Merge branch 'for-linus' of git://git.kernel.dk/data/git/linux-2.6-block
[linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 /*
38  * The maximum number of SG segments that we will put inside a scatterlist
39  * (unless chaining is used). Should ideally fit inside a single page, to
40  * avoid a higher order allocation.
41  */
42 #define SCSI_MAX_SG_SEGMENTS    128
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         return blk_rq_append_bio(q, rq, bio);
267 }
268
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271         bio_put(bio);
272 }
273
274 /**
275  * scsi_req_map_sg - map a scatterlist into a request
276  * @rq:         request to fill
277  * @sg:         scatterlist
278  * @nsegs:      number of elements
279  * @bufflen:    len of buffer
280  * @gfp:        memory allocation flags
281  *
282  * scsi_req_map_sg maps a scatterlist into a request so that the
283  * request can be sent to the block layer. We do not trust the scatterlist
284  * sent to use, as some ULDs use that struct to only organize the pages.
285  */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287                            int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289         struct request_queue *q = rq->q;
290         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291         unsigned int data_len = bufflen, len, bytes, off;
292         struct scatterlist *sg;
293         struct page *page;
294         struct bio *bio = NULL;
295         int i, err, nr_vecs = 0;
296
297         for_each_sg(sgl, sg, nsegs, i) {
298                 page = sg->page;
299                 off = sg->offset;
300                 len = sg->length;
301                 data_len += len;
302
303                 while (len > 0 && data_len > 0) {
304                         /*
305                          * sg sends a scatterlist that is larger than
306                          * the data_len it wants transferred for certain
307                          * IO sizes
308                          */
309                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310                         bytes = min(bytes, data_len);
311
312                         if (!bio) {
313                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314                                 nr_pages -= nr_vecs;
315
316                                 bio = bio_alloc(gfp, nr_vecs);
317                                 if (!bio) {
318                                         err = -ENOMEM;
319                                         goto free_bios;
320                                 }
321                                 bio->bi_end_io = scsi_bi_endio;
322                         }
323
324                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
325                             bytes) {
326                                 bio_put(bio);
327                                 err = -EINVAL;
328                                 goto free_bios;
329                         }
330
331                         if (bio->bi_vcnt >= nr_vecs) {
332                                 err = scsi_merge_bio(rq, bio);
333                                 if (err) {
334                                         bio_endio(bio, 0);
335                                         goto free_bios;
336                                 }
337                                 bio = NULL;
338                         }
339
340                         page++;
341                         len -= bytes;
342                         data_len -=bytes;
343                         off = 0;
344                 }
345         }
346
347         rq->buffer = rq->data = NULL;
348         rq->data_len = bufflen;
349         return 0;
350
351 free_bios:
352         while ((bio = rq->bio) != NULL) {
353                 rq->bio = bio->bi_next;
354                 /*
355                  * call endio instead of bio_put incase it was bounced
356                  */
357                 bio_endio(bio, 0);
358         }
359
360         return err;
361 }
362
363 /**
364  * scsi_execute_async - insert request
365  * @sdev:       scsi device
366  * @cmd:        scsi command
367  * @cmd_len:    length of scsi cdb
368  * @data_direction: data direction
369  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
370  * @bufflen:    len of buffer
371  * @use_sg:     if buffer is a scatterlist this is the number of elements
372  * @timeout:    request timeout in seconds
373  * @retries:    number of times to retry request
374  * @flags:      or into request flags
375  **/
376 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
377                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
378                        int use_sg, int timeout, int retries, void *privdata,
379                        void (*done)(void *, char *, int, int), gfp_t gfp)
380 {
381         struct request *req;
382         struct scsi_io_context *sioc;
383         int err = 0;
384         int write = (data_direction == DMA_TO_DEVICE);
385
386         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
387         if (!sioc)
388                 return DRIVER_ERROR << 24;
389
390         req = blk_get_request(sdev->request_queue, write, gfp);
391         if (!req)
392                 goto free_sense;
393         req->cmd_type = REQ_TYPE_BLOCK_PC;
394         req->cmd_flags |= REQ_QUIET;
395
396         if (use_sg)
397                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
398         else if (bufflen)
399                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
400
401         if (err)
402                 goto free_req;
403
404         req->cmd_len = cmd_len;
405         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
406         memcpy(req->cmd, cmd, req->cmd_len);
407         req->sense = sioc->sense;
408         req->sense_len = 0;
409         req->timeout = timeout;
410         req->retries = retries;
411         req->end_io_data = sioc;
412
413         sioc->data = privdata;
414         sioc->done = done;
415
416         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
417         return 0;
418
419 free_req:
420         blk_put_request(req);
421 free_sense:
422         kmem_cache_free(scsi_io_context_cache, sioc);
423         return DRIVER_ERROR << 24;
424 }
425 EXPORT_SYMBOL_GPL(scsi_execute_async);
426
427 /*
428  * Function:    scsi_init_cmd_errh()
429  *
430  * Purpose:     Initialize cmd fields related to error handling.
431  *
432  * Arguments:   cmd     - command that is ready to be queued.
433  *
434  * Notes:       This function has the job of initializing a number of
435  *              fields related to error handling.   Typically this will
436  *              be called once for each command, as required.
437  */
438 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
439 {
440         cmd->serial_number = 0;
441         cmd->resid = 0;
442         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
443         if (cmd->cmd_len == 0)
444                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
445 }
446
447 void scsi_device_unbusy(struct scsi_device *sdev)
448 {
449         struct Scsi_Host *shost = sdev->host;
450         unsigned long flags;
451
452         spin_lock_irqsave(shost->host_lock, flags);
453         shost->host_busy--;
454         if (unlikely(scsi_host_in_recovery(shost) &&
455                      (shost->host_failed || shost->host_eh_scheduled)))
456                 scsi_eh_wakeup(shost);
457         spin_unlock(shost->host_lock);
458         spin_lock(sdev->request_queue->queue_lock);
459         sdev->device_busy--;
460         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
461 }
462
463 /*
464  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465  * and call blk_run_queue for all the scsi_devices on the target -
466  * including current_sdev first.
467  *
468  * Called with *no* scsi locks held.
469  */
470 static void scsi_single_lun_run(struct scsi_device *current_sdev)
471 {
472         struct Scsi_Host *shost = current_sdev->host;
473         struct scsi_device *sdev, *tmp;
474         struct scsi_target *starget = scsi_target(current_sdev);
475         unsigned long flags;
476
477         spin_lock_irqsave(shost->host_lock, flags);
478         starget->starget_sdev_user = NULL;
479         spin_unlock_irqrestore(shost->host_lock, flags);
480
481         /*
482          * Call blk_run_queue for all LUNs on the target, starting with
483          * current_sdev. We race with others (to set starget_sdev_user),
484          * but in most cases, we will be first. Ideally, each LU on the
485          * target would get some limited time or requests on the target.
486          */
487         blk_run_queue(current_sdev->request_queue);
488
489         spin_lock_irqsave(shost->host_lock, flags);
490         if (starget->starget_sdev_user)
491                 goto out;
492         list_for_each_entry_safe(sdev, tmp, &starget->devices,
493                         same_target_siblings) {
494                 if (sdev == current_sdev)
495                         continue;
496                 if (scsi_device_get(sdev))
497                         continue;
498
499                 spin_unlock_irqrestore(shost->host_lock, flags);
500                 blk_run_queue(sdev->request_queue);
501                 spin_lock_irqsave(shost->host_lock, flags);
502         
503                 scsi_device_put(sdev);
504         }
505  out:
506         spin_unlock_irqrestore(shost->host_lock, flags);
507 }
508
509 /*
510  * Function:    scsi_run_queue()
511  *
512  * Purpose:     Select a proper request queue to serve next
513  *
514  * Arguments:   q       - last request's queue
515  *
516  * Returns:     Nothing
517  *
518  * Notes:       The previous command was completely finished, start
519  *              a new one if possible.
520  */
521 static void scsi_run_queue(struct request_queue *q)
522 {
523         struct scsi_device *sdev = q->queuedata;
524         struct Scsi_Host *shost = sdev->host;
525         unsigned long flags;
526
527         if (sdev->single_lun)
528                 scsi_single_lun_run(sdev);
529
530         spin_lock_irqsave(shost->host_lock, flags);
531         while (!list_empty(&shost->starved_list) &&
532                !shost->host_blocked && !shost->host_self_blocked &&
533                 !((shost->can_queue > 0) &&
534                   (shost->host_busy >= shost->can_queue))) {
535                 /*
536                  * As long as shost is accepting commands and we have
537                  * starved queues, call blk_run_queue. scsi_request_fn
538                  * drops the queue_lock and can add us back to the
539                  * starved_list.
