive_skb - helper function to handle Rx indications
91 * @adapter: board private structure
92 * @status: descriptor status field as written by hardware
93 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
94 * @skb: pointer to sk_buff to be indicated to stack
96 static void e1000_receive_skb(struct e1000_adapter *adapter,
97 struct net_device *netdev,
99 u8 status, __le16 vlan)
101 skb->protocol = eth_type_trans(skb, netdev);
103 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
104 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
105 le16_to_cpu(vlan), skb);
107 napi_gro_receive(&adapter->napi, skb);
111 * e1000_rx_checksum - Receive Checksum Offload for 82543
112 * @adapter: board private structure
113 * @status_err: receive descriptor status and error fields
114 * @csum: receive descriptor csum field
115 * @sk_buff: socket buffer with received data
117 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
118 u32 csum, struct sk_buff *skb)
120 u16 status = (u16)status_err;
121 u8 errors = (u8)(status_err >> 24);
122 skb->ip_summed = CHECKSUM_NONE;
124 /* Ignore Checksum bit is set */
125 if (status & E1000_RXD_STAT_IXSM)
127 /* TCP/UDP checksum error bit is set */
128 if (errors & E1000_RXD_ERR_TCPE) {
129 /* let the stack verify checksum errors */
130 adapter->hw_csum_err++;
134 /* TCP/UDP Checksum has not been calculated */
135 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
138 /* It must be a TCP or UDP packet with a valid checksum */
139 if (status & E1000_RXD_STAT_TCPCS) {
140 /* TCP checksum is good */
141 skb->ip_summed = CHECKSUM_UNNECESSARY;
144 * IP fragment with UDP payload
145 * Hardware complements the payload checksum, so we undo it
146 * and then put the value in host order for further stack use.
148 __sum16 sum = (__force __sum16)htons(csum);
149 skb->csum = csum_unfold(~sum);
150 skb->ip_summed = CHECKSUM_COMPLETE;
152 adapter->hw_csum_good++;
156 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
157 * @adapter: address of board private structure
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
162 struct net_device *netdev = adapter->netdev;
163 struct pci_dev *pdev = adapter->pdev;
164 struct e1000_ring *rx_ring = adapter->rx_ring;
165 struct e1000_rx_desc *rx_desc;
166 struct e1000_buffer *buffer_info;
169 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
171 i = rx_ring->next_to_use;
172 buffer_info = &rx_ring->buffer_info[i];
174 while (cleaned_count--) {
175 skb = buffer_info->skb;
181 skb = netdev_alloc_skb(netdev, bufsz);
183 /* Better luck next round */
184 adapter->alloc_rx_buff_failed++;
189 * Make buffer alignment 2 beyond a 16 byte boundary
190 * this will result in a 16 byte aligned IP header after
191 * the 14 byte MAC header is removed
193 skb_reserve(skb, NET_IP_ALIGN);
195 buffer_info->skb = skb;
197 buffer_info->dma = pci_map_single(pdev, skb->data,
198 adapter->rx_buffer_len,
200 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
201 dev_err(&pdev->dev, "RX DMA map failed\n");
202 adapter->rx_dma_failed++;
206 rx_desc = E1000_RX_DESC(*rx_ring, i);
207 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
210 if (i == rx_ring->count)
212 buffer_info = &rx_ring->buffer_info[i];
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
218 i = (rx_ring->count - 1);
221 * Force memory writes to complete before letting h/w
222 * know there are new descriptors to fetch. (Only
223 * applicable for weak-ordered memory model archs,
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
233 * @adapter: address of board private structure
235 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
238 struct net_device *netdev = adapter->netdev;
239 struct pci_dev *pdev = adapter->pdev;
240 union e1000_rx_desc_packet_split *rx_desc;
241 struct e1000_ring *rx_ring = adapter->rx_ring;
242 struct e1000_buffer *buffer_info;
243 struct e1000_ps_page *ps_page;
247 i = rx_ring->next_to_use;
248 buffer_info = &rx_ring->buffer_info[i];
250 while (cleaned_count--) {
251 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
253 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
254 ps_page = &buffer_info->ps_pages[j];
255 if (j >= adapter->rx_ps_pages) {
256 /* all unused desc entries get hw null ptr */
257 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
260 if (!ps_page->page) {
261 ps_page->page = alloc_page(GFP_ATOMIC);
262 if (!ps_page->page) {
263 adapter->alloc_rx_buff_failed++;
266 ps_page->dma = pci_map_page(pdev,
270 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
271 dev_err(&adapter->pdev->dev,
272 "RX DMA page map failed\n");
273 adapter->rx_dma_failed++;
278 * Refresh the desc even if buffer_addrs
279 * didn't change because each write-back
282 rx_desc->read.buffer_addr[j+1] =
283 cpu_to_le64(ps_page->dma);
286 skb = netdev_alloc_skb(netdev,
287 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
290 adapter->alloc_rx_buff_failed++;
295 * Make buffer alignment 2 beyond a 16 byte boundary
296 * this will result in a 16 byte aligned IP header after
297 * the 14 byte MAC header is removed
299 skb_reserve(skb, NET_IP_ALIGN);
301 buffer_info->skb = skb;
302 buffer_info->dma = pci_map_single(pdev, skb->data,
303 adapter->rx_ps_bsize0,
305 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
306 dev_err(&pdev->dev, "RX DMA map failed\n");
307 adapter->rx_dma_failed++;
309 dev_kfree_skb_any(skb);
310 buffer_info->skb = NULL;
314 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
317 if (i == rx_ring->count)
319 buffer_info = &rx_ring->buffer_info[i];
323 if (rx_ring->next_to_use != i) {
324 rx_ring->next_to_use = i;
327 i = (rx_ring->count - 1);
330 * Force memory writes to complete before letting h/w
331 * know there are new descriptors to fetch. (Only
332 * applicable for weak-ordered memory model archs,
337 * Hardware increments by 16 bytes, but packet split
338 * descriptors are 32 bytes...so we increment tail
341 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
346 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
347 * @adapter: address of board private structure
348 * @cleaned_count: number of buffers to allocate this pass
351 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
354 struct net_device *netdev = adapter->netdev;
355 struct pci_dev *pdev = adapter->pdev;
356 struct e1000_rx_desc *rx_desc;
357 struct e1000_ring *rx_ring = adapter->rx_ring;
358 struct e1000_buffer *buffer_info;
361 unsigned int bufsz = 256 -
362 16 /* for skb_reserve */ -
365 i = rx_ring->next_to_use;
366 buffer_info = &rx_ring->buffer_info[i];
368 while (cleaned_count--) {
369 skb = buffer_info->skb;
375 skb = netdev_alloc_skb(netdev, bufsz);
376 if (unlikely(!skb)) {
377 /* Better luck next round */
378 adapter->alloc_rx_buff_failed++;
382 /* Make buffer alignment 2 beyond a 16 byte boundary
383 * this will result in a 16 byte aligned IP header after
384 * the 14 byte MAC header is removed
386 skb_reserve(skb, NET_IP_ALIGN);
388 buffer_info->skb = skb;
390 /* allocate a new page if necessary */
391 if (!buffer_info->page) {
392 buffer_info->page = alloc_page(GFP_ATOMIC);
393 if (unlikely(!buffer_info->page)) {
394 adapter->alloc_rx_buff_failed++;
399 if (!buffer_info->dma)
400 buffer_info->dma = pci_map_page(pdev,
401 buffer_info->page, 0,
405 rx_desc = E1000_RX_DESC(*rx_ring, i);
406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
408 if (unlikely(++i == rx_ring->count))
410 buffer_info = &rx_ring->buffer_info[i];
413 if (likely(rx_ring->next_to_use != i)) {
414 rx_ring->next_to_use = i;
415 if (unlikely(i-- == 0))
416 i = (rx_ring->count - 1);
418 /* Force memory writes to complete before letting h/w
419 * know there are new descriptors to fetch. (Only
420 * applicable for weak-ordered memory model archs,
423 writel(i, adapter->hw.hw_addr + rx_ring->tail);
428 * e1000_clean_rx_irq - Send received data up the network stack; legacy
429 * @adapter: board private structure
431 * the return value indicates whether actual cleaning was done, there
432 * is no guarantee that everything was cleaned
434 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
435 int *work_done, int work_to_do)
437 struct net_device *netdev = adapter->netdev;
438 struct pci_dev *pdev = adapter->pdev;
439 struct e1000_ring *rx_ring = adapter->rx_ring;
440 struct e1000_rx_desc *rx_desc, *next_rxd;
441 struct e1000_buffer *buffer_info, *next_buffer;
444 int cleaned_count = 0;
446 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
448 i = rx_ring->next_to_clean;
449 rx_desc = E1000_RX_DESC(*rx_ring, i);
450 buffer_info = &rx_ring->buffer_info[i];
452 while (rx_desc->status & E1000_RXD_STAT_DD) {
456 if (*work_done >= work_to_do)
460 status = rx_desc->status;
461 skb = buffer_info->skb;
462 buffer_info->skb = NULL;
464 prefetch(skb->data - NET_IP_ALIGN);
467 if (i == rx_ring->count)
469 next_rxd = E1000_RX_DESC(*rx_ring, i);
472 next_buffer = &rx_ring->buffer_info[i];
476 pci_unmap_single(pdev,
478 adapter->rx_buffer_len,
480 buffer_info->dma = 0;
482 length = le16_to_cpu(rx_desc->length);
484 /* !EOP means multiple descriptors were used to store a single
485 * packet, also make sure the frame isn't just CRC only */
486 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
487 /* All receives must fit into a single buffer */
488 e_dbg("%s: Receive packet consumed multiple buffers\n",
491 buffer_info->skb = skb;
495 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
497 buffer_info->skb = skb;
501 /* adjust length to remove Ethernet CRC */
502 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
505 total_rx_bytes += length;
509 * code added for copybreak, this should improve
510 * performance for small packets with large amounts
511 * of reassembly being done in the stack
513 if (length < copybreak) {
514 struct sk_buff *new_skb =
515 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
517 skb_reserve(new_skb, NET_IP_ALIGN);
518 skb_copy_to_linear_data_offset(new_skb,
524 /* save the skb in buffer_info as good */
525 buffer_info->skb = skb;
528 /* else just continue with the old one */
530 /* end copybreak code */
531 skb_put(skb, length);
533 /* Receive Checksum Offload */
534 e1000_rx_checksum(adapter,
536 ((u32)(rx_desc->errors) << 24),
537 le16_to_cpu(rx_desc->csum), skb);
539 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
544 /* return some buffers to hardware, one at a time is too slow */
545 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
546 adapter->alloc_rx_buf(adapter, cleaned_count);
550 /* use prefetched values */
552 buffer_info = next_buffer;
554 rx_ring->next_to_clean = i;
556 cleaned_count = e1000_desc_unused(rx_ring);
558 adapter->alloc_rx_buf(adapter, cleaned_count);
560 adapter->total_rx_bytes += total_rx_bytes;
561 adapter->total_rx_packets += total_rx_packets;
562 adapter->net_stats.rx_bytes += total_rx_bytes;
563 adapter->net_stats.rx_packets += total_rx_packets;
567 static void e1000_put_txbuf(struct e1000_adapter *adapter,
568 struct e1000_buffer *buffer_info)
570 buffer_info->dma = 0;
571 if (buffer_info->skb) {
572 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
574 dev_kfree_skb_any(buffer_info->skb);
575 buffer_info->skb = NULL;
577 buffer_info->time_stamp = 0;
580 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
582 struct e1000_ring *tx_ring = adapter->tx_ring;
583 unsigned int i = tx_ring->next_to_clean;
584 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
585 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
587 /* detected Tx unit hang */
588 e_err("Detected Tx Unit Hang:\n"
591 " next_to_use <%x>\n"
592 " next_to_clean <%x>\n"
593 "buffer_info[next_to_clean]:\n"
594 " time_stamp <%lx>\n"
595 " next_to_watch <%x>\n"
597 " next_to_watch.status <%x>\n",
598 readl(adapter->hw.hw_addr + tx_ring->head),
599 readl(adapter->hw.hw_addr + tx_ring->tail),
600 tx_ring->next_to_use,
601 tx_ring->next_to_clean,
602 tx_ring->buffer_info[eop].time_stamp,
605 eop_desc->upper.fields.status);
609 * e1000_clean_tx_irq - Reclaim resources after transmit completes
610 * @adapter: board private structure
612 * the return value indicates whether actual cleaning was done, there
613 * is no guarantee that everything was cleaned
615 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
617 struct net_device *netdev = adapter->netdev;
618 struct e1000_hw *hw = &adapter->hw;
619 struct e1000_ring *tx_ring = adapter->tx_ring;
620 struct e1000_tx_desc *tx_desc, *eop_desc;
621 struct e1000_buffer *buffer_info;
623 unsigned int count = 0;
625 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
627 i = tx_ring->next_to_clean;
628 eop = tx_ring->buffer_info[i].next_to_watch;
629 eop_desc = E1000_TX_DESC(*tx_ring, eop);
631 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
632 for (cleaned = 0; !cleaned; ) {
633 tx_desc = E1000_TX_DESC(*tx_ring, i);
634 buffer_info = &tx_ring->buffer_info[i];
635 cleaned = (i == eop);
638 struct sk_buff *skb = buffer_info->skb;
639 unsigned int segs, bytecount;
640 segs = skb_shinfo(skb)->gso_segs ?: 1;
641 /* multiply data chunks by size of headers */
642 bytecount = ((segs - 1) * skb_headlen(skb)) +
644 total_tx_packets += segs;
645 total_tx_bytes += bytecount;
648 e1000_put_txbuf(adapter, buffer_info);
649 tx_desc->upper.data = 0;
652 if (i == tx_ring->count)
656 eop = tx_ring->buffer_info[i].next_to_watch;
657 eop_desc = E1000_TX_DESC(*tx_ring, eop);
658 #define E1000_TX_WEIGHT 64
659 /* weight of a sort for tx, to avoid endless transmit cleanup */
660 if (count++ == E1000_TX_WEIGHT)
664 tx_ring->next_to_clean = i;
666 #define TX_WAKE_THRESHOLD 32
667 if (cleaned && netif_carrier_ok(netdev) &&
668 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
669 /* Make sure that anybody stopping the queue after this
670 * sees the new next_to_clean.
