2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 #define tty_compat_ioctl NULL
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 * alloc_tty_struct - allocate a tty object
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
167 struct tty_struct *alloc_tty_struct(void)
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
176 * Free the write buffers, tty queue and tty memory itself.
178 * Locking: none. Must be called after tty is definitely unused
181 void free_tty_struct(struct tty_struct *tty)
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
201 char *tty_name(struct tty_struct *tty, char *buf)
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
206 strcpy(buf, tty->name);
210 EXPORT_SYMBOL(tty_name);
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
215 #ifdef TTY_PARANOIA_CHECK
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
222 if (tty->magic != TTY_MAGIC) {
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
234 #ifdef CHECK_TTY_COUNT
239 list_for_each(p, &tty->tty_files) {
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
265 * Locking: caller must hold tty_mutex
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
270 struct tty_driver *p;
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
276 *index = device - base;
277 return tty_driver_kref_get(p);
282 #ifdef CONFIG_CONSOLE_POLL
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
295 struct tty_driver *p, *res = NULL;
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
307 tty_line = simple_strtoul(str, &str, 10);
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
320 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322 res = tty_driver_kref_get(p);
327 mutex_unlock(&tty_mutex);
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
335 * tty_check_change - check for POSIX terminal changes
338 * If we try to write to, or set the state of, a terminal and we're
339 * not in the foreground, send a SIGTTOU. If the signal is blocked or
340 * ignored, go ahead and perform the operation. (POSIX 7.2)
345 int tty_check_change(struct tty_struct *tty)
350 if (current->signal->tty != tty)
353 spin_lock_irqsave(&tty->ctrl_lock, flags);
356 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
359 if (task_pgrp(current) == tty->pgrp)
361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362 if (is_ignored(SIGTTOU))
364 if (is_current_pgrp_orphaned()) {
368 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369 set_thread_flag(TIF_SIGPENDING);
374 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
378 EXPORT_SYMBOL(tty_check_change);
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381 size_t count, loff_t *ppos)
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387 size_t count, loff_t *ppos)
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
395 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
401 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
404 static long hung_up_tty_compat_ioctl(struct file *file,
405 unsigned int cmd, unsigned long arg)
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
410 static const struct file_operations tty_fops = {
415 .unlocked_ioctl = tty_ioctl,
416 .compat_ioctl = tty_compat_ioctl,
418 .release = tty_release,
419 .fasync = tty_fasync,
422 static const struct file_operations console_fops = {
425 .write = redirected_tty_write,
427 .unlocked_ioctl = tty_ioctl,
428 .compat_ioctl = tty_compat_ioctl,
430 .release = tty_release,
431 .fasync = tty_fasync,
434 static const struct file_operations hung_up_tty_fops = {
436 .read = hung_up_tty_read,
437 .write = hung_up_tty_write,
438 .poll = hung_up_tty_poll,
439 .unlocked_ioctl = hung_up_tty_ioctl,
440 .compat_ioctl = hung_up_tty_compat_ioctl,
441 .release = tty_release,
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
448 * tty_wakeup - request more data
451 * Internal and external helper for wakeups of tty. This function
452 * informs the line discipline if present that the driver is ready
453 * to receive more output data.
456 void tty_wakeup(struct tty_struct *tty)
458 struct tty_ldisc *ld;
460 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461 ld = tty_ldisc_ref(tty);
463 if (ld->ops->write_wakeup)
464 ld->ops->write_wakeup(tty);
468 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
471 EXPORT_SYMBOL_GPL(tty_wakeup);
474 * do_tty_hangup - actual handler for hangup events
477 * This can be called by the "eventd" kernel thread. That is process
478 * synchronous but doesn't hold any locks, so we need to make sure we
479 * have the appropriate locks for what we're doing.
481 * The hangup event clears any pending redirections onto the hung up
482 * device. It ensures future writes will error and it does the needed
483 * line discipline hangup and signal delivery. The tty object itself
488 * redirect lock for undoing redirection
489 * file list lock for manipulating list of ttys
490 * tty_ldisc_lock from called functions
491 * termios_mutex resetting termios data
492 * tasklist_lock to walk task list for hangup event
493 * ->siglock to protect ->signal/->sighand
495 static void do_tty_hangup(struct work_struct *work)
497 struct tty_struct *tty =
498 container_of(work, struct tty_struct, hangup_work);
499 struct file *cons_filp = NULL;
500 struct file *filp, *f = NULL;
501 struct task_struct *p;
502 int closecount = 0, n;
509 /* inuse_filps is protected by the single kernel lock */
512 spin_lock(&redirect_lock);
513 if (redirect && redirect->private_data == tty) {
517 spin_unlock(&redirect_lock);
519 check_tty_count(tty, "do_tty_hangup");
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
525 if (filp->f_op->write != tty_write)
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
533 tty_ldisc_hangup(tty);
535 read_lock(&tasklist_lock);
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
559 read_unlock(&tasklist_lock);
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
573 /* Account for the p->signal references we killed */
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
610 void tty_hangup(struct tty_struct *tty)
612 #ifdef TTY_DEBUG_HANGUP
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
616 schedule_work(&tty->hangup_work);
619 EXPORT_SYMBOL(tty_hangup);
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
630 void tty_vhangup(struct tty_struct *tty)
632 #ifdef TTY_DEBUG_HANGUP
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
637 do_tty_hangup(&tty->hangup_work);
640 EXPORT_SYMBOL(tty_vhangup);
643 * tty_vhangup_self - process vhangup for own ctty
645 * Perform a vhangup on the current controlling tty
648 void tty_vhangup_self(void)
650 struct tty_struct *tty;
652 tty = get_current_tty();
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
663 * Return true if the tty has been subject to a vhangup or a carrier
667 int tty_hung_up_p(struct file *filp)
669 return (filp->f_op == &hung_up_tty_fops);
672 EXPORT_SYMBOL(tty_hung_up_p);
674 static void session_clear_tty(struct pid *session)
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
679 } while_each_pid_task(session, PIDTYPE_SID, p);
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
706 void disassociate_ctty(int on_exit)
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
712 tty = get_current_tty();
714 tty_pgrp = get_pid(tty->pgrp);
716 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
720 } else if (on_exit) {
721 struct pid *old_pgrp;
722 spin_lock_irq(¤t->sighand->siglock);
723 old_pgrp = current->signal->tty_old_pgrp;
724 current->signal->tty_old_pgrp = NULL;
725 spin_unlock_irq(¤t->sighand->siglock);
727 kill_pgrp(old_pgrp, SIGHUP, on_exit);
728 kill_pgrp(old_pgrp, SIGCONT, on_exit);
734 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
736 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
740 spin_lock_irq(¤t->sighand->siglock);
741 put_pid(current->signal->tty_old_pgrp);
742 current->signal->tty_old_pgrp = NULL;
743 spin_unlock_irq(¤t->sighand->siglock);
745 tty = get_current_tty();
748 spin_lock_irqsave(&tty->ctrl_lock, flags);
749 put_pid(tty->session);
753 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
756 #ifdef TTY_DEBUG_HANGUP
757 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
762 /* Now clear signal->tty under the lock */
763 read_lock(&tasklist_lock);
764 session_clear_tty(task_session(current));
765 read_unlock(&tasklist_lock);
770 * no_tty - Ensure the current process does not have a controlling tty
774 struct task_struct *tsk = current;
776 if (tsk->signal->leader)
777 disassociate_ctty(0);
784 * stop_tty - propagate flow control
787 * Perform flow control to the driver. For PTY/TTY pairs we
788 * must also propagate the TIOCKPKT status. May be called
789 * on an already stopped device and will not re-call the driver
792 * This functionality is used by both the line disciplines for
793 * halting incoming flow and by the driver. It may therefore be
794 * called from any context, may be under the tty atomic_write_lock
798 * Uses the tty control lock internally
801 void stop_tty(struct tty_struct *tty)
804 spin_lock_irqsave(&tty->ctrl_lock, flags);
806 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
810 if (tty->link && tty->link->packet) {
811 tty->ctrl_status &= ~TIOCPKT_START;
812 tty->ctrl_status |= TIOCPKT_STOP;
813 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
815 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
817 (tty->ops->stop)(tty);
820 EXPORT_SYMBOL(stop_tty);
823 * start_tty - propagate flow control
826 * Start a tty that has been stopped if at all possible. Perform
827 * any necessary wakeups and propagate the TIOCPKT status. If this
828 * is the tty was previous stopped and is being started then the
829 * driver start method is invoked and the line discipline woken.
