1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
24 #ifdef CONFIG_X86_LOCAL_APIC
25 #include <asm/mpspec.h>
27 #include <mach_apic.h>
28 #include <asm/genapic.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
35 #include <asm/atomic.h>
36 #include <asm/proto.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
42 static struct cpu_dev *this_cpu __cpuinitdata;
45 /* We need valid kernel segments for data and code in long mode too
46 * IRET will check the segment types kkeil 2000/10/28
47 * Also sysret mandates a special GDT layout
49 /* The TLS descriptors are currently at a different place compared to i386.
50 Hopefully nobody expects them at a fixed place (Wine?) */
51 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
52 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
53 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
54 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
55 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
56 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
57 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
60 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
61 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
62 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
63 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
64 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
66 * Segments used for calling PnP BIOS have byte granularity.
67 * They code segments and data segments have fixed 64k limits,
68 * the transfer segment sizes are set at run time.
71 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
73 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
75 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
77 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
79 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
81 * The APM segments have byte granularity and their bases
82 * are set at run time. All have 64k limits.
85 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
87 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
89 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
91 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
92 [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
95 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
98 static int cachesize_override __cpuinitdata = -1;
99 static int disable_x86_serial_nr __cpuinitdata = 1;
101 static int __init cachesize_setup(char *str)
103 get_option(&str, &cachesize_override);
106 __setup("cachesize=", cachesize_setup);
108 static int __init x86_fxsr_setup(char *s)
110 setup_clear_cpu_cap(X86_FEATURE_FXSR);
111 setup_clear_cpu_cap(X86_FEATURE_XMM);
114 __setup("nofxsr", x86_fxsr_setup);
116 static int __init x86_sep_setup(char *s)
118 setup_clear_cpu_cap(X86_FEATURE_SEP);
121 __setup("nosep", x86_sep_setup);
123 /* Standard macro to see if a specific flag is changeable */
124 static inline int flag_is_changeable_p(u32 flag)
129 * Cyrix and IDT cpus allow disabling of CPUID
130 * so the code below may return different results
131 * when it is executed before and after enabling
132 * the CPUID. Add "volatile" to not allow gcc to
133 * optimize the subsequent calls to this function.
135 asm volatile ("pushfl\n\t"
145 : "=&r" (f1), "=&r" (f2)
148 return ((f1^f2) & flag) != 0;
151 /* Probe for the CPUID instruction */
152 static int __cpuinit have_cpuid_p(void)
154 return flag_is_changeable_p(X86_EFLAGS_ID);
157 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
159 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
160 /* Disable processor serial number */
161 unsigned long lo, hi;
162 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
164 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
165 printk(KERN_NOTICE "CPU serial number disabled.\n");
166 clear_cpu_cap(c, X86_FEATURE_PN);
168 /* Disabling the serial number may affect the cpuid level */
169 c->cpuid_level = cpuid_eax(0);
173 static int __init x86_serial_nr_setup(char *s)
175 disable_x86_serial_nr = 0;
178 __setup("serialnumber", x86_serial_nr_setup);
180 static inline int flag_is_changeable_p(u32 flag)
184 /* Probe for the CPUID instruction */
185 static inline int have_cpuid_p(void)
189 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
195 * Naming convention should be: <Name> [(<Codename>)]