674 if (netif_queue_stopped(netdev) &&
675 !(test_bit(__E1000_DOWN, &adapter->state))) {
676 netif_wake_queue(netdev);
677 ++adapter->restart_queue;
681 if (adapter->detect_tx_hung) {
682 /* Detect a transmit hang in hardware, this serializes the
683 * check with the clearing of time_stamp and movement of i */
684 adapter->detect_tx_hung = 0;
685 if (tx_ring->buffer_info[eop].time_stamp &&
686 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
687 + (adapter->tx_timeout_factor * HZ))
688 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
689 e1000_print_tx_hang(adapter);
690 netif_stop_queue(netdev);
693 adapter->total_tx_bytes += total_tx_bytes;
694 adapter->total_tx_packets += total_tx_packets;
695 adapter->net_stats.tx_bytes += total_tx_bytes;
696 adapter->net_stats.tx_packets += total_tx_packets;
701 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
702 * @adapter: board private structure
704 * the return value indicates whether actual cleaning was done, there
705 * is no guarantee that everything was cleaned
707 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
708 int *work_done, int work_to_do)
710 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
711 struct net_device *netdev = adapter->netdev;
712 struct pci_dev *pdev = adapter->pdev;
713 struct e1000_ring *rx_ring = adapter->rx_ring;
714 struct e1000_buffer *buffer_info, *next_buffer;
715 struct e1000_ps_page *ps_page;
719 int cleaned_count = 0;
721 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
723 i = rx_ring->next_to_clean;
724 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
725 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
726 buffer_info = &rx_ring->buffer_info[i];
728 while (staterr & E1000_RXD_STAT_DD) {
729 if (*work_done >= work_to_do)
732 skb = buffer_info->skb;
734 /* in the packet split case this is header only */
735 prefetch(skb->data - NET_IP_ALIGN);
738 if (i == rx_ring->count)
740 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
743 next_buffer = &rx_ring->buffer_info[i];
747 pci_unmap_single(pdev, buffer_info->dma,
748 adapter->rx_ps_bsize0,
750 buffer_info->dma = 0;
752 if (!(staterr & E1000_RXD_STAT_EOP)) {
753 e_dbg("%s: Packet Split buffers didn't pick up the "
754 "full packet\n", netdev->name);
755 dev_kfree_skb_irq(skb);
759 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
760 dev_kfree_skb_irq(skb);
764 length = le16_to_cpu(rx_desc->wb.middle.length0);
767 e_dbg("%s: Last part of the packet spanning multiple "
768 "descriptors\n", netdev->name);
769 dev_kfree_skb_irq(skb);
774 skb_put(skb, length);
778 * this looks ugly, but it seems compiler issues make it
779 * more efficient than reusing j
781 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
784 * page alloc/put takes too long and effects small packet
785 * throughput, so unsplit small packets and save the alloc/put
786 * only valid in softirq (napi) context to call kmap_*
788 if (l1 && (l1 <= copybreak) &&
789 ((length + l1) <= adapter->rx_ps_bsize0)) {
792 ps_page = &buffer_info->ps_pages[0];
795 * there is no documentation about how to call
796 * kmap_atomic, so we can't hold the mapping
799 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
800 PAGE_SIZE, PCI_DMA_FROMDEVICE);
801 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
802 memcpy(skb_tail_pointer(skb), vaddr, l1);
803 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
804 pci_dma_sync_single_for_device(pdev, ps_page->dma,
805 PAGE_SIZE, PCI_DMA_FROMDEVICE);
808 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
816 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
817 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
821 ps_page = &buffer_info->ps_pages[j];
822 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
825 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
826 ps_page->page = NULL;
828 skb->data_len += length;
829 skb->truesize += length;
832 /* strip the ethernet crc, problem is we're using pages now so
833 * this whole operation can get a little cpu intensive
835 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
836 pskb_trim(skb, skb->len - 4);
839 total_rx_bytes += skb->len;
842 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
843 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
845 if (rx_desc->wb.upper.header_status &
846 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
847 adapter->rx_hdr_split++;
849 e1000_receive_skb(adapter, netdev, skb,
850 staterr, rx_desc->wb.middle.vlan);
853 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
854 buffer_info->skb = NULL;
856 /* return some buffers to hardware, one at a time is too slow */
857 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
858 adapter->alloc_rx_buf(adapter, cleaned_count);
862 /* use prefetched values */
864 buffer_info = next_buffer;
866 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
868 rx_ring->next_to_clean = i;
870 cleaned_count = e1000_desc_unused(rx_ring);
872 adapter->alloc_rx_buf(adapter, cleaned_count);
874 adapter->total_rx_bytes += total_rx_bytes;
875 adapter->total_rx_packets += total_rx_packets;
876 adapter->net_stats.rx_bytes += total_rx_bytes;
877 adapter->net_stats.rx_packets += total_rx_packets;
882 * e1000_consume_page - helper function
884 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
889 skb->data_len += length;
890 skb->truesize += length;
894 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
895 * @adapter: board private structure
897 * the return value indicates whether actual cleaning was done, there
898 * is no guarantee that everything was cleaned
901 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
902 int *work_done, int work_to_do)
904 struct net_device *netdev = adapter->netdev;
905 struct pci_dev *pdev = adapter->pdev;
906 struct e1000_ring *rx_ring = adapter->rx_ring;
907 struct e1000_rx_desc *rx_desc, *next_rxd;
908 struct e1000_buffer *buffer_info, *next_buffer;
911 int cleaned_count = 0;
912 bool cleaned = false;
913 unsigned int total_rx_bytes=0, total_rx_packets=0;
915 i = rx_ring->next_to_clean;
916 rx_desc = E1000_RX_DESC(*rx_ring, i);
917 buffer_info = &rx_ring->buffer_info[i];
919 while (rx_desc->status & E1000_RXD_STAT_DD) {
923 if (*work_done >= work_to_do)
927 status = rx_desc->status;
928 skb = buffer_info->skb;
929 buffer_info->skb = NULL;
932 if (i == rx_ring->count)
934 next_rxd = E1000_RX_DESC(*rx_ring, i);
937 next_buffer = &rx_ring->buffer_info[i];
941 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
943 buffer_info->dma = 0;
945 length = le16_to_cpu(rx_desc->length);
947 /* errors is only valid for DD + EOP descriptors */
948 if (unlikely((status & E1000_RXD_STAT_EOP) &&
949 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
950 /* recycle both page and skb */
951 buffer_info->skb = skb;
952 /* an error means any chain goes out the window
954 if (rx_ring->rx_skb_top)
955 dev_kfree_skb(rx_ring->rx_skb_top);
956 rx_ring->rx_skb_top = NULL;
960 #define rxtop rx_ring->rx_skb_top
961 if (!(status & E1000_RXD_STAT_EOP)) {
962 /* this descriptor is only the beginning (or middle) */
964 /* this is the beginning of a chain */
966 skb_fill_page_desc(rxtop, 0, buffer_info->page,
969 /* this is the middle of a chain */
970 skb_fill_page_desc(rxtop,
971 skb_shinfo(rxtop)->nr_frags,
972 buffer_info->page, 0, length);
973 /* re-use the skb, only consumed the page */
974 buffer_info->skb = skb;
976 e1000_consume_page(buffer_info, rxtop, length);
980 /* end of the chain */
981 skb_fill_page_desc(rxtop,
982 skb_shinfo(rxtop)->nr_frags,
983 buffer_info->page, 0, length);
984 /* re-use the current skb, we only consumed the
986 buffer_info->skb = skb;
989 e1000_consume_page(buffer_info, skb, length);
991 /* no chain, got EOP, this buf is the packet
992 * copybreak to save the put_page/alloc_page */
993 if (length <= copybreak &&
994 skb_tailroom(skb) >= length) {
996 vaddr = kmap_atomic(buffer_info->page,
997 KM_SKB_DATA_SOFTIRQ);
998 memcpy(skb_tail_pointer(skb), vaddr,
1000 kunmap_atomic(vaddr,
1001 KM_SKB_DATA_SOFTIRQ);
1002 /* re-use the page, so don't erase
1003 * buffer_info->page */
1004 skb_put(skb, length);
1006 skb_fill_page_desc(skb, 0,
1007 buffer_info->page, 0,
1009 e1000_consume_page(buffer_info, skb,
1015 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1016 e1000_rx_checksum(adapter,
1018 ((u32)(rx_desc->errors) << 24),
1019 le16_to_cpu(rx_desc->csum), skb);
1021 /* probably a little skewed due to removing CRC */
1022 total_rx_bytes += skb->len;
1025 /* eth type trans needs skb->data to point to something */
1026 if (!pskb_may_pull(skb, ETH_HLEN)) {
1027 e_err("pskb_may_pull failed.\n");
1032 e1000_receive_skb(adapter, netdev, skb, status,
1036 rx_desc->status = 0;
1038 /* return some buffers to hardware, one at a time is too slow */
1039 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1040 adapter->alloc_rx_buf(adapter, cleaned_count);
1044 /* use prefetched values */
1046 buffer_info = next_buffer;
1048 rx_ring->next_to_clean = i;
1050 cleaned_count = e1000_desc_unused(rx_ring);
1052 adapter->alloc_rx_buf(adapter, cleaned_count);
1054 adapter->total_rx_bytes += total_rx_bytes;
1055 adapter->total_rx_packets += total_rx_packets;
1056 adapter->net_stats.rx_bytes += total_rx_bytes;
1057 adapter->net_stats.rx_packets += total_rx_packets;
1062 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1063 * @adapter: board private structure
1065 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1067 struct e1000_ring *rx_ring = adapter->rx_ring;
1068 struct e1000_buffer *buffer_info;
1069 struct e1000_ps_page *ps_page;
1070 struct pci_dev *pdev = adapter->pdev;
1073 /* Free all the Rx ring sk_buffs */
1074 for (i = 0; i < rx_ring->count; i++) {
1075 buffer_info = &rx_ring->buffer_info[i];
1076 if (buffer_info->dma) {
1077 if (adapter->clean_rx == e1000_clean_rx_irq)
1078 pci_unmap_single(pdev, buffer_info->dma,
1079 adapter->rx_buffer_len,
1080 PCI_DMA_FROMDEVICE);
1081 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1082 pci_unmap_page(pdev, buffer_info->dma,
1084 PCI_DMA_FROMDEVICE);
1085 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1086 pci_unmap_single(pdev, buffer_info->dma,
1087 adapter->rx_ps_bsize0,
1088 PCI_DMA_FROMDEVICE);
1089 buffer_info->dma = 0;
1092 if (buffer_info->page) {
1093 put_page(buffer_info->page);
1094 buffer_info->page = NULL;
1097 if (buffer_info->skb) {
1098 dev_kfree_skb(buffer_info->skb);
1099 buffer_info->skb = NULL;
1102 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1103 ps_page = &buffer_info->ps_pages[j];
1106 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1107 PCI_DMA_FROMDEVICE);
1109 put_page(ps_page->page);
1110 ps_page->page = NULL;
1114 /* there also may be some cached data from a chained receive */
1115 if (rx_ring->rx_skb_top) {
1116 dev_kfree_skb(rx_ring->rx_skb_top);
1117 rx_ring->rx_skb_top = NULL;
1120 /* Zero out the descriptor ring */
1121 memset(rx_ring->desc, 0, rx_ring->size);
1123 rx_ring->next_to_clean = 0;
1124 rx_ring->next_to_use = 0;
1126 writel(0, adapter->hw.hw_addr + rx_ring->head);
1127 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1130 static void e1000e_downshift_workaround(struct work_struct *work)
1132 struct e1000_adapter *adapter = container_of(work,
1133 struct e1000_adapter, downshift_task);
1135 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1139 * e1000_intr_msi - Interrupt Handler
1140 * @irq: interrupt number
1141 * @data: pointer to a network interface device structure
1143 static irqreturn_t e1000_intr_msi(int irq, void *data)
1145 struct net_device *netdev = data;
1146 struct e1000_adapter *adapter = netdev_priv(netdev);
1147 struct e1000_hw *hw = &adapter->hw;
1148 u32 icr = er32(ICR);
1151 * read ICR disables interrupts using IAM
1154 if (icr & E1000_ICR_LSC) {
1155 hw->mac.get_link_status = 1;
1157 * ICH8 workaround-- Call gig speed drop workaround on cable
1158 * disconnect (LSC) before accessing any PHY registers
1160 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1161 (!(er32(STATUS) & E1000_STATUS_LU)))
1162 schedule_work(&adapter->downshift_task);
1165 * 80003ES2LAN workaround-- For packet buffer work-around on
1166 * link down event; disable receives here in the ISR and reset
1167 * adapter in watchdog
1169 if (netif_carrier_ok(netdev) &&
1170 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1171 /* disable receives */
1172 u32 rctl = er32(RCTL);
1173 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1174 adapter->flags |= FLAG_RX_RESTART_NOW;
1176 /* guard against interrupt when we're going down */
1177 if (!test_bit(__E1000_DOWN, &adapter->state))
1178 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1181 if (napi_schedule_prep(&adapter->napi)) {
1182 adapter->total_tx_bytes = 0;
1183 adapter->total_tx_packets = 0;
1184 adapter->total_rx_bytes = 0;
1185 adapter->total_rx_packets = 0;
1186 __napi_schedule(&adapter->napi);
1193 * e1000_intr - Interrupt Handler
1194 * @irq: interrupt number
1195 * @data: pointer to a network interface device structure
1197 static irqreturn_t e1000_intr(int irq, void *data)
1199 struct net_device *netdev = data;
1200 struct e1000_adapter *adapter = netdev_priv(netdev);
1201 struct e1000_hw *hw = &adapter->hw;
1202 u32 rctl, icr = er32(ICR);
1205 return IRQ_NONE; /* Not our interrupt */
1208 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1209 * not set, then the adapter didn't send an interrupt
1211 if (!(icr & E1000_ICR_INT_ASSERTED))
1215 * Interrupt Auto-Mask...upon reading ICR,
1216 * interrupts are masked. No need for the
1220 if (icr & E1000_ICR_LSC) {
1221 hw->mac.get_link_status = 1;
1223 * ICH8 workaround-- Call gig speed drop workaround on cable
1224 * disconnect (LSC) before accessing any PHY registers
1226 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1227 (!(er32(STATUS) & E1000_STATUS_LU)))
1228 schedule_work(&adapter->downshift_task);
1231 * 80003ES2LAN workaround--
1232 * For packet buffer work-around on link down event;
1233 * disable receives here in the ISR and
1234 * reset adapter in watchdog
1236 if (netif_carrier_ok(netdev) &&
1237 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1238 /* disable receives */
1240 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1241 adapter->flags |= FLAG_RX_RESTART_NOW;
1243 /* guard against interrupt when we're going down */
1244 if (!test_bit(__E1000_DOWN, &adapter->state))
1245 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1248 if (napi_schedule_prep(&adapter->napi)) {
1249 adapter->total_tx_bytes = 0;
1250 adapter->total_tx_packets = 0;
1251 adapter->total_rx_bytes = 0;
1252 adapter->total_rx_packets = 0;
1253 __napi_schedule(&adapter->napi);
1259 static irqreturn_t e1000_msix_other(int irq, void *data)
1261 struct net_device *netdev = data;
1262 struct e1000_adapter *adapter = netdev_priv(netdev);
1263 struct e1000_hw *hw = &adapter->hw;
1264 u32 icr = er32(ICR);
1266 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1267 ew32(IMS, E1000_IMS_OTHER);
1271 if (icr & adapter->eiac_mask)
1272 ew32(ICS, (icr & adapter->eiac_mask));
1274 if (icr & E1000_ICR_OTHER) {
1275 if (!(icr & E1000_ICR_LSC))
1276 goto no_link_interrupt;
1277 hw->mac.get_link_status = 1;
1278 /* guard against interrupt when we're going down */
1279 if (!test_bit(__E1000_DOWN, &adapter->state))
1280 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1284 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1290 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1292 struct net_device *netdev = data;
1293 struct e1000_adapter *adapter = netdev_priv(netdev);
1294 struct e1000_hw *hw = &adapter->hw;
1295 struct e1000_ring *tx_ring = adapter->tx_ring;
1298 adapter->total_tx_bytes = 0;
1299 adapter->total_tx_packets = 0;
1301 if (!e1000_clean_tx_irq(adapter))
1302 /* Ring was not completely cleaned, so fire another interrupt */
1303 ew32(ICS, tx_ring->ims_val);
1308 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1310 struct net_device *netdev = data;
1311 struct e1000_adapter *adapter = netdev_priv(netdev);
1313 /* Write the ITR value calculated at the end of the
1314 * previous interrupt.
1316 if (adapter->rx_ring->set_itr) {
1317 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1318 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1319 adapter->rx_ring->set_itr = 0;
1322 if (napi_schedule_prep(&adapter->napi)) {
1323 adapter->total_rx_bytes = 0;
1324 adapter->total_rx_packets = 0;
1325 __napi_schedule(&adapter->napi);
1331 * e1000_configure_msix - Configure MSI-X hardware
1333 * e1000_configure_msix sets up the hardware to properly
1334 * generate MSI-X interrupts.
