2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 static struct ath_rate_table ar5416_11na_ratetable = {
24 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
26 0, 2, 1, 0, 0, 0, 0, 0 },
27 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
29 0, 3, 1, 1, 1, 1, 1, 0 },
30 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
31 10000, 0x0a, 0x00, 24,
32 2, 4, 2, 2, 2, 2, 2, 0 },
33 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
34 13900, 0x0e, 0x00, 36,
35 2, 6, 2, 3, 3, 3, 3, 0 },
36 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
37 17300, 0x09, 0x00, 48,
38 4, 10, 3, 4, 4, 4, 4, 0 },
39 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
40 23000, 0x0d, 0x00, 72,
41 4, 14, 3, 5, 5, 5, 5, 0 },
42 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
43 27400, 0x08, 0x00, 96,
44 4, 20, 3, 6, 6, 6, 6, 0 },
45 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
46 29300, 0x0c, 0x00, 108,
47 4, 23, 3, 7, 7, 7, 7, 0 },
48 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
50 0, 2, 3, 8, 24, 8, 24, 3216 },
51 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
53 2, 4, 3, 9, 25, 9, 25, 6434 },
54 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
56 2, 6, 3, 10, 26, 10, 26, 9650 },
57 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
59 4, 10, 3, 11, 27, 11, 27, 12868 },
60 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
62 4, 14, 3, 12, 28, 12, 28, 19304 },
63 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
65 4, 20, 3, 13, 29, 13, 29, 25740 },
66 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
68 4, 23, 3, 14, 30, 14, 30, 28956 },
69 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
71 4, 25, 3, 15, 31, 15, 32, 32180 },
72 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
74 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
75 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
77 2, 4, 3, 17, 34, 17, 34, 12860 },
78 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
79 36600, 0x8a, 0x00, 10,
80 2, 6, 3, 18, 35, 18, 35, 19300 },
81 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
82 48100, 0x8b, 0x00, 11,
83 4, 10, 3, 19, 36, 19, 36, 25736 },
84 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
85 69500, 0x8c, 0x00, 12,
86 4, 14, 3, 20, 37, 20, 37, 38600 },
87 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
88 89500, 0x8d, 0x00, 13,
89 4, 20, 3, 21, 38, 21, 38, 51472 },
90 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
91 98900, 0x8e, 0x00, 14,
92 4, 23, 3, 22, 39, 22, 39, 57890 },
93 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
94 108300, 0x8f, 0x00, 15,
95 4, 25, 3, 23, 40, 23, 41, 64320 },
96 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
98 0, 2, 3, 8, 24, 24, 24, 6684 },
99 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
100 25900, 0x81, 0x00, 1,
101 2, 4, 3, 9, 25, 25, 25, 13368 },
102 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
103 38600, 0x82, 0x00, 2,
104 2, 6, 3, 10, 26, 26, 26, 20052 },
105 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
106 49800, 0x83, 0x00, 3,
107 4, 10, 3, 11, 27, 27, 27, 26738 },
108 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
109 72200, 0x84, 0x00, 4,
110 4, 14, 3, 12, 28, 28, 28, 40104 },
111 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
112 92900, 0x85, 0x00, 5,
113 4, 20, 3, 13, 29, 29, 29, 53476 },
114 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
115 102700, 0x86, 0x00, 6,
116 4, 23, 3, 14, 30, 30, 30, 60156 },
117 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
118 112000, 0x87, 0x00, 7,
119 4, 25, 3, 15, 31, 32, 32, 66840 },
120 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
121 122000, 0x87, 0x00, 7,
122 4, 25, 3, 15, 31, 32, 32, 74200 },
123 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
124 25800, 0x88, 0x00, 8,
125 0, 2, 3, 16, 33, 33, 33, 13360 },
126 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
127 49800, 0x89, 0x00, 9,
128 2, 4, 3, 17, 34, 34, 34, 26720 },
129 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
130 71900, 0x8a, 0x00, 10,
131 2, 6, 3, 18, 35, 35, 35, 40080 },
132 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
133 92500, 0x8b, 0x00, 11,
134 4, 10, 3, 19, 36, 36, 36, 53440 },
135 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
136 130300, 0x8c, 0x00, 12,
137 4, 14, 3, 20, 37, 37, 37, 80160 },
138 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
139 162800, 0x8d, 0x00, 13,
140 4, 20, 3, 21, 38, 38, 38, 106880 },
141 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
142 178200, 0x8e, 0x00, 14,
143 4, 23, 3, 22, 39, 39, 39, 120240 },
144 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
145 192100, 0x8f, 0x00, 15,
146 4, 25, 3, 23, 40, 41, 41, 133600 },
147 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
148 207000, 0x8f, 0x00, 15,
149 4, 25, 3, 23, 40, 41, 41, 148400 },
151 50, /* probe interval */
152 50, /* rssi reduce interval */
153 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
156 /* 4ms frame limit not used for NG mode. The values filled
157 * for HT are the 64K max aggregate limit */
159 static struct ath_rate_table ar5416_11ng_ratetable = {
163 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
165 0, 0, 1, 0, 0, 0, 0, 0 },
166 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
168 1, 1, 1, 1, 1, 1, 1, 0 },
169 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
170 4900, 0x19, 0x04, 11,
171 2, 2, 2, 2, 2, 2, 2, 0 },
172 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
173 8100, 0x18, 0x04, 22,
174 3, 3, 2, 3, 3, 3, 3, 0 },
175 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
176 5400, 0x0b, 0x00, 12,
177 4, 2, 1, 4, 4, 4, 4, 0 },
178 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
179 7800, 0x0f, 0x00, 18,
180 4, 3, 1, 5, 5, 5, 5, 0 },
181 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
182 10100, 0x0a, 0x00, 24,
183 6, 4, 1, 6, 6, 6, 6, 0 },
