slub: Do not cross cacheline boundaries for very small objects
[linux-2.6] / block / blk-settings.c
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
10
11 #include "blk.h"
12
13 unsigned long blk_max_low_pfn;
14 EXPORT_SYMBOL(blk_max_low_pfn);
15
16 unsigned long blk_max_pfn;
17 EXPORT_SYMBOL(blk_max_pfn);
18
19 /**
20  * blk_queue_prep_rq - set a prepare_request function for queue
21  * @q:          queue
22  * @pfn:        prepare_request function
23  *
24  * It's possible for a queue to register a prepare_request callback which
25  * is invoked before the request is handed to the request_fn. The goal of
26  * the function is to prepare a request for I/O, it can be used to build a
27  * cdb from the request data for instance.
28  *
29  */
30 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
31 {
32         q->prep_rq_fn = pfn;
33 }
34 EXPORT_SYMBOL(blk_queue_prep_rq);
35
36 /**
37  * blk_queue_merge_bvec - set a merge_bvec function for queue
38  * @q:          queue
39  * @mbfn:       merge_bvec_fn
40  *
41  * Usually queues have static limitations on the max sectors or segments that
42  * we can put in a request. Stacking drivers may have some settings that
43  * are dynamic, and thus we have to query the queue whether it is ok to
44  * add a new bio_vec to a bio at a given offset or not. If the block device
45  * has such limitations, it needs to register a merge_bvec_fn to control
46  * the size of bio's sent to it. Note that a block device *must* allow a
47  * single page to be added to an empty bio. The block device driver may want
48  * to use the bio_split() function to deal with these bio's. By default
49  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
50  * honored.
51  */
52 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
53 {
54         q->merge_bvec_fn = mbfn;
55 }
56 EXPORT_SYMBOL(blk_queue_merge_bvec);
57
58 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
59 {
60         q->softirq_done_fn = fn;
61 }
62 EXPORT_SYMBOL(blk_queue_softirq_done);
63
64 /**
65  * blk_queue_make_request - define an alternate make_request function for a device
66  * @q:  the request queue for the device to be affected
67  * @mfn: the alternate make_request function
68  *
69  * Description:
70  *    The normal way for &struct bios to be passed to a device
71  *    driver is for them to be collected into requests on a request
72  *    queue, and then to allow the device driver to select requests
73  *    off that queue when it is ready.  This works well for many block
74  *    devices. However some block devices (typically virtual devices
75  *    such as md or lvm) do not benefit from the processing on the
76  *    request queue, and are served best by having the requests passed
77  *    directly to them.  This can be achieved by providing a function
78  *    to blk_queue_make_request().
79  *
80  * Caveat:
81  *    The driver that does this *must* be able to deal appropriately
82  *    with buffers in "highmemory". This can be accomplished by either calling
83  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
84  *    blk_queue_bounce() to create a buffer in normal memory.
85  **/
86 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
87 {
88         /*
89          * set defaults
90          */
91         q->nr_requests = BLKDEV_MAX_RQ;
92         blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
93         blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
94         q->make_request_fn = mfn;
95         q->backing_dev_info.ra_pages =
96                         (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
97         q->backing_dev_info.state = 0;
98         q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
99         blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
100         blk_queue_hardsect_size(q, 512);
101         blk_queue_dma_alignment(q, 511);
102         blk_queue_congestion_threshold(q);
103         q->nr_batching = BLK_BATCH_REQ;
104
105         q->unplug_thresh = 4;           /* hmm */
106         q->unplug_delay = (3 * HZ) / 1000;      /* 3 milliseconds */
107         if (q->unplug_delay == 0)
108                 q->unplug_delay = 1;
109
110         INIT_WORK(&q->unplug_work, blk_unplug_work);
111
112         q->unplug_timer.function = blk_unplug_timeout;
113         q->unplug_timer.data = (unsigned long)q;
114
115         /*
116          * by default assume old behaviour and bounce for any highmem page
117          */
118         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
119 }
120 EXPORT_SYMBOL(blk_queue_make_request);
121
122 /**
123  * blk_queue_bounce_limit - set bounce buffer limit for queue
124  * @q:  the request queue for the device
125  * @dma_addr:   bus address limit
126  *
127  * Description:
128  *    Different hardware can have different requirements as to what pages
129  *    it can do I/O directly to. A low level driver can call
130  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
131  *    buffers for doing I/O to pages residing above @page.