1336 static void e1000_configure_msix(struct e1000_adapter *adapter)
1338 struct e1000_hw *hw = &adapter->hw;
1339 struct e1000_ring *rx_ring = adapter->rx_ring;
1340 struct e1000_ring *tx_ring = adapter->tx_ring;
1342 u32 ctrl_ext, ivar = 0;
1344 adapter->eiac_mask = 0;
1346 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1347 if (hw->mac.type == e1000_82574) {
1348 u32 rfctl = er32(RFCTL);
1349 rfctl |= E1000_RFCTL_ACK_DIS;
1353 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1354 /* Configure Rx vector */
1355 rx_ring->ims_val = E1000_IMS_RXQ0;
1356 adapter->eiac_mask |= rx_ring->ims_val;
1357 if (rx_ring->itr_val)
1358 writel(1000000000 / (rx_ring->itr_val * 256),
1359 hw->hw_addr + rx_ring->itr_register);
1361 writel(1, hw->hw_addr + rx_ring->itr_register);
1362 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1364 /* Configure Tx vector */
1365 tx_ring->ims_val = E1000_IMS_TXQ0;
1367 if (tx_ring->itr_val)
1368 writel(1000000000 / (tx_ring->itr_val * 256),
1369 hw->hw_addr + tx_ring->itr_register);
1371 writel(1, hw->hw_addr + tx_ring->itr_register);
1372 adapter->eiac_mask |= tx_ring->ims_val;
1373 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1375 /* set vector for Other Causes, e.g. link changes */
1377 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1378 if (rx_ring->itr_val)
1379 writel(1000000000 / (rx_ring->itr_val * 256),
1380 hw->hw_addr + E1000_EITR_82574(vector));
1382 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1384 /* Cause Tx interrupts on every write back */
1389 /* enable MSI-X PBA support */
1390 ctrl_ext = er32(CTRL_EXT);
1391 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1393 /* Auto-Mask Other interrupts upon ICR read */
1394 #define E1000_EIAC_MASK_82574 0x01F00000
1395 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1396 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1397 ew32(CTRL_EXT, ctrl_ext);
1401 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1403 if (adapter->msix_entries) {
1404 pci_disable_msix(adapter->pdev);
1405 kfree(adapter->msix_entries);
1406 adapter->msix_entries = NULL;
1407 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1408 pci_disable_msi(adapter->pdev);
1409 adapter->flags &= ~FLAG_MSI_ENABLED;
1416 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1418 * Attempt to configure interrupts using the best available
1419 * capabilities of the hardware and kernel.
1421 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1427 switch (adapter->int_mode) {
1428 case E1000E_INT_MODE_MSIX:
1429 if (adapter->flags & FLAG_HAS_MSIX) {
1430 numvecs = 3; /* RxQ0, TxQ0 and other */
1431 adapter->msix_entries = kcalloc(numvecs,
1432 sizeof(struct msix_entry),
1434 if (adapter->msix_entries) {
1435 for (i = 0; i < numvecs; i++)
1436 adapter->msix_entries[i].entry = i;
1438 err = pci_enable_msix(adapter->pdev,
1439 adapter->msix_entries,
1444 /* MSI-X failed, so fall through and try MSI */
1445 e_err("Failed to initialize MSI-X interrupts. "
1446 "Falling back to MSI interrupts.\n");
1447 e1000e_reset_interrupt_capability(adapter);
1449 adapter->int_mode = E1000E_INT_MODE_MSI;
1451 case E1000E_INT_MODE_MSI:
1452 if (!pci_enable_msi(adapter->pdev)) {
1453 adapter->flags |= FLAG_MSI_ENABLED;
1455 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1456 e_err("Failed to initialize MSI interrupts. Falling "
1457 "back to legacy interrupts.\n");
1460 case E1000E_INT_MODE_LEGACY:
1461 /* Don't do anything; this is the system default */
1469 * e1000_request_msix - Initialize MSI-X interrupts
1471 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1474 static int e1000_request_msix(struct e1000_adapter *adapter)
1476 struct net_device *netdev = adapter->netdev;
1477 int err = 0, vector = 0;
1479 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1480 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1482 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1483 err = request_irq(adapter->msix_entries[vector].vector,
1484 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1488 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1489 adapter->rx_ring->itr_val = adapter->itr;
1492 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1493 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1495 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1496 err = request_irq(adapter->msix_entries[vector].vector,
1497 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1501 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1502 adapter->tx_ring->itr_val = adapter->itr;
1505 err = request_irq(adapter->msix_entries[vector].vector,
1506 &e1000_msix_other, 0, netdev->name, netdev);
1510 e1000_configure_msix(adapter);
1517 * e1000_request_irq - initialize interrupts
1519 * Attempts to configure interrupts using the best available
1520 * capabilities of the hardware and kernel.
1522 static int e1000_request_irq(struct e1000_adapter *adapter)
1524 struct net_device *netdev = adapter->netdev;
1527 if (adapter->msix_entries) {
1528 err = e1000_request_msix(adapter);
1531 /* fall back to MSI */
1532 e1000e_reset_interrupt_capability(adapter);
1533 adapter->int_mode = E1000E_INT_MODE_MSI;
1534 e1000e_set_interrupt_capability(adapter);
1536 if (adapter->flags & FLAG_MSI_ENABLED) {
1537 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1538 netdev->name, netdev);
1542 /* fall back to legacy interrupt */
1543 e1000e_reset_interrupt_capability(adapter);
1544 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1547 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1548 netdev->name, netdev);
1550 e_err("Unable to allocate interrupt, Error: %d\n", err);
1555 static void e1000_free_irq(struct e1000_adapter *adapter)
1557 struct net_device *netdev = adapter->netdev;
1559 if (adapter->msix_entries) {
1562 free_irq(adapter->msix_entries[vector].vector, netdev);
1565 free_irq(adapter->msix_entries[vector].vector, netdev);
1568 /* Other Causes interrupt vector */
1569 free_irq(adapter->msix_entries[vector].vector, netdev);
1573 free_irq(adapter->pdev->irq, netdev);
1577 * e1000_irq_disable - Mask off interrupt generation on the NIC
1579 static void e1000_irq_disable(struct e1000_adapter *adapter)
1581 struct e1000_hw *hw = &adapter->hw;
1584 if (adapter->msix_entries)
1585 ew32(EIAC_82574, 0);
1587 synchronize_irq(adapter->pdev->irq);
1591 * e1000_irq_enable - Enable default interrupt generation settings
1593 static void e1000_irq_enable(struct e1000_adapter *adapter)
1595 struct e1000_hw *hw = &adapter->hw;
1597 if (adapter->msix_entries) {
1598 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1599 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1601 ew32(IMS, IMS_ENABLE_MASK);
1607 * e1000_get_hw_control - get control of the h/w from f/w
1608 * @adapter: address of board private structure
1610 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1611 * For ASF and Pass Through versions of f/w this means that
1612 * the driver is loaded. For AMT version (only with 82573)
1613 * of the f/w this means that the network i/f is open.
1615 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1617 struct e1000_hw *hw = &adapter->hw;
1621 /* Let firmware know the driver has taken over */
1622 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1624 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1625 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1626 ctrl_ext = er32(CTRL_EXT);
1627 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1632 * e1000_release_hw_control - release control of the h/w to f/w
1633 * @adapter: address of board private structure
1635 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1636 * For ASF and Pass Through versions of f/w this means that the
1637 * driver is no longer loaded. For AMT version (only with 82573) i
1638 * of the f/w this means that the network i/f is closed.
1641 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1643 struct e1000_hw *hw = &adapter->hw;
1647 /* Let firmware taken over control of h/w */
1648 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1650 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1651 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1652 ctrl_ext = er32(CTRL_EXT);
1653 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1658 * @e1000_alloc_ring - allocate memory for a ring structure
1660 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1661 struct e1000_ring *ring)
1663 struct pci_dev *pdev = adapter->pdev;
1665 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1674 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1675 * @adapter: board private structure
1677 * Return 0 on success, negative on failure
1679 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1681 struct e1000_ring *tx_ring = adapter->tx_ring;
1682 int err = -ENOMEM, size;
1684 size = sizeof(struct e1000_buffer) * tx_ring->count;
1685 tx_ring->buffer_info = vmalloc(size);
1686 if (!tx_ring->buffer_info)
1688 memset(tx_ring->buffer_info, 0, size);
1690 /* round up to nearest 4K */
1691 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1692 tx_ring->size = ALIGN(tx_ring->size, 4096);
1694 err = e1000_alloc_ring_dma(adapter, tx_ring);
1698 tx_ring->next_to_use = 0;
1699 tx_ring->next_to_clean = 0;
1703 vfree(tx_ring->buffer_info);
1704 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1709 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1710 * @adapter: board private structure
1712 * Returns 0 on success, negative on failure
1714 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1716 struct e1000_ring *rx_ring = adapter->rx_ring;
1717 struct e1000_buffer *buffer_info;
1718 int i, size, desc_len, err = -ENOMEM;
1720 size = sizeof(struct e1000_buffer) * rx_ring->count;
1721 rx_ring->buffer_info = vmalloc(size);
1722 if (!rx_ring->buffer_info)
1724 memset(rx_ring->buffer_info, 0, size);
1726 for (i = 0; i < rx_ring->count; i++) {
1727 buffer_info = &rx_ring->buffer_info[i];
1728 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1729 sizeof(struct e1000_ps_page),
1731 if (!buffer_info->ps_pages)
1735 desc_len = sizeof(union e1000_rx_desc_packet_split);
1737 /* Round up to nearest 4K */
1738 rx_ring->size = rx_ring->count * desc_len;
1739 rx_ring->size = ALIGN(rx_ring->size, 4096);
1741 err = e1000_alloc_ring_dma(adapter, rx_ring);
1745 rx_ring->next_to_clean = 0;
1746 rx_ring->next_to_use = 0;
1747 rx_ring->rx_skb_top = NULL;
1752 for (i = 0; i < rx_ring->count; i++) {
1753 buffer_info = &rx_ring->buffer_info[i];
1754 kfree(buffer_info->ps_pages);
1757 vfree(rx_ring->buffer_info);
1758 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1763 * e1000_clean_tx_ring - Free Tx Buffers
1764 * @adapter: board private structure
1766 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1768 struct e1000_ring *tx_ring = adapter->tx_ring;
1769 struct e1000_buffer *buffer_info;
1773 for (i = 0; i < tx_ring->count; i++) {
1774 buffer_info = &tx_ring->buffer_info[i];
1775 e1000_put_txbuf(adapter, buffer_info);
1778 size = sizeof(struct e1000_buffer) * tx_ring->count;
1779 memset(tx_ring->buffer_info, 0, size);
1781 memset(tx_ring->desc, 0, tx_ring->size);
1783 tx_ring->next_to_use = 0;
1784 tx_ring->next_to_clean = 0;
1786 writel(0, adapter->hw.hw_addr + tx_ring->head);
1787 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1791 * e1000e_free_tx_resources - Free Tx Resources per Queue
1792 * @adapter: board private structure
1794 * Free all transmit software resources
1796 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1798 struct pci_dev *pdev = adapter->pdev;
1799 struct e1000_ring *tx_ring = adapter->tx_ring;
1801 e1000_clean_tx_ring(adapter);
1803 vfree(tx_ring->buffer_info);
1804 tx_ring->buffer_info = NULL;
1806 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1808 tx_ring->desc = NULL;
1812 * e1000e_free_rx_resources - Free Rx Resources
1813 * @adapter: board private structure
1815 * Free all receive software resources
1818 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1820 struct pci_dev *pdev = adapter->pdev;
1821 struct e1000_ring *rx_ring = adapter->rx_ring;
1824 e1000_clean_rx_ring(adapter);
1826 for (i = 0; i < rx_ring->count; i++) {
1827 kfree(rx_ring->buffer_info[i].ps_pages);
1830 vfree(rx_ring->buffer_info);
1831 rx_ring->buffer_info = NULL;
1833 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1835 rx_ring->desc = NULL;
1839 * e1000_update_itr - update the dynamic ITR value based on statistics
1840 * @adapter: pointer to adapter
1841 * @itr_setting: current adapter->itr
1842 * @packets: the number of packets during this measurement interval
1843 * @bytes: the number of bytes during this measurement interval
1845 * Stores a new ITR value based on packets and byte
1846 * counts during the last interrupt. The advantage of per interrupt
1847 * computation is faster updates and more accurate ITR for the current
1848 * traffic pattern. Constants in this function were computed
1849 * based on theoretical maximum wire speed and thresholds were set based
1850 * on testing data as well as attempting to minimize response time
1851 * while increasing bulk throughput. This functionality is controlled
1852 * by the InterruptThrottleRate module parameter.
1854 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1855 u16 itr_setting, int packets,
1858 unsigned int retval = itr_setting;
1861 goto update_itr_done;
1863 switch (itr_setting) {
1864 case lowest_latency:
1865 /* handle TSO and jumbo frames */
1866 if (bytes/packets > 8000)
1867 retval = bulk_latency;
1868 else if ((packets < 5) && (bytes > 512)) {
1869 retval = low_latency;
1872 case low_latency: /* 50 usec aka 20000 ints/s */
1873 if (bytes > 10000) {
1874 /* this if handles the TSO accounting */
1875 if (bytes/packets > 8000) {
1876 retval = bulk_latency;
1877 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1878 retval = bulk_latency;
1879 } else if ((packets > 35)) {
1880 retval = lowest_latency;
1882 } else if (bytes/packets > 2000) {
1883 retval = bulk_latency;
1884 } else if (packets <= 2 && bytes < 512) {
1885 retval = lowest_latency;
1888 case bulk_latency: /* 250 usec aka 4000 ints/s */
1889 if (bytes > 25000) {
1891 retval = low_latency;
1893 } else if (bytes < 6000) {
1894 retval = low_latency;
1903 static void e1000_set_itr(struct e1000_adapter *adapter)
1905 struct e1000_hw *hw = &adapter->hw;
1907 u32 new_itr = adapter->itr;
1909 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1910 if (adapter->link_speed != SPEED_1000) {
1916 adapter->tx_itr = e1000_update_itr(adapter,
1918 adapter->total_tx_packets,
1919 adapter->total_tx_bytes);
1920 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1921 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1922 adapter->tx_itr = low_latency;
1924 adapter->rx_itr = e1000_update_itr(adapter,
1926 adapter->total_rx_packets,
1927 adapter->total_rx_bytes);
1928 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1929 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1930 adapter->rx_itr = low_latency;
1932 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1934 switch (current_itr) {
1935 /* counts and packets in update_itr are dependent on these numbers */
1936 case lowest_latency:
1940 new_itr = 20000; /* aka hwitr = ~200 */
1950 if (new_itr != adapter->itr) {
1952 * this attempts to bias the interrupt rate towards Bulk
1953 * by adding intermediate steps when interrupt rate is
1956 new_itr = new_itr > adapter->itr ?