184 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
185 14100, 0x0e, 0x00, 36,
186 6, 6, 2, 7, 7, 7, 7, 0 },
187 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
188 17700, 0x09, 0x00, 48,
189 8, 10, 3, 8, 8, 8, 8, 0 },
190 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
191 23700, 0x0d, 0x00, 72,
192 8, 14, 3, 9, 9, 9, 9, 0 },
193 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
194 27400, 0x08, 0x00, 96,
195 8, 20, 3, 10, 10, 10, 10, 0 },
196 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
197 30900, 0x0c, 0x00, 108,
198 8, 23, 3, 11, 11, 11, 11, 0 },
199 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
201 4, 2, 3, 12, 28, 12, 28, 3216 },
202 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
203 12700, 0x81, 0x00, 1,
204 6, 4, 3, 13, 29, 13, 29, 6434 },
205 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
206 18800, 0x82, 0x00, 2,
207 6, 6, 3, 14, 30, 14, 30, 9650 },
208 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
209 25000, 0x83, 0x00, 3,
210 8, 10, 3, 15, 31, 15, 31, 12868 },
211 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
212 36700, 0x84, 0x00, 4,
213 8, 14, 3, 16, 32, 16, 32, 19304 },
214 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
215 48100, 0x85, 0x00, 5,
216 8, 20, 3, 17, 33, 17, 33, 25740 },
217 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
218 53500, 0x86, 0x00, 6,
219 8, 23, 3, 18, 34, 18, 34, 28956 },
220 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
221 59000, 0x87, 0x00, 7,
222 8, 25, 3, 19, 35, 19, 36, 32180 },
223 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
224 12700, 0x88, 0x00, 8,
225 4, 2, 3, 20, 37, 20, 37, 6430 },
226 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
227 24800, 0x89, 0x00, 9,
228 6, 4, 3, 21, 38, 21, 38, 12860 },
229 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
230 36600, 0x8a, 0x00, 10,
231 6, 6, 3, 22, 39, 22, 39, 19300 },
232 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
233 48100, 0x8b, 0x00, 11,
234 8, 10, 3, 23, 40, 23, 40, 25736 },
235 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
236 69500, 0x8c, 0x00, 12,
237 8, 14, 3, 24, 41, 24, 41, 38600 },
238 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
239 89500, 0x8d, 0x00, 13,
240 8, 20, 3, 25, 42, 25, 42, 51472 },
241 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
242 98900, 0x8e, 0x00, 14,
243 8, 23, 3, 26, 43, 26, 44, 57890 },
244 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
245 108300, 0x8f, 0x00, 15,
246 8, 25, 3, 27, 44, 27, 45, 64320 },
247 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
248 13200, 0x80, 0x00, 0,
249 8, 2, 3, 12, 28, 28, 28, 6684 },
250 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
251 25900, 0x81, 0x00, 1,
252 8, 4, 3, 13, 29, 29, 29, 13368 },
253 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
254 38600, 0x82, 0x00, 2,
255 8, 6, 3, 14, 30, 30, 30, 20052 },
256 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
257 49800, 0x83, 0x00, 3,
258 8, 10, 3, 15, 31, 31, 31, 26738 },
259 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
260 72200, 0x84, 0x00, 4,
261 8, 14, 3, 16, 32, 32, 32, 40104 },
262 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
263 92900, 0x85, 0x00, 5,
264 8, 20, 3, 17, 33, 33, 33, 53476 },
265 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
266 102700, 0x86, 0x00, 6,
267 8, 23, 3, 18, 34, 34, 34, 60156 },
268 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
269 112000, 0x87, 0x00, 7,
270 8, 23, 3, 19, 35, 36, 36, 66840 },
271 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
272 122000, 0x87, 0x00, 7,
273 8, 25, 3, 19, 35, 36, 36, 74200 },
274 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
275 25800, 0x88, 0x00, 8,
276 8, 2, 3, 20, 37, 37, 37, 13360 },
277 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
278 49800, 0x89, 0x00, 9,
279 8, 4, 3, 21, 38, 38, 38, 26720 },
280 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
281 71900, 0x8a, 0x00, 10,
282 8, 6, 3, 22, 39, 39, 39, 40080 },
283 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
284 92500, 0x8b, 0x00, 11,
285 8, 10, 3, 23, 40, 40, 40, 53440 },
286 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
287 130300, 0x8c, 0x00, 12,
288 8, 14, 3, 24, 41, 41, 41, 80160 },
289 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
290 162800, 0x8d, 0x00, 13,
291 8, 20, 3, 25, 42, 42, 42, 106880 },
292 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
293 178200, 0x8e, 0x00, 14,
294 8, 23, 3, 26, 43, 43, 43, 120240 },
295 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
296 192100, 0x8f, 0x00, 15,
297 8, 23, 3, 27, 44, 45, 45, 133600 },
298 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
299 207000, 0x8f, 0x00, 15,
300 8, 25, 3, 27, 44, 45, 45, 148400 },
302 50, /* probe interval */
303 50, /* rssi reduce interval */
304 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
307 static struct ath_rate_table ar5416_11a_ratetable = {
311 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
312 5400, 0x0b, 0x00, (0x80|12),
314 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
315 7800, 0x0f, 0x00, 18,
317 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
318 10000, 0x0a, 0x00, (0x80|24),
320 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
321 13900, 0x0e, 0x00, 36,
323 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
324 17300, 0x09, 0x00, (0x80|48),
326 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
327 23000, 0x0d, 0x00, 72,
329 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
330 27400, 0x08, 0x00, 96,
332 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
333 29300, 0x0c, 0x00, 108,
336 50, /* probe interval */
337 50, /* rssi reduce interval */
338 0, /* Phy rates allowed initially */
341 static struct ath_rate_table ar5416_11g_ratetable = {
345 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
348 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