835 void start_tty(struct tty_struct *tty)
838 spin_lock_irqsave(&tty->ctrl_lock, flags);
839 if (!tty->stopped || tty->flow_stopped) {
840 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
844 if (tty->link && tty->link->packet) {
845 tty->ctrl_status &= ~TIOCPKT_STOP;
846 tty->ctrl_status |= TIOCPKT_START;
847 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
849 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
851 (tty->ops->start)(tty);
852 /* If we have a running line discipline it may need kicking */
856 EXPORT_SYMBOL(start_tty);
859 * tty_read - read method for tty device files
860 * @file: pointer to tty file
862 * @count: size of user buffer
865 * Perform the read system call function on this terminal device. Checks
866 * for hung up devices before calling the line discipline method.
869 * Locks the line discipline internally while needed. Multiple
870 * read calls may be outstanding in parallel.
873 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
877 struct tty_struct *tty;
879 struct tty_ldisc *ld;
881 tty = (struct tty_struct *)file->private_data;
882 inode = file->f_path.dentry->d_inode;
883 if (tty_paranoia_check(tty, inode, "tty_read"))
885 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
888 /* We want to wait for the line discipline to sort out in this
890 ld = tty_ldisc_ref_wait(tty);
892 i = (ld->ops->read)(tty, file, buf, count);
897 inode->i_atime = current_fs_time(inode->i_sb);
901 void tty_write_unlock(struct tty_struct *tty)
903 mutex_unlock(&tty->atomic_write_lock);
904 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
907 int tty_write_lock(struct tty_struct *tty, int ndelay)
909 if (!mutex_trylock(&tty->atomic_write_lock)) {
912 if (mutex_lock_interruptible(&tty->atomic_write_lock))
919 * Split writes up in sane blocksizes to avoid
920 * denial-of-service type attacks
922 static inline ssize_t do_tty_write(
923 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
924 struct tty_struct *tty,
926 const char __user *buf,
929 ssize_t ret, written = 0;
932 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
937 * We chunk up writes into a temporary buffer. This
938 * simplifies low-level drivers immensely, since they
939 * don't have locking issues and user mode accesses.
941 * But if TTY_NO_WRITE_SPLIT is set, we should use a
944 * The default chunk-size is 2kB, because the NTTY
945 * layer has problems with bigger chunks. It will
946 * claim to be able to handle more characters than
949 * FIXME: This can probably go away now except that 64K chunks
950 * are too likely to fail unless switched to vmalloc...
953 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
958 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
959 if (tty->write_cnt < chunk) {
960 unsigned char *buf_chunk;
965 buf_chunk = kmalloc(chunk, GFP_KERNEL);
970 kfree(tty->write_buf);
971 tty->write_cnt = chunk;
972 tty->write_buf = buf_chunk;
975 /* Do the write .. */
981 if (copy_from_user(tty->write_buf, buf, size))
983 ret = write(tty, file, tty->write_buf, size);
992 if (signal_pending(current))
997 struct inode *inode = file->f_path.dentry->d_inode;
998 inode->i_mtime = current_fs_time(inode->i_sb);
1002 tty_write_unlock(tty);
1007 * tty_write_message - write a message to a certain tty, not just the console.
1008 * @tty: the destination tty_struct
1009 * @msg: the message to write
1011 * This is used for messages that need to be redirected to a specific tty.
1012 * We don't put it into the syslog queue right now maybe in the future if
1015 * We must still hold the BKL and test the CLOSING flag for the moment.
1018 void tty_write_message(struct tty_struct *tty, char *msg)
1022 mutex_lock(&tty->atomic_write_lock);
1023 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1024 tty->ops->write(tty, msg, strlen(msg));
1025 tty_write_unlock(tty);
1033 * tty_write - write method for tty device file
1034 * @file: tty file pointer
1035 * @buf: user data to write
1036 * @count: bytes to write
1039 * Write data to a tty device via the line discipline.
1042 * Locks the line discipline as required
1043 * Writes to the tty driver are serialized by the atomic_write_lock
1044 * and are then processed in chunks to the device. The line discipline
1045 * write method will not be invoked in parallel for each device.
1048 static ssize_t tty_write(struct file *file, const char __user *buf,
1049 size_t count, loff_t *ppos)
1051 struct tty_struct *tty;
1052 struct inode *inode = file->f_path.dentry->d_inode;
1054 struct tty_ldisc *ld;
1056 tty = (struct tty_struct *)file->private_data;
1057 if (tty_paranoia_check(tty, inode, "tty_write"))
1059 if (!tty || !tty->ops->write ||
1060 (test_bit(TTY_IO_ERROR, &tty->flags)))
1062 /* Short term debug to catch buggy drivers */
1063 if (tty->ops->write_room == NULL)
1064 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1066 ld = tty_ldisc_ref_wait(tty);
1067 if (!ld->ops->write)
1070 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1071 tty_ldisc_deref(ld);
1075 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1076 size_t count, loff_t *ppos)
1078 struct file *p = NULL;
1080 spin_lock(&redirect_lock);
1085 spin_unlock(&redirect_lock);
1089 res = vfs_write(p, buf, count, &p->f_pos);
1093 return tty_write(file, buf, count, ppos);
1096 static char ptychar[] = "pqrstuvwxyzabcde";
1099 * pty_line_name - generate name for a pty
1100 * @driver: the tty driver in use
1101 * @index: the minor number
1102 * @p: output buffer of at least 6 bytes
1104 * Generate a name from a driver reference and write it to the output
1109 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1111 int i = index + driver->name_base;
1112 /* ->name is initialized to "ttyp", but "tty" is expected */
1113 sprintf(p, "%s%c%x",
1114 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1115 ptychar[i >> 4 & 0xf], i & 0xf);
1119 * tty_line_name - generate name for a tty
1120 * @driver: the tty driver in use
1121 * @index: the minor number
1122 * @p: output buffer of at least 7 bytes
1124 * Generate a name from a driver reference and write it to the output
1129 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1131 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1135 * tty_driver_lookup_tty() - find an existing tty, if any
1136 * @driver: the driver for the tty
1137 * @idx: the minor number
1139 * Return the tty, if found or ERR_PTR() otherwise.