1957 min(adapter->itr + (new_itr >> 2), new_itr) :
1959 adapter->itr = new_itr;
1960 adapter->rx_ring->itr_val = new_itr;
1961 if (adapter->msix_entries)
1962 adapter->rx_ring->set_itr = 1;
1964 ew32(ITR, 1000000000 / (new_itr * 256));
1969 * e1000_alloc_queues - Allocate memory for all rings
1970 * @adapter: board private structure to initialize
1972 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1974 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1975 if (!adapter->tx_ring)
1978 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1979 if (!adapter->rx_ring)
1984 e_err("Unable to allocate memory for queues\n");
1985 kfree(adapter->rx_ring);
1986 kfree(adapter->tx_ring);
1991 * e1000_clean - NAPI Rx polling callback
1992 * @napi: struct associated with this polling callback
1993 * @budget: amount of packets driver is allowed to process this poll
1995 static int e1000_clean(struct napi_struct *napi, int budget)
1997 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1998 struct e1000_hw *hw = &adapter->hw;
1999 struct net_device *poll_dev = adapter->netdev;
2000 int tx_cleaned = 0, work_done = 0;
2002 adapter = netdev_priv(poll_dev);
2004 if (adapter->msix_entries &&
2005 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2008 tx_cleaned = e1000_clean_tx_irq(adapter);
2011 adapter->clean_rx(adapter, &work_done, budget);
2016 /* If budget not fully consumed, exit the polling mode */
2017 if (work_done < budget) {
2018 if (adapter->itr_setting & 3)
2019 e1000_set_itr(adapter);
2020 napi_complete(napi);
2021 if (adapter->msix_entries)
2022 ew32(IMS, adapter->rx_ring->ims_val);
2024 e1000_irq_enable(adapter);
2030 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2032 struct e1000_adapter *adapter = netdev_priv(netdev);
2033 struct e1000_hw *hw = &adapter->hw;
2036 /* don't update vlan cookie if already programmed */
2037 if ((adapter->hw.mng_cookie.status &
2038 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2039 (vid == adapter->mng_vlan_id))
2041 /* add VID to filter table */
2042 index = (vid >> 5) & 0x7F;
2043 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2044 vfta |= (1 << (vid & 0x1F));
2045 e1000e_write_vfta(hw, index, vfta);
2048 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2050 struct e1000_adapter *adapter = netdev_priv(netdev);
2051 struct e1000_hw *hw = &adapter->hw;
2054 if (!test_bit(__E1000_DOWN, &adapter->state))
2055 e1000_irq_disable(adapter);
2056 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2058 if (!test_bit(__E1000_DOWN, &adapter->state))
2059 e1000_irq_enable(adapter);
2061 if ((adapter->hw.mng_cookie.status &
2062 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2063 (vid == adapter->mng_vlan_id)) {
2064 /* release control to f/w */
2065 e1000_release_hw_control(adapter);
2069 /* remove VID from filter table */
2070 index = (vid >> 5) & 0x7F;
2071 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2072 vfta &= ~(1 << (vid & 0x1F));
2073 e1000e_write_vfta(hw, index, vfta);
2076 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2078 struct net_device *netdev = adapter->netdev;
2079 u16 vid = adapter->hw.mng_cookie.vlan_id;
2080 u16 old_vid = adapter->mng_vlan_id;
2082 if (!adapter->vlgrp)
2085 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2086 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2087 if (adapter->hw.mng_cookie.status &
2088 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2089 e1000_vlan_rx_add_vid(netdev, vid);
2090 adapter->mng_vlan_id = vid;
2093 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2095 !vlan_group_get_device(adapter->vlgrp, old_vid))
2096 e1000_vlan_rx_kill_vid(netdev, old_vid);
2098 adapter->mng_vlan_id = vid;
2103 static void e1000_vlan_rx_register(struct net_device *netdev,
2104 struct vlan_group *grp)
2106 struct e1000_adapter *adapter = netdev_priv(netdev);
2107 struct e1000_hw *hw = &adapter->hw;
2110 if (!test_bit(__E1000_DOWN, &adapter->state))
2111 e1000_irq_disable(adapter);
2112 adapter->vlgrp = grp;
2115 /* enable VLAN tag insert/strip */
2117 ctrl |= E1000_CTRL_VME;
2120 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2121 /* enable VLAN receive filtering */
2123 rctl &= ~E1000_RCTL_CFIEN;
2125 e1000_update_mng_vlan(adapter);
2128 /* disable VLAN tag insert/strip */
2130 ctrl &= ~E1000_CTRL_VME;
2133 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2134 if (adapter->mng_vlan_id !=
2135 (u16)E1000_MNG_VLAN_NONE) {
2136 e1000_vlan_rx_kill_vid(netdev,
2137 adapter->mng_vlan_id);
2138 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2143 if (!test_bit(__E1000_DOWN, &adapter->state))
2144 e1000_irq_enable(adapter);
2147 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2151 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2153 if (!adapter->vlgrp)
2156 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2157 if (!vlan_group_get_device(adapter->vlgrp, vid))
2159 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2163 static void e1000_init_manageability(struct e1000_adapter *adapter)
2165 struct e1000_hw *hw = &adapter->hw;
2168 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2174 * enable receiving management packets to the host. this will probably
2175 * generate destination unreachable messages from the host OS, but
2176 * the packets will be handled on SMBUS
2178 manc |= E1000_MANC_EN_MNG2HOST;
2179 manc2h = er32(MANC2H);
2180 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2181 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2182 manc2h |= E1000_MNG2HOST_PORT_623;
2183 manc2h |= E1000_MNG2HOST_PORT_664;
2184 ew32(MANC2H, manc2h);
2189 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2190 * @adapter: board private structure
2192 * Configure the Tx unit of the MAC after a reset.
2194 static void e1000_configure_tx(struct e1000_adapter *adapter)
2196 struct e1000_hw *hw = &adapter->hw;
2197 struct e1000_ring *tx_ring = adapter->tx_ring;
2199 u32 tdlen, tctl, tipg, tarc;
2202 /* Setup the HW Tx Head and Tail descriptor pointers */
2203 tdba = tx_ring->dma;
2204 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2205 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2206 ew32(TDBAH, (tdba >> 32));
2210 tx_ring->head = E1000_TDH;
2211 tx_ring->tail = E1000_TDT;
2213 /* Set the default values for the Tx Inter Packet Gap timer */
2214 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2215 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2216 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2218 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2219 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2221 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2222 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2225 /* Set the Tx Interrupt Delay register */
2226 ew32(TIDV, adapter->tx_int_delay);
2227 /* Tx irq moderation */
2228 ew32(TADV, adapter->tx_abs_int_delay);
2230 /* Program the Transmit Control Register */
2232 tctl &= ~E1000_TCTL_CT;
2233 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2234 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2236 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2237 tarc = er32(TARC(0));
2239 * set the speed mode bit, we'll clear it if we're not at
2240 * gigabit link later
2242 #define SPEED_MODE_BIT (1 << 21)
2243 tarc |= SPEED_MODE_BIT;
2244 ew32(TARC(0), tarc);
2247 /* errata: program both queues to unweighted RR */
2248 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2249 tarc = er32(TARC(0));
2251 ew32(TARC(0), tarc);
2252 tarc = er32(TARC(1));
2254 ew32(TARC(1), tarc);
2257 e1000e_config_collision_dist(hw);
2259 /* Setup Transmit Descriptor Settings for eop descriptor */
2260 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2262 /* only set IDE if we are delaying interrupts using the timers */
2263 if (adapter->tx_int_delay)
2264 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2266 /* enable Report Status bit */
2267 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2271 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2275 * e1000_setup_rctl - configure the receive control registers
2276 * @adapter: Board private structure
2278 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2279 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2280 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2282 struct e1000_hw *hw = &adapter->hw;
2287 /* Program MC offset vector base */
2289 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2290 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2291 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2292 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2294 /* Do not Store bad packets */
2295 rctl &= ~E1000_RCTL_SBP;
2297 /* Enable Long Packet receive */
2298 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2299 rctl &= ~E1000_RCTL_LPE;
2301 rctl |= E1000_RCTL_LPE;
2303 /* Some systems expect that the CRC is included in SMBUS traffic. The
2304 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2305 * host memory when this is enabled
2307 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2308 rctl |= E1000_RCTL_SECRC;
2310 /* Setup buffer sizes */
2311 rctl &= ~E1000_RCTL_SZ_4096;
2312 rctl |= E1000_RCTL_BSEX;
2313 switch (adapter->rx_buffer_len) {
2315 rctl |= E1000_RCTL_SZ_256;
2316 rctl &= ~E1000_RCTL_BSEX;
2319 rctl |= E1000_RCTL_SZ_512;
2320 rctl &= ~E1000_RCTL_BSEX;
2323 rctl |= E1000_RCTL_SZ_1024;
2324 rctl &= ~E1000_RCTL_BSEX;
2328 rctl |= E1000_RCTL_SZ_2048;
2329 rctl &= ~E1000_RCTL_BSEX;
2332 rctl |= E1000_RCTL_SZ_4096;
2335 rctl |= E1000_RCTL_SZ_8192;
2338 rctl |= E1000_RCTL_SZ_16384;
2343 * 82571 and greater support packet-split where the protocol
2344 * header is placed in skb->data and the packet data is
2345 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2346 * In the case of a non-split, skb->data is linearly filled,
2347 * followed by the page buffers. Therefore, skb->data is
2348 * sized to hold the largest protocol header.
2350 * allocations using alloc_page take too long for regular MTU
2351 * so only enable packet split for jumbo frames
2353 * Using pages when the page size is greater than 16k wastes
2354 * a lot of memory, since we allocate 3 pages at all times
2357 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2358 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2359 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2360 adapter->rx_ps_pages = pages;
2362 adapter->rx_ps_pages = 0;
2364 if (adapter->rx_ps_pages) {
2365 /* Configure extra packet-split registers */
2366 rfctl = er32(RFCTL);
2367 rfctl |= E1000_RFCTL_EXTEN;
2369 * disable packet split support for IPv6 extension headers,
2370 * because some malformed IPv6 headers can hang the Rx
2372 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2373 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2377 /* Enable Packet split descriptors */
2378 rctl |= E1000_RCTL_DTYP_PS;
2380 psrctl |= adapter->rx_ps_bsize0 >>
2381 E1000_PSRCTL_BSIZE0_SHIFT;
2383 switch (adapter->rx_ps_pages) {
2385 psrctl |= PAGE_SIZE <<
2386 E1000_PSRCTL_BSIZE3_SHIFT;
2388 psrctl |= PAGE_SIZE <<
2389 E1000_PSRCTL_BSIZE2_SHIFT;
2391 psrctl |= PAGE_SIZE >>
2392 E1000_PSRCTL_BSIZE1_SHIFT;
2396 ew32(PSRCTL, psrctl);
2400 /* just started the receive unit, no need to restart */
2401 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2405 * e1000_configure_rx - Configure Receive Unit after Reset
2406 * @adapter: board private structure
2408 * Configure the Rx unit of the MAC after a reset.
2410 static void e1000_configure_rx(struct e1000_adapter *adapter)
2412 struct e1000_hw *hw = &adapter->hw;
2413 struct e1000_ring *rx_ring = adapter->rx_ring;
2415 u32 rdlen, rctl, rxcsum, ctrl_ext;
2417 if (adapter->rx_ps_pages) {
2418 /* this is a 32 byte descriptor */
2419 rdlen = rx_ring->count *
2420 sizeof(union e1000_rx_desc_packet_split);
2421 adapter->clean_rx = e1000_clean_rx_irq_ps;
2422 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2423 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2424 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2425 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2426 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2428 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2429 adapter->clean_rx = e1000_clean_rx_irq;
2430 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2433 /* disable receives while setting up the descriptors */
2435 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2439 /* set the Receive Delay Timer Register */
2440 ew32(RDTR, adapter->rx_int_delay);
2442 /* irq moderation */
2443 ew32(RADV, adapter->rx_abs_int_delay);
2444 if (adapter->itr_setting != 0)
2445 ew32(ITR, 1000000000 / (adapter->itr * 256));
2447 ctrl_ext = er32(CTRL_EXT);
2448 /* Reset delay timers after every interrupt */
2449 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2450 /* Auto-Mask interrupts upon ICR access */
2451 ctrl_ext |= E1000_CTRL_EXT_IAME;
2452 ew32(IAM, 0xffffffff);
2453 ew32(CTRL_EXT, ctrl_ext);
2457 * Setup the HW Rx Head and Tail Descriptor Pointers and
2458 * the Base and Length of the Rx Descriptor Ring
2460 rdba = rx_ring->dma;
2461 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2462 ew32(RDBAH, (rdba >> 32));
2466 rx_ring->head = E1000_RDH;
2467 rx_ring->tail = E1000_RDT;
2469 /* Enable Receive Checksum Offload for TCP and UDP */
2470 rxcsum = er32(RXCSUM);
2471 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2472 rxcsum |= E1000_RXCSUM_TUOFL;
2475 * IPv4 payload checksum for UDP fragments must be
2476 * used in conjunction with packet-split.
2478 if (adapter->rx_ps_pages)
2479 rxcsum |= E1000_RXCSUM_IPPCSE;
2481 rxcsum &= ~E1000_RXCSUM_TUOFL;
2482 /* no need to clear IPPCSE as it defaults to 0 */
2484 ew32(RXCSUM, rxcsum);
2487 * Enable early receives on supported devices, only takes effect when
2488 * packet size is equal or larger than the specified value (in 8 byte
2489 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2491 if ((adapter->flags & FLAG_HAS_ERT) &&
2492 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2493 u32 rxdctl = er32(RXDCTL(0));
2494 ew32(RXDCTL(0), rxdctl | 0x3);
2495 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2497 * With jumbo frames and early-receive enabled, excessive
2498 * C4->C2 latencies result in dropped transactions.
2500 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2501 e1000e_driver_name, 55);
2503 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2505 PM_QOS_DEFAULT_VALUE);
2508 /* Enable Receives */
2513 * e1000_update_mc_addr_list - Update Multicast addresses
2514 * @hw: pointer to the HW structure
2515 * @mc_addr_list: array of multicast addresses to program
2516 * @mc_addr_count: number of multicast addresses to program
2517 * @rar_used_count: the first RAR register free to program
2518 * @rar_count: total number of supported Receive Address Registers
2520 * Updates the Receive Address Registers and Multicast Table Array.
2521 * The caller must have a packed mc_addr_list of multicast addresses.
2522 * The parameter rar_count will usually be hw->mac.rar_entry_count
2523 * unless there are workarounds that change this. Currently no func pointer
2524 * exists and all implementations are handled in the generic version of this
2527 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2528 u32 mc_addr_count, u32 rar_used_count,
2531 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2532 rar_used_count, rar_count);
2536 * e1000_set_multi - Multicast and Promiscuous mode set
2537 * @netdev: network interface device structure
2539 * The set_multi entry point is called whenever the multicast address
2540 * list or the network interface flags are updated. This routine is
2541 * responsible for configuring the hardware for proper multicast,
2542 * promiscuous mode, and all-multi behavior.
2544 static void e1000_set_multi(struct net_device *netdev)
2546 struct e1000_adapter *adapter = netdev_priv(netdev);
2547 struct e1000_hw *hw = &adapter->hw;
2548 struct e1000_mac_info *mac = &hw->mac;
2549 struct dev_mc_list *mc_ptr;
2554 /* Check for Promiscuous and All Multicast modes */
2558 if (netdev->flags & IFF_PROMISC) {
2559 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2560 rctl &= ~E1000_RCTL_VFE;
2562 if (netdev->flags & IFF_ALLMULTI) {
2563 rctl |= E1000_RCTL_MPE;
2564 rctl &= ~E1000_RCTL_UPE;
2566 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2568 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2569 rctl |= E1000_RCTL_VFE;
2574 if (netdev->mc_count) {
2575 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2579 /* prepare a packed array of only addresses. */
2580 mc_ptr = netdev->mc_list;
2582 for (i = 0; i < netdev->mc_count; i++) {
2585 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2587 mc_ptr = mc_ptr->next;
2590 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2591 mac->rar_entry_count);
2595 * if we're called from probe, we might not have
2596 * anything to do here, so clear out the list
2598 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2603 * e1000_configure - configure the hardware for Rx and Tx
2604 * @adapter: private board structure
2606 static void e1000_configure(struct e1000_adapter *adapter)
2608 e1000_set_multi(adapter->netdev);
2610 e1000_restore_vlan(adapter);
2611 e1000_init_manageability(adapter);
2613 e1000_configure_tx(adapter);
2614 e1000_setup_rctl(adapter);
2615 e1000_configure_rx(adapter);
2616 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2620 * e1000e_power_up_phy - restore link in case the phy was powered down
2621 * @adapter: address of board private structure
2623 * The phy may be powered down to save power and turn off link when the
2624 * driver is unloaded and wake on lan is not enabled (among others)
2625 * *** this routine MUST be followed by a call to e1000e_reset ***
2627 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2631 /* Just clear the power down bit to wake the phy back up */
2632 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2634 * According to the manual, the phy will retain its
2635 * settings across a power-down/up cycle
2637 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2638 mii_reg &= ~MII_CR_POWER_DOWN;
2639 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2642 adapter->hw.mac.ops.setup_link(&adapter->hw);
2646 * e1000_power_down_phy - Power down the PHY
2648 * Power down the PHY so no link is implied when interface is down
2649 * The PHY cannot be powered down is management or WoL is active
2651 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2653 struct e1000_hw *hw = &adapter->hw;
2656 /* WoL is enabled */
2660 /* non-copper PHY? */
2661 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2664 /* reset is blocked because of a SoL/IDER session */
2665 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2668 /* manageability (AMT) is enabled */
2669 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2672 /* power down the PHY */
2673 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2674 mii_reg |= MII_CR_POWER_DOWN;
2675 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2680 * e1000e_reset - bring the hardware into a known good state
2682 * This function boots the hardware and enables some settings that
2683 * require a configuration cycle of the hardware - those cannot be
2684 * set/changed during runtime. After reset the device needs to be
2685 * properly configured for Rx, Tx etc.