351 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
352 4900, 0x19, 0x04, 11,
354 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
355 8100, 0x18, 0x04, 22,
357 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
358 5400, 0x0b, 0x00, 12,
360 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
361 7800, 0x0f, 0x00, 18,
363 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
364 10000, 0x0a, 0x00, 24,
366 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
367 13900, 0x0e, 0x00, 36,
369 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
370 17300, 0x09, 0x00, 48,
372 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
373 23000, 0x0d, 0x00, 72,
375 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
376 27400, 0x08, 0x00, 96,
378 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
379 29300, 0x0c, 0x00, 108,
382 50, /* probe interval */
383 50, /* rssi reduce interval */
384 0, /* Phy rates allowed initially */
387 static struct ath_rate_table ar5416_11b_ratetable = {
391 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
392 900, 0x1b, 0x00, (0x80|2),
394 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
395 1800, 0x1a, 0x04, (0x80|4),
397 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
398 4300, 0x19, 0x04, (0x80|11),
400 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
401 7100, 0x18, 0x04, (0x80|22),
404 100, /* probe interval */
405 100, /* rssi reduce interval */
406 0, /* Phy rates allowed initially */
409 static inline int8_t median(int8_t a, int8_t b, int8_t c)
428 static void ath_rc_sort_validrates(struct ath_rate_table *rate_table,
429 struct ath_rate_priv *ath_rc_priv)
431 u8 i, j, idx, idx_next;
433 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
434 for (j = 0; j <= i-1; j++) {
435 idx = ath_rc_priv->valid_rate_index[j];
436 idx_next = ath_rc_priv->valid_rate_index[j+1];
438 if (rate_table->info[idx].ratekbps >
439 rate_table->info[idx_next].ratekbps) {
440 ath_rc_priv->valid_rate_index[j] = idx_next;
441 ath_rc_priv->valid_rate_index[j+1] = idx;
447 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
451 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
452 ath_rc_priv->valid_rate_index[i] = 0;
455 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
456 u8 index, int valid_tx_rate)
458 ASSERT(index <= ath_rc_priv->rate_table_size);
459 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
462 static inline int ath_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv,
465 ASSERT(index <= ath_rc_priv->rate_table_size);
466 return ath_rc_priv->valid_rate_index[index];
469 static inline int ath_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table,
470 struct ath_rate_priv *ath_rc_priv,
476 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
477 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
478 *next_idx = ath_rc_priv->valid_rate_index[i+1];
483 /* No more valid rates */
489 /* Return true only for single stream */
491 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
493 if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG))
495 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
497 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
499 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
500 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
502 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
508 ath_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table,
509 struct ath_rate_priv *ath_rc_priv,
510 u8 cur_valid_txrate, u8 *next_idx)
514 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
515 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
516 *next_idx = ath_rc_priv->valid_rate_index[i-1];
524 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
525 struct ath_rate_table *rate_table,
531 for (i = 0; i < rate_table->rate_cnt; i++) {
532 valid = (ath_rc_priv->single_stream ?
533 rate_table->info[i].valid_single_stream :
534 rate_table->info[i].valid);
536 u32 phy = rate_table->info[i].phy;
537 u8 valid_rate_count = 0;
539 if (!ath_rc_valid_phyrate(phy, capflag, 0))
542 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
544 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
545 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
546 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
554 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
555 struct ath_rate_table *rate_table,
556 struct ath_rateset *rateset,
561 /* Use intersection of working rates and valid rates */
562 for (i = 0; i < rateset->rs_nrates; i++) {
563 for (j = 0; j < rate_table->rate_cnt; j++) {
564 u32 phy = rate_table->info[j].phy;
565 u32 valid = (ath_rc_priv->single_stream ?
566 rate_table->info[j].valid_single_stream :
567 rate_table->info[j].valid);
568 u8 rate = rateset->rs_rates[i];
569 u8 dot11rate = rate_table->info[j].dot11rate;
571 /* We allow a rate only if its valid and the
572 * capflag matches one of the validity
573 * (VALID/VALID_20/VALID_40) flags */
575 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
576 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
577 WLAN_RC_CAP_MODE(capflag)) &&
578 !WLAN_RC_PHY_HT(phy)) {
579 u8 valid_rate_count = 0;
581 if (!ath_rc_valid_phyrate(phy, capflag, 0))
585 ath_rc_priv->valid_phy_ratecnt[phy];
587 ath_rc_priv->valid_phy_rateidx[phy]
588 [valid_rate_count] = j;
589 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
590 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
599 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
600 struct ath_rate_table *rate_table,
601 u8 *mcs_set, u32 capflag)
603 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
607 /* Use intersection of working rates and valid rates */
608 for (i = 0; i < rateset->rs_nrates; i++) {
609 for (j = 0; j < rate_table->rate_cnt; j++) {
610 u32 phy = rate_table->info[j].phy;
611 u32 valid = (ath_rc_priv->single_stream ?