540                  *
541                  * host_lock protects the starved_list and starved_entry.
542                  * scsi_request_fn must get the host_lock before checking
543                  * or modifying starved_list or starved_entry.
544                  */
545                 sdev = list_entry(shost->starved_list.next,
546                                           struct scsi_device, starved_entry);
547                 list_del_init(&sdev->starved_entry);
548                 spin_unlock_irqrestore(shost->host_lock, flags);
549
550
551                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
552                     !test_and_set_bit(QUEUE_FLAG_REENTER,
553                                       &sdev->request_queue->queue_flags)) {
554                         blk_run_queue(sdev->request_queue);
555                         clear_bit(QUEUE_FLAG_REENTER,
556                                   &sdev->request_queue->queue_flags);
557                 } else
558                         blk_run_queue(sdev->request_queue);
559
560                 spin_lock_irqsave(shost->host_lock, flags);
561                 if (unlikely(!list_empty(&sdev->starved_entry)))
562                         /*
563                          * sdev lost a race, and was put back on the
564                          * starved list. This is unlikely but without this
565                          * in theory we could loop forever.
566                          */
567                         break;
568         }
569         spin_unlock_irqrestore(shost->host_lock, flags);
570
571         blk_run_queue(q);
572 }
573
574 /*
575  * Function:    scsi_requeue_command()
576  *
577  * Purpose:     Handle post-processing of completed commands.
578  *
579  * Arguments:   q       - queue to operate on
580  *              cmd     - command that may need to be requeued.
581  *
582  * Returns:     Nothing
583  *
584  * Notes:       After command completion, there may be blocks left
585  *              over which weren't finished by the previous command
586  *              this can be for a number of reasons - the main one is
587  *              I/O errors in the middle of the request, in which case
588  *              we need to request the blocks that come after the bad
589  *              sector.
590  * Notes:       Upon return, cmd is a stale pointer.
591  */
592 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
593 {
594         struct request *req = cmd->request;
595         unsigned long flags;
596
597         scsi_unprep_request(req);
598         spin_lock_irqsave(q->queue_lock, flags);
599         blk_requeue_request(q, req);
600         spin_unlock_irqrestore(q->queue_lock, flags);
601
602         scsi_run_queue(q);
603 }
604
605 void scsi_next_command(struct scsi_cmnd *cmd)
606 {
607         struct scsi_device *sdev = cmd->device;
608         struct request_queue *q = sdev->request_queue;
609
610         /* need to hold a reference on the device before we let go of the cmd */
611         get_device(&sdev->sdev_gendev);
612
613         scsi_put_command(cmd);
614         scsi_run_queue(q);
615
616         /* ok to remove device now */
617         put_device(&sdev->sdev_gendev);
618 }
619
620 void scsi_run_host_queues(struct Scsi_Host *shost)
621 {
622         struct scsi_device *sdev;
623
624         shost_for_each_device(sdev, shost)
625                 scsi_run_queue(sdev->request_queue);
626 }
627
628 /*
629  * Function:    scsi_end_request()
630  *
631  * Purpose:     Post-processing of completed commands (usually invoked at end
632  *              of upper level post-processing and scsi_io_completion).
633  *
634  * Arguments:   cmd      - command that is complete.
635  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636  *              bytes    - number of bytes of completed I/O
637  *              requeue  - indicates whether we should requeue leftovers.
638  *
639  * Lock status: Assumed that lock is not held upon entry.
640  *
641  * Returns:     cmd if requeue required, NULL otherwise.
642  *
643  * Notes:       This is called for block device requests in order to
644  *              mark some number of sectors as complete.
645  * 
646  *              We are guaranteeing that the request queue will be goosed
647  *              at some point during this call.
648  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
649  */
650 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
651                                           int bytes, int requeue)
652 {
653         struct request_queue *q = cmd->device->request_queue;
654         struct request *req = cmd->request;
655         unsigned long flags;
656
657         /*
658          * If there are blocks left over at the end, set up the command
659          * to queue the remainder of them.
660          */
661         if (end_that_request_chunk(req, uptodate, bytes)) {
662                 int leftover = (req->hard_nr_sectors << 9);
663
664                 if (blk_pc_request(req))
665                         leftover = req->data_len;
666
667                 /* kill remainder if no retrys */
668                 if (!uptodate && blk_noretry_request(req))
669                         end_that_request_chunk(req, 0, leftover);
670                 else {
671                         if (requeue) {
672                                 /*
673                                  * Bleah.  Leftovers again.  Stick the
674                                  * leftovers in the front of the
675                                  * queue, and goose the queue again.
676                                  */
677                                 scsi_requeue_command(q, cmd);
678                                 cmd = NULL;
679                         }
680                         return cmd;
681                 }
682         }
683
684         add_disk_randomness(req->rq_disk);
685
686         spin_lock_irqsave(q->queue_lock, flags);
687         if (blk_rq_tagged(req))
688                 blk_queue_end_tag(q, req);
689         end_that_request_last(req, uptodate);
690         spin_unlock_irqrestore(q->queue_lock, flags);
691
692         /*
693          * This will goose the queue request function at the end, so we don't
694          * need to worry about launching another command.
695          */
696         scsi_next_command(cmd);
697         return NULL;
698 }
699
700 /*
701  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
703  */
704 #define SCSI_MAX_SG_CHAIN_SEGMENTS      2048
705
706 static inline unsigned int scsi_sgtable_index(unsigned short nents)
707 {
708         unsigned int index;
709
710         switch (nents) {
711         case 1 ... 8:
712                 index = 0;
713                 break;
714         case 9 ... 16:
715                 index = 1;
716                 break;
717 #if (SCSI_MAX_SG_SEGMENTS > 16)
718         case 17 ... 32:
719                 index = 2;
720                 break;
721 #if (SCSI_MAX_SG_SEGMENTS > 32)
722         case 33 ... 64:
723                 index = 3;
724                 break;
725 #if (SCSI_MAX_SG_SEGMENTS > 64)
726         case 65 ... 128:
727                 index = 4;
728                 break;
729 #endif
730 #endif
731 #endif
732         default:
733                 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
734                 BUG();
735         }
736
737         return index;
738 }
739
740 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741 {
742         struct scsi_host_sg_pool *sgp;
743         struct scatterlist *sgl, *prev, *ret;
744         unsigned int index;
745         int this, left;
746
747         BUG_ON(!cmd->use_sg);
748
749         left = cmd->use_sg;
750         ret = prev = NULL;
751         do {
752                 this = left;
753                 if (this > SCSI_MAX_SG_SEGMENTS) {
754                         this = SCSI_MAX_SG_SEGMENTS - 1;
755                         index = SG_MEMPOOL_NR - 1;
756                 } else
757                         index = scsi_sgtable_index(this);
758
759                 left -= this;
760
761                 sgp = scsi_sg_pools + index;
762
763                 sgl = mempool_alloc(sgp->pool, gfp_mask);
764                 if (unlikely(!sgl))
765                         goto enomem;
766
767                 /*
768                  * first loop through, set initial index and return value
769                  */
770                 if (!ret)
771                         ret = sgl;
772
773                 /*
774                  * chain previous sglist, if any. we know the previous
775                  * sglist must be the biggest one, or we would not have
776                  * ended up doing another loop.
777                  */
778                 if (prev)
779                         sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
780
781                 /*
782                  * don't allow subsequent mempool allocs to sleep, it would
783                  * violate the mempool principle.
784                  */
785                 gfp_mask &= ~__GFP_WAIT;
786                 gfp_mask |= __GFP_HIGH;
787                 prev = sgl;
788         } while (left);
789
790         /*
791          * ->use_sg may get modified after dma mapping has potentially
792          * shrunk the number of segments, so keep a copy of it for free.
793          */
794         cmd->__use_sg = cmd->use_sg;
795         return ret;
796 enomem:
797         if (ret) {
798                 /*
799                  * Free entries chained off ret. Since we were trying to
800                  * allocate another sglist, we know that all entries are of
801                  * the max size.