2687 void e1000e_reset(struct e1000_adapter *adapter)
2689 struct e1000_mac_info *mac = &adapter->hw.mac;
2690 struct e1000_fc_info *fc = &adapter->hw.fc;
2691 struct e1000_hw *hw = &adapter->hw;
2692 u32 tx_space, min_tx_space, min_rx_space;
2693 u32 pba = adapter->pba;
2696 /* reset Packet Buffer Allocation to default */
2699 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2701 * To maintain wire speed transmits, the Tx FIFO should be
2702 * large enough to accommodate two full transmit packets,
2703 * rounded up to the next 1KB and expressed in KB. Likewise,
2704 * the Rx FIFO should be large enough to accommodate at least
2705 * one full receive packet and is similarly rounded up and
2709 /* upper 16 bits has Tx packet buffer allocation size in KB */
2710 tx_space = pba >> 16;
2711 /* lower 16 bits has Rx packet buffer allocation size in KB */
2714 * the Tx fifo also stores 16 bytes of information about the tx
2715 * but don't include ethernet FCS because hardware appends it
2717 min_tx_space = (adapter->max_frame_size +
2718 sizeof(struct e1000_tx_desc) -
2720 min_tx_space = ALIGN(min_tx_space, 1024);
2721 min_tx_space >>= 10;
2722 /* software strips receive CRC, so leave room for it */
2723 min_rx_space = adapter->max_frame_size;
2724 min_rx_space = ALIGN(min_rx_space, 1024);
2725 min_rx_space >>= 10;
2728 * If current Tx allocation is less than the min Tx FIFO size,
2729 * and the min Tx FIFO size is less than the current Rx FIFO
2730 * allocation, take space away from current Rx allocation
2732 if ((tx_space < min_tx_space) &&
2733 ((min_tx_space - tx_space) < pba)) {
2734 pba -= min_tx_space - tx_space;
2737 * if short on Rx space, Rx wins and must trump tx
2738 * adjustment or use Early Receive if available
2740 if ((pba < min_rx_space) &&
2741 (!(adapter->flags & FLAG_HAS_ERT)))
2742 /* ERT enabled in e1000_configure_rx */
2751 * flow control settings
2753 * The high water mark must be low enough to fit one full frame
2754 * (or the size used for early receive) above it in the Rx FIFO.
2755 * Set it to the lower of:
2756 * - 90% of the Rx FIFO size, and
2757 * - the full Rx FIFO size minus the early receive size (for parts
2758 * with ERT support assuming ERT set to E1000_ERT_2048), or
2759 * - the full Rx FIFO size minus one full frame
2761 if (adapter->flags & FLAG_HAS_ERT)
2762 hwm = min(((pba << 10) * 9 / 10),
2763 ((pba << 10) - (E1000_ERT_2048 << 3)));
2765 hwm = min(((pba << 10) * 9 / 10),
2766 ((pba << 10) - adapter->max_frame_size));
2768 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2769 fc->low_water = fc->high_water - 8;
2771 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2772 fc->pause_time = 0xFFFF;
2774 fc->pause_time = E1000_FC_PAUSE_TIME;
2776 fc->current_mode = fc->requested_mode;
2778 /* Allow time for pending master requests to run */
2779 mac->ops.reset_hw(hw);
2782 * For parts with AMT enabled, let the firmware know
2783 * that the network interface is in control
2785 if (adapter->flags & FLAG_HAS_AMT)
2786 e1000_get_hw_control(adapter);
2790 if (mac->ops.init_hw(hw))
2791 e_err("Hardware Error\n");
2793 e1000_update_mng_vlan(adapter);
2795 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2796 ew32(VET, ETH_P_8021Q);
2798 e1000e_reset_adaptive(hw);
2799 e1000_get_phy_info(hw);
2801 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2804 * speed up time to link by disabling smart power down, ignore
2805 * the return value of this function because there is nothing
2806 * different we would do if it failed
2808 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2809 phy_data &= ~IGP02E1000_PM_SPD;
2810 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2814 int e1000e_up(struct e1000_adapter *adapter)
2816 struct e1000_hw *hw = &adapter->hw;
2818 /* hardware has been reset, we need to reload some things */
2819 e1000_configure(adapter);
2821 clear_bit(__E1000_DOWN, &adapter->state);
2823 napi_enable(&adapter->napi);
2824 if (adapter->msix_entries)
2825 e1000_configure_msix(adapter);
2826 e1000_irq_enable(adapter);
2828 /* fire a link change interrupt to start the watchdog */
2829 ew32(ICS, E1000_ICS_LSC);
2833 void e1000e_down(struct e1000_adapter *adapter)
2835 struct net_device *netdev = adapter->netdev;
2836 struct e1000_hw *hw = &adapter->hw;
2840 * signal that we're down so the interrupt handler does not
2841 * reschedule our watchdog timer
2843 set_bit(__E1000_DOWN, &adapter->state);
2845 /* disable receives in the hardware */
2847 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2848 /* flush and sleep below */
2850 netif_tx_stop_all_queues(netdev);
2852 /* disable transmits in the hardware */
2854 tctl &= ~E1000_TCTL_EN;
2856 /* flush both disables and wait for them to finish */
2860 napi_disable(&adapter->napi);
2861 e1000_irq_disable(adapter);
2863 del_timer_sync(&adapter->watchdog_timer);
2864 del_timer_sync(&adapter->phy_info_timer);
2866 netdev->tx_queue_len = adapter->tx_queue_len;
2867 netif_carrier_off(netdev);
2868 adapter->link_speed = 0;
2869 adapter->link_duplex = 0;
2871 if (!pci_channel_offline(adapter->pdev))
2872 e1000e_reset(adapter);
2873 e1000_clean_tx_ring(adapter);
2874 e1000_clean_rx_ring(adapter);
2877 * TODO: for power management, we could drop the link and
2878 * pci_disable_device here.
2882 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2885 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2887 e1000e_down(adapter);
2889 clear_bit(__E1000_RESETTING, &adapter->state);
2893 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2894 * @adapter: board private structure to initialize
2896 * e1000_sw_init initializes the Adapter private data structure.
2897 * Fields are initialized based on PCI device information and
2898 * OS network device settings (MTU size).
2900 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2902 struct net_device *netdev = adapter->netdev;
2904 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2905 adapter->rx_ps_bsize0 = 128;
2906 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2907 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2909 e1000e_set_interrupt_capability(adapter);
2911 if (e1000_alloc_queues(adapter))
2914 /* Explicitly disable IRQ since the NIC can be in any state. */
2915 e1000_irq_disable(adapter);
2917 set_bit(__E1000_DOWN, &adapter->state);
2922 * e1000_intr_msi_test - Interrupt Handler
2923 * @irq: interrupt number
2924 * @data: pointer to a network interface device structure
2926 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2928 struct net_device *netdev = data;
2929 struct e1000_adapter *adapter = netdev_priv(netdev);
2930 struct e1000_hw *hw = &adapter->hw;
2931 u32 icr = er32(ICR);
2933 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2934 if (icr & E1000_ICR_RXSEQ) {
2935 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2943 * e1000_test_msi_interrupt - Returns 0 for successful test
2944 * @adapter: board private struct
2946 * code flow taken from tg3.c
2948 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2950 struct net_device *netdev = adapter->netdev;
2951 struct e1000_hw *hw = &adapter->hw;
2954 /* poll_enable hasn't been called yet, so don't need disable */
2955 /* clear any pending events */
2958 /* free the real vector and request a test handler */
2959 e1000_free_irq(adapter);
2960 e1000e_reset_interrupt_capability(adapter);
2962 /* Assume that the test fails, if it succeeds then the test
2963 * MSI irq handler will unset this flag */
2964 adapter->flags |= FLAG_MSI_TEST_FAILED;
2966 err = pci_enable_msi(adapter->pdev);
2968 goto msi_test_failed;
2970 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2971 netdev->name, netdev);
2973 pci_disable_msi(adapter->pdev);
2974 goto msi_test_failed;
2979 e1000_irq_enable(adapter);
2981 /* fire an unusual interrupt on the test handler */
2982 ew32(ICS, E1000_ICS_RXSEQ);
2986 e1000_irq_disable(adapter);
2990 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2991 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2993 e_info("MSI interrupt test failed!\n");
2996 free_irq(adapter->pdev->irq, netdev);
2997 pci_disable_msi(adapter->pdev);
3000 goto msi_test_failed;
3002 /* okay so the test worked, restore settings */
3003 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3005 e1000e_set_interrupt_capability(adapter);
3006 e1000_request_irq(adapter);
3011 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3012 * @adapter: board private struct
3014 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3016 static int e1000_test_msi(struct e1000_adapter *adapter)
3021 if (!(adapter->flags & FLAG_MSI_ENABLED))
3024 /* disable SERR in case the MSI write causes a master abort */
3025 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3026 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3027 pci_cmd & ~PCI_COMMAND_SERR);
3029 err = e1000_test_msi_interrupt(adapter);
3031 /* restore previous setting of command word */
3032 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3038 /* EIO means MSI test failed */
3042 /* back to INTx mode */
3043 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3045 e1000_free_irq(adapter);
3047 err = e1000_request_irq(adapter);
3053 * e1000_open - Called when a network interface is made active
3054 * @netdev: network interface device structure
3056 * Returns 0 on success, negative value on failure
3058 * The open entry point is called when a network interface is made
3059 * active by the system (IFF_UP). At this point all resources needed
3060 * for transmit and receive operations are allocated, the interrupt
3061 * handler is registered with the OS, the watchdog timer is started,
3062 * and the stack is notified that the interface is ready.
3064 static int e1000_open(struct net_device *netdev)
3066 struct e1000_adapter *adapter = netdev_priv(netdev);
3067 struct e1000_hw *hw = &adapter->hw;
3070 /* disallow open during test */
3071 if (test_bit(__E1000_TESTING, &adapter->state))
3074 /* allocate transmit descriptors */
3075 err = e1000e_setup_tx_resources(adapter);
3079 /* allocate receive descriptors */
3080 err = e1000e_setup_rx_resources(adapter);
3084 e1000e_power_up_phy(adapter);
3086 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3087 if ((adapter->hw.mng_cookie.status &
3088 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3089 e1000_update_mng_vlan(adapter);
3092 * If AMT is enabled, let the firmware know that the network
3093 * interface is now open
3095 if (adapter->flags & FLAG_HAS_AMT)
3096 e1000_get_hw_control(adapter);
3099 * before we allocate an interrupt, we must be ready to handle it.
3100 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3101 * as soon as we call pci_request_irq, so we have to setup our
3102 * clean_rx handler before we do so.
3104 e1000_configure(adapter);
3106 err = e1000_request_irq(adapter);
3111 * Work around PCIe errata with MSI interrupts causing some chipsets to
3112 * ignore e1000e MSI messages, which means we need to test our MSI
3115 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3116 err = e1000_test_msi(adapter);
3118 e_err("Interrupt allocation failed\n");
3123 /* From here on the code is the same as e1000e_up() */
3124 clear_bit(__E1000_DOWN, &adapter->state);
3126 napi_enable(&adapter->napi);
3128 e1000_irq_enable(adapter);
3130 netif_tx_start_all_queues(netdev);
3132 /* fire a link status change interrupt to start the watchdog */
3133 ew32(ICS, E1000_ICS_LSC);
3138 e1000_release_hw_control(adapter);
3139 e1000_power_down_phy(adapter);
3140 e1000e_free_rx_resources(adapter);
3142 e1000e_free_tx_resources(adapter);
3144 e1000e_reset(adapter);
3150 * e1000_close - Disables a network interface
3151 * @netdev: network interface device structure
3153 * Returns 0, this is not allowed to fail
3155 * The close entry point is called when an interface is de-activated
3156 * by the OS. The hardware is still under the drivers control, but
3157 * needs to be disabled. A global MAC reset is issued to stop the
3158 * hardware, and all transmit and receive resources are freed.
3160 static int e1000_close(struct net_device *netdev)
3162 struct e1000_adapter *adapter = netdev_priv(netdev);
3164 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3165 e1000e_down(adapter);
3166 e1000_power_down_phy(adapter);
3167 e1000_free_irq(adapter);
3169 e1000e_free_tx_resources(adapter);
3170 e1000e_free_rx_resources(adapter);
3173 * kill manageability vlan ID if supported, but not if a vlan with
3174 * the same ID is registered on the host OS (let 8021q kill it)
3176 if ((adapter->hw.mng_cookie.status &
3177 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3179 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3180 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3183 * If AMT is enabled, let the firmware know that the network
3184 * interface is now closed
3186 if (adapter->flags & FLAG_HAS_AMT)
3187 e1000_release_hw_control(adapter);
3192 * e1000_set_mac - Change the Ethernet Address of the NIC
3193 * @netdev: network interface device structure
3194 * @p: pointer to an address structure
3196 * Returns 0 on success, negative on failure
3198 static int e1000_set_mac(struct net_device *netdev, void *p)
3200 struct e1000_adapter *adapter = netdev_priv(netdev);
3201 struct sockaddr *addr = p;
3203 if (!is_valid_ether_addr(addr->sa_data))
3204 return -EADDRNOTAVAIL;
3206 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3207 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3209 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3211 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3212 /* activate the work around */
3213 e1000e_set_laa_state_82571(&adapter->hw, 1);
3216 * Hold a copy of the LAA in RAR[14] This is done so that
3217 * between the time RAR[0] gets clobbered and the time it
3218 * gets fixed (in e1000_watchdog), the actual LAA is in one
3219 * of the RARs and no incoming packets directed to this port
3220 * are dropped. Eventually the LAA will be in RAR[0] and
3223 e1000e_rar_set(&adapter->hw,
3224 adapter->hw.mac.addr,
3225 adapter->hw.mac.rar_entry_count - 1);
3232 * e1000e_update_phy_task - work thread to update phy
3233 * @work: pointer to our work struct
3235 * this worker thread exists because we must acquire a
3236 * semaphore to read the phy, which we could msleep while
3237 * waiting for it, and we can't msleep in a timer.
3239 static void e1000e_update_phy_task(struct work_struct *work)
3241 struct e1000_adapter *adapter = container_of(work,
3242 struct e1000_adapter, update_phy_task);
3243 e1000_get_phy_info(&adapter->hw);
3247 * Need to wait a few seconds after link up to get diagnostic information from
3250 static void e1000_update_phy_info(unsigned long data)
3252 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3253 schedule_work(&adapter->update_phy_task);
3257 * e1000e_update_stats - Update the board statistics counters
3258 * @adapter: board private structure
3260 void e1000e_update_stats(struct e1000_adapter *adapter)
3262 struct e1000_hw *hw = &adapter->hw;
3263 struct pci_dev *pdev = adapter->pdev;
3266 * Prevent stats update while adapter is being reset, or if the pci
3267 * connection is down.