612 rate_table->info[j].valid_single_stream :
613 rate_table->info[j].valid);
614 u8 rate = rateset->rs_rates[i];
615 u8 dot11rate = rate_table->info[j].dot11rate;
617 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
618 !WLAN_RC_PHY_HT(phy) ||
619 !WLAN_RC_PHY_HT_VALID(valid, capflag))
622 if (!ath_rc_valid_phyrate(phy, capflag, 0))
625 ath_rc_priv->valid_phy_rateidx[phy]
626 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
627 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
628 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
636 static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
637 struct ath_rate_priv *ath_rc_priv,
638 struct ath_rate_table *rate_table,
639 int probe_allowed, int *is_probing,
642 u32 dt, best_thruput, this_thruput, now_msec;
643 u8 rate, next_rate, best_rate, maxindex, minindex;
644 int8_t rssi_last, rssi_reduce = 0, index = 0;
648 rssi_last = median(ath_rc_priv->rssi_last,
649 ath_rc_priv->rssi_last_prev,
650 ath_rc_priv->rssi_last_prev2);
653 * Age (reduce) last ack rssi based on how old it is.
654 * The bizarre numbers are so the delta is 160msec,
655 * meaning we divide by 16.
656 * 0msec <= dt <= 25msec: don't derate
657 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
658 * 185msec <= dt: derate by 10dB
661 now_msec = jiffies_to_msecs(jiffies);
662 dt = now_msec - ath_rc_priv->rssi_time;
667 rssi_reduce = (u8)((dt - 25) >> 4);
669 /* Now reduce rssi_last by rssi_reduce */
670 if (rssi_last < rssi_reduce)
673 rssi_last -= rssi_reduce;
676 * Now look up the rate in the rssi table and return it.
677 * If no rates match then we return 0 (lowest rate)
681 maxindex = ath_rc_priv->max_valid_rate-1;
684 best_rate = minindex;
687 * Try the higher rate first. It will reduce memory moving time
688 * if we have very good channel characteristics.
690 for (index = maxindex; index >= minindex ; index--) {
693 rate = ath_rc_priv->valid_rate_index[index];
694 if (rate > ath_rc_priv->rate_max_phy)
698 * For TCP the average collision rate is around 11%,
699 * so we ignore PERs less than this. This is to
700 * prevent the rate we are currently using (whose
701 * PER might be in the 10-15 range because of TCP
702 * collisions) looking worse than the next lower
703 * rate whose PER has decayed close to 0. If we
704 * used to next lower rate, its PER would grow to
705 * 10-15 and we would be worse off then staying
706 * at the current rate.
708 per_thres = ath_rc_priv->state[rate].per;
712 this_thruput = rate_table->info[rate].user_ratekbps *
715 if (best_thruput <= this_thruput) {
716 best_thruput = this_thruput;
723 /* if we are retrying for more than half the number
724 * of max retries, use the min rate for the next retry
727 rate = ath_rc_priv->valid_rate_index[minindex];
729 ath_rc_priv->rssi_last_lookup = rssi_last;
732 * Must check the actual rate (ratekbps) to account for
733 * non-monoticity of 11g's rate table
736 if (rate >= ath_rc_priv->rate_max_phy && probe_allowed) {
737 rate = ath_rc_priv->rate_max_phy;
739 /* Probe the next allowed phy state */
740 /* FIXME:XXXX Check to make sure ratMax is checked properly */
741 if (ath_rc_get_nextvalid_txrate(rate_table,
742 ath_rc_priv, rate, &next_rate) &&
743 (now_msec - ath_rc_priv->probe_time >
744 rate_table->probe_interval) &&
745 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
747 ath_rc_priv->probe_rate = rate;
748 ath_rc_priv->probe_time = now_msec;
749 ath_rc_priv->hw_maxretry_pktcnt = 0;
754 if (rate > (ath_rc_priv->rate_table_size - 1))
755 rate = ath_rc_priv->rate_table_size - 1;
757 ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
758 (rate_table->info[rate].valid_single_stream &&
759 ath_rc_priv->single_stream));
764 static void ath_rc_rate_set_series(struct ath_rate_table *rate_table ,
765 struct ieee80211_tx_rate *rate,
766 u8 tries, u8 rix, int rtsctsenable)
772 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
773 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
774 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
775 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
776 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
777 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
778 rate->flags |= IEEE80211_TX_RC_MCS;
781 static u8 ath_rc_rate_getidx(struct ath_softc *sc,
782 struct ath_rate_priv *ath_rc_priv,
783 struct ath_rate_table *rate_table,
784 u8 rix, u16 stepdown,
791 for (j = RATE_TABLE_SIZE; j > 0; j--) {
792 if (ath_rc_get_nextlowervalid_txrate(rate_table,
793 ath_rc_priv, rix, &nextindex))
799 for (j = stepdown; j > 0; j--) {
800 if (ath_rc_get_nextlowervalid_txrate(rate_table,
801 ath_rc_priv, rix, &nextindex))
810 static void ath_rc_ratefind(struct ath_softc *sc,
811 struct ath_rate_priv *ath_rc_priv,
812 int num_tries, int num_rates,
813 struct ieee80211_tx_info *tx_info, int *is_probe,
816 u8 try_per_rate = 0, i = 0, rix, nrix;
817 struct ath_rate_table *rate_table;
818 struct ieee80211_tx_rate *rates = tx_info->control.rates;
820 rate_table = sc->hw_rate_table[sc->sc_curmode];
821 rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, 1,
826 /* set one try for probe rates. For the
827 * probes don't enable rts */
828 ath_rc_rate_set_series(rate_table,
829 &rates[i++], 1, nrix, 0);
831 try_per_rate = (num_tries/num_rates);
832 /* Get the next tried/allowed rate. No RTS for the next series
833 * after the probe rate
835 nrix = ath_rc_rate_getidx(sc,
836 ath_rc_priv, rate_table, nrix, 1, 0);
837 ath_rc_rate_set_series(rate_table,
838 &rates[i++], try_per_rate, nrix, 0);
840 try_per_rate = (num_tries/num_rates);
841 /* Set the choosen rate. No RTS for first series entry. */
842 ath_rc_rate_set_series(rate_table,
843 &rates[i++], try_per_rate, nrix, 0);
846 /* Fill in the other rates for multirate retry */
847 for ( ; i < num_rates; i++) {
851 try_num = ((i + 1) == num_rates) ?