132  **/
133 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
134 {
135         unsigned long b_pfn = dma_addr >> PAGE_SHIFT;
136         int dma = 0;
137
138         q->bounce_gfp = GFP_NOIO;
139 #if BITS_PER_LONG == 64
140         /* Assume anything <= 4GB can be handled by IOMMU.
141            Actually some IOMMUs can handle everything, but I don't
142            know of a way to test this here. */
143         if (b_pfn <= (min_t(u64, 0xffffffff, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
144                 dma = 1;
145         q->bounce_pfn = max_low_pfn;
146 #else
147         if (b_pfn < blk_max_low_pfn)
148                 dma = 1;
149         q->bounce_pfn = b_pfn;
150 #endif
151         if (dma) {
152                 init_emergency_isa_pool();
153                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
154                 q->bounce_pfn = b_pfn;
155         }
156 }
157 EXPORT_SYMBOL(blk_queue_bounce_limit);
158
159 /**
160  * blk_queue_max_sectors - set max sectors for a request for this queue
161  * @q:  the request queue for the device
162  * @max_sectors:  max sectors in the usual 512b unit
163  *
164  * Description:
165  *    Enables a low level driver to set an upper limit on the size of
166  *    received requests.
167  **/
168 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
169 {
170         if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
171                 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
172                 printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__,
173                                                         max_sectors);
174         }
175
176         if (BLK_DEF_MAX_SECTORS > max_sectors)
177                 q->max_hw_sectors = q->max_sectors = max_sectors;
178         else {
179                 q->max_sectors = BLK_DEF_MAX_SECTORS;
180                 q->max_hw_sectors = max_sectors;
181         }
182 }
183 EXPORT_SYMBOL(blk_queue_max_sectors);
184
185 /**
186  * blk_queue_max_phys_segments - set max phys segments for a request for this queue
187  * @q:  the request queue for the device
188  * @max_segments:  max number of segments
189  *
190  * Description:
191  *    Enables a low level driver to set an upper limit on the number of
192  *    physical data segments in a request.  This would be the largest sized
193  *    scatter list the driver could handle.
194  **/
195 void blk_queue_max_phys_segments(struct request_queue *q,
196                                  unsigned short max_segments)
197 {
198         if (!max_segments) {
199                 max_segments = 1;
200                 printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__,
201                                                         max_segments);
202         }
203
204         q->max_phys_segments = max_segments;
205 }
206 EXPORT_SYMBOL(blk_queue_max_phys_segments);
207
208 /**
209  * blk_queue_max_hw_segments - set max hw segments for a request for this queue
210  * @q:  the request queue for the device
211  * @max_segments:  max number of segments
212  *
213  * Description:
214  *    Enables a low level driver to set an upper limit on the number of
215  *    hw data segments in a request.  This would be the largest number of
216  *    address/length pairs the host adapter can actually give as once
217  *    to the device.
218  **/
219 void blk_queue_max_hw_segments(struct request_queue *q,
220                                unsigned short max_segments)
221 {
222         if (!max_segments) {
223                 max_segments = 1;
224                 printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__,
225                                                         max_segments);
226         }
227
228         q->max_hw_segments = max_segments;
229 }
230 EXPORT_SYMBOL(blk_queue_max_hw_segments);
231
232 /**
233  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
234  * @q:  the request queue for the device
235  * @max_size:  max size of segment in bytes
236  *
237  * Description:
238  *    Enables a low level driver to set an upper limit on the size of a
239  *    coalesced segment
240  **/
241 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
242 {
243         if (max_size < PAGE_CACHE_SIZE) {
244                 max_size = PAGE_CACHE_SIZE;
245                 printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__,
246                                                         max_size);
247         }
248
249         q->max_segment_size = max_size;
250 }
251 EXPORT_SYMBOL(blk_queue_max_segment_size);
252
253 /**
254  * blk_queue_hardsect_size - set hardware sector size for the queue
255  * @q:  the request queue for the device
256  * @size:  the hardware sector size, in bytes
257  *
258  * Description:
259  *   This should typically be set to the lowest possible sector size
260  *   that the hardware can operate on (possible without reverting to
261  *   even internal read-modify-write operations). Usually the default
262  *   of 512 covers most hardware.
263  **/
264 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
265 {
266         q->hardsect_size = size;
267 }
268 EXPORT_SYMBOL(blk_queue_hardsect_size);
269
270 /*
271  * Returns the minimum that is _not_ zero, unless both are zero.