3269 if (adapter->link_speed == 0)
3271 if (pci_channel_offline(pdev))
3274 adapter->stats.crcerrs += er32(CRCERRS);
3275 adapter->stats.gprc += er32(GPRC);
3276 adapter->stats.gorc += er32(GORCL);
3277 er32(GORCH); /* Clear gorc */
3278 adapter->stats.bprc += er32(BPRC);
3279 adapter->stats.mprc += er32(MPRC);
3280 adapter->stats.roc += er32(ROC);
3282 adapter->stats.mpc += er32(MPC);
3283 adapter->stats.scc += er32(SCC);
3284 adapter->stats.ecol += er32(ECOL);
3285 adapter->stats.mcc += er32(MCC);
3286 adapter->stats.latecol += er32(LATECOL);
3287 adapter->stats.dc += er32(DC);
3288 adapter->stats.xonrxc += er32(XONRXC);
3289 adapter->stats.xontxc += er32(XONTXC);
3290 adapter->stats.xoffrxc += er32(XOFFRXC);
3291 adapter->stats.xofftxc += er32(XOFFTXC);
3292 adapter->stats.gptc += er32(GPTC);
3293 adapter->stats.gotc += er32(GOTCL);
3294 er32(GOTCH); /* Clear gotc */
3295 adapter->stats.rnbc += er32(RNBC);
3296 adapter->stats.ruc += er32(RUC);
3298 adapter->stats.mptc += er32(MPTC);
3299 adapter->stats.bptc += er32(BPTC);
3301 /* used for adaptive IFS */
3303 hw->mac.tx_packet_delta = er32(TPT);
3304 adapter->stats.tpt += hw->mac.tx_packet_delta;
3305 hw->mac.collision_delta = er32(COLC);
3306 adapter->stats.colc += hw->mac.collision_delta;
3308 adapter->stats.algnerrc += er32(ALGNERRC);
3309 adapter->stats.rxerrc += er32(RXERRC);
3310 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3311 adapter->stats.tncrs += er32(TNCRS);
3312 adapter->stats.cexterr += er32(CEXTERR);
3313 adapter->stats.tsctc += er32(TSCTC);
3314 adapter->stats.tsctfc += er32(TSCTFC);
3316 /* Fill out the OS statistics structure */
3317 adapter->net_stats.multicast = adapter->stats.mprc;
3318 adapter->net_stats.collisions = adapter->stats.colc;
3323 * RLEC on some newer hardware can be incorrect so build
3324 * our own version based on RUC and ROC
3326 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3327 adapter->stats.crcerrs + adapter->stats.algnerrc +
3328 adapter->stats.ruc + adapter->stats.roc +
3329 adapter->stats.cexterr;
3330 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3332 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3333 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3334 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3337 adapter->net_stats.tx_errors = adapter->stats.ecol +
3338 adapter->stats.latecol;
3339 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3340 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3341 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3343 /* Tx Dropped needs to be maintained elsewhere */
3345 /* Management Stats */
3346 adapter->stats.mgptc += er32(MGTPTC);
3347 adapter->stats.mgprc += er32(MGTPRC);
3348 adapter->stats.mgpdc += er32(MGTPDC);
3352 * e1000_phy_read_status - Update the PHY register status snapshot
3353 * @adapter: board private structure
3355 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3357 struct e1000_hw *hw = &adapter->hw;
3358 struct e1000_phy_regs *phy = &adapter->phy_regs;
3361 if ((er32(STATUS) & E1000_STATUS_LU) &&
3362 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3363 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3364 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3365 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3366 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3367 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3368 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3369 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3370 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3372 e_warn("Error reading PHY register\n");
3375 * Do not read PHY registers if link is not up
3376 * Set values to typical power-on defaults
3378 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3379 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3380 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3382 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3383 ADVERTISE_ALL | ADVERTISE_CSMA);
3385 phy->expansion = EXPANSION_ENABLENPAGE;
3386 phy->ctrl1000 = ADVERTISE_1000FULL;
3388 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3392 static void e1000_print_link_info(struct e1000_adapter *adapter)
3394 struct e1000_hw *hw = &adapter->hw;
3395 u32 ctrl = er32(CTRL);
3397 /* Link status message must follow this format for user tools */
3398 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3399 "Flow Control: %s\n",
3400 adapter->netdev->name,
3401 adapter->link_speed,
3402 (adapter->link_duplex == FULL_DUPLEX) ?
3403 "Full Duplex" : "Half Duplex",
3404 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3406 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3407 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3410 bool e1000_has_link(struct e1000_adapter *adapter)
3412 struct e1000_hw *hw = &adapter->hw;
3413 bool link_active = 0;
3417 * get_link_status is set on LSC (link status) interrupt or
3418 * Rx sequence error interrupt. get_link_status will stay
3419 * false until the check_for_link establishes link
3420 * for copper adapters ONLY
3422 switch (hw->phy.media_type) {
3423 case e1000_media_type_copper:
3424 if (hw->mac.get_link_status) {
3425 ret_val = hw->mac.ops.check_for_link(hw);
3426 link_active = !hw->mac.get_link_status;
3431 case e1000_media_type_fiber:
3432 ret_val = hw->mac.ops.check_for_link(hw);
3433 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3435 case e1000_media_type_internal_serdes:
3436 ret_val = hw->mac.ops.check_for_link(hw);
3437 link_active = adapter->hw.mac.serdes_has_link;
3440 case e1000_media_type_unknown:
3444 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3445 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3446 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3447 e_info("Gigabit has been disabled, downgrading speed\n");
3453 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3455 /* make sure the receive unit is started */
3456 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3457 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3458 struct e1000_hw *hw = &adapter->hw;
3459 u32 rctl = er32(RCTL);
3460 ew32(RCTL, rctl | E1000_RCTL_EN);
3461 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3466 * e1000_watchdog - Timer Call-back
3467 * @data: pointer to adapter cast into an unsigned long
3469 static void e1000_watchdog(unsigned long data)
3471 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3473 /* Do the rest outside of interrupt context */
3474 schedule_work(&adapter->watchdog_task);
3476 /* TODO: make this use queue_delayed_work() */
3479 static void e1000_watchdog_task(struct work_struct *work)
3481 struct e1000_adapter *adapter = container_of(work,
3482 struct e1000_adapter, watchdog_task);
3483 struct net_device *netdev = adapter->netdev;
3484 struct e1000_mac_info *mac = &adapter->hw.mac;
3485 struct e1000_phy_info *phy = &adapter->hw.phy;
3486 struct e1000_ring *tx_ring = adapter->tx_ring;
3487 struct e1000_hw *hw = &adapter->hw;
3491 link = e1000_has_link(adapter);
3492 if ((netif_carrier_ok(netdev)) && link) {
3493 e1000e_enable_receives(adapter);
3497 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3498 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3499 e1000_update_mng_vlan(adapter);
3502 if (!netif_carrier_ok(netdev)) {
3504 /* update snapshot of PHY registers on LSC */
3505 e1000_phy_read_status(adapter);
3506 mac->ops.get_link_up_info(&adapter->hw,
3507 &adapter->link_speed,
3508 &adapter->link_duplex);
3509 e1000_print_link_info(adapter);
3511 * On supported PHYs, check for duplex mismatch only
3512 * if link has autonegotiated at 10/100 half
3514 if ((hw->phy.type == e1000_phy_igp_3 ||
3515 hw->phy.type == e1000_phy_bm) &&
3516 (hw->mac.autoneg == true) &&
3517 (adapter->link_speed == SPEED_10 ||
3518 adapter->link_speed == SPEED_100) &&
3519 (adapter->link_duplex == HALF_DUPLEX)) {
3522 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3524 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3525 e_info("Autonegotiated half duplex but"
3526 " link partner cannot autoneg. "
3527 " Try forcing full duplex if "
3528 "link gets many collisions.\n");
3532 * tweak tx_queue_len according to speed/duplex
3533 * and adjust the timeout factor
3535 netdev->tx_queue_len = adapter->tx_queue_len;
3536 adapter->tx_timeout_factor = 1;
3537 switch (adapter->link_speed) {
3540 netdev->tx_queue_len = 10;
3541 adapter->tx_timeout_factor = 16;
3545 netdev->tx_queue_len = 100;
3546 /* maybe add some timeout factor ? */
3551 * workaround: re-program speed mode bit after
3554 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3557 tarc0 = er32(TARC(0));
3558 tarc0 &= ~SPEED_MODE_BIT;
3559 ew32(TARC(0), tarc0);
3563 * disable TSO for pcie and 10/100 speeds, to avoid
3564 * some hardware issues
3566 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3567 switch (adapter->link_speed) {
3570 e_info("10/100 speed: disabling TSO\n");
3571 netdev->features &= ~NETIF_F_TSO;
3572 netdev->features &= ~NETIF_F_TSO6;
3575 netdev->features |= NETIF_F_TSO;
3576 netdev->features |= NETIF_F_TSO6;
3585 * enable transmits in the hardware, need to do this
3586 * after setting TARC(0)
3589 tctl |= E1000_TCTL_EN;
3593 * Perform any post-link-up configuration before
3594 * reporting link up.
3596 if (phy->ops.cfg_on_link_up)
3597 phy->ops.cfg_on_link_up(hw);
3599 netif_carrier_on(netdev);
3600 netif_tx_wake_all_queues(netdev);
3602 if (!test_bit(__E1000_DOWN, &adapter->state))
3603 mod_timer(&adapter->phy_info_timer,
3604 round_jiffies(jiffies + 2 * HZ));
3607 if (netif_carrier_ok(netdev)) {
3608 adapter->link_speed = 0;
3609 adapter->link_duplex = 0;
3610 /* Link status message must follow this format */
3611 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3612 adapter->netdev->name);
3613 netif_carrier_off(netdev);
3614 netif_tx_stop_all_queues(netdev);
3615 if (!test_bit(__E1000_DOWN, &adapter->state))
3616 mod_timer(&adapter->phy_info_timer,
3617 round_jiffies(jiffies + 2 * HZ));
3619 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3620 schedule_work(&adapter->reset_task);
3625 e1000e_update_stats(adapter);
3627 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3628 adapter->tpt_old = adapter->stats.tpt;
3629 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3630 adapter->colc_old = adapter->stats.colc;
3632 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3633 adapter->gorc_old = adapter->stats.gorc;
3634 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3635 adapter->gotc_old = adapter->stats.gotc;
3637 e1000e_update_adaptive(&adapter->hw);
3639 if (!netif_carrier_ok(netdev)) {
3640 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3644 * We've lost link, so the controller stops DMA,
3645 * but we've got queued Tx work that's never going
3646 * to get done, so reset controller to flush Tx.
3647 * (Do the reset outside of interrupt context).
3649 adapter->tx_timeout_count++;
3650 schedule_work(&adapter->reset_task);
3654 /* Cause software interrupt to ensure Rx ring is cleaned */
3655 if (adapter->msix_entries)
3656 ew32(ICS, adapter->rx_ring->ims_val);
3658 ew32(ICS, E1000_ICS_RXDMT0);
3660 /* Force detection of hung controller every watchdog period */
3661 adapter->detect_tx_hung = 1;
3664 * With 82571 controllers, LAA may be overwritten due to controller
3665 * reset from the other port. Set the appropriate LAA in RAR[0]
3667 if (e1000e_get_laa_state_82571(hw))
3668 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3670 /* Reset the timer */
3671 if (!test_bit(__E1000_DOWN, &adapter->state))
3672 mod_timer(&adapter->watchdog_timer,
3673 round_jiffies(jiffies + 2 * HZ));
3676 #define E1000_TX_FLAGS_CSUM 0x00000001
3677 #define E1000_TX_FLAGS_VLAN 0x00000002
3678 #define E1000_TX_FLAGS_TSO 0x00000004
3679 #define E1000_TX_FLAGS_IPV4 0x00000008
3680 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3681 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3683 static int e1000_tso(struct e1000_adapter *adapter,
3684 struct sk_buff *skb)
3686 struct e1000_ring *tx_ring = adapter->tx_ring;
3687 struct e1000_context_desc *context_desc;
3688 struct e1000_buffer *buffer_info;
3691 u16 ipcse = 0, tucse, mss;
3692 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3695 if (skb_is_gso(skb)) {
3696 if (skb_header_cloned(skb)) {
3697 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3702 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3703 mss = skb_shinfo(skb)->gso_size;
3704 if (skb->protocol == htons(ETH_P_IP)) {
3705 struct iphdr *iph = ip_hdr(skb);
3708 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3712 cmd_length = E1000_TXD_CMD_IP;
3713 ipcse = skb_transport_offset(skb) - 1;
3714 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3715 ipv6_hdr(skb)->payload_len = 0;
3716 tcp_hdr(skb)->check =
3717 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3718 &ipv6_hdr(skb)->daddr,
3722 ipcss = skb_network_offset(skb);
3723 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3724 tucss = skb_transport_offset(skb);
3725 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3728 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3729 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3731 i = tx_ring->next_to_use;
3732 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3733 buffer_info = &tx_ring->buffer_info[i];
3735 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3736 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3737 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3738 context_desc->upper_setup.tcp_fields.tucss = tucss;
3739 context_desc->upper_setup.tcp_fields.tucso = tucso;
3740 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3741 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3742 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3743 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3745 buffer_info->time_stamp = jiffies;
3746 buffer_info->next_to_watch = i;
3749 if (i == tx_ring->count)
3751 tx_ring->next_to_use = i;
3759 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3761 struct e1000_ring *tx_ring = adapter->tx_ring;
3762 struct e1000_context_desc *context_desc;
3763 struct e1000_buffer *buffer_info;
3766 u32 cmd_len = E1000_TXD_CMD_DEXT;
3769 if (skb->ip_summed != CHECKSUM_PARTIAL)
3772 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3773 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3775 protocol = skb->protocol;
3778 case cpu_to_be16(ETH_P_IP):
3779 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3780 cmd_len |= E1000_TXD_CMD_TCP;
3782 case cpu_to_be16(ETH_P_IPV6):
3783 /* XXX not handling all IPV6 headers */
3784 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3785 cmd_len |= E1000_TXD_CMD_TCP;
3788 if (unlikely(net_ratelimit()))
3789 e_warn("checksum_partial proto=%x!\n",
3790 be16_to_cpu(protocol));
3794 css = skb_transport_offset(skb);
3796 i = tx_ring->next_to_use;
3797 buffer_info = &tx_ring->buffer_info[i];
3798 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3800 context_desc->lower_setup.ip_config = 0;
3801 context_desc->upper_setup.tcp_fields.tucss = css;
3802 context_desc->upper_setup.tcp_fields.tucso =
3803 css + skb->csum_offset;
3804 context_desc->upper_setup.tcp_fields.tucse = 0;
3805 context_desc->tcp_seg_setup.data = 0;
3806 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3808 buffer_info->time_stamp = jiffies;
3809 buffer_info->next_to_watch = i;
3812 if (i == tx_ring->count)
3814 tx_ring->next_to_use = i;
3819 #define E1000_MAX_PER_TXD 8192
3820 #define E1000_MAX_TXD_PWR 12
3822 static int e1000_tx_map(struct e1000_adapter *adapter,
3823 struct sk_buff *skb, unsigned int first,
3824 unsigned int max_per_txd, unsigned int nr_frags,
3827 struct e1000_ring *tx_ring = adapter->tx_ring;
3828 struct e1000_buffer *buffer_info;
3829 unsigned int len = skb_headlen(skb);
3830 unsigned int offset, size, count = 0, i;
3834 i = tx_ring->next_to_use;
3836 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3837 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3838 adapter->tx_dma_failed++;
3842 map = skb_shinfo(skb)->dma_maps;
3846 buffer_info = &tx_ring->buffer_info[i];
3847 size = min(len, max_per_txd);
3849 buffer_info->length = size;
3850 buffer_info->time_stamp = jiffies;
3851 buffer_info->next_to_watch = i;
3852 buffer_info->dma = map[0] + offset;
3860 if (i == tx_ring->count)
3865 for (f = 0; f < nr_frags; f++) {
3866 struct skb_frag_struct *frag;
3868 frag = &skb_shinfo(skb)->frags[f];
3874 if (i == tx_ring->count)
3877 buffer_info = &tx_ring->buffer_info[i];
3878 size = min(len, max_per_txd);
3880 buffer_info->length = size;
3881 buffer_info->time_stamp = jiffies;
3882 buffer_info->next_to_watch = i;
3883 buffer_info->dma = map[f + 1] + offset;
3891 tx_ring->buffer_info[i].skb = skb;
3892 tx_ring->buffer_info[first].next_to_watch = i;
3897 static void e1000_tx_queue(struct e1000_adapter *adapter,
3898 int tx_flags, int count)
3900 struct e1000_ring *tx_ring = adapter->tx_ring;
3901 struct e1000_tx_desc *tx_desc = NULL;
3902 struct e1000_buffer *buffer_info;
3903 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3906 if (tx_flags & E1000_TX_FLAGS_TSO) {
3907 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3909 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3911 if (tx_flags & E1000_TX_FLAGS_IPV4)
3912 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3915 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3916 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3917 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3920 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3921 txd_lower |= E1000_TXD_CMD_VLE;
3922 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3925 i = tx_ring->next_to_use;
3928 buffer_info = &tx_ring->buffer_info[i];
3929 tx_desc = E1000_TX_DESC(*tx_ring, i);
3930 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3931 tx_desc->lower.data =
3932 cpu_to_le32(txd_lower | buffer_info->length);
3933 tx_desc->upper.data = cpu_to_le32(txd_upper);
3936 if (i == tx_ring->count)
3940 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3943 * Force memory writes to complete before letting h/w
3944 * know there are new descriptors to fetch. (Only
3945 * applicable for weak-ordered memory model archs,
3950 tx_ring->next_to_use = i;
3951 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3953 * we need this if more than one processor can write to our tail
3954 * at a time, it synchronizes IO on IA64/Altix systems
3959 #define MINIMUM_DHCP_PACKET_SIZE 282
3960 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3961 struct sk_buff *skb)
3963 struct e1000_hw *hw = &adapter->hw;
3966 if (vlan_tx_tag_present(skb)) {
3967 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3968 && (adapter->hw.mng_cookie.status &
3969 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3973 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3976 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3980 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3983 if (ip->protocol != IPPROTO_UDP)
3986 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3987 if (ntohs(udp->dest) != 67)
3990 offset = (u8 *)udp + 8 - skb->data;
3991 length = skb->len - offset;
3992 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3998 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4000 struct e1000_adapter *adapter = netdev_priv(netdev);
4002 netif_stop_queue(netdev);
4004 * Herbert's original patch had:
4005 * smp_mb__after_netif_stop_queue();
4006 * but since that doesn't exist yet, just open code it.