1141 * Locking: tty_mutex must be held. If tty is found, the mutex must
1142 * be held until the 'fast-open' is also done. Will change once we
1143 * have refcounting in the driver and per driver locking
1145 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1146 struct inode *inode, int idx)
1148 struct tty_struct *tty;
1150 if (driver->ops->lookup)
1151 return driver->ops->lookup(driver, inode, idx);
1153 tty = driver->ttys[idx];
1158 * tty_init_termios - helper for termios setup
1159 * @tty: the tty to set up
1161 * Initialise the termios structures for this tty. Thus runs under
1162 * the tty_mutex currently so we can be relaxed about ordering.
1165 int tty_init_termios(struct tty_struct *tty)
1167 struct ktermios *tp;
1168 int idx = tty->index;
1170 tp = tty->driver->termios[idx];
1172 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1175 memcpy(tp, &tty->driver->init_termios,
1176 sizeof(struct ktermios));
1177 tty->driver->termios[idx] = tp;
1180 tty->termios_locked = tp + 1;
1182 /* Compatibility until drivers always set this */
1183 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1184 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1189 * tty_driver_install_tty() - install a tty entry in the driver
1190 * @driver: the driver for the tty
1193 * Install a tty object into the driver tables. The tty->index field
1194 * will be set by the time this is called. This method is responsible
1195 * for ensuring any need additional structures are allocated and
1198 * Locking: tty_mutex for now
1200 static int tty_driver_install_tty(struct tty_driver *driver,
1201 struct tty_struct *tty)
1203 int idx = tty->index;
1205 if (driver->ops->install)
1206 return driver->ops->install(driver, tty);
1208 if (tty_init_termios(tty) == 0) {
1209 tty_driver_kref_get(driver);
1211 driver->ttys[idx] = tty;
1218 * tty_driver_remove_tty() - remove a tty from the driver tables
1219 * @driver: the driver for the tty
1220 * @idx: the minor number
1222 * Remvoe a tty object from the driver tables. The tty->index field
1223 * will be set by the time this is called.
1225 * Locking: tty_mutex for now
1227 static void tty_driver_remove_tty(struct tty_driver *driver,
1228 struct tty_struct *tty)
1230 if (driver->ops->remove)
1231 driver->ops->remove(driver, tty);
1233 driver->ttys[tty->index] = NULL;
1237 * tty_reopen() - fast re-open of an open tty
1238 * @tty - the tty to open
1240 * Return 0 on success, -errno on error.
1242 * Locking: tty_mutex must be held from the time the tty was found
1243 * till this open completes.
1245 static int tty_reopen(struct tty_struct *tty)
1247 struct tty_driver *driver = tty->driver;
1249 if (test_bit(TTY_CLOSING, &tty->flags))
1252 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1253 driver->subtype == PTY_TYPE_MASTER) {
1255 * special case for PTY masters: only one open permitted,
1256 * and the slave side open count is incremented as well.
1264 tty->driver = driver; /* N.B. why do this every time?? */
1266 mutex_lock(&tty->ldisc_mutex);
1267 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1268 mutex_unlock(&tty->ldisc_mutex);
1274 * tty_init_dev - initialise a tty device
1275 * @driver: tty driver we are opening a device on
1276 * @idx: device index
1277 * @ret_tty: returned tty structure
1278 * @first_ok: ok to open a new device (used by ptmx)
1280 * Prepare a tty device. This may not be a "new" clean device but
1281 * could also be an active device. The pty drivers require special
1282 * handling because of this.
1285 * The function is called under the tty_mutex, which
1286 * protects us from the tty struct or driver itself going away.
1288 * On exit the tty device has the line discipline attached and
1289 * a reference count of 1. If a pair was created for pty/tty use
1290 * and the other was a pty master then it too has a reference count of 1.
1292 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1293 * failed open. The new code protects the open with a mutex, so it's
1294 * really quite straightforward. The mutex locking can probably be
1295 * relaxed for the (most common) case of reopening a tty.
1298 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1301 struct tty_struct *tty;
1304 /* Check if pty master is being opened multiple times */
1305 if (driver->subtype == PTY_TYPE_MASTER &&
1306 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1307 return ERR_PTR(-EIO);
1310 * First time open is complex, especially for PTY devices.
1311 * This code guarantees that either everything succeeds and the
1312 * TTY is ready for operation, or else the table slots are vacated
1313 * and the allocated memory released. (Except that the termios
1314 * and locked termios may be retained.)
1317 if (!try_module_get(driver->owner))
1318 return ERR_PTR(-ENODEV);
1320 tty = alloc_tty_struct();
1323 initialize_tty_struct(tty, driver, idx);
1325 retval = tty_driver_install_tty(driver, tty);
1327 free_tty_struct(tty);
1328 module_put(driver->owner);
1329 return ERR_PTR(retval);
1333 * Structures all installed ... call the ldisc open routines.
1334 * If we fail here just call release_tty to clean up. No need
1335 * to decrement the use counts, as release_tty doesn't care.
1338 retval = tty_ldisc_setup(tty, tty->link);
1340 goto release_mem_out;
1344 module_put(driver->owner);
1345 return ERR_PTR(-ENOMEM);
1347 /* call the tty release_tty routine to clean out this slot */
1349 if (printk_ratelimit())
1350 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1351 "clearing slot %d\n", idx);
1352 release_tty(tty, idx);
1353 return ERR_PTR(retval);
1356 void tty_free_termios(struct tty_struct *tty)
1358 struct ktermios *tp;
1359 int idx = tty->index;
1360 /* Kill this flag and push into drivers for locking etc */
1361 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1362 /* FIXME: Locking on ->termios array */
1364 tty->driver->termios[idx] = NULL;
1368 EXPORT_SYMBOL(tty_free_termios);
1370 void tty_shutdown(struct tty_struct *tty)
1372 tty_driver_remove_tty(tty->driver, tty);
1373 tty_free_termios(tty);
1375 EXPORT_SYMBOL(tty_shutdown);
1378 * release_one_tty - release tty structure memory
1379 * @kref: kref of tty we are obliterating
1381 * Releases memory associated with a tty structure, and clears out the
1382 * driver table slots. This function is called when a device is no longer
1383 * in use. It also gets called when setup of a device fails.
1386 * tty_mutex - sometimes only
1387 * takes the file list lock internally when working on the list
1388 * of ttys that the driver keeps.
1390 static void release_one_tty(struct kref *kref)
1392 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1393 struct tty_driver *driver = tty->driver;
1395 if (tty->ops->shutdown)
1396 tty->ops->shutdown(tty);
1400 tty_driver_kref_put(driver);
1401 module_put(driver->owner);
1404 list_del_init(&tty->tty_files);
1407 free_tty_struct(tty);
1411 * tty_kref_put - release a tty kref
1414 * Release a reference to a tty device and if need be let the kref
1415 * layer destruct the object for us
1418 void tty_kref_put(struct tty_struct *tty)
1421 kref_put(&tty->kref, release_one_tty);
1423 EXPORT_SYMBOL(tty_kref_put);
1426 * release_tty - release tty structure memory
1428 * Release both @tty and a possible linked partner (think pty pair),
1429 * and decrement the refcount of the backing module.
1432 * tty_mutex - sometimes only
1433 * takes the file list lock internally when working on the list
1434 * of ttys that the driver keeps.
1435 * FIXME: should we require tty_mutex is held here ??