196 * This table only is used unless init_<vendor>() below doesn't set it;
197 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
201 /* Look up CPU names by table lookup. */
202 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
204 struct cpu_model_info *info;
206 if (c->x86_model >= 16)
207 return NULL; /* Range check */
212 info = this_cpu->c_models;
214 while (info && info->family) {
215 if (info->family == c->x86)
216 return info->model_names[c->x86_model];
219 return NULL; /* Not found */
222 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
224 /* Current gdt points %fs at the "master" per-cpu area: after this,
225 * it's on the real one. */
226 void switch_to_new_gdt(void)
228 struct desc_ptr gdt_descr;
230 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
231 gdt_descr.size = GDT_SIZE - 1;
232 load_gdt(&gdt_descr);
234 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
238 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
240 static void __cpuinit default_init(struct cpuinfo_x86 *c)
243 display_cacheinfo(c);
245 /* Not much we can do here... */
246 /* Check if at least it has cpuid */
247 if (c->cpuid_level == -1) {
248 /* No cpuid. It must be an ancient CPU */
250 strcpy(c->x86_model_id, "486");
251 else if (c->x86 == 3)
252 strcpy(c->x86_model_id, "386");
257 static struct cpu_dev __cpuinitdata default_cpu = {
258 .c_init = default_init,
259 .c_vendor = "Unknown",
260 .c_x86_vendor = X86_VENDOR_UNKNOWN,
263 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
268 if (c->extended_cpuid_level < 0x80000004)
271 v = (unsigned int *) c->x86_model_id;
272 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
273 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
274 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
275 c->x86_model_id[48] = 0;
277 /* Intel chips right-justify this string for some dumb reason;
278 undo that brain damage */
279 p = q = &c->x86_model_id[0];
285 while (q <= &c->x86_model_id[48])
286 *q++ = '\0'; /* Zero-pad the rest */
290 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
292 unsigned int n, dummy, ebx, ecx, edx, l2size;
294 n = c->extended_cpuid_level;
296 if (n >= 0x80000005) {
297 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
298 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
299 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
300 c->x86_cache_size = (ecx>>24) + (edx>>24);
302 /* On K8 L1 TLB is inclusive, so don't count it */
307 if (n < 0x80000006) /* Some chips just has a large L1. */
310 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
314 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
316 /* do processor-specific cache resizing */
317 if (this_cpu->c_size_cache)
318 l2size = this_cpu->c_size_cache(c, l2size);
320 /* Allow user to override all this if necessary. */
321 if (cachesize_override != -1)
322 l2size = cachesize_override;
325 return; /* Again, no L2 cache is possible */
328 c->x86_cache_size = l2size;
330 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
334 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
337 u32 eax, ebx, ecx, edx;
338 int index_msb, core_bits;
340 if (!cpu_has(c, X86_FEATURE_HT))
343 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
346 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
349 cpuid(1, &eax, &ebx, &ecx, &edx);
351 smp_num_siblings = (ebx & 0xff0000) >> 16;
353 if (smp_num_siblings == 1) {
354 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
355 } else if (smp_num_siblings > 1) {
357 if (smp_num_siblings > NR_CPUS) {
358 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
360 smp_num_siblings = 1;
364 index_msb = get_count_order(smp_num_siblings);
366 c->phys_proc_id = phys_pkg_id(index_msb);
368 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
371 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
373 index_msb = get_count_order(smp_num_siblings);
375 core_bits = get_count_order(c->x86_max_cores);
378 c->cpu_core_id = phys_pkg_id(index_msb) &
379 ((1 << core_bits) - 1);
381 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
382 ((1 << core_bits) - 1);
387 if ((c->x86_max_cores * smp_num_siblings) > 1) {
388 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
390 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
396 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
398 char *v = c->x86_vendor_id;