802                  */
803                 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
804                 prev = ret;
805                 ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
806
807                 while ((sgl = sg_chain_ptr(ret)) != NULL) {
808                         ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
809                         mempool_free(sgl, sgp->pool);
810                 }
811
812                 mempool_free(prev, sgp->pool);
813         }
814         return NULL;
815 }
816
817 EXPORT_SYMBOL(scsi_alloc_sgtable);
818
819 void scsi_free_sgtable(struct scsi_cmnd *cmd)
820 {
821         struct scatterlist *sgl = cmd->request_buffer;
822         struct scsi_host_sg_pool *sgp;
823
824         /*
825          * if this is the biggest size sglist, check if we have
826          * chained parts we need to free
827          */
828         if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
829                 unsigned short this, left;
830                 struct scatterlist *next;
831                 unsigned int index;
832
833                 left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
834                 next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
835                 while (left && next) {
836                         sgl = next;
837                         this = left;
838                         if (this > SCSI_MAX_SG_SEGMENTS) {
839                                 this = SCSI_MAX_SG_SEGMENTS - 1;
840                                 index = SG_MEMPOOL_NR - 1;
841                         } else
842                                 index = scsi_sgtable_index(this);
843
844                         left -= this;
845
846                         sgp = scsi_sg_pools + index;
847
848                         if (left)
849                                 next = sg_chain_ptr(&sgl[sgp->size - 1]);
850
851                         mempool_free(sgl, sgp->pool);
852                 }
853
854                 /*
855                  * Restore original, will be freed below
856                  */
857                 sgl = cmd->request_buffer;
858                 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
859         } else
860                 sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
861
862         mempool_free(sgl, sgp->pool);
863 }
864
865 EXPORT_SYMBOL(scsi_free_sgtable);
866
867 /*
868  * Function:    scsi_release_buffers()
869  *
870  * Purpose:     Completion processing for block device I/O requests.
871  *
872  * Arguments:   cmd     - command that we are bailing.
873  *
874  * Lock status: Assumed that no lock is held upon entry.
875  *
876  * Returns:     Nothing
877  *
878  * Notes:       In the event that an upper level driver rejects a
879  *              command, we must release resources allocated during
880  *              the __init_io() function.  Primarily this would involve
881  *              the scatter-gather table, and potentially any bounce
882  *              buffers.
883  */
884 static void scsi_release_buffers(struct scsi_cmnd *cmd)
885 {
886         if (cmd->use_sg)
887                 scsi_free_sgtable(cmd);
888
889         /*
890          * Zero these out.  They now point to freed memory, and it is
891          * dangerous to hang onto the pointers.
892          */
893         cmd->request_buffer = NULL;
894         cmd->request_bufflen = 0;
895 }
896
897 /*
898  * Function:    scsi_io_completion()
899  *
900  * Purpose:     Completion processing for block device I/O requests.
901  *
902  * Arguments:   cmd   - command that is finished.
903  *
904  * Lock status: Assumed that no lock is held upon entry.
905  *
906  * Returns:     Nothing
907  *
908  * Notes:       This function is matched in terms of capabilities to
909  *              the function that created the scatter-gather list.
910  *              In other words, if there are no bounce buffers
911  *              (the normal case for most drivers), we don't need
912  *              the logic to deal with cleaning up afterwards.
913  *
914  *              We must do one of several things here:
915  *
916  *              a) Call scsi_end_request.  This will finish off the
917  *                 specified number of sectors.  If we are done, the
918  *                 command block will be released, and the queue
919  *                 function will be goosed.  If we are not done, then
920  *                 scsi_end_request will directly goose the queue.
921  *
922  *              b) We can just use scsi_requeue_command() here.  This would
923  *                 be used if we just wanted to retry, for example.
924  */
925 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
926 {
927         int result = cmd->result;
928         int this_count = cmd->request_bufflen;
929         struct request_queue *q = cmd->device->request_queue;
930         struct request *req = cmd->request;
931         int clear_errors = 1;
932         struct scsi_sense_hdr sshdr;
933         int sense_valid = 0;
934         int sense_deferred = 0;
935
936         scsi_release_buffers(cmd);
937
938         if (result) {
939                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
940                 if (sense_valid)
941                         sense_deferred = scsi_sense_is_deferred(&sshdr);
942         }
943
944         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
945                 req->errors = result;
946                 if (result) {
947                         clear_errors = 0;
948                         if (sense_valid && req->sense) {
949                                 /*
950                                  * SG_IO wants current and deferred errors
951                                  */
952                                 int len = 8 + cmd->sense_buffer[7];
953
954                                 if (len > SCSI_SENSE_BUFFERSIZE)
955                                         len = SCSI_SENSE_BUFFERSIZE;
956                                 memcpy(req->sense, cmd->sense_buffer,  len);
957                                 req->sense_len = len;
958                         }
959                 }
960                 req->data_len = cmd->resid;
961         }
962
963         /*
964          * Next deal with any sectors which we were able to correctly
965          * handle.
966          */
967         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
968                                       "%d bytes done.\n",
969                                       req->nr_sectors, good_bytes));
970         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
971
972         if (clear_errors)
973                 req->errors = 0;
974
975         /* A number of bytes were successfully read.  If there
976          * are leftovers and there is some kind of error
977          * (result != 0), retry the rest.
978          */
979         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
980                 return;
981
982         /* good_bytes = 0, or (inclusive) there were leftovers and
983          * result = 0, so scsi_end_request couldn't retry.
984          */
985         if (sense_valid && !sense_deferred) {
986                 switch (sshdr.sense_key) {
987                 case UNIT_ATTENTION:
988                         if (cmd->device->removable) {
989                                 /* Detected disc change.  Set a bit
990                                  * and quietly refuse further access.
991                                  */
992                                 cmd->device->changed = 1;
993                                 scsi_end_request(cmd, 0, this_count, 1);
994                                 return;
995                         } else {
996                                 /* Must have been a power glitch, or a
997                                  * bus reset.  Could not have been a
998                                  * media change, so we just retry the
999                                  * request and see what happens.
1000                                  */
1001                                 scsi_requeue_command(q, cmd);
1002                                 return;
1003                         }
1004                         break;
1005                 case ILLEGAL_REQUEST:
1006                         /* If we had an ILLEGAL REQUEST returned, then
1007                          * we may have performed an unsupported
1008                          * command.  The only thing this should be
1009                          * would be a ten byte read where only a six
1010                          * byte read was supported.  Also, on a system
1011                          * where READ CAPACITY failed, we may have
1012                          * read past the end of the disk.
1013                          */
1014                         if ((cmd->device->use_10_for_rw &&
1015                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1016                             (cmd->cmnd[0] == READ_10 ||
1017                              cmd->cmnd[0] == WRITE_10)) {
1018                                 cmd->device->use_10_for_rw = 0;
1019                                 /* This will cause a retry with a
1020                                  * 6-byte command.
1021                                  */
1022                                 scsi_requeue_command(q, cmd);
1023                                 return;
1024                         } else {
1025                                 scsi_end_request(cmd, 0, this_count, 1);
1026                                 return;
1027                         }
1028                         break;
1029                 case NOT_READY:
1030                         /* If the device is in the process of becoming
1031                          * ready, or has a temporary blockage, retry.
1032                          */
1033                         if (sshdr.asc == 0x04) {
1034                                 switch (sshdr.ascq) {
1035                                 case 0x01: /* becoming ready */
1036                                 case 0x04: /* format in progress */
1037                                 case 0x05: /* rebuild in progress */
1038                                 case 0x06: /* recalculation in progress */
1039                                 case 0x07: /* operation in progress */
1040                                 case 0x08: /* Long write in progress */
1041                                 case 0x09: /* self test in progress */
1042                                         scsi_requeue_command(q, cmd);
1043                                         return;
1044                                 default:
1045                                         break;
1046                                 }
1047                         }
1048                         if (!(req->cmd_flags & REQ_QUIET))
1049                                 scsi_cmd_print_sense_hdr(cmd,
1050                                                          "Device not ready",
1051                                                          &sshdr);
1052
1053                         scsi_end_request(cmd, 0, this_count, 1);
1054                         return;
1055                 case VOLUME_OVERFLOW:
1056                         if (!(req->cmd_flags & REQ_QUIET)) {
1057                                 scmd_printk(KERN_INFO, cmd,
1058                                             "Volume overflow, CDB: ");
1059                                 __scsi_print_command(cmd->cmnd);
1060                                 scsi_print_sense("", cmd);
1061                         }
1062                         /* See SSC3rXX or current. */
1063                         scsi_end_request(cmd, 0, this_count, 1);
1064                         return;
1065                 default:
1066                         break;
1067                 }
1068         }
1069         if (host_byte(result) == DID_RESET) {
1070                 /* Third party bus reset or reset for error recovery
1071                  * reasons.  Just retry the request and see what
1072                  * happens.