1438 static void release_tty(struct tty_struct *tty, int idx)
1440 /* This should always be true but check for the moment */
1441 WARN_ON(tty->index != idx);
1444 tty_kref_put(tty->link);
1449 * Even releasing the tty structures is a tricky business.. We have
1450 * to be very careful that the structures are all released at the
1451 * same time, as interrupts might otherwise get the wrong pointers.
1453 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1454 * lead to double frees or releasing memory still in use.
1456 void tty_release_dev(struct file *filp)
1458 struct tty_struct *tty, *o_tty;
1459 int pty_master, tty_closing, o_tty_closing, do_sleep;
1463 struct inode *inode;
1465 inode = filp->f_path.dentry->d_inode;
1466 tty = (struct tty_struct *)filp->private_data;
1467 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1470 check_tty_count(tty, "tty_release_dev");
1472 tty_fasync(-1, filp, 0);
1475 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1476 tty->driver->subtype == PTY_TYPE_MASTER);
1477 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1480 #ifdef TTY_PARANOIA_CHECK
1481 if (idx < 0 || idx >= tty->driver->num) {
1482 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1483 "free (%s)\n", tty->name);
1487 if (tty != tty->driver->ttys[idx]) {
1488 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1489 "for (%s)\n", idx, tty->name);
1492 if (tty->termios != tty->driver->termios[idx]) {
1493 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1501 #ifdef TTY_DEBUG_HANGUP
1502 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1503 tty_name(tty, buf), tty->count);
1506 #ifdef TTY_PARANOIA_CHECK
1507 if (tty->driver->other &&
1508 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1509 if (o_tty != tty->driver->other->ttys[idx]) {
1510 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1511 "not o_tty for (%s)\n",
1515 if (o_tty->termios != tty->driver->other->termios[idx]) {
1516 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1517 "not o_termios for (%s)\n",
1521 if (o_tty->link != tty) {
1522 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1527 if (tty->ops->close)
1528 tty->ops->close(tty, filp);
1531 * Sanity check: if tty->count is going to zero, there shouldn't be
1532 * any waiters on tty->read_wait or tty->write_wait. We test the
1533 * wait queues and kick everyone out _before_ actually starting to
1534 * close. This ensures that we won't block while releasing the tty
1537 * The test for the o_tty closing is necessary, since the master and
1538 * slave sides may close in any order. If the slave side closes out
1539 * first, its count will be one, since the master side holds an open.
1540 * Thus this test wouldn't be triggered at the time the slave closes,
1543 * Note that it's possible for the tty to be opened again while we're
1544 * flushing out waiters. By recalculating the closing flags before
1545 * each iteration we avoid any problems.
1548 /* Guard against races with tty->count changes elsewhere and
1549 opens on /dev/tty */
1551 mutex_lock(&tty_mutex);
1552 tty_closing = tty->count <= 1;
1553 o_tty_closing = o_tty &&
1554 (o_tty->count <= (pty_master ? 1 : 0));
1558 if (waitqueue_active(&tty->read_wait)) {
1559 wake_up_poll(&tty->read_wait, POLLIN);
1562 if (waitqueue_active(&tty->write_wait)) {
1563 wake_up_poll(&tty->write_wait, POLLOUT);
1567 if (o_tty_closing) {
1568 if (waitqueue_active(&o_tty->read_wait)) {
1569 wake_up_poll(&o_tty->read_wait, POLLIN);
1572 if (waitqueue_active(&o_tty->write_wait)) {
1573 wake_up_poll(&o_tty->write_wait, POLLOUT);
1580 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1581 "active!\n", tty_name(tty, buf));
1582 mutex_unlock(&tty_mutex);
1587 * The closing flags are now consistent with the open counts on
1588 * both sides, and we've completed the last operation that could
1589 * block, so it's safe to proceed with closing.
1592 if (--o_tty->count < 0) {
1593 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1595 o_tty->count, tty_name(o_tty, buf));
1599 if (--tty->count < 0) {
1600 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1601 tty->count, tty_name(tty, buf));
1606 * We've decremented tty->count, so we need to remove this file
1607 * descriptor off the tty->tty_files list; this serves two
1609 * - check_tty_count sees the correct number of file descriptors
1610 * associated with this tty.
1611 * - do_tty_hangup no longer sees this file descriptor as
1612 * something that needs to be handled for hangups.
1615 filp->private_data = NULL;
1618 * Perform some housekeeping before deciding whether to return.
1620 * Set the TTY_CLOSING flag if this was the last open. In the
1621 * case of a pty we may have to wait around for the other side
1622 * to close, and TTY_CLOSING makes sure we can't be reopened.
1625 set_bit(TTY_CLOSING, &tty->flags);
1627 set_bit(TTY_CLOSING, &o_tty->flags);
1630 * If _either_ side is closing, make sure there aren't any
1631 * processes that still think tty or o_tty is their controlling
1634 if (tty_closing || o_tty_closing) {
1635 read_lock(&tasklist_lock);
1636 session_clear_tty(tty->session);
1638 session_clear_tty(o_tty->session);
1639 read_unlock(&tasklist_lock);
1642 mutex_unlock(&tty_mutex);
1644 /* check whether both sides are closing ... */
1645 if (!tty_closing || (o_tty && !o_tty_closing))
1648 #ifdef TTY_DEBUG_HANGUP
1649 printk(KERN_DEBUG "freeing tty structure...");
1652 * Ask the line discipline code to release its structures
1654 tty_ldisc_release(tty, o_tty);
1656 * The release_tty function takes care of the details of clearing
1657 * the slots and preserving the termios structure.
1659 release_tty(tty, idx);
1661 /* Make this pty number available for reallocation */
1663 devpts_kill_index(inode, idx);
1667 * __tty_open - open a tty device
1668 * @inode: inode of device file
1669 * @filp: file pointer to tty
1671 * tty_open and tty_release keep up the tty count that contains the
1672 * number of opens done on a tty. We cannot use the inode-count, as
1673 * different inodes might point to the same tty.
1675 * Open-counting is needed for pty masters, as well as for keeping
1676 * track of serial lines: DTR is dropped when the last close happens.
1677 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1679 * The termios state of a pty is reset on first open so that
1680 * settings don't persist across reuse.
1682 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1683 * tty->count should protect the rest.