272  */
273 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
274
275 /**
276  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
277  * @t:  the stacking driver (top)
278  * @b:  the underlying device (bottom)
279  **/
280 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
281 {
282         /* zero is "infinity" */
283         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
284         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
285
286         t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments);
287         t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments);
288         t->max_segment_size = min(t->max_segment_size, b->max_segment_size);
289         t->hardsect_size = max(t->hardsect_size, b->hardsect_size);
290         if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
291                 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
292 }
293 EXPORT_SYMBOL(blk_queue_stack_limits);
294
295 /**
296  * blk_queue_dma_pad - set pad mask
297  * @q:     the request queue for the device
298  * @mask:  pad mask
299  *
300  * Set pad mask.  Direct IO requests are padded to the mask specified.
301  *
302  * Appending pad buffer to a request modifies ->data_len such that it
303  * includes the pad buffer.  The original requested data length can be
304  * obtained using blk_rq_raw_data_len().
305  **/
306 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
307 {
308         q->dma_pad_mask = mask;
309 }
310 EXPORT_SYMBOL(blk_queue_dma_pad);
311
312 /**
313  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
314  * @q:  the request queue for the device
315  * @dma_drain_needed: fn which returns non-zero if drain is necessary
316  * @buf:        physically contiguous buffer
317  * @size:       size of the buffer in bytes
318  *
319  * Some devices have excess DMA problems and can't simply discard (or
320  * zero fill) the unwanted piece of the transfer.  They have to have a
321  * real area of memory to transfer it into.  The use case for this is
322  * ATAPI devices in DMA mode.  If the packet command causes a transfer
323  * bigger than the transfer size some HBAs will lock up if there
324  * aren't DMA elements to contain the excess transfer.  What this API
325  * does is adjust the queue so that the buf is always appended
326  * silently to the scatterlist.
327  *
328  * Note: This routine adjusts max_hw_segments to make room for
329  * appending the drain buffer.  If you call
330  * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
331  * calling this routine, you must set the limit to one fewer than your
332  * device can support otherwise there won't be room for the drain
333  * buffer.
334  */
335 int blk_queue_dma_drain(struct request_queue *q,
336                                dma_drain_needed_fn *dma_drain_needed,
337                                void *buf, unsigned int size)
338 {
339         if (q->max_hw_segments < 2 || q->max_phys_segments < 2)
340                 return -EINVAL;
341         /* make room for appending the drain */
342         --q->max_hw_segments;
343         --q->max_phys_segments;
344         q->dma_drain_needed = dma_drain_needed;
345         q->dma_drain_buffer = buf;
346         q->dma_drain_size = size;
347
348         return 0;
349 }
350 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
351
352 /**
353  * blk_queue_segment_boundary - set boundary rules for segment merging
354  * @q:  the request queue for the device
355  * @mask:  the memory boundary mask
356  **/
357 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
358 {
359         if (mask < PAGE_CACHE_SIZE - 1) {
360                 mask = PAGE_CACHE_SIZE - 1;
361                 printk(KERN_INFO "%s: set to minimum %lx\n", __FUNCTION__,
362                                                         mask);
363         }
364
365         q->seg_boundary_mask = mask;
366 }
367 EXPORT_SYMBOL(blk_queue_segment_boundary);
368
369 /**
370  * blk_queue_dma_alignment - set dma length and memory alignment
371  * @q:     the request queue for the device
372  * @mask:  alignment mask
373  *
374  * description:
375  *    set required memory and length aligment for direct dma transactions.
376  *    this is used when buiding direct io requests for the queue.
377  *
378  **/
379 void blk_queue_dma_alignment(struct request_queue *q, int mask)
380 {
381         q->dma_alignment = mask;
382 }
383 EXPORT_SYMBOL(blk_queue_dma_alignment);
384
385 /**
386  * blk_queue_update_dma_alignment - update dma length and memory alignment
387  * @q:     the request queue for the device
388  * @mask:  alignment mask
389  *
390  * description:
391  *    update required memory and length aligment for direct dma transactions.
392  *    If the requested alignment is larger than the current alignment, then
393  *    the current queue alignment is updated to the new value, otherwise it
394  *    is left alone.  The design of this is to allow multiple objects
395  *    (driver, device, transport etc) to set their respective
396  *    alignments without having them interfere.
397  *
398  **/
399 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
400 {
401         BUG_ON(mask > PAGE_SIZE);
402
403         if (mask > q->dma_alignment)
404                 q->dma_alignment = mask;
405 }
406 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
407
408 static int __init blk_settings_init(void)
409 {
410         blk_max_low_pfn = max_low_pfn - 1;
411         blk_max_pfn = max_pfn - 1;
412         return 0;
413 }
414 subsys_initcall(blk_settings_init);