402 for (i = 0; i < X86_VENDOR_NUM; i++) {
406 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
407 (cpu_devs[i]->c_ident[1] &&
408 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
409 this_cpu = cpu_devs[i];
410 c->x86_vendor = this_cpu->c_x86_vendor;
417 printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
418 printk(KERN_ERR "CPU: Your system may be unstable.\n");
421 c->x86_vendor = X86_VENDOR_UNKNOWN;
422 this_cpu = &default_cpu;
425 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
427 /* Get vendor name */
428 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
429 (unsigned int *)&c->x86_vendor_id[0],
430 (unsigned int *)&c->x86_vendor_id[8],
431 (unsigned int *)&c->x86_vendor_id[4]);
434 /* Intel-defined flags: level 0x00000001 */
435 if (c->cpuid_level >= 0x00000001) {
436 u32 junk, tfms, cap0, misc;
437 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
438 c->x86 = (tfms >> 8) & 0xf;
439 c->x86_model = (tfms >> 4) & 0xf;
440 c->x86_mask = tfms & 0xf;
442 c->x86 += (tfms >> 20) & 0xff;
444 c->x86_model += ((tfms >> 16) & 0xf) << 4;
445 if (cap0 & (1<<19)) {
446 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
447 c->x86_cache_alignment = c->x86_clflush_size;
452 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
457 /* Intel-defined flags: level 0x00000001 */
458 if (c->cpuid_level >= 0x00000001) {
459 u32 capability, excap;
460 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
461 c->x86_capability[0] = capability;
462 c->x86_capability[4] = excap;
465 /* AMD-defined flags: level 0x80000001 */
466 xlvl = cpuid_eax(0x80000000);
467 c->extended_cpuid_level = xlvl;
468 if ((xlvl & 0xffff0000) == 0x80000000) {
469 if (xlvl >= 0x80000001) {
470 c->x86_capability[1] = cpuid_edx(0x80000001);
471 c->x86_capability[6] = cpuid_ecx(0x80000001);
476 if (c->extended_cpuid_level >= 0x80000008) {
477 u32 eax = cpuid_eax(0x80000008);
479 c->x86_virt_bits = (eax >> 8) & 0xff;
480 c->x86_phys_bits = eax & 0xff;
484 if (c->extended_cpuid_level >= 0x80000007)
485 c->x86_power = cpuid_edx(0x80000007);
489 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
495 * First of all, decide if this is a 486 or higher
496 * It's a 486 if we can modify the AC flag
498 if (flag_is_changeable_p(X86_EFLAGS_AC))
503 for (i = 0; i < X86_VENDOR_NUM; i++)
504 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
505 c->x86_vendor_id[0] = 0;
506 cpu_devs[i]->c_identify(c);
507 if (c->x86_vendor_id[0]) {
516 * Do minimum CPU detection early.
517 * Fields really needed: vendor, cpuid_level, family, model, mask,
519 * The others are not touched to avoid unwanted side effects.
521 * WARNING: this function is only called on the BP. Don't add code here
522 * that is supposed to run on all CPUs.
524 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
527 c->x86_clflush_size = 64;
529 c->x86_clflush_size = 32;
531 c->x86_cache_alignment = c->x86_clflush_size;
533 memset(&c->x86_capability, 0, sizeof c->x86_capability);
534 c->extended_cpuid_level = 0;
537 identify_cpu_without_cpuid(c);
539 /* cyrix could have cpuid enabled via c_identify()*/
549 if (this_cpu->c_early_init)
550 this_cpu->c_early_init(c);
552 validate_pat_support(c);
555 c->cpu_index = boot_cpu_id;
559 void __init early_cpu_init(void)
561 struct cpu_dev **cdev;
564 printk("KERNEL supported cpus:\n");
565 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
566 struct cpu_dev *cpudev = *cdev;
569 if (count >= X86_VENDOR_NUM)
571 cpu_devs[count] = cpudev;
574 for (j = 0; j < 2; j++) {
575 if (!cpudev->c_ident[j])
577 printk(" %s %s\n", cpudev->c_vendor,
582 early_identify_cpu(&boot_cpu_data);
586 * The NOPL instruction is supposed to exist on all CPUs with
587 * family >= 6; unfortunately, that's not true in practice because
588 * of early VIA chips and (more importantly) broken virtualizers that
589 * are not easy to detect. In the latter case it doesn't even *fail*
590 * reliably, so probing for it doesn't even work. Disable it completely
591 * unless we can find a reliable way to detect all the broken cases.
593 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
595 clear_cpu_cap(c, X86_FEATURE_NOPL);
598 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
600 c->extended_cpuid_level = 0;
603 identify_cpu_without_cpuid(c);
605 /* cyrix could have cpuid enabled via