1073                  */
1074                 scsi_requeue_command(q, cmd);
1075                 return;
1076         }
1077         if (result) {
1078                 if (!(req->cmd_flags & REQ_QUIET)) {
1079                         scsi_print_result(cmd);
1080                         if (driver_byte(result) & DRIVER_SENSE)
1081                                 scsi_print_sense("", cmd);
1082                 }
1083         }
1084         scsi_end_request(cmd, 0, this_count, !result);
1085 }
1086
1087 /*
1088  * Function:    scsi_init_io()
1089  *
1090  * Purpose:     SCSI I/O initialize function.
1091  *
1092  * Arguments:   cmd   - Command descriptor we wish to initialize
1093  *
1094  * Returns:     0 on success
1095  *              BLKPREP_DEFER if the failure is retryable
1096  *              BLKPREP_KILL if the failure is fatal
1097  */
1098 static int scsi_init_io(struct scsi_cmnd *cmd)
1099 {
1100         struct request     *req = cmd->request;
1101         int                count;
1102
1103         /*
1104          * We used to not use scatter-gather for single segment request,
1105          * but now we do (it makes highmem I/O easier to support without
1106          * kmapping pages)
1107          */
1108         cmd->use_sg = req->nr_phys_segments;
1109
1110         /*
1111          * If sg table allocation fails, requeue request later.
1112          */
1113         cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1114         if (unlikely(!cmd->request_buffer)) {
1115                 scsi_unprep_request(req);
1116                 return BLKPREP_DEFER;
1117         }
1118
1119         req->buffer = NULL;
1120         if (blk_pc_request(req))
1121                 cmd->request_bufflen = req->data_len;
1122         else
1123                 cmd->request_bufflen = req->nr_sectors << 9;
1124
1125         /* 
1126          * Next, walk the list, and fill in the addresses and sizes of
1127          * each segment.
1128          */
1129         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1130         if (likely(count <= cmd->use_sg)) {
1131                 cmd->use_sg = count;
1132                 return BLKPREP_OK;
1133         }
1134
1135         printk(KERN_ERR "Incorrect number of segments after building list\n");
1136         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1137         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1138                         req->current_nr_sectors);
1139
1140         return BLKPREP_KILL;
1141 }
1142
1143 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1144                 struct request *req)
1145 {
1146         struct scsi_cmnd *cmd;
1147
1148         if (!req->special) {
1149                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1150                 if (unlikely(!cmd))
1151                         return NULL;
1152                 req->special = cmd;
1153         } else {
1154                 cmd = req->special;
1155         }
1156
1157         /* pull a tag out of the request if we have one */
1158         cmd->tag = req->tag;
1159         cmd->request = req;
1160
1161         return cmd;
1162 }
1163
1164 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1165 {
1166         struct scsi_cmnd *cmd;
1167         int ret = scsi_prep_state_check(sdev, req);
1168
1169         if (ret != BLKPREP_OK)
1170                 return ret;
1171
1172         cmd = scsi_get_cmd_from_req(sdev, req);
1173         if (unlikely(!cmd))
1174                 return BLKPREP_DEFER;
1175
1176         /*
1177          * BLOCK_PC requests may transfer data, in which case they must
1178          * a bio attached to them.  Or they might contain a SCSI command
1179          * that does not transfer data, in which case they may optionally
1180          * submit a request without an attached bio.
1181          */
1182         if (req->bio) {
1183                 int ret;
1184
1185                 BUG_ON(!req->nr_phys_segments);
1186
1187                 ret = scsi_init_io(cmd);
1188                 if (unlikely(ret))
1189                         return ret;
1190         } else {
1191                 BUG_ON(req->data_len);
1192                 BUG_ON(req->data);
1193
1194                 cmd->request_bufflen = 0;
1195                 cmd->request_buffer = NULL;
1196                 cmd->use_sg = 0;
1197                 req->buffer = NULL;
1198         }
1199
1200         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1201         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1202         cmd->cmd_len = req->cmd_len;
1203         if (!req->data_len)
1204                 cmd->sc_data_direction = DMA_NONE;
1205         else if (rq_data_dir(req) == WRITE)
1206                 cmd->sc_data_direction = DMA_TO_DEVICE;
1207         else
1208                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1209         
1210         cmd->transfersize = req->data_len;
1211         cmd->allowed = req->retries;
1212         cmd->timeout_per_command = req->timeout;
1213         return BLKPREP_OK;
1214 }
1215 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1216
1217 /*
1218  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1219  * from filesystems that still need to be translated to SCSI CDBs from
1220  * the ULD.
1221  */
1222 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1223 {
1224         struct scsi_cmnd *cmd;
1225         int ret = scsi_prep_state_check(sdev, req);
1226
1227         if (ret != BLKPREP_OK)
1228                 return ret;
1229         /*
1230          * Filesystem requests must transfer data.
1231          */
1232         BUG_ON(!req->nr_phys_segments);
1233
1234         cmd = scsi_get_cmd_from_req(sdev, req);
1235         if (unlikely(!cmd))
1236                 return BLKPREP_DEFER;
1237
1238         return scsi_init_io(cmd);
1239 }
1240 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1241
1242 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1243 {
1244         int ret = BLKPREP_OK;
1245
1246         /*
1247          * If the device is not in running state we will reject some
1248          * or all commands.
1249          */
1250         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1251                 switch (sdev->sdev_state) {
1252                 case SDEV_OFFLINE:
1253                         /*
1254                          * If the device is offline we refuse to process any
1255                          * commands.  The device must be brought online
1256                          * before trying any recovery commands.
1257                          */
1258                         sdev_printk(KERN_ERR, sdev,
1259                                     "rejecting I/O to offline device\n");
1260                         ret = BLKPREP_KILL;
1261                         break;
1262                 case SDEV_DEL:
1263                         /*
1264                          * If the device is fully deleted, we refuse to
1265                          * process any commands as well.
1266                          */
1267                         sdev_printk(KERN_ERR, sdev,
1268                                     "rejecting I/O to dead device\n");
1269                         ret = BLKPREP_KILL;
1270                         break;
1271                 case SDEV_QUIESCE:
1272                 case SDEV_BLOCK:
1273                         /*
1274                          * If the devices is blocked we defer normal commands.
1275                          */
1276                         if (!(req->cmd_flags & REQ_PREEMPT))
1277                                 ret = BLKPREP_DEFER;
1278                         break;
1279                 default:
1280                         /*
1281                          * For any other not fully online state we only allow
1282                          * special commands.  In particular any user initiated
1283                          * command is not allowed.
1284                          */
1285                         if (!(req->cmd_flags & REQ_PREEMPT))
1286                                 ret = BLKPREP_KILL;
1287                         break;
1288                 }
1289         }
1290         return ret;
1291 }
1292 EXPORT_SYMBOL(scsi_prep_state_check);
1293
1294 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1295 {
1296         struct scsi_device *sdev = q->queuedata;
1297
1298         switch (ret) {
1299         case BLKPREP_KILL:
1300                 req->errors = DID_NO_CONNECT << 16;
1301                 /* release the command and kill it */
1302                 if (req->special) {
1303                         struct scsi_cmnd *cmd = req->special;
1304                         scsi_release_buffers(cmd);
1305                         scsi_put_command(cmd);
1306                         req->special = NULL;
1307                 }
1308                 break;
1309         case BLKPREP_DEFER:
1310                 /*
1311                  * If we defer, the elv_next_request() returns NULL, but the
1312                  * queue must be restarted, so we plug here if no returning
1313                  * command will automatically do that.