1684 * ->siglock protects ->signal/->sighand
1687 static int __tty_open(struct inode *inode, struct file *filp)
1689 struct tty_struct *tty = NULL;
1691 struct tty_driver *driver;
1693 dev_t device = inode->i_rdev;
1694 unsigned saved_flags = filp->f_flags;
1696 nonseekable_open(inode, filp);
1699 noctty = filp->f_flags & O_NOCTTY;
1703 mutex_lock(&tty_mutex);
1705 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1706 tty = get_current_tty();
1708 mutex_unlock(&tty_mutex);
1711 driver = tty_driver_kref_get(tty->driver);
1713 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1715 /* FIXME: Should we take a driver reference ? */
1720 if (device == MKDEV(TTY_MAJOR, 0)) {
1721 extern struct tty_driver *console_driver;
1722 driver = tty_driver_kref_get(console_driver);
1728 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1729 struct tty_driver *console_driver = console_device(&index);
1730 if (console_driver) {
1731 driver = tty_driver_kref_get(console_driver);
1733 /* Don't let /dev/console block */
1734 filp->f_flags |= O_NONBLOCK;
1739 mutex_unlock(&tty_mutex);
1743 driver = get_tty_driver(device, &index);
1745 mutex_unlock(&tty_mutex);
1750 /* check whether we're reopening an existing tty */
1751 tty = tty_driver_lookup_tty(driver, inode, index);
1754 mutex_unlock(&tty_mutex);
1755 return PTR_ERR(tty);
1760 retval = tty_reopen(tty);
1762 tty = ERR_PTR(retval);
1764 tty = tty_init_dev(driver, index, 0);
1766 mutex_unlock(&tty_mutex);
1767 tty_driver_kref_put(driver);
1769 return PTR_ERR(tty);
1771 filp->private_data = tty;
1772 file_move(filp, &tty->tty_files);
1773 check_tty_count(tty, "tty_open");
1774 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1775 tty->driver->subtype == PTY_TYPE_MASTER)
1777 #ifdef TTY_DEBUG_HANGUP
1778 printk(KERN_DEBUG "opening %s...", tty->name);
1782 retval = tty->ops->open(tty, filp);
1786 filp->f_flags = saved_flags;
1788 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1789 !capable(CAP_SYS_ADMIN))
1793 #ifdef TTY_DEBUG_HANGUP
1794 printk(KERN_DEBUG "error %d in opening %s...", retval,
1797 tty_release_dev(filp);
1798 if (retval != -ERESTARTSYS)
1800 if (signal_pending(current))
1804 * Need to reset f_op in case a hangup happened.
1806 if (filp->f_op == &hung_up_tty_fops)
1807 filp->f_op = &tty_fops;
1811 mutex_lock(&tty_mutex);
1812 spin_lock_irq(¤t->sighand->siglock);
1814 current->signal->leader &&
1815 !current->signal->tty &&
1816 tty->session == NULL)
1817 __proc_set_tty(current, tty);
1818 spin_unlock_irq(¤t->sighand->siglock);
1819 mutex_unlock(&tty_mutex);
1823 /* BKL pushdown: scary code avoidance wrapper */
1824 static int tty_open(struct inode *inode, struct file *filp)
1829 ret = __tty_open(inode, filp);
1838 * tty_release - vfs callback for close
1839 * @inode: inode of tty
1840 * @filp: file pointer for handle to tty
1842 * Called the last time each file handle is closed that references
1843 * this tty. There may however be several such references.
1846 * Takes bkl. See tty_release_dev
1849 static int tty_release(struct inode *inode, struct file *filp)
1852 tty_release_dev(filp);
1858 * tty_poll - check tty status
1859 * @filp: file being polled
1860 * @wait: poll wait structures to update
1862 * Call the line discipline polling method to obtain the poll
1863 * status of the device.
1865 * Locking: locks called line discipline but ldisc poll method
1866 * may be re-entered freely by other callers.
1869 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1871 struct tty_struct *tty;
1872 struct tty_ldisc *ld;
1875 tty = (struct tty_struct *)filp->private_data;
1876 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1879 ld = tty_ldisc_ref_wait(tty);
1881 ret = (ld->ops->poll)(tty, filp, wait);
1882 tty_ldisc_deref(ld);
1886 static int tty_fasync(int fd, struct file *filp, int on)
1888 struct tty_struct *tty;
1889 unsigned long flags;
1893 tty = (struct tty_struct *)filp->private_data;
1894 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1897 retval = fasync_helper(fd, filp, on, &tty->fasync);
1904 if (!waitqueue_active(&tty->read_wait))
1905 tty->minimum_to_wake = 1;
1906 spin_lock_irqsave(&tty->ctrl_lock, flags);
1909 type = PIDTYPE_PGID;
1911 pid = task_pid(current);
1914 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1915 retval = __f_setown(filp, pid, type, 0);
1919 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1920 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1929 * tiocsti - fake input character
1930 * @tty: tty to fake input into
1931 * @p: pointer to character
1933 * Fake input to a tty device. Does the necessary locking and
1936 * FIXME: does not honour flow control ??
1939 * Called functions take tty_ldisc_lock
1940 * current->signal->tty check is safe without locks
1942 * FIXME: may race normal receive processing
1945 static int tiocsti(struct tty_struct *tty, char __user *p)
1948 struct tty_ldisc *ld;
1950 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1952 if (get_user(ch, p))
1954 tty_audit_tiocsti(tty, ch);
1955 ld = tty_ldisc_ref_wait(tty);
1956 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1957 tty_ldisc_deref(ld);
1962 * tiocgwinsz - implement window query ioctl
1964 * @arg: user buffer for result
1966 * Copies the kernel idea of the window size into the user buffer.
1968 * Locking: tty->termios_mutex is taken to ensure the winsize data
1972 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1976 mutex_lock(&tty->termios_mutex);
1977 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1978 mutex_unlock(&tty->termios_mutex);
1980 return err ? -EFAULT: 0;
1984 * tty_do_resize - resize event
1985 * @tty: tty being resized
1986 * @rows: rows (character)
1987 * @cols: cols (character)
1989 * Update the termios variables and send the neccessary signals to
1990 * peform a terminal resize correctly
1993 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
1996 unsigned long flags;
1999 mutex_lock(&tty->termios_mutex);
2000 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2002 /* Get the PID values and reference them so we can
2003 avoid holding the tty ctrl lock while sending signals */
2004 spin_lock_irqsave(&tty->ctrl_lock, flags);
2005 pgrp = get_pid(tty->pgrp);
2006 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2009 kill_pgrp(pgrp, SIGWINCH, 1);
2014 mutex_unlock(&tty->termios_mutex);
2019 * tiocswinsz - implement window size set ioctl
2020 * @tty; tty side of tty
2021 * @arg: user buffer for result
2023 * Copies the user idea of the window size to the kernel. Traditionally
2024 * this is just advisory information but for the Linux console it
2025 * actually has driver level meaning and triggers a VC resize.
2028 * Driver dependant. The default do_resize method takes the
2029 * tty termios mutex and ctrl_lock. The console takes its own lock
2030 * then calls into the default method.
2033 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2035 struct winsize tmp_ws;
2036 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2039 if (tty->ops->resize)
2040 return tty->ops->resize(tty, &tmp_ws);
2042 return tty_do_resize(tty, &tmp_ws);
2046 * tioccons - allow admin to move logical console
2047 * @file: the file to become console
2049 * Allow the adminstrator to move the redirected console device
2051 * Locking: uses redirect_lock to guard the redirect information
2054 static int tioccons(struct file *file)
2056 if (!capable(CAP_SYS_ADMIN))
2058 if (file->f_op->write == redirected_tty_write) {
2060 spin_lock(&redirect_lock);
2063 spin_unlock(&redirect_lock);
2068 spin_lock(&redirect_lock);
2070 spin_unlock(&redirect_lock);
2075 spin_unlock(&redirect_lock);
2080 * fionbio - non blocking ioctl
2081 * @file: file to set blocking value
2082 * @p: user parameter
2084 * Historical tty interfaces had a blocking control ioctl before
2085 * the generic functionality existed. This piece of history is preserved
2086 * in the expected tty API of posix OS's.
2088 * Locking: none, the open fle handle ensures it won't go away.