852 num_tries - (try_per_rate * i) : try_per_rate ;
853 min_rate = (((i + 1) == num_rates) && 0);
855 nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
856 rate_table, nrix, 1, min_rate);
857 /* All other rates in the series have RTS enabled */
858 ath_rc_rate_set_series(rate_table,
859 &rates[i], try_num, nrix, 1);
863 * NB:Change rate series to enable aggregation when operating
864 * at lower MCS rates. When first rate in series is MCS2
865 * in HT40 @ 2.4GHz, series should look like:
867 * {MCS2, MCS1, MCS0, MCS0}.
869 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
872 * {MCS3, MCS2, MCS1, MCS1}
874 * So, set fourth rate in series to be same as third one for
877 if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) ||
878 (sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) ||
879 (sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) {
880 u8 dot11rate = rate_table->info[rix].dot11rate;
881 u8 phy = rate_table->info[rix].phy;
883 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
884 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
885 rates[3].idx = rates[2].idx;
886 rates[3].flags = rates[2].flags;
891 static bool ath_rc_update_per(struct ath_softc *sc,
892 struct ath_rate_table *rate_table,
893 struct ath_rate_priv *ath_rc_priv,
894 struct ath_tx_info_priv *tx_info_priv,
895 int tx_rate, int xretries, int retries,
898 bool state_change = false;
901 static u32 nretry_to_per_lookup[10] = {
914 last_per = ath_rc_priv->state[tx_rate].per;
918 ath_rc_priv->state[tx_rate].per += 30;
919 if (ath_rc_priv->state[tx_rate].per > 100)
920 ath_rc_priv->state[tx_rate].per = 100;
923 count = ARRAY_SIZE(nretry_to_per_lookup);
924 if (retries >= count)
927 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
928 ath_rc_priv->state[tx_rate].per =
929 (u8)(last_per - (last_per >> 3) + (100 >> 3));
932 /* xretries == 1 or 2 */
934 if (ath_rc_priv->probe_rate == tx_rate)
935 ath_rc_priv->probe_rate = 0;
937 } else { /* xretries == 0 */
938 count = ARRAY_SIZE(nretry_to_per_lookup);
939 if (retries >= count)
942 if (tx_info_priv->n_bad_frames) {
943 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
944 * Assuming that n_frames is not 0. The current PER
945 * from the retries is 100 * retries / (retries+1),
946 * since the first retries attempts failed, and the
947 * next one worked. For the one that worked,
948 * n_bad_frames subframes out of n_frames wored,
949 * so the PER for that part is
950 * 100 * n_bad_frames / n_frames, and it contributes
951 * 100 * n_bad_frames / (n_frames * (retries+1)) to
952 * the above PER. The expression below is a
953 * simplified version of the sum of these two terms.
955 if (tx_info_priv->n_frames > 0) {
956 int n_frames, n_bad_frames;
959 n_bad_frames = retries * tx_info_priv->n_frames +
960 tx_info_priv->n_bad_frames;
961 n_frames = tx_info_priv->n_frames * (retries + 1);
962 cur_per = (100 * n_bad_frames / n_frames) >> 3;
963 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
964 ath_rc_priv->state[tx_rate].per = new_per;
967 ath_rc_priv->state[tx_rate].per =
968 (u8)(last_per - (last_per >> 3) +
969 (nretry_to_per_lookup[retries] >> 3));
972 ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
973 ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
974 ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
975 ath_rc_priv->rssi_time = now_msec;
978 * If we got at most one retry then increase the max rate if
979 * this was a probe. Otherwise, ignore the probe.
981 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
982 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
983 tx_info_priv->n_frames) {
985 * Since we probed with just a single attempt,
986 * any retries means the probe failed. Also,
987 * if the attempt worked, but more than half
988 * the subframes were bad then also consider
989 * the probe a failure.
991 ath_rc_priv->probe_rate = 0;
995 ath_rc_priv->rate_max_phy =
996 ath_rc_priv->probe_rate;
997 probe_rate = ath_rc_priv->probe_rate;
999 if (ath_rc_priv->state[probe_rate].per > 30)
1000 ath_rc_priv->state[probe_rate].per = 20;
1002 ath_rc_priv->probe_rate = 0;
1005 * Since this probe succeeded, we allow the next
1006 * probe twice as soon. This allows the maxRate
1007 * to move up faster if the probes are
1010 ath_rc_priv->probe_time =
1011 now_msec - rate_table->probe_interval / 2;
1017 * Don't update anything. We don't know if
1018 * this was because of collisions or poor signal.
1020 * Later: if rssi_ack is close to
1021 * ath_rc_priv->state[txRate].rssi_thres and we see lots
1022 * of retries, then we could increase
1023 * ath_rc_priv->state[txRate].rssi_thres.