4011 * We need to check again in a case another CPU has just
4012 * made room available.
4014 if (e1000_desc_unused(adapter->tx_ring) < size)
4018 netif_start_queue(netdev);
4019 ++adapter->restart_queue;
4023 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4025 struct e1000_adapter *adapter = netdev_priv(netdev);
4027 if (e1000_desc_unused(adapter->tx_ring) >= size)
4029 return __e1000_maybe_stop_tx(netdev, size);
4032 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4033 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4035 struct e1000_adapter *adapter = netdev_priv(netdev);
4036 struct e1000_ring *tx_ring = adapter->tx_ring;
4038 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4039 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4040 unsigned int tx_flags = 0;
4041 unsigned int len = skb->len - skb->data_len;
4042 unsigned int nr_frags;
4048 if (test_bit(__E1000_DOWN, &adapter->state)) {
4049 dev_kfree_skb_any(skb);
4050 return NETDEV_TX_OK;
4053 if (skb->len <= 0) {
4054 dev_kfree_skb_any(skb);
4055 return NETDEV_TX_OK;
4058 mss = skb_shinfo(skb)->gso_size;
4060 * The controller does a simple calculation to
4061 * make sure there is enough room in the FIFO before
4062 * initiating the DMA for each buffer. The calc is:
4063 * 4 = ceil(buffer len/mss). To make sure we don't
4064 * overrun the FIFO, adjust the max buffer len if mss
4069 max_per_txd = min(mss << 2, max_per_txd);
4070 max_txd_pwr = fls(max_per_txd) - 1;
4073 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4074 * points to just header, pull a few bytes of payload from
4075 * frags into skb->data
4077 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4079 * we do this workaround for ES2LAN, but it is un-necessary,
4080 * avoiding it could save a lot of cycles
4082 if (skb->data_len && (hdr_len == len)) {
4083 unsigned int pull_size;
4085 pull_size = min((unsigned int)4, skb->data_len);
4086 if (!__pskb_pull_tail(skb, pull_size)) {
4087 e_err("__pskb_pull_tail failed.\n");
4088 dev_kfree_skb_any(skb);
4089 return NETDEV_TX_OK;
4091 len = skb->len - skb->data_len;
4095 /* reserve a descriptor for the offload context */
4096 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4100 count += TXD_USE_COUNT(len, max_txd_pwr);
4102 nr_frags = skb_shinfo(skb)->nr_frags;
4103 for (f = 0; f < nr_frags; f++)
4104 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4107 if (adapter->hw.mac.tx_pkt_filtering)
4108 e1000_transfer_dhcp_info(adapter, skb);
4111 * need: count + 2 desc gap to keep tail from touching
4112 * head, otherwise try next time
4114 if (e1000_maybe_stop_tx(netdev, count + 2))
4115 return NETDEV_TX_BUSY;
4117 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4118 tx_flags |= E1000_TX_FLAGS_VLAN;
4119 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4122 first = tx_ring->next_to_use;
4124 tso = e1000_tso(adapter, skb);
4126 dev_kfree_skb_any(skb);
4127 return NETDEV_TX_OK;
4131 tx_flags |= E1000_TX_FLAGS_TSO;
4132 else if (e1000_tx_csum(adapter, skb))
4133 tx_flags |= E1000_TX_FLAGS_CSUM;
4136 * Old method was to assume IPv4 packet by default if TSO was enabled.
4137 * 82571 hardware supports TSO capabilities for IPv6 as well...
4138 * no longer assume, we must.
4140 if (skb->protocol == htons(ETH_P_IP))
4141 tx_flags |= E1000_TX_FLAGS_IPV4;
4143 /* if count is 0 then mapping error has occured */
4144 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4146 e1000_tx_queue(adapter, tx_flags, count);
4147 netdev->trans_start = jiffies;
4148 /* Make sure there is space in the ring for the next send. */
4149 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4152 dev_kfree_skb_any(skb);
4153 tx_ring->buffer_info[first].time_stamp = 0;
4154 tx_ring->next_to_use = first;
4157 return NETDEV_TX_OK;
4161 * e1000_tx_timeout - Respond to a Tx Hang
4162 * @netdev: network interface device structure
4164 static void e1000_tx_timeout(struct net_device *netdev)
4166 struct e1000_adapter *adapter = netdev_priv(netdev);
4168 /* Do the reset outside of interrupt context */
4169 adapter->tx_timeout_count++;
4170 schedule_work(&adapter->reset_task);
4173 static void e1000_reset_task(struct work_struct *work)
4175 struct e1000_adapter *adapter;
4176 adapter = container_of(work, struct e1000_adapter, reset_task);
4178 e1000e_reinit_locked(adapter);
4182 * e1000_get_stats - Get System Network Statistics
4183 * @netdev: network interface device structure
4185 * Returns the address of the device statistics structure.
4186 * The statistics are actually updated from the timer callback.
4188 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4190 struct e1000_adapter *adapter = netdev_priv(netdev);
4192 /* only return the current stats */
4193 return &adapter->net_stats;
4197 * e1000_change_mtu - Change the Maximum Transfer Unit
4198 * @netdev: network interface device structure
4199 * @new_mtu: new value for maximum frame size
4201 * Returns 0 on success, negative on failure
4203 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4205 struct e1000_adapter *adapter = netdev_priv(netdev);
4206 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4208 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4209 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4210 e_err("Invalid MTU setting\n");
4214 /* Jumbo frame size limits */
4215 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4216 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4217 e_err("Jumbo Frames not supported.\n");
4220 if (adapter->hw.phy.type == e1000_phy_ife) {
4221 e_err("Jumbo Frames not supported.\n");
4226 #define MAX_STD_JUMBO_FRAME_SIZE 9234
4227 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4228 e_err("MTU > 9216 not supported.\n");
4232 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4234 /* e1000e_down has a dependency on max_frame_size */
4235 adapter->max_frame_size = max_frame;
4236 if (netif_running(netdev))
4237 e1000e_down(adapter);
4240 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4241 * means we reserve 2 more, this pushes us to allocate from the next
4243 * i.e. RXBUFFER_2048 --> size-4096 slab
4244 * However with the new *_jumbo_rx* routines, jumbo receives will use
4248 if (max_frame <= 256)
4249 adapter->rx_buffer_len = 256;
4250 else if (max_frame <= 512)
4251 adapter->rx_buffer_len = 512;
4252 else if (max_frame <= 1024)
4253 adapter->rx_buffer_len = 1024;
4254 else if (max_frame <= 2048)
4255 adapter->rx_buffer_len = 2048;
4257 adapter->rx_buffer_len = 4096;
4259 /* adjust allocation if LPE protects us, and we aren't using SBP */
4260 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4261 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4262 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4265 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4266 netdev->mtu = new_mtu;
4268 if (netif_running(netdev))
4271 e1000e_reset(adapter);
4273 clear_bit(__E1000_RESETTING, &adapter->state);
4278 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4281 struct e1000_adapter *adapter = netdev_priv(netdev);
4282 struct mii_ioctl_data *data = if_mii(ifr);
4284 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4289 data->phy_id = adapter->hw.phy.addr;
4292 if (!capable(CAP_NET_ADMIN))
4294 switch (data->reg_num & 0x1F) {
4296 data->val_out = adapter->phy_regs.bmcr;
4299 data->val_out = adapter->phy_regs.bmsr;
4302 data->val_out = (adapter->hw.phy.id >> 16);
4305 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4308 data->val_out = adapter->phy_regs.advertise;
4311 data->val_out = adapter->phy_regs.lpa;
4314 data->val_out = adapter->phy_regs.expansion;
4317 data->val_out = adapter->phy_regs.ctrl1000;
4320 data->val_out = adapter->phy_regs.stat1000;
4323 data->val_out = adapter->phy_regs.estatus;
4336 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4342 return e1000_mii_ioctl(netdev, ifr, cmd);
4348 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4350 struct net_device *netdev = pci_get_drvdata(pdev);
4351 struct e1000_adapter *adapter = netdev_priv(netdev);
4352 struct e1000_hw *hw = &adapter->hw;
4353 u32 ctrl, ctrl_ext, rctl, status;
4354 u32 wufc = adapter->wol;
4357 netif_device_detach(netdev);
4359 if (netif_running(netdev)) {
4360 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4361 e1000e_down(adapter);
4362 e1000_free_irq(adapter);
4364 e1000e_reset_interrupt_capability(adapter);
4366 retval = pci_save_state(pdev);
4370 status = er32(STATUS);
4371 if (status & E1000_STATUS_LU)
4372 wufc &= ~E1000_WUFC_LNKC;
4375 e1000_setup_rctl(adapter);
4376 e1000_set_multi(netdev);
4378 /* turn on all-multi mode if wake on multicast is enabled */
4379 if (wufc & E1000_WUFC_MC) {
4381 rctl |= E1000_RCTL_MPE;
4386 /* advertise wake from D3Cold */
4387 #define E1000_CTRL_ADVD3WUC 0x00100000
4388 /* phy power management enable */
4389 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4390 ctrl |= E1000_CTRL_ADVD3WUC |
4391 E1000_CTRL_EN_PHY_PWR_MGMT;
4394 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4395 adapter->hw.phy.media_type ==
4396 e1000_media_type_internal_serdes) {
4397 /* keep the laser running in D3 */
4398 ctrl_ext = er32(CTRL_EXT);
4399 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4400 ew32(CTRL_EXT, ctrl_ext);
4403 if (adapter->flags & FLAG_IS_ICH)
4404 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4406 /* Allow time for pending master requests to run */
4407 e1000e_disable_pcie_master(&adapter->hw);
4409 ew32(WUC, E1000_WUC_PME_EN);
4411 pci_enable_wake(pdev, PCI_D3hot, 1);
4412 pci_enable_wake(pdev, PCI_D3cold, 1);
4416 pci_enable_wake(pdev, PCI_D3hot, 0);
4417 pci_enable_wake(pdev, PCI_D3cold, 0);
4420 /* make sure adapter isn't asleep if manageability is enabled */
4421 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4422 pci_enable_wake(pdev, PCI_D3hot, 1);
4423 pci_enable_wake(pdev, PCI_D3cold, 1);
4426 if (adapter->hw.phy.type == e1000_phy_igp_3)
4427 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4430 * Release control of h/w to f/w. If f/w is AMT enabled, this
4431 * would have already happened in close and is redundant.
4433 e1000_release_hw_control(adapter);
4435 pci_disable_device(pdev);
4438 * The pci-e switch on some quad port adapters will report a
4439 * correctable error when the MAC transitions from D0 to D3. To
4440 * prevent this we need to mask off the correctable errors on the
4441 * downstream port of the pci-e switch.
4443 if (adapter->flags & FLAG_IS_QUAD_PORT) {
4444 struct pci_dev *us_dev = pdev->bus->self;
4445 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4448 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4449 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4450 (devctl & ~PCI_EXP_DEVCTL_CERE));
4452 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4454 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4456 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4462 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4468 * 82573 workaround - disable L1 ASPM on mobile chipsets
4470 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4471 * resulting in lost data or garbage information on the pci-e link
4472 * level. This could result in (false) bad EEPROM checksum errors,
4473 * long ping times (up to 2s) or even a system freeze/hang.
4475 * Unfortunately this feature saves about 1W power consumption when
4478 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4479 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4481 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4483 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4488 static int e1000_resume(struct pci_dev *pdev)
4490 struct net_device *netdev = pci_get_drvdata(pdev);
4491 struct e1000_adapter *adapter = netdev_priv(netdev);
4492 struct e1000_hw *hw = &adapter->hw;
4495 pci_set_power_state(pdev, PCI_D0);
4496 pci_restore_state(pdev);
4497 e1000e_disable_l1aspm(pdev);
4499 err = pci_enable_device_mem(pdev);
4502 "Cannot enable PCI device from suspend\n");
4506 /* AER (Advanced Error Reporting) hooks */
4507 err = pci_enable_pcie_error_reporting(pdev);
4509 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
4511 /* non-fatal, continue */
4514 pci_set_master(pdev);
4516 pci_enable_wake(pdev, PCI_D3hot, 0);
4517 pci_enable_wake(pdev, PCI_D3cold, 0);
4519 e1000e_set_interrupt_capability(adapter);
4520 if (netif_running(netdev)) {
4521 err = e1000_request_irq(adapter);
4526 e1000e_power_up_phy(adapter);
4527 e1000e_reset(adapter);
4530 e1000_init_manageability(adapter);
4532 if (netif_running(netdev))
4535 netif_device_attach(netdev);
4538 * If the controller has AMT, do not set DRV_LOAD until the interface
4539 * is up. For all other cases, let the f/w know that the h/w is now
4540 * under the control of the driver.
4542 if (!(adapter->flags & FLAG_HAS_AMT))
4543 e1000_get_hw_control(adapter);
4549 static void e1000_shutdown(struct pci_dev *pdev)
4551 e1000_suspend(pdev, PMSG_SUSPEND);
4554 #ifdef CONFIG_NET_POLL_CONTROLLER
4556 * Polling 'interrupt' - used by things like netconsole to send skbs
4557 * without having to re-enable interrupts. It's not called while
4558 * the interrupt routine is executing.
4560 static void e1000_netpoll(struct net_device *netdev)
4562 struct e1000_adapter *adapter = netdev_priv(netdev);
4564 disable_irq(adapter->pdev->irq);
4565 e1000_intr(adapter->pdev->irq, netdev);
4567 enable_irq(adapter->pdev->irq);
4572 * e1000_io_error_detected - called when PCI error is detected
4573 * @pdev: Pointer to PCI device
4574 * @state: The current pci connection state
4576 * This function is called after a PCI bus error affecting
4577 * this device has been detected.
4579 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4580 pci_channel_state_t state)
4582 struct net_device *netdev = pci_get_drvdata(pdev);
4583 struct e1000_adapter *adapter = netdev_priv(netdev);
4585 netif_device_detach(netdev);
4587 if (netif_running(netdev))
4588 e1000e_down(adapter);
4589 pci_disable_device(pdev);
4591 /* Request a slot slot reset. */
4592 return PCI_ERS_RESULT_NEED_RESET;
4596 * e1000_io_slot_reset - called after the pci bus has been reset.