2091 static int fionbio(struct file *file, int __user *p)
2095 if (get_user(nonblock, p))
2098 spin_lock(&file->f_lock);
2100 file->f_flags |= O_NONBLOCK;
2102 file->f_flags &= ~O_NONBLOCK;
2103 spin_unlock(&file->f_lock);
2108 * tiocsctty - set controlling tty
2109 * @tty: tty structure
2110 * @arg: user argument
2112 * This ioctl is used to manage job control. It permits a session
2113 * leader to set this tty as the controlling tty for the session.
2116 * Takes tty_mutex() to protect tty instance
2117 * Takes tasklist_lock internally to walk sessions
2118 * Takes ->siglock() when updating signal->tty
2121 static int tiocsctty(struct tty_struct *tty, int arg)
2124 if (current->signal->leader && (task_session(current) == tty->session))
2127 mutex_lock(&tty_mutex);
2129 * The process must be a session leader and
2130 * not have a controlling tty already.
2132 if (!current->signal->leader || current->signal->tty) {
2139 * This tty is already the controlling
2140 * tty for another session group!
2142 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2146 read_lock(&tasklist_lock);
2147 session_clear_tty(tty->session);
2148 read_unlock(&tasklist_lock);
2154 proc_set_tty(current, tty);
2156 mutex_unlock(&tty_mutex);
2161 * tty_get_pgrp - return a ref counted pgrp pid
2164 * Returns a refcounted instance of the pid struct for the process
2165 * group controlling the tty.
2168 struct pid *tty_get_pgrp(struct tty_struct *tty)
2170 unsigned long flags;
2173 spin_lock_irqsave(&tty->ctrl_lock, flags);
2174 pgrp = get_pid(tty->pgrp);
2175 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2179 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2182 * tiocgpgrp - get process group
2183 * @tty: tty passed by user
2184 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2187 * Obtain the process group of the tty. If there is no process group
2190 * Locking: none. Reference to current->signal->tty is safe.
2193 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2198 * (tty == real_tty) is a cheap way of
2199 * testing if the tty is NOT a master pty.
2201 if (tty == real_tty && current->signal->tty != real_tty)
2203 pid = tty_get_pgrp(real_tty);
2204 ret = put_user(pid_vnr(pid), p);
2210 * tiocspgrp - attempt to set process group
2211 * @tty: tty passed by user
2212 * @real_tty: tty side device matching tty passed by user
2215 * Set the process group of the tty to the session passed. Only
2216 * permitted where the tty session is our session.
2218 * Locking: RCU, ctrl lock
2221 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2225 int retval = tty_check_change(real_tty);
2226 unsigned long flags;
2232 if (!current->signal->tty ||
2233 (current->signal->tty != real_tty) ||
2234 (real_tty->session != task_session(current)))
2236 if (get_user(pgrp_nr, p))
2241 pgrp = find_vpid(pgrp_nr);
2246 if (session_of_pgrp(pgrp) != task_session(current))
2249 spin_lock_irqsave(&tty->ctrl_lock, flags);
2250 put_pid(real_tty->pgrp);
2251 real_tty->pgrp = get_pid(pgrp);
2252 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2259 * tiocgsid - get session id
2260 * @tty: tty passed by user
2261 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2262 * @p: pointer to returned session id
2264 * Obtain the session id of the tty. If there is no session
2267 * Locking: none. Reference to current->signal->tty is safe.
2270 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2273 * (tty == real_tty) is a cheap way of
2274 * testing if the tty is NOT a master pty.
2276 if (tty == real_tty && current->signal->tty != real_tty)
2278 if (!real_tty->session)
2280 return put_user(pid_vnr(real_tty->session), p);
2284 * tiocsetd - set line discipline
2286 * @p: pointer to user data
2288 * Set the line discipline according to user request.
2290 * Locking: see tty_set_ldisc, this function is just a helper
2293 static int tiocsetd(struct tty_struct *tty, int __user *p)
2298 if (get_user(ldisc, p))
2302 ret = tty_set_ldisc(tty, ldisc);
2309 * send_break - performed time break
2310 * @tty: device to break on
2311 * @duration: timeout in mS
2313 * Perform a timed break on hardware that lacks its own driver level
2314 * timed break functionality.
2317 * atomic_write_lock serializes
2321 static int send_break(struct tty_struct *tty, unsigned int duration)
2325 if (tty->ops->break_ctl == NULL)
2328 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2329 retval = tty->ops->break_ctl(tty, duration);
2331 /* Do the work ourselves */
2332 if (tty_write_lock(tty, 0) < 0)
2334 retval = tty->ops->break_ctl(tty, -1);
2337 if (!signal_pending(current))
2338 msleep_interruptible(duration);
2339 retval = tty->ops->break_ctl(tty, 0);
2341 tty_write_unlock(tty);
2342 if (signal_pending(current))
2349 * tty_tiocmget - get modem status
2351 * @file: user file pointer
2352 * @p: pointer to result
2354 * Obtain the modem status bits from the tty driver if the feature
2355 * is supported. Return -EINVAL if it is not available.
2357 * Locking: none (up to the driver)
2360 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2362 int retval = -EINVAL;
2364 if (tty->ops->tiocmget) {
2365 retval = tty->ops->tiocmget(tty, file);
2368 retval = put_user(retval, p);
2374 * tty_tiocmset - set modem status
2376 * @file: user file pointer
2377 * @cmd: command - clear bits, set bits or set all
2378 * @p: pointer to desired bits
2380 * Set the modem status bits from the tty driver if the feature
2381 * is supported. Return -EINVAL if it is not available.
2383 * Locking: none (up to the driver)
2386 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2390 unsigned int set, clear, val;
2392 if (tty->ops->tiocmset == NULL)
2395 retval = get_user(val, p);
2411 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2412 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2413 return tty->ops->tiocmset(tty, file, set, clear);
2416 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2418 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2419 tty->driver->subtype == PTY_TYPE_MASTER)
2423 EXPORT_SYMBOL(tty_pair_get_tty);
2425 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2427 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2428 tty->driver->subtype == PTY_TYPE_MASTER)
2432 EXPORT_SYMBOL(tty_pair_get_pty);
2435 * Split this up, as gcc can choke on it otherwise..
2437 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2439 struct tty_struct *tty, *real_tty;
2440 void __user *p = (void __user *)arg;
2442 struct tty_ldisc *ld;
2443 struct inode *inode = file->f_dentry->d_inode;
2445 tty = (struct tty_struct *)file->private_data;
2446 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2449 real_tty = tty_pair_get_tty(tty);
2452 * Factor out some common prep work
2460 retval = tty_check_change(tty);
2463 if (cmd != TIOCCBRK) {
2464 tty_wait_until_sent(tty, 0);
2465 if (signal_pending(current))
2476 return tiocsti(tty, p);
2478 return tiocgwinsz(real_tty, p);
2480 return tiocswinsz(real_tty, p);
2482 return real_tty != tty ? -EINVAL : tioccons(file);
2484 return fionbio(file, p);
2486 set_bit(TTY_EXCLUSIVE, &tty->flags);
2489 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2492 if (current->signal->tty != tty)
2497 return tiocsctty(tty, arg);
2499 return tiocgpgrp(tty, real_tty, p);
2501 return tiocspgrp(tty, real_tty, p);
2503 return tiocgsid(tty, real_tty, p);
2505 return put_user(tty->ldisc->ops->num, (int __user *)p);
2507 return tiocsetd(tty, p);
2511 case TIOCSBRK: /* Turn break on, unconditionally */
2512 if (tty->ops->break_ctl)
2513 return tty->ops->break_ctl(tty, -1);
2515 case TIOCCBRK: /* Turn break off, unconditionally */
2516 if (tty->ops->break_ctl)
2517 return tty->ops->break_ctl(tty, 0);
2519 case TCSBRK: /* SVID version: non-zero arg --> no break */
2520 /* non-zero arg means wait for all output data
2521 * to be sent (performed above) but don't send break.