1314                  */
1315                 if (sdev->device_busy == 0)
1316                         blk_plug_device(q);
1317                 break;
1318         default:
1319                 req->cmd_flags |= REQ_DONTPREP;
1320         }
1321
1322         return ret;
1323 }
1324 EXPORT_SYMBOL(scsi_prep_return);
1325
1326 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1327 {
1328         struct scsi_device *sdev = q->queuedata;
1329         int ret = BLKPREP_KILL;
1330
1331         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1332                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1333         return scsi_prep_return(q, req, ret);
1334 }
1335
1336 /*
1337  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1338  * return 0.
1339  *
1340  * Called with the queue_lock held.
1341  */
1342 static inline int scsi_dev_queue_ready(struct request_queue *q,
1343                                   struct scsi_device *sdev)
1344 {
1345         if (sdev->device_busy >= sdev->queue_depth)
1346                 return 0;
1347         if (sdev->device_busy == 0 && sdev->device_blocked) {
1348                 /*
1349                  * unblock after device_blocked iterates to zero
1350                  */
1351                 if (--sdev->device_blocked == 0) {
1352                         SCSI_LOG_MLQUEUE(3,
1353                                    sdev_printk(KERN_INFO, sdev,
1354                                    "unblocking device at zero depth\n"));
1355                 } else {
1356                         blk_plug_device(q);
1357                         return 0;
1358                 }
1359         }
1360         if (sdev->device_blocked)
1361                 return 0;
1362
1363         return 1;
1364 }
1365
1366 /*
1367  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1368  * return 0. We must end up running the queue again whenever 0 is
1369  * returned, else IO can hang.
1370  *
1371  * Called with host_lock held.
1372  */
1373 static inline int scsi_host_queue_ready(struct request_queue *q,
1374                                    struct Scsi_Host *shost,
1375                                    struct scsi_device *sdev)
1376 {
1377         if (scsi_host_in_recovery(shost))
1378                 return 0;
1379         if (shost->host_busy == 0 && shost->host_blocked) {
1380                 /*
1381                  * unblock after host_blocked iterates to zero
1382                  */
1383                 if (--shost->host_blocked == 0) {
1384                         SCSI_LOG_MLQUEUE(3,
1385                                 printk("scsi%d unblocking host at zero depth\n",
1386                                         shost->host_no));
1387                 } else {
1388                         blk_plug_device(q);
1389                         return 0;
1390                 }
1391         }
1392         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1393             shost->host_blocked || shost->host_self_blocked) {
1394                 if (list_empty(&sdev->starved_entry))
1395                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1396                 return 0;
1397         }
1398
1399         /* We're OK to process the command, so we can't be starved */
1400         if (!list_empty(&sdev->starved_entry))
1401                 list_del_init(&sdev->starved_entry);
1402
1403         return 1;
1404 }
1405
1406 /*
1407  * Kill a request for a dead device
1408  */
1409 static void scsi_kill_request(struct request *req, struct request_queue *q)
1410 {
1411         struct scsi_cmnd *cmd = req->special;
1412         struct scsi_device *sdev = cmd->device;
1413         struct Scsi_Host *shost = sdev->host;
1414
1415         blkdev_dequeue_request(req);
1416
1417         if (unlikely(cmd == NULL)) {
1418                 printk(KERN_CRIT "impossible request in %s.\n",
1419                                  __FUNCTION__);
1420                 BUG();
1421         }
1422
1423         scsi_init_cmd_errh(cmd);
1424         cmd->result = DID_NO_CONNECT << 16;
1425         atomic_inc(&cmd->device->iorequest_cnt);
1426
1427         /*
1428          * SCSI request completion path will do scsi_device_unbusy(),
1429          * bump busy counts.  To bump the counters, we need to dance
1430          * with the locks as normal issue path does.
1431          */
1432         sdev->device_busy++;
1433         spin_unlock(sdev->request_queue->queue_lock);
1434         spin_lock(shost->host_lock);
1435         shost->host_busy++;
1436         spin_unlock(shost->host_lock);
1437         spin_lock(sdev->request_queue->queue_lock);
1438
1439         __scsi_done(cmd);
1440 }
1441
1442 static void scsi_softirq_done(struct request *rq)
1443 {
1444         struct scsi_cmnd *cmd = rq->completion_data;
1445         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1446         int disposition;
1447
1448         INIT_LIST_HEAD(&cmd->eh_entry);
1449
1450         disposition = scsi_decide_disposition(cmd);
1451         if (disposition != SUCCESS &&
1452             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1453                 sdev_printk(KERN_ERR, cmd->device,
1454                             "timing out command, waited %lus\n",
1455                             wait_for/HZ);
1456                 disposition = SUCCESS;
1457         }
1458                         
1459         scsi_log_completion(cmd, disposition);
1460
1461         switch (disposition) {
1462                 case SUCCESS:
1463                         scsi_finish_command(cmd);
1464                         break;
1465                 case NEEDS_RETRY:
1466                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1467                         break;
1468                 case ADD_TO_MLQUEUE:
1469                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1470                         break;
1471                 default:
1472                         if (!scsi_eh_scmd_add(cmd, 0))
1473                                 scsi_finish_command(cmd);
1474         }
1475 }
1476
1477 /*
1478  * Function:    scsi_request_fn()
1479  *
1480  * Purpose:     Main strategy routine for SCSI.
1481  *
1482  * Arguments:   q       - Pointer to actual queue.
1483  *
1484  * Returns:     Nothing
1485  *
1486  * Lock status: IO request lock assumed to be held when called.
1487  */
1488 static void scsi_request_fn(struct request_queue *q)
1489 {
1490         struct scsi_device *sdev = q->queuedata;
1491         struct Scsi_Host *shost;
1492         struct scsi_cmnd *cmd;
1493         struct request *req;
1494
1495         if (!sdev) {
1496                 printk("scsi: killing requests for dead queue\n");
1497                 while ((req = elv_next_request(q)) != NULL)
1498                         scsi_kill_request(req, q);
1499                 return;
1500         }
1501
1502         if(!get_device(&sdev->sdev_gendev))
1503                 /* We must be tearing the block queue down already */
1504                 return;
1505
1506         /*
1507          * To start with, we keep looping until the queue is empty, or until
1508          * the host is no longer able to accept any more requests.
1509          */
1510         shost = sdev->host;
1511         while (!blk_queue_plugged(q)) {
1512                 int rtn;
1513                 /*
1514                  * get next queueable request.  We do this early to make sure
1515                  * that the request is fully prepared even if we cannot 
1516                  * accept it.
1517                  */
1518                 req = elv_next_request(q);
1519                 if (!req || !scsi_dev_queue_ready(q, sdev))
1520                         break;
1521
1522                 if (unlikely(!scsi_device_online(sdev))) {
1523                         sdev_printk(KERN_ERR, sdev,
1524                                     "rejecting I/O to offline device\n");
1525                         scsi_kill_request(req, q);
1526                         continue;
1527                 }
1528
1529
1530                 /*
1531                  * Remove the request from the request list.
1532                  */
1533                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1534                         blkdev_dequeue_request(req);
1535                 sdev->device_busy++;
1536
1537                 spin_unlock(q->queue_lock);
1538                 cmd = req->special;
1539                 if (unlikely(cmd == NULL)) {
1540                         printk(KERN_CRIT "impossible request in %s.\n"
1541                                          "please mail a stack trace to "
1542                                          "linux-scsi@vger.kernel.org\n",
1543                                          __FUNCTION__);
1544                         blk_dump_rq_flags(req, "foo");
1545                         BUG();
1546                 }
1547                 spin_lock(shost->host_lock);
1548
1549                 if (!scsi_host_queue_ready(q, shost, sdev))
1550                         goto not_ready;
1551                 if (sdev->single_lun) {
1552                         if (scsi_target(sdev)->starget_sdev_user &&
1553                             scsi_target(sdev)->starget_sdev_user != sdev)
1554                                 goto not_ready;
1555                         scsi_target(sdev)->starget_sdev_user = sdev;
1556                 }
1557                 shost->host_busy++;
1558
1559                 /*
1560                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1561                  *              take the lock again.
1562                  */
1563                 spin_unlock_irq(shost->host_lock);
1564
1565                 /*
1566                  * Finally, initialize any error handling parameters, and set up
1567                  * the timers for timeouts.
1568                  */
1569                 scsi_init_cmd_errh(cmd);
1570
1571                 /*
1572                  * Dispatch the command to the low-level driver.