4597 * @pdev: Pointer to PCI device
4599 * Restart the card from scratch, as if from a cold-boot. Implementation
4600 * resembles the first-half of the e1000_resume routine.
4602 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4604 struct net_device *netdev = pci_get_drvdata(pdev);
4605 struct e1000_adapter *adapter = netdev_priv(netdev);
4606 struct e1000_hw *hw = &adapter->hw;
4608 pci_ers_result_t result;
4610 e1000e_disable_l1aspm(pdev);
4611 err = pci_enable_device_mem(pdev);
4614 "Cannot re-enable PCI device after reset.\n");
4615 result = PCI_ERS_RESULT_DISCONNECT;
4617 pci_set_master(pdev);
4618 pci_restore_state(pdev);
4620 pci_enable_wake(pdev, PCI_D3hot, 0);
4621 pci_enable_wake(pdev, PCI_D3cold, 0);
4623 e1000e_reset(adapter);
4625 result = PCI_ERS_RESULT_RECOVERED;
4628 pci_cleanup_aer_uncorrect_error_status(pdev);
4634 * e1000_io_resume - called when traffic can start flowing again.
4635 * @pdev: Pointer to PCI device
4637 * This callback is called when the error recovery driver tells us that
4638 * its OK to resume normal operation. Implementation resembles the
4639 * second-half of the e1000_resume routine.
4641 static void e1000_io_resume(struct pci_dev *pdev)
4643 struct net_device *netdev = pci_get_drvdata(pdev);
4644 struct e1000_adapter *adapter = netdev_priv(netdev);
4646 e1000_init_manageability(adapter);
4648 if (netif_running(netdev)) {
4649 if (e1000e_up(adapter)) {
4651 "can't bring device back up after reset\n");
4656 netif_device_attach(netdev);
4659 * If the controller has AMT, do not set DRV_LOAD until the interface
4660 * is up. For all other cases, let the f/w know that the h/w is now
4661 * under the control of the driver.
4663 if (!(adapter->flags & FLAG_HAS_AMT))
4664 e1000_get_hw_control(adapter);
4668 static void e1000_print_device_info(struct e1000_adapter *adapter)
4670 struct e1000_hw *hw = &adapter->hw;
4671 struct net_device *netdev = adapter->netdev;
4674 /* print bus type/speed/width info */
4675 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4677 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4681 e_info("Intel(R) PRO/%s Network Connection\n",
4682 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4683 e1000e_read_pba_num(hw, &pba_num);
4684 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4685 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4688 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4690 struct e1000_hw *hw = &adapter->hw;
4694 if (hw->mac.type != e1000_82573)
4697 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4698 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4699 /* Deep Smart Power Down (DSPD) */
4700 dev_warn(&adapter->pdev->dev,
4701 "Warning: detected DSPD enabled in EEPROM\n");
4704 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4705 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4707 dev_warn(&adapter->pdev->dev,
4708 "Warning: detected ASPM enabled in EEPROM\n");
4712 static const struct net_device_ops e1000e_netdev_ops = {
4713 .ndo_open = e1000_open,
4714 .ndo_stop = e1000_close,
4715 .ndo_start_xmit = e1000_xmit_frame,
4716 .ndo_get_stats = e1000_get_stats,
4717 .ndo_set_multicast_list = e1000_set_multi,
4718 .ndo_set_mac_address = e1000_set_mac,
4719 .ndo_change_mtu = e1000_change_mtu,
4720 .ndo_do_ioctl = e1000_ioctl,
4721 .ndo_tx_timeout = e1000_tx_timeout,
4722 .ndo_validate_addr = eth_validate_addr,
4724 .ndo_vlan_rx_register = e1000_vlan_rx_register,
4725 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
4726 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
4727 #ifdef CONFIG_NET_POLL_CONTROLLER
4728 .ndo_poll_controller = e1000_netpoll,
4733 * e1000_probe - Device Initialization Routine
4734 * @pdev: PCI device information struct
4735 * @ent: entry in e1000_pci_tbl
4737 * Returns 0 on success, negative on failure
4739 * e1000_probe initializes an adapter identified by a pci_dev structure.
4740 * The OS initialization, configuring of the adapter private structure,
4741 * and a hardware reset occur.
4743 static int __devinit e1000_probe(struct pci_dev *pdev,
4744 const struct pci_device_id *ent)
4746 struct net_device *netdev;
4747 struct e1000_adapter *adapter;
4748 struct e1000_hw *hw;
4749 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4750 resource_size_t mmio_start, mmio_len;
4751 resource_size_t flash_start, flash_len;
4753 static int cards_found;
4754 int i, err, pci_using_dac;
4755 u16 eeprom_data = 0;
4756 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4758 e1000e_disable_l1aspm(pdev);
4760 err = pci_enable_device_mem(pdev);
4765 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4767 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4771 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4773 err = pci_set_consistent_dma_mask(pdev,
4776 dev_err(&pdev->dev, "No usable DMA "
4777 "configuration, aborting\n");
4783 err = pci_request_selected_regions_exclusive(pdev,
4784 pci_select_bars(pdev, IORESOURCE_MEM),
4785 e1000e_driver_name);
4789 pci_set_master(pdev);
4790 /* PCI config space info */
4791 err = pci_save_state(pdev);
4793 goto err_alloc_etherdev;
4796 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4798 goto err_alloc_etherdev;
4800 SET_NETDEV_DEV(netdev, &pdev->dev);
4802 pci_set_drvdata(pdev, netdev);
4803 adapter = netdev_priv(netdev);
4805 adapter->netdev = netdev;
4806 adapter->pdev = pdev;
4808 adapter->pba = ei->pba;
4809 adapter->flags = ei->flags;
4810 adapter->flags2 = ei->flags2;
4811 adapter->hw.adapter = adapter;
4812 adapter->hw.mac.type = ei->mac;
4813 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4815 mmio_start = pci_resource_start(pdev, 0);
4816 mmio_len = pci_resource_len(pdev, 0);
4819 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4820 if (!adapter->hw.hw_addr)
4823 if ((adapter->flags & FLAG_HAS_FLASH) &&
4824 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4825 flash_start = pci_resource_start(pdev, 1);
4826 flash_len = pci_resource_len(pdev, 1);
4827 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4828 if (!adapter->hw.flash_address)
4832 /* construct the net_device struct */
4833 netdev->netdev_ops = &e1000e_netdev_ops;
4834 e1000e_set_ethtool_ops(netdev);
4835 netdev->watchdog_timeo = 5 * HZ;
4836 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4837 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4839 netdev->mem_start = mmio_start;
4840 netdev->mem_end = mmio_start + mmio_len;
4842 adapter->bd_number = cards_found++;
4844 e1000e_check_options(adapter);
4846 /* setup adapter struct */
4847 err = e1000_sw_init(adapter);
4853 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4854 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4855 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4857 err = ei->get_variants(adapter);
4861 if ((adapter->flags & FLAG_IS_ICH) &&
4862 (adapter->flags & FLAG_READ_ONLY_NVM))
4863 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4865 hw->mac.ops.get_bus_info(&adapter->hw);
4867 adapter->hw.phy.autoneg_wait_to_complete = 0;
4869 /* Copper options */
4870 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4871 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4872 adapter->hw.phy.disable_polarity_correction = 0;
4873 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4876 if (e1000_check_reset_block(&adapter->hw))
4877 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4879 netdev->features = NETIF_F_SG |
4881 NETIF_F_HW_VLAN_TX |
4884 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4885 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4887 netdev->features |= NETIF_F_TSO;
4888 netdev->features |= NETIF_F_TSO6;
4890 netdev->vlan_features |= NETIF_F_TSO;
4891 netdev->vlan_features |= NETIF_F_TSO6;
4892 netdev->vlan_features |= NETIF_F_HW_CSUM;
4893 netdev->vlan_features |= NETIF_F_SG;
4896 netdev->features |= NETIF_F_HIGHDMA;
4898 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4899 adapter->flags |= FLAG_MNG_PT_ENABLED;
4902 * before reading the NVM, reset the controller to
4903 * put the device in a known good starting state
4905 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4908 * systems with ASPM and others may see the checksum fail on the first
4909 * attempt. Let's give it a few tries
4912 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4915 e_err("The NVM Checksum Is Not Valid\n");
4921 e1000_eeprom_checks(adapter);
4923 /* copy the MAC address out of the NVM */
4924 if (e1000e_read_mac_addr(&adapter->hw))
4925 e_err("NVM Read Error while reading MAC address\n");
4927 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4928 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4930 if (!is_valid_ether_addr(netdev->perm_addr)) {
4931 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
4936 init_timer(&adapter->watchdog_timer);
4937 adapter->watchdog_timer.function = &e1000_watchdog;
4938 adapter->watchdog_timer.data = (unsigned long) adapter;
4940 init_timer(&adapter->phy_info_timer);
4941 adapter->phy_info_timer.function = &e1000_update_phy_info;
4942 adapter->phy_info_timer.data = (unsigned long) adapter;
4944 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4945 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4946 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4947 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
4949 /* Initialize link parameters. User can change them with ethtool */
4950 adapter->hw.mac.autoneg = 1;
4951 adapter->fc_autoneg = 1;
4952 adapter->hw.fc.requested_mode = e1000_fc_default;
4953 adapter->hw.fc.current_mode = e1000_fc_default;
4954 adapter->hw.phy.autoneg_advertised = 0x2f;
4956 /* ring size defaults */
4957 adapter->rx_ring->count = 256;
4958 adapter->tx_ring->count = 256;
4961 * Initial Wake on LAN setting - If APM wake is enabled in
4962 * the EEPROM, enable the ACPI Magic Packet filter
4964 if (adapter->flags & FLAG_APME_IN_WUC) {
4965 /* APME bit in EEPROM is mapped to WUC.APME */
4966 eeprom_data = er32(WUC);
4967 eeprom_apme_mask = E1000_WUC_APME;
4968 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4969 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4970 (adapter->hw.bus.func == 1))
4971 e1000_read_nvm(&adapter->hw,
4972 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4974 e1000_read_nvm(&adapter->hw,
4975 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4978 /* fetch WoL from EEPROM */
4979 if (eeprom_data & eeprom_apme_mask)
4980 adapter->eeprom_wol |= E1000_WUFC_MAG;
4983 * now that we have the eeprom settings, apply the special cases
4984 * where the eeprom may be wrong or the board simply won't support
4985 * wake on lan on a particular port
4987 if (!(adapter->flags & FLAG_HAS_WOL))
4988 adapter->eeprom_wol = 0;
4990 /* initialize the wol settings based on the eeprom settings */
4991 adapter->wol = adapter->eeprom_wol;
4992 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
4994 /* save off EEPROM version number */
4995 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
4997 /* reset the hardware with the new settings */
4998 e1000e_reset(adapter);
5001 * If the controller has AMT, do not set DRV_LOAD until the interface
5002 * is up. For all other cases, let the f/w know that the h/w is now
5003 * under the control of the driver.
5005 if (!(adapter->flags & FLAG_HAS_AMT))
5006 e1000_get_hw_control(adapter);
5008 /* tell the stack to leave us alone until e1000_open() is called */
5009 netif_carrier_off(netdev);
5010 netif_tx_stop_all_queues(netdev);
5012 strcpy(netdev->name, "eth%d");
5013 err = register_netdev(netdev);
5017 e1000_print_device_info(adapter);
5022 if (!(adapter->flags & FLAG_HAS_AMT))
5023 e1000_release_hw_control(adapter);
5025 if (!e1000_check_reset_block(&adapter->hw))
5026 e1000_phy_hw_reset(&adapter->hw);
5029 kfree(adapter->tx_ring);
5030 kfree(adapter->rx_ring);
5032 if (adapter->hw.flash_address)
5033 iounmap(adapter->hw.flash_address);
5034 e1000e_reset_interrupt_capability(adapter);
5036 iounmap(adapter->hw.hw_addr);
5038 free_netdev(netdev);
5040 pci_release_selected_regions(pdev,
5041 pci_select_bars(pdev, IORESOURCE_MEM));
5044 pci_disable_device(pdev);
5049 * e1000_remove - Device Removal Routine
5050 * @pdev: PCI device information struct
5052 * e1000_remove is called by the PCI subsystem to alert the driver
5053 * that it should release a PCI device. The could be caused by a
5054 * Hot-Plug event, or because the driver is going to be removed from
5057 static void __devexit e1000_remove(struct pci_dev *pdev)
5059 struct net_device *netdev = pci_get_drvdata(pdev);
5060 struct e1000_adapter *adapter = netdev_priv(netdev);
5064 * flush_scheduled work may reschedule our watchdog task, so
5065 * explicitly disable watchdog tasks from being rescheduled
5067 set_bit(__E1000_DOWN, &adapter->state);
5068 del_timer_sync(&adapter->watchdog_timer);
5069 del_timer_sync(&adapter->phy_info_timer);
5071 flush_scheduled_work();
5074 * Release control of h/w to f/w. If f/w is AMT enabled, this
5075 * would have already happened in close and is redundant.
5077 e1000_release_hw_control(adapter);
5079 unregister_netdev(netdev);
5081 if (!e1000_check_reset_block(&adapter->hw))
5082 e1000_phy_hw_reset(&adapter->hw);
5084 e1000e_reset_interrupt_capability(adapter);
5085 kfree(adapter->tx_ring);
5086 kfree(adapter->rx_ring);
5088 iounmap(adapter->hw.hw_addr);
5089 if (adapter->hw.flash_address)
5090 iounmap(adapter->hw.flash_address);
5091 pci_release_selected_regions(pdev,
5092 pci_select_bars(pdev, IORESOURCE_MEM));
5094 free_netdev(netdev);
5097 err = pci_disable_pcie_error_reporting(pdev);
5100 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
5102 pci_disable_device(pdev);
5105 /* PCI Error Recovery (ERS) */
5106 static struct pci_error_handlers e1000_err_handler = {
5107 .error_detected = e1000_io_error_detected,
5108 .slot_reset = e1000_io_slot_reset,
5109 .resume = e1000_io_resume,
5112 static struct pci_device_id e1000_pci_tbl[] = {
5113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5125 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5126 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5128 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5129 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5130 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5132 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5133 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5135 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5136 board_80003es2lan },
5137 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5138 board_80003es2lan },
5139 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5140 board_80003es2lan },
5141 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5142 board_80003es2lan },
5144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5148 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5149 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5156 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5157 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5158 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5159 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5160 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5162 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5163 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5164 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5166 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5167 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5169 { } /* terminate list */
5171 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5173 /* PCI Device API Driver */
5174 static struct pci_driver e1000_driver = {
5175 .name = e1000e_driver_name,
5176 .id_table = e1000_pci_tbl,
5177 .probe = e1000_probe,
5178 .remove = __devexit_p(e1000_remove),
5180 /* Power Management Hooks */
5181 .suspend = e1000_suspend,
5182 .resume = e1000_resume,
5184 .shutdown = e1000_shutdown,
5185 .err_handler = &e1000_err_handler
5189 * e1000_init_module - Driver Registration Routine
5191 * e1000_init_module is the first routine called when the driver is
5192 * loaded. All it does is register with the PCI subsystem.
5194 static int __init e1000_init_module(void)
5197 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5198 e1000e_driver_name, e1000e_driver_version);
5199 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5200 e1000e_driver_name);
5201 ret = pci_register_driver(&e1000_driver);
5202 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5203 PM_QOS_DEFAULT_VALUE);
5207 module_init(e1000_init_module);
5210 * e1000_exit_module - Driver Exit Cleanup Routine
5212 * e1000_exit_module is called just before the driver is removed
5215 static void __exit e1000_exit_module(void)
5217 pci_unregister_driver(&e1000_driver);
5218 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5220 module_exit(e1000_exit_module);
5223 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5224 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5225 MODULE_LICENSE("GPL");
5226 MODULE_VERSION(DRV_VERSION);