2522 * This is used by the tcdrain() termios function.
2525 return send_break(tty, 250);
2527 case TCSBRKP: /* support for POSIX tcsendbreak() */
2528 return send_break(tty, arg ? arg*100 : 250);
2531 return tty_tiocmget(tty, file, p);
2535 return tty_tiocmset(tty, file, cmd, p);
2540 /* flush tty buffer and allow ldisc to process ioctl */
2541 tty_buffer_flush(tty);
2546 if (tty->ops->ioctl) {
2547 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2548 if (retval != -ENOIOCTLCMD)
2551 ld = tty_ldisc_ref_wait(tty);
2553 if (ld->ops->ioctl) {
2554 retval = ld->ops->ioctl(tty, file, cmd, arg);
2555 if (retval == -ENOIOCTLCMD)
2558 tty_ldisc_deref(ld);
2562 #ifdef CONFIG_COMPAT
2563 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2566 struct inode *inode = file->f_dentry->d_inode;
2567 struct tty_struct *tty = file->private_data;
2568 struct tty_ldisc *ld;
2569 int retval = -ENOIOCTLCMD;
2571 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2574 if (tty->ops->compat_ioctl) {
2575 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2576 if (retval != -ENOIOCTLCMD)
2580 ld = tty_ldisc_ref_wait(tty);
2581 if (ld->ops->compat_ioctl)
2582 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2583 tty_ldisc_deref(ld);
2590 * This implements the "Secure Attention Key" --- the idea is to
2591 * prevent trojan horses by killing all processes associated with this
2592 * tty when the user hits the "Secure Attention Key". Required for
2593 * super-paranoid applications --- see the Orange Book for more details.
2595 * This code could be nicer; ideally it should send a HUP, wait a few
2596 * seconds, then send a INT, and then a KILL signal. But you then
2597 * have to coordinate with the init process, since all processes associated
2598 * with the current tty must be dead before the new getty is allowed
2601 * Now, if it would be correct ;-/ The current code has a nasty hole -
2602 * it doesn't catch files in flight. We may send the descriptor to ourselves
2603 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2605 * Nasty bug: do_SAK is being called in interrupt context. This can
2606 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2608 void __do_SAK(struct tty_struct *tty)
2613 struct task_struct *g, *p;
2614 struct pid *session;
2617 struct fdtable *fdt;
2621 session = tty->session;
2623 tty_ldisc_flush(tty);
2625 tty_driver_flush_buffer(tty);
2627 read_lock(&tasklist_lock);
2628 /* Kill the entire session */
2629 do_each_pid_task(session, PIDTYPE_SID, p) {
2630 printk(KERN_NOTICE "SAK: killed process %d"
2631 " (%s): task_session(p)==tty->session\n",
2632 task_pid_nr(p), p->comm);
2633 send_sig(SIGKILL, p, 1);
2634 } while_each_pid_task(session, PIDTYPE_SID, p);
2635 /* Now kill any processes that happen to have the
2638 do_each_thread(g, p) {
2639 if (p->signal->tty == tty) {
2640 printk(KERN_NOTICE "SAK: killed process %d"
2641 " (%s): task_session(p)==tty->session\n",
2642 task_pid_nr(p), p->comm);
2643 send_sig(SIGKILL, p, 1);
2649 * We don't take a ref to the file, so we must
2650 * hold ->file_lock instead.
2652 spin_lock(&p->files->file_lock);
2653 fdt = files_fdtable(p->files);
2654 for (i = 0; i < fdt->max_fds; i++) {
2655 filp = fcheck_files(p->files, i);
2658 if (filp->f_op->read == tty_read &&
2659 filp->private_data == tty) {
2660 printk(KERN_NOTICE "SAK: killed process %d"
2661 " (%s): fd#%d opened to the tty\n",
2662 task_pid_nr(p), p->comm, i);
2663 force_sig(SIGKILL, p);
2667 spin_unlock(&p->files->file_lock);
2670 } while_each_thread(g, p);
2671 read_unlock(&tasklist_lock);
2675 static void do_SAK_work(struct work_struct *work)
2677 struct tty_struct *tty =
2678 container_of(work, struct tty_struct, SAK_work);
2683 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2684 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2685 * the values which we write to it will be identical to the values which it
2686 * already has. --akpm
2688 void do_SAK(struct tty_struct *tty)
2692 schedule_work(&tty->SAK_work);
2695 EXPORT_SYMBOL(do_SAK);
2698 * initialize_tty_struct
2699 * @tty: tty to initialize
2701 * This subroutine initializes a tty structure that has been newly
2704 * Locking: none - tty in question must not be exposed at this point
2707 void initialize_tty_struct(struct tty_struct *tty,
2708 struct tty_driver *driver, int idx)
2710 memset(tty, 0, sizeof(struct tty_struct));
2711 kref_init(&tty->kref);
2712 tty->magic = TTY_MAGIC;
2713 tty_ldisc_init(tty);
2714 tty->session = NULL;
2716 tty->overrun_time = jiffies;
2717 tty->buf.head = tty->buf.tail = NULL;
2718 tty_buffer_init(tty);
2719 mutex_init(&tty->termios_mutex);
2720 mutex_init(&tty->ldisc_mutex);
2721 init_waitqueue_head(&tty->write_wait);
2722 init_waitqueue_head(&tty->read_wait);
2723 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2724 mutex_init(&tty->atomic_read_lock);
2725 mutex_init(&tty->atomic_write_lock);
2726 mutex_init(&tty->output_lock);
2727 mutex_init(&tty->echo_lock);
2728 spin_lock_init(&tty->read_lock);
2729 spin_lock_init(&tty->ctrl_lock);
2730 INIT_LIST_HEAD(&tty->tty_files);
2731 INIT_WORK(&tty->SAK_work, do_SAK_work);
2733 tty->driver = driver;
2734 tty->ops = driver->ops;
2736 tty_line_name(driver, idx, tty->name);
2740 * tty_put_char - write one character to a tty
2744 * Write one byte to the tty using the provided put_char method
2745 * if present. Returns the number of characters successfully output.
2747 * Note: the specific put_char operation in the driver layer may go
2748 * away soon. Don't call it directly, use this method
2751 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2753 if (tty->ops->put_char)
2754 return tty->ops->put_char(tty, ch);
2755 return tty->ops->write(tty, &ch, 1);
2757 EXPORT_SYMBOL_GPL(tty_put_char);
2759 struct class *tty_class;
2762 * tty_register_device - register a tty device
2763 * @driver: the tty driver that describes the tty device
2764 * @index: the index in the tty driver for this tty device
2765 * @device: a struct device that is associated with this tty device.
2766 * This field is optional, if there is no known struct device
2767 * for this tty device it can be set to NULL safely.
2769 * Returns a pointer to the struct device for this tty device
2770 * (or ERR_PTR(-EFOO) on error).