1573                  */
1574                 rtn = scsi_dispatch_cmd(cmd);
1575                 spin_lock_irq(q->queue_lock);
1576                 if(rtn) {
1577                         /* we're refusing the command; because of
1578                          * the way locks get dropped, we need to 
1579                          * check here if plugging is required */
1580                         if(sdev->device_busy == 0)
1581                                 blk_plug_device(q);
1582
1583                         break;
1584                 }
1585         }
1586
1587         goto out;
1588
1589  not_ready:
1590         spin_unlock_irq(shost->host_lock);
1591
1592         /*
1593          * lock q, handle tag, requeue req, and decrement device_busy. We
1594          * must return with queue_lock held.
1595          *
1596          * Decrementing device_busy without checking it is OK, as all such
1597          * cases (host limits or settings) should run the queue at some
1598          * later time.
1599          */
1600         spin_lock_irq(q->queue_lock);
1601         blk_requeue_request(q, req);
1602         sdev->device_busy--;
1603         if(sdev->device_busy == 0)
1604                 blk_plug_device(q);
1605  out:
1606         /* must be careful here...if we trigger the ->remove() function
1607          * we cannot be holding the q lock */
1608         spin_unlock_irq(q->queue_lock);
1609         put_device(&sdev->sdev_gendev);
1610         spin_lock_irq(q->queue_lock);
1611 }
1612
1613 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1614 {
1615         struct device *host_dev;
1616         u64 bounce_limit = 0xffffffff;
1617
1618         if (shost->unchecked_isa_dma)
1619                 return BLK_BOUNCE_ISA;
1620         /*
1621          * Platforms with virtual-DMA translation
1622          * hardware have no practical limit.
1623          */
1624         if (!PCI_DMA_BUS_IS_PHYS)
1625                 return BLK_BOUNCE_ANY;
1626
1627         host_dev = scsi_get_device(shost);
1628         if (host_dev && host_dev->dma_mask)
1629                 bounce_limit = *host_dev->dma_mask;
1630
1631         return bounce_limit;
1632 }
1633 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1634
1635 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1636                                          request_fn_proc *request_fn)
1637 {
1638         struct request_queue *q;
1639
1640         q = blk_init_queue(request_fn, NULL);
1641         if (!q)
1642                 return NULL;
1643
1644         /*
1645          * this limit is imposed by hardware restrictions
1646          */
1647         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1648
1649         /*
1650          * In the future, sg chaining support will be mandatory and this
1651          * ifdef can then go away. Right now we don't have all archs
1652          * converted, so better keep it safe.
1653          */
1654 #ifdef ARCH_HAS_SG_CHAIN
1655         if (shost->use_sg_chaining)
1656                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1657         else
1658                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1659 #else
1660         blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1661 #endif
1662
1663         blk_queue_max_sectors(q, shost->max_sectors);
1664         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1665         blk_queue_segment_boundary(q, shost->dma_boundary);
1666
1667         if (!shost->use_clustering)
1668                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1669         return q;
1670 }
1671 EXPORT_SYMBOL(__scsi_alloc_queue);
1672
1673 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1674 {
1675         struct request_queue *q;
1676
1677         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1678         if (!q)
1679                 return NULL;
1680
1681         blk_queue_prep_rq(q, scsi_prep_fn);
1682         blk_queue_softirq_done(q, scsi_softirq_done);
1683         return q;
1684 }
1685
1686 void scsi_free_queue(struct request_queue *q)
1687 {
1688         blk_cleanup_queue(q);
1689 }
1690
1691 /*
1692  * Function:    scsi_block_requests()
1693  *
1694  * Purpose:     Utility function used by low-level drivers to prevent further
1695  *              commands from being queued to the device.
1696  *
1697  * Arguments:   shost       - Host in question
1698  *
1699  * Returns:     Nothing
1700  *
1701  * Lock status: No locks are assumed held.
1702  *
1703  * Notes:       There is no timer nor any other means by which the requests
1704  *              get unblocked other than the low-level driver calling
1705  *              scsi_unblock_requests().
1706  */
1707 void scsi_block_requests(struct Scsi_Host *shost)
1708 {
1709         shost->host_self_blocked = 1;
1710 }
1711 EXPORT_SYMBOL(scsi_block_requests);
1712
1713 /*
1714  * Function:    scsi_unblock_requests()
1715  *
1716  * Purpose:     Utility function used by low-level drivers to allow further
1717  *              commands from being queued to the device.
1718  *
1719  * Arguments:   shost       - Host in question
1720  *
1721  * Returns:     Nothing
1722  *
1723  * Lock status: No locks are assumed held.
1724  *
1725  * Notes:       There is no timer nor any other means by which the requests
1726  *              get unblocked other than the low-level driver calling
1727  *              scsi_unblock_requests().
1728  *
1729  *              This is done as an API function so that changes to the
1730  *              internals of the scsi mid-layer won't require wholesale
1731  *              changes to drivers that use this feature.
1732  */
1733 void scsi_unblock_requests(struct Scsi_Host *shost)
1734 {
1735         shost->host_self_blocked = 0;
1736         scsi_run_host_queues(shost);
1737 }
1738 EXPORT_SYMBOL(scsi_unblock_requests);
1739
1740 int __init scsi_init_queue(void)
1741 {
1742         int i;
1743
1744         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1745                                         sizeof(struct scsi_io_context),
1746                                         0, 0, NULL);
1747         if (!scsi_io_context_cache) {
1748                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1749                 return -ENOMEM;
1750         }
1751
1752         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1753                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1754                 int size = sgp->size * sizeof(struct scatterlist);
1755
1756                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1757                                 SLAB_HWCACHE_ALIGN, NULL);
1758                 if (!sgp->slab) {
1759                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1760                                         sgp->name);
1761                 }
1762
1763                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1764                                                      sgp->slab);
1765                 if (!sgp->pool) {
1766                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1767                                         sgp->name);
1768                 }
1769         }
1770
1771         return 0;
1772 }
1773
1774 void scsi_exit_queue(void)
1775 {
1776         int i;
1777
1778         kmem_cache_destroy(scsi_io_context_cache);
1779
1780         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1781                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1782                 mempool_destroy(sgp->pool);
1783                 kmem_cache_destroy(sgp->slab);
1784         }
1785 }
1786
1787 /**
1788  *      scsi_mode_select - issue a mode select
1789  *      @sdev:  SCSI device to be queried
1790  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1791  *      @sp:    Save page bit (0 == don't save, 1 == save)
1792  *      @modepage: mode page being requested
1793  *      @buffer: request buffer (may not be smaller than eight bytes)
1794  *      @len:   length of request buffer.
1795  *      @timeout: command timeout
1796  *      @retries: number of retries before failing
1797  *      @data: returns a structure abstracting the mode header data
1798  *      @sense: place to put sense data (or NULL if no sense to be collected).
1799  *              must be SCSI_SENSE_BUFFERSIZE big.
1800  *
1801  *      Returns zero if successful; negative error number or scsi
1802  *      status on error
1803  *
1804  */
1805 int
1806 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1807                  unsigned char *buffer, int len, int timeout, int retries,
1808                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1809 {
1810         unsigned char cmd[10];
1811         unsigned char *real_buffer;
1812         int ret;
1813
1814         memset(cmd, 0, sizeof(cmd));
1815         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1816
1817         if (sdev->use_10_for_ms) {
1818                 if (len > 65535)
1819                         return -EINVAL;
1820                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1821                 if (!real_buffer)
1822                         return -ENOMEM;
1823                 memcpy(real_buffer + 8, buffer, len);
1824                 len += 8;
1825                 real_buffer[0] = 0;
1826                 real_buffer[1] = 0;
1827                 real_buffer[2] = data->medium_type;
1828                 real_buffer[3] = data->device_specific;
1829                 real_buffer[4] = data->longlba ? 0x01 : 0;
1830                 real_buffer[5] = 0;
1831                 real_buffer[6] = data->block_descriptor_length >> 8;
1832                 real_buffer[7] = data->block_descriptor_length;
1833
1834                 cmd[0] = MODE_SELECT_10;
1835                 cmd[7] = len >> 8;
1836                 cmd[8] = len;
1837         } else {
1838                 if (len > 255 || data->block_descriptor_length > 255 ||
1839                     data->longlba)
1840                         return -EINVAL;
1841
1842                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1843                 if (!real_buffer)
1844                         return -ENOMEM;
1845                 memcpy(real_buffer + 4, buffer, len);
1846                 len += 4;
1847                 real_buffer[0] = 0;
1848                 real_buffer[1] = data->medium_type;
1849                 real_buffer[2] = data->device_specific;
1850                 real_buffer[3] = data->block_descriptor_length;
1851                 
1852
1853                 cmd[0] = MODE_SELECT;
1854                 cmd[4] = len;
1855         }
1856
1857         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1858                                sshdr, timeout, retries);
1859         kfree(real_buffer);
1860         return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(scsi_mode_select);
1863
1864 /**
1865  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1866  *              six bytes if necessary.