1025 ath_rc_priv->hw_maxretry_pktcnt = 0;
1027 int32_t rssi_ackAvg;
1029 int8_t rssi_ack_vmin;
1032 * It worked with no retries. First ignore bogus (small)
1035 if (tx_rate == ath_rc_priv->rate_max_phy &&
1036 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1037 ath_rc_priv->hw_maxretry_pktcnt++;
1040 if (tx_info_priv->tx.ts_rssi <
1041 rate_table->info[tx_rate].rssi_ack_validmin)
1044 /* Average the rssi */
1045 if (tx_rate != ath_rc_priv->rssi_sum_rate) {
1046 ath_rc_priv->rssi_sum_rate = tx_rate;
1047 ath_rc_priv->rssi_sum =
1048 ath_rc_priv->rssi_sum_cnt = 0;
1051 ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
1052 ath_rc_priv->rssi_sum_cnt++;
1054 if (ath_rc_priv->rssi_sum_cnt < 4)
1058 (ath_rc_priv->rssi_sum + 2) / 4;
1060 ath_rc_priv->state[tx_rate].rssi_thres;
1062 rate_table->info[tx_rate].rssi_ack_validmin;
1064 ath_rc_priv->rssi_sum =
1065 ath_rc_priv->rssi_sum_cnt = 0;
1067 /* Now reduce the current rssi threshold */
1068 if ((rssi_ackAvg < rssi_thres + 2) &&
1069 (rssi_thres > rssi_ack_vmin)) {
1070 ath_rc_priv->state[tx_rate].rssi_thres--;
1073 state_change = true;
1077 return state_change;
1080 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1081 If you can make sense of all this, you really need to go out more. */
1083 static void ath_rc_update_ht(struct ath_softc *sc,
1084 struct ath_rate_priv *ath_rc_priv,
1085 struct ath_tx_info_priv *tx_info_priv,
1086 int tx_rate, int xretries, int retries)
1088 #define CHK_RSSI(rate) \
1089 ((ath_rc_priv->state[(rate)].rssi_thres + \
1090 rate_table->info[(rate)].rssi_ack_deltamin) > \
1091 ath_rc_priv->state[(rate)+1].rssi_thres)
1093 u32 now_msec = jiffies_to_msecs(jiffies);
1096 bool state_change = false;
1097 struct ath_rate_table *rate_table = sc->hw_rate_table[sc->sc_curmode];
1098 int size = ath_rc_priv->rate_table_size;
1100 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1103 /* To compensate for some imbalance between ctrl and ext. channel */
1105 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1106 tx_info_priv->tx.ts_rssi =
1107 tx_info_priv->tx.ts_rssi < 3 ? 0 :
1108 tx_info_priv->tx.ts_rssi - 3;
1110 last_per = ath_rc_priv->state[tx_rate].per;
1112 /* Update PER first */
1113 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1114 tx_info_priv, tx_rate, xretries,
1118 * If this rate looks bad (high PER) then stop using it for
1119 * a while (except if we are probing).
1121 if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
1122 rate_table->info[tx_rate].ratekbps <=
1123 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1124 ath_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv,
1125 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1127 /* Don't probe for a little while. */
1128 ath_rc_priv->probe_time = now_msec;
1133 * Make sure the rates above this have higher rssi thresholds.
1134 * (Note: Monotonicity is kept within the OFDM rates and
1135 * within the CCK rates. However, no adjustment is
1136 * made to keep the rssi thresholds monotonically
1137 * increasing between the CCK and OFDM rates.)
1139 for (rate = tx_rate; rate < size - 1; rate++) {
1140 if (rate_table->info[rate+1].phy !=
1141 rate_table->info[tx_rate].phy)
1144 if (CHK_RSSI(rate)) {
1145 ath_rc_priv->state[rate+1].rssi_thres =
1146 ath_rc_priv->state[rate].rssi_thres +
1147 rate_table->info[rate].rssi_ack_deltamin;
1151 /* Make sure the rates below this have lower rssi thresholds. */
1152 for (rate = tx_rate - 1; rate >= 0; rate--) {
1153 if (rate_table->info[rate].phy !=
1154 rate_table->info[tx_rate].phy)
1157 if (CHK_RSSI(rate)) {
1158 if (ath_rc_priv->state[rate+1].rssi_thres <
1159 rate_table->info[rate].rssi_ack_deltamin)
1160 ath_rc_priv->state[rate].rssi_thres = 0;
1162 ath_rc_priv->state[rate].rssi_thres =
1163 ath_rc_priv->state[rate+1].rssi_thres -
1164 rate_table->info[rate].rssi_ack_deltamin;
1167 if (ath_rc_priv->state[rate].rssi_thres <
1168 rate_table->info[rate].rssi_ack_validmin) {
1169 ath_rc_priv->state[rate].rssi_thres =
1170 rate_table->info[rate].rssi_ack_validmin;
1176 /* Make sure the rates below this have lower PER */
1177 /* Monotonicity is kept only for rates below the current rate. */
1178 if (ath_rc_priv->state[tx_rate].per < last_per) {
1179 for (rate = tx_rate - 1; rate >= 0; rate--) {
1180 if (rate_table->info[rate].phy !=
1181 rate_table->info[tx_rate].phy)
1184 if (ath_rc_priv->state[rate].per >
1185 ath_rc_priv->state[rate+1].per) {
1186 ath_rc_priv->state[rate].per =
1187 ath_rc_priv->state[rate+1].per;
1192 /* Maintain monotonicity for rates above the current rate */
1193 for (rate = tx_rate; rate < size - 1; rate++) {
1194 if (ath_rc_priv->state[rate+1].per <
1195 ath_rc_priv->state[rate].per)
1196 ath_rc_priv->state[rate+1].per =
1197 ath_rc_priv->state[rate].per;
1200 /* Every so often, we reduce the thresholds and
1201 * PER (different for CCK and OFDM). */
1202 if (now_msec - ath_rc_priv->rssi_down_time >=
1203 rate_table->rssi_reduce_interval) {
1205 for (rate = 0; rate < size; rate++) {
1206 if (ath_rc_priv->state[rate].rssi_thres >
1207 rate_table->info[rate].rssi_ack_validmin)
1208 ath_rc_priv->state[rate].rssi_thres -= 1;
1210 ath_rc_priv->rssi_down_time = now_msec;
1213 /* Every so often, we reduce the thresholds
1214 * and PER (different for CCK and OFDM). */
1215 if (now_msec - ath_rc_priv->per_down_time >=
1216 rate_table->rssi_reduce_interval) {
1217 for (rate = 0; rate < size; rate++) {
1218 ath_rc_priv->state[rate].per =
1219 7 * ath_rc_priv->state[rate].per / 8;
1222 ath_rc_priv->per_down_time = now_msec;
1228 static int ath_rc_get_rateindex(struct ath_rate_table *rate_table,
1229 struct ieee80211_tx_rate *rate)
1233 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1234 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1235 rix = rate_table->info[rate->idx].ht_index;
1236 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1237 rix = rate_table->info[rate->idx].sgi_index;
1238 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1239 rix = rate_table->info[rate->idx].cw40index;
1241 rix = rate_table->info[rate->idx].base_index;
1246 static void ath_rc_tx_status(struct ath_softc *sc,
1247 struct ath_rate_priv *ath_rc_priv,
1248 struct ieee80211_tx_info *tx_info,
1249 int final_ts_idx, int xretries, int long_retry)
1251 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1252 struct ath_rate_table *rate_table;
1253 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1257 rate_table = sc->hw_rate_table[sc->sc_curmode];
1260 * If the first rate is not the final index, there
1261 * are intermediate rate failures to be processed.