2772 * This call is required to be made to register an individual tty device
2773 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2774 * that bit is not set, this function should not be called by a tty
2780 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2781 struct device *device)
2784 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2786 if (index >= driver->num) {
2787 printk(KERN_ERR "Attempt to register invalid tty line number "
2789 return ERR_PTR(-EINVAL);
2792 if (driver->type == TTY_DRIVER_TYPE_PTY)
2793 pty_line_name(driver, index, name);
2795 tty_line_name(driver, index, name);
2797 return device_create(tty_class, device, dev, NULL, name);
2799 EXPORT_SYMBOL(tty_register_device);
2802 * tty_unregister_device - unregister a tty device
2803 * @driver: the tty driver that describes the tty device
2804 * @index: the index in the tty driver for this tty device
2806 * If a tty device is registered with a call to tty_register_device() then
2807 * this function must be called when the tty device is gone.
2812 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2814 device_destroy(tty_class,
2815 MKDEV(driver->major, driver->minor_start) + index);
2817 EXPORT_SYMBOL(tty_unregister_device);
2819 struct tty_driver *alloc_tty_driver(int lines)
2821 struct tty_driver *driver;
2823 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2825 kref_init(&driver->kref);
2826 driver->magic = TTY_DRIVER_MAGIC;
2827 driver->num = lines;
2828 /* later we'll move allocation of tables here */
2832 EXPORT_SYMBOL(alloc_tty_driver);
2834 static void destruct_tty_driver(struct kref *kref)
2836 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2838 struct ktermios *tp;
2841 if (driver->flags & TTY_DRIVER_INSTALLED) {
2843 * Free the termios and termios_locked structures because
2844 * we don't want to get memory leaks when modular tty
2845 * drivers are removed from the kernel.
2847 for (i = 0; i < driver->num; i++) {
2848 tp = driver->termios[i];
2850 driver->termios[i] = NULL;
2853 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2854 tty_unregister_device(driver, i);
2857 proc_tty_unregister_driver(driver);
2858 driver->ttys = NULL;
2859 driver->termios = NULL;
2861 cdev_del(&driver->cdev);
2866 void tty_driver_kref_put(struct tty_driver *driver)
2868 kref_put(&driver->kref, destruct_tty_driver);
2870 EXPORT_SYMBOL(tty_driver_kref_put);
2872 void tty_set_operations(struct tty_driver *driver,
2873 const struct tty_operations *op)
2877 EXPORT_SYMBOL(tty_set_operations);
2879 void put_tty_driver(struct tty_driver *d)
2881 tty_driver_kref_put(d);
2883 EXPORT_SYMBOL(put_tty_driver);
2886 * Called by a tty driver to register itself.
2888 int tty_register_driver(struct tty_driver *driver)
2895 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2896 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2901 if (!driver->major) {
2902 error = alloc_chrdev_region(&dev, driver->minor_start,
2903 driver->num, driver->name);
2905 driver->major = MAJOR(dev);
2906 driver->minor_start = MINOR(dev);
2909 dev = MKDEV(driver->major, driver->minor_start);
2910 error = register_chrdev_region(dev, driver->num, driver->name);
2918 driver->ttys = (struct tty_struct **)p;
2919 driver->termios = (struct ktermios **)(p + driver->num);
2921 driver->ttys = NULL;
2922 driver->termios = NULL;
2925 cdev_init(&driver->cdev, &tty_fops);
2926 driver->cdev.owner = driver->owner;
2927 error = cdev_add(&driver->cdev, dev, driver->num);
2929 unregister_chrdev_region(dev, driver->num);
2930 driver->ttys = NULL;
2931 driver->termios = NULL;
2936 mutex_lock(&tty_mutex);
2937 list_add(&driver->tty_drivers, &tty_drivers);
2938 mutex_unlock(&tty_mutex);
2940 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2941 for (i = 0; i < driver->num; i++)
2942 tty_register_device(driver, i, NULL);
2944 proc_tty_register_driver(driver);
2945 driver->flags |= TTY_DRIVER_INSTALLED;
2949 EXPORT_SYMBOL(tty_register_driver);
2952 * Called by a tty driver to unregister itself.
2954 int tty_unregister_driver(struct tty_driver *driver)
2958 if (driver->refcount)
2961 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2963 mutex_lock(&tty_mutex);
2964 list_del(&driver->tty_drivers);
2965 mutex_unlock(&tty_mutex);
2969 EXPORT_SYMBOL(tty_unregister_driver);
2971 dev_t tty_devnum(struct tty_struct *tty)
2973 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2975 EXPORT_SYMBOL(tty_devnum);
2977 void proc_clear_tty(struct task_struct *p)
2979 unsigned long flags;
2980 struct tty_struct *tty;
2981 spin_lock_irqsave(&p->sighand->siglock, flags);
2982 tty = p->signal->tty;
2983 p->signal->tty = NULL;
2984 spin_unlock_irqrestore(&p->sighand->siglock, flags);
2988 /* Called under the sighand lock */
2990 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
2993 unsigned long flags;
2994 /* We should not have a session or pgrp to put here but.... */
2995 spin_lock_irqsave(&tty->ctrl_lock, flags);
2996 put_pid(tty->session);
2998 tty->pgrp = get_pid(task_pgrp(tsk));
2999 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3000 tty->session = get_pid(task_session(tsk));
3001 if (tsk->signal->tty) {
3002 printk(KERN_DEBUG "tty not NULL!!\n");
3003 tty_kref_put(tsk->signal->tty);
3006 put_pid(tsk->signal->tty_old_pgrp);
3007 tsk->signal->tty = tty_kref_get(tty);
3008 tsk->signal->tty_old_pgrp = NULL;
3011 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3013 spin_lock_irq(&tsk->sighand->siglock);
3014 __proc_set_tty(tsk, tty);
3015 spin_unlock_irq(&tsk->sighand->siglock);
3018 struct tty_struct *get_current_tty(void)
3020 struct tty_struct *tty;
3021 unsigned long flags;
3023 spin_lock_irqsave(¤t->sighand->siglock, flags);
3024 tty = tty_kref_get(current->signal->tty);
3025 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
3028 EXPORT_SYMBOL_GPL(get_current_tty);
3030 void tty_default_fops(struct file_operations *fops)
3036 * Initialize the console device. This is called *early*, so
3037 * we can't necessarily depend on lots of kernel help here.
3038 * Just do some early initializations, and do the complex setup
3041 void __init console_init(void)
3045 /* Setup the default TTY line discipline. */
3049 * set up the console device so that later boot sequences can
3050 * inform about problems etc..
3052 call = __con_initcall_start;
3053 while (call < __con_initcall_end) {
3059 static int __init tty_class_init(void)
3061 tty_class = class_create(THIS_MODULE, "tty");
3062 if (IS_ERR(tty_class))
3063 return PTR_ERR(tty_class);
3067 postcore_initcall(tty_class_init);
3069 /* 3/2004 jmc: why do these devices exist? */
3071 static struct cdev tty_cdev, console_cdev;
3074 * Ok, now we can initialize the rest of the tty devices and can count
3075 * on memory allocations, interrupts etc..
3077 static int __init tty_init(void)
3079 cdev_init(&tty_cdev, &tty_fops);
3080 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3081 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3082 panic("Couldn't register /dev/tty driver\n");
3083 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3086 cdev_init(&console_cdev, &console_fops);
3087 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3088 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3089 panic("Couldn't register /dev/console driver\n");
3090 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3094 vty_init(&console_fops);
3098 module_init(tty_init);