1867  *      @sdev:  SCSI device to be queried
1868  *      @dbd:   set if mode sense will allow block descriptors to be returned
1869  *      @modepage: mode page being requested
1870  *      @buffer: request buffer (may not be smaller than eight bytes)
1871  *      @len:   length of request buffer.
1872  *      @timeout: command timeout
1873  *      @retries: number of retries before failing
1874  *      @data: returns a structure abstracting the mode header data
1875  *      @sense: place to put sense data (or NULL if no sense to be collected).
1876  *              must be SCSI_SENSE_BUFFERSIZE big.
1877  *
1878  *      Returns zero if unsuccessful, or the header offset (either 4
1879  *      or 8 depending on whether a six or ten byte command was
1880  *      issued) if successful.
1881  **/
1882 int
1883 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1884                   unsigned char *buffer, int len, int timeout, int retries,
1885                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1886 {
1887         unsigned char cmd[12];
1888         int use_10_for_ms;
1889         int header_length;
1890         int result;
1891         struct scsi_sense_hdr my_sshdr;
1892
1893         memset(data, 0, sizeof(*data));
1894         memset(&cmd[0], 0, 12);
1895         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1896         cmd[2] = modepage;
1897
1898         /* caller might not be interested in sense, but we need it */
1899         if (!sshdr)
1900                 sshdr = &my_sshdr;
1901
1902  retry:
1903         use_10_for_ms = sdev->use_10_for_ms;
1904
1905         if (use_10_for_ms) {
1906                 if (len < 8)
1907                         len = 8;
1908
1909                 cmd[0] = MODE_SENSE_10;
1910                 cmd[8] = len;
1911                 header_length = 8;
1912         } else {
1913                 if (len < 4)
1914                         len = 4;
1915
1916                 cmd[0] = MODE_SENSE;
1917                 cmd[4] = len;
1918                 header_length = 4;
1919         }
1920
1921         memset(buffer, 0, len);
1922
1923         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1924                                   sshdr, timeout, retries);
1925
1926         /* This code looks awful: what it's doing is making sure an
1927          * ILLEGAL REQUEST sense return identifies the actual command
1928          * byte as the problem.  MODE_SENSE commands can return
1929          * ILLEGAL REQUEST if the code page isn't supported */
1930
1931         if (use_10_for_ms && !scsi_status_is_good(result) &&
1932             (driver_byte(result) & DRIVER_SENSE)) {
1933                 if (scsi_sense_valid(sshdr)) {
1934                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1935                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1936                                 /* 
1937                                  * Invalid command operation code
1938                                  */
1939                                 sdev->use_10_for_ms = 0;
1940                                 goto retry;
1941                         }
1942                 }
1943         }
1944
1945         if(scsi_status_is_good(result)) {
1946                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1947                              (modepage == 6 || modepage == 8))) {
1948                         /* Initio breakage? */
1949                         header_length = 0;
1950                         data->length = 13;
1951                         data->medium_type = 0;
1952                         data->device_specific = 0;
1953                         data->longlba = 0;
1954                         data->block_descriptor_length = 0;
1955                 } else if(use_10_for_ms) {
1956                         data->length = buffer[0]*256 + buffer[1] + 2;
1957                         data->medium_type = buffer[2];
1958                         data->device_specific = buffer[3];
1959                         data->longlba = buffer[4] & 0x01;
1960                         data->block_descriptor_length = buffer[6]*256
1961                                 + buffer[7];
1962                 } else {
1963                         data->length = buffer[0] + 1;
1964                         data->medium_type = buffer[1];
1965                         data->device_specific = buffer[2];
1966                         data->block_descriptor_length = buffer[3];
1967                 }
1968                 data->header_length = header_length;
1969         }
1970
1971         return result;
1972 }
1973 EXPORT_SYMBOL(scsi_mode_sense);
1974
1975 int
1976 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1977 {
1978         char cmd[] = {
1979                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1980         };
1981         struct scsi_sense_hdr sshdr;
1982         int result;
1983         
1984         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1985                                   timeout, retries);
1986
1987         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1988
1989                 if ((scsi_sense_valid(&sshdr)) &&
1990                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1991                      (sshdr.sense_key == NOT_READY))) {
1992                         sdev->changed = 1;
1993                         result = 0;
1994                 }
1995         }
1996         return result;
1997 }
1998 EXPORT_SYMBOL(scsi_test_unit_ready);
1999
2000 /**
2001  *      scsi_device_set_state - Take the given device through the device
2002  *              state model.
2003  *      @sdev:  scsi device to change the state of.
2004  *      @state: state to change to.
2005  *
2006  *      Returns zero if unsuccessful or an error if the requested 
2007  *      transition is illegal.
2008  **/
2009 int
2010 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2011 {
2012         enum scsi_device_state oldstate = sdev->sdev_state;
2013
2014         if (state == oldstate)
2015                 return 0;
2016
2017         switch (state) {
2018         case SDEV_CREATED:
2019                 /* There are no legal states that come back to
2020                  * created.  This is the manually initialised start
2021                  * state */
2022                 goto illegal;
2023                         
2024         case SDEV_RUNNING:
2025                 switch (oldstate) {
2026                 case SDEV_CREATED:
2027                 case SDEV_OFFLINE:
2028                 case SDEV_QUIESCE:
2029                 case SDEV_BLOCK:
2030                         break;
2031                 default:
2032                         goto illegal;
2033                 }
2034                 break;
2035
2036         case SDEV_QUIESCE:
2037                 switch (oldstate) {
2038                 case SDEV_RUNNING:
2039                 case SDEV_OFFLINE:
2040                         break;
2041                 default:
2042                         goto illegal;
2043                 }
2044                 break;
2045
2046         case SDEV_OFFLINE:
2047                 switch (oldstate) {
2048                 case SDEV_CREATED:
2049                 case SDEV_RUNNING:
2050                 case SDEV_QUIESCE:
2051                 case SDEV_BLOCK:
2052                         break;
2053                 default:
2054                         goto illegal;
2055                 }
2056                 break;
2057
2058         case SDEV_BLOCK:
2059                 switch (oldstate) {
2060                 case SDEV_CREATED:
2061                 case SDEV_RUNNING:
2062                         break;
2063                 default:
2064                         goto illegal;
2065                 }
2066                 break;
2067
2068         case SDEV_CANCEL:
2069                 switch (oldstate) {
2070                 case SDEV_CREATED:
2071                 case SDEV_RUNNING:
2072                 case SDEV_QUIESCE:
2073                 case SDEV_OFFLINE:
2074                 case SDEV_BLOCK:
2075                         break;
2076                 default:
2077                         goto illegal;
2078                 }
2079                 break;
2080
2081         case SDEV_DEL:
2082                 switch (oldstate) {
2083                 case SDEV_CREATED:
2084                 case SDEV_RUNNING:
2085                 case SDEV_OFFLINE:
2086                 case SDEV_CANCEL:
2087                         break;
2088                 default:
2089                         goto illegal;
2090                 }
2091                 break;
2092
2093         }
2094         sdev->sdev_state = state;
2095         return 0;
2096
2097  illegal:
2098         SCSI_LOG_ERROR_RECOVERY(1, 
2099                                 sdev_printk(KERN_ERR, sdev,
2100                                             "Illegal state transition %s->%s\n",
2101                                             scsi_device_state_name(oldstate),
2102                                             scsi_device_state_name(state))
2103                                 );
2104         return -EINVAL;
2105 }
2106 EXPORT_SYMBOL(scsi_device_set_state);
2107
2108 /**
2109  *      scsi_device_quiesce - Block user issued commands.
2110  *      @sdev:  scsi device to quiesce.