1263 if (final_ts_idx != 0) {
1264 /* Process intermediate rates that failed.*/
1265 for (i = 0; i < final_ts_idx ; i++) {
1266 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1267 flags = rates[i].flags;
1269 /* If HT40 and we have switched mode from
1270 * 40 to 20 => don't update */
1272 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1273 (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG))
1276 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1277 ath_rc_update_ht(sc, ath_rc_priv,
1285 * Handle the special case of MIMO PS burst, where the second
1286 * aggregate is sent out with only one rate and one try.
1287 * Treating it as an excessive retry penalizes the rate
1290 if (rates[0].count == 1 && xretries == 1)
1294 flags = rates[i].flags;
1296 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1297 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1298 (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) {
1302 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1303 ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1304 xretries, long_retry);
1307 static void ath_rc_init(struct ath_softc *sc,
1308 struct ath_rate_priv *ath_rc_priv,
1309 struct ieee80211_supported_band *sband,
1310 struct ieee80211_sta *sta)
1312 struct ath_rate_table *rate_table = NULL;
1313 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1314 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1315 u8 i, j, k, hi = 0, hthi = 0;
1317 rate_table = sc->hw_rate_table[sc->sc_curmode];
1319 if (sta->ht_cap.ht_supported) {
1320 if (sband->band == IEEE80211_BAND_2GHZ)
1321 rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
1323 rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
1325 ath_rc_priv->ht_cap = (WLAN_RC_HT_FLAG | WLAN_RC_DS_FLAG);
1327 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
1328 ath_rc_priv->ht_cap |= WLAN_RC_40_FLAG;
1331 /* Initial rate table size. Will change depending
1332 * on the working rate set */
1333 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1335 /* Initialize thresholds according to the global rate table */
1336 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1337 ath_rc_priv->state[i].rssi_thres =
1338 rate_table->info[i].rssi_ack_validmin;
1339 ath_rc_priv->state[i].per = 0;
1342 /* Determine the valid rates */
1343 ath_rc_init_valid_txmask(ath_rc_priv);
1345 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1346 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1347 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1348 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1350 ath_rc_priv->rc_phy_mode = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
1352 /* Set stream capability */
1353 ath_rc_priv->single_stream = (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? 0 : 1;
1355 if (!rateset->rs_nrates) {
1356 /* No working rate, just initialize valid rates */
1357 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1358 ath_rc_priv->ht_cap);
1360 /* Use intersection of working rates and valid rates */
1361 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1362 rateset, ath_rc_priv->ht_cap);
1363 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1364 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1367 ath_rc_priv->ht_cap);
1369 hi = A_MAX(hi, hthi);
1372 ath_rc_priv->rate_table_size = hi + 1;
1373 ath_rc_priv->rate_max_phy = 0;
1374 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1376 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1377 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1378 ath_rc_priv->valid_rate_index[k++] =
1379 ath_rc_priv->valid_phy_rateidx[i][j];
1382 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1383 || !ath_rc_priv->valid_phy_ratecnt[i])
1386 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1388 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1389 ASSERT(k <= RATE_TABLE_SIZE);
1391 ath_rc_priv->max_valid_rate = k;
1392 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1393 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1396 /* Rate Control callbacks */
1397 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1398 struct ieee80211_sta *sta, void *priv_sta,
1399 struct sk_buff *skb)
1401 struct ath_softc *sc = priv;
1402 struct ath_rate_priv *ath_rc_priv = priv_sta;
1403 struct ath_tx_info_priv *tx_info_priv = NULL;
1404 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1405 struct ieee80211_hdr *hdr;
1406 int final_ts_idx, tx_status = 0, is_underrun = 0;
1409 hdr = (struct ieee80211_hdr *)skb->data;
1410 fc = hdr->frame_control;
1411 tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1412 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1414 if (!priv_sta || !ieee80211_is_data(fc) ||
1415 !tx_info_priv->update_rc)
1418 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1422 * If underrun error is seen assume it as an excessive retry only
1423 * if prefetch trigger level have reached the max (0x3f for 5416)
1424 * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
1425 * times. This affects how ratectrl updates PER for the failed rate.
1427 if (tx_info_priv->tx.ts_flags &
1428 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1429 ((sc->sc_ah->ah_txTrigLevel) >= ath_rc_priv->tx_triglevel_max)) {
1434 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1435 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1438 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1439 (is_underrun) ? ATH_11N_TXMAXTRY :
1440 tx_info_priv->tx.ts_longretry);
1443 kfree(tx_info_priv);
1446 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1447 struct ieee80211_tx_rate_control *txrc)
1449 struct ieee80211_supported_band *sband = txrc->sband;
1450 struct sk_buff *skb = txrc->skb;
1451 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1452 struct ath_softc *sc = priv;
1453 struct ieee80211_hw *hw = sc->hw;
1454 struct ath_rate_priv *ath_rc_priv = priv_sta;
1455 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1457 __le16 fc = hdr->frame_control;
1459 /* lowest rate for management and multicast/broadcast frames */
1460 if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1)) {
1461 tx_info->control.rates[0].idx = rate_lowest_index(sband, sta);
1462 tx_info->control.rates[0].count =
1463 is_multicast_ether_addr(hdr->addr1) ? 1 : ATH_MGT_TXMAXTRY;
1467 /* Find tx rate for unicast frames */
1468 ath_rc_ratefind(sc, ath_rc_priv, ATH_11N_TXMAXTRY, 4,
1469 tx_info, &is_probe, false);
1471 /* Check if aggregation has to be enabled for this tid */
1472 if (hw->conf.ht.enabled) {
1473 if (ieee80211_is_data_qos(fc)) {
1475 struct ath_node *an;
1477 qc = ieee80211_get_qos_ctl(hdr);
1479 an = (struct ath_node *)sta->drv_priv;
1481 if(ath_tx_aggr_check(sc, an, tid))
1482 ieee80211_start_tx_ba_session(hw, hdr->addr1, tid);
1487 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1488 struct ieee80211_sta *sta, void *priv_sta)
1490 struct ath_softc *sc = priv;
1491 struct ath_rate_priv *ath_rc_priv = priv_sta;
1494 for (i = 0; i < sband->n_bitrates; i++) {
1495 if (sta->supp_rates[sband->band] & BIT(i)) {
1496 ath_rc_priv->neg_rates.rs_rates[j]
1497 = (sband->bitrates[i].bitrate * 2) / 10;
1501 ath_rc_priv->neg_rates.rs_nrates = j;
1503 if (sta->ht_cap.ht_supported) {
1504 for (i = 0, j = 0; i < 77; i++) {
1505 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1506 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1507 if (j == ATH_RATE_MAX)
1510 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1513 ath_rc_init(sc, priv_sta, sband, sta);
1516 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1521 static void ath_rate_free(void *priv)
1526 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1528 struct ath_softc *sc = priv;
1529 struct ath_rate_priv *rate_priv;
1531 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1533 DPRINTF(sc, ATH_DBG_FATAL,
1534 "%s: Unable to allocate private rc structure\n",
1539 rate_priv->rssi_down_time = jiffies_to_msecs(jiffies);
1540 rate_priv->tx_triglevel_max = sc->sc_ah->ah_caps.tx_triglevel_max;
1545 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1548 struct ath_rate_priv *rate_priv = priv_sta;
1552 static struct rate_control_ops ath_rate_ops = {
1554 .name = "ath9k_rate_control",
1555 .tx_status = ath_tx_status,
1556 .get_rate = ath_get_rate,
1557 .rate_init = ath_rate_init,
1558 .alloc = ath_rate_alloc,
1559 .free = ath_rate_free,
1560 .alloc_sta = ath_rate_alloc_sta,
1561 .free_sta = ath_rate_free_sta,
1564 static void ath_setup_rate_table(struct ath_softc *sc,
1565 struct ath_rate_table *rate_table)
1569 for (i = 0; i < 256; i++)
1570 rate_table->rateCodeToIndex[i] = (u8)-1;
1572 for (i = 0; i < rate_table->rate_cnt; i++) {
1573 u8 code = rate_table->info[i].ratecode;
1574 u8 cix = rate_table->info[i].ctrl_rate;
1575 u8 sh = rate_table->info[i].short_preamble;
1577 rate_table->rateCodeToIndex[code] = i;
1578 rate_table->rateCodeToIndex[code | sh] = i;
1580 rate_table->info[i].lpAckDuration =
1581 ath9k_hw_computetxtime(sc->sc_ah, rate_table,
1582 WLAN_CTRL_FRAME_SIZE,
1585 rate_table->info[i].spAckDuration =
1586 ath9k_hw_computetxtime(sc->sc_ah, rate_table,
1587 WLAN_CTRL_FRAME_SIZE,
1593 void ath_rate_attach(struct ath_softc *sc)
1595 sc->hw_rate_table[ATH9K_MODE_11B] =
1596 &ar5416_11b_ratetable;
1597 sc->hw_rate_table[ATH9K_MODE_11A] =
1598 &ar5416_11a_ratetable;
1599 sc->hw_rate_table[ATH9K_MODE_11G] =
1600 &ar5416_11g_ratetable;
1601 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1602 &ar5416_11na_ratetable;
1603 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1604 &ar5416_11ng_ratetable;
1605 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1606 &ar5416_11na_ratetable;
1607 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1608 &ar5416_11na_ratetable;
1609 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1610 &ar5416_11ng_ratetable;
1611 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1612 &ar5416_11ng_ratetable;
1614 ath_setup_rate_table(sc, &ar5416_11b_ratetable);
1615 ath_setup_rate_table(sc, &ar5416_11a_ratetable);
1616 ath_setup_rate_table(sc, &ar5416_11g_ratetable);
1617 ath_setup_rate_table(sc, &ar5416_11na_ratetable);
1618 ath_setup_rate_table(sc, &ar5416_11ng_ratetable);
1621 int ath_rate_control_register(void)
1623 return ieee80211_rate_control_register(&ath_rate_ops);
1626 void ath_rate_control_unregister(void)
1628 ieee80211_rate_control_unregister(&ath_rate_ops);