2111  *
2112  *      This works by trying to transition to the SDEV_QUIESCE state
2113  *      (which must be a legal transition).  When the device is in this
2114  *      state, only special requests will be accepted, all others will
2115  *      be deferred.  Since special requests may also be requeued requests,
2116  *      a successful return doesn't guarantee the device will be 
2117  *      totally quiescent.
2118  *
2119  *      Must be called with user context, may sleep.
2120  *
2121  *      Returns zero if unsuccessful or an error if not.
2122  **/
2123 int
2124 scsi_device_quiesce(struct scsi_device *sdev)
2125 {
2126         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2127         if (err)
2128                 return err;
2129
2130         scsi_run_queue(sdev->request_queue);
2131         while (sdev->device_busy) {
2132                 msleep_interruptible(200);
2133                 scsi_run_queue(sdev->request_queue);
2134         }
2135         return 0;
2136 }
2137 EXPORT_SYMBOL(scsi_device_quiesce);
2138
2139 /**
2140  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2141  *      @sdev:  scsi device to resume.
2142  *
2143  *      Moves the device from quiesced back to running and restarts the
2144  *      queues.
2145  *
2146  *      Must be called with user context, may sleep.
2147  **/
2148 void
2149 scsi_device_resume(struct scsi_device *sdev)
2150 {
2151         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2152                 return;
2153         scsi_run_queue(sdev->request_queue);
2154 }
2155 EXPORT_SYMBOL(scsi_device_resume);
2156
2157 static void
2158 device_quiesce_fn(struct scsi_device *sdev, void *data)
2159 {
2160         scsi_device_quiesce(sdev);
2161 }
2162
2163 void
2164 scsi_target_quiesce(struct scsi_target *starget)
2165 {
2166         starget_for_each_device(starget, NULL, device_quiesce_fn);
2167 }
2168 EXPORT_SYMBOL(scsi_target_quiesce);
2169
2170 static void
2171 device_resume_fn(struct scsi_device *sdev, void *data)
2172 {
2173         scsi_device_resume(sdev);
2174 }
2175
2176 void
2177 scsi_target_resume(struct scsi_target *starget)
2178 {
2179         starget_for_each_device(starget, NULL, device_resume_fn);
2180 }
2181 EXPORT_SYMBOL(scsi_target_resume);
2182
2183 /**
2184  * scsi_internal_device_block - internal function to put a device
2185  *                              temporarily into the SDEV_BLOCK state
2186  * @sdev:       device to block
2187  *
2188  * Block request made by scsi lld's to temporarily stop all
2189  * scsi commands on the specified device.  Called from interrupt
2190  * or normal process context.
2191  *
2192  * Returns zero if successful or error if not
2193  *
2194  * Notes:       
2195  *      This routine transitions the device to the SDEV_BLOCK state
2196  *      (which must be a legal transition).  When the device is in this
2197  *      state, all commands are deferred until the scsi lld reenables
2198  *      the device with scsi_device_unblock or device_block_tmo fires.
2199  *      This routine assumes the host_lock is held on entry.
2200  **/
2201 int
2202 scsi_internal_device_block(struct scsi_device *sdev)
2203 {
2204         struct request_queue *q = sdev->request_queue;
2205         unsigned long flags;
2206         int err = 0;
2207
2208         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2209         if (err)
2210                 return err;
2211
2212         /* 
2213          * The device has transitioned to SDEV_BLOCK.  Stop the
2214          * block layer from calling the midlayer with this device's
2215          * request queue. 
2216          */
2217         spin_lock_irqsave(q->queue_lock, flags);
2218         blk_stop_queue(q);
2219         spin_unlock_irqrestore(q->queue_lock, flags);
2220
2221         return 0;
2222 }
2223 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2224  
2225 /**
2226  * scsi_internal_device_unblock - resume a device after a block request
2227  * @sdev:       device to resume
2228  *
2229  * Called by scsi lld's or the midlayer to restart the device queue
2230  * for the previously suspended scsi device.  Called from interrupt or
2231  * normal process context.
2232  *
2233  * Returns zero if successful or error if not.
2234  *
2235  * Notes:       
2236  *      This routine transitions the device to the SDEV_RUNNING state
2237  *      (which must be a legal transition) allowing the midlayer to
2238  *      goose the queue for this device.  This routine assumes the 
2239  *      host_lock is held upon entry.
2240  **/
2241 int
2242 scsi_internal_device_unblock(struct scsi_device *sdev)
2243 {
2244         struct request_queue *q = sdev->request_queue; 
2245         int err;
2246         unsigned long flags;
2247         
2248         /* 
2249          * Try to transition the scsi device to SDEV_RUNNING
2250          * and goose the device queue if successful.  
2251          */
2252         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2253         if (err)
2254                 return err;
2255
2256         spin_lock_irqsave(q->queue_lock, flags);
2257         blk_start_queue(q);
2258         spin_unlock_irqrestore(q->queue_lock, flags);
2259
2260         return 0;
2261 }
2262 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2263
2264 static void
2265 device_block(struct scsi_device *sdev, void *data)
2266 {
2267         scsi_internal_device_block(sdev);
2268 }
2269
2270 static int
2271 target_block(struct device *dev, void *data)
2272 {
2273         if (scsi_is_target_device(dev))
2274                 starget_for_each_device(to_scsi_target(dev), NULL,
2275                                         device_block);
2276         return 0;
2277 }
2278
2279 void
2280 scsi_target_block(struct device *dev)
2281 {
2282         if (scsi_is_target_device(dev))
2283                 starget_for_each_device(to_scsi_target(dev), NULL,
2284                                         device_block);
2285         else
2286                 device_for_each_child(dev, NULL, target_block);
2287 }
2288 EXPORT_SYMBOL_GPL(scsi_target_block);
2289
2290 static void
2291 device_unblock(struct scsi_device *sdev, void *data)
2292 {
2293         scsi_internal_device_unblock(sdev);
2294 }
2295
2296 static int
2297 target_unblock(struct device *dev, void *data)
2298 {
2299         if (scsi_is_target_device(dev))
2300                 starget_for_each_device(to_scsi_target(dev), NULL,
2301                                         device_unblock);
2302         return 0;
2303 }
2304
2305 void
2306 scsi_target_unblock(struct device *dev)
2307 {
2308         if (scsi_is_target_device(dev))
2309                 starget_for_each_device(to_scsi_target(dev), NULL,
2310                                         device_unblock);
2311         else
2312                 device_for_each_child(dev, NULL, target_unblock);
2313 }
2314 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2315
2316 /**
2317  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2318  * @sg:         scatter-gather list
2319  * @sg_count:   number of segments in sg
2320  * @offset:     offset in bytes into sg, on return offset into the mapped area
2321  * @len:        bytes to map, on return number of bytes mapped
2322  *
2323  * Returns virtual address of the start of the mapped page
2324  */
2325 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2326                           size_t *offset, size_t *len)
2327 {
2328         int i;
2329         size_t sg_len = 0, len_complete = 0;
2330         struct scatterlist *sg;
2331         struct page *page;
2332
2333         WARN_ON(!irqs_disabled());
2334
2335         for_each_sg(sgl, sg, sg_count, i) {
2336                 len_complete = sg_len; /* Complete sg-entries */
2337                 sg_len += sg->length;
2338                 if (sg_len > *offset)
2339                         break;
2340         }
2341
2342         if (unlikely(i == sg_count)) {
2343                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2344                         "elements %d\n",
2345                        __FUNCTION__, sg_len, *offset, sg_count);
2346                 WARN_ON(1);
2347                 return NULL;
2348         }
2349
2350         /* Offset starting from the beginning of first page in this sg-entry */
2351         *offset = *offset - len_complete + sg->offset;
2352
2353         /* Assumption: contiguous pages can be accessed as "page + i" */
2354         page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2355         *offset &= ~PAGE_MASK;
2356
2357         /* Bytes in this sg-entry from *offset to the end of the page */
2358         sg_len = PAGE_SIZE - *offset;
2359         if (*len > sg_len)
2360                 *len = sg_len;
2361
2362         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2363 }
2364 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2365
2366 /**
2367  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2368  *                         mapped with scsi_kmap_atomic_sg
2369  * @virt:       virtual address to be unmapped
2370  */
2371 void scsi_kunmap_atomic_sg(void *virt)
2372 {
2373         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2374 }
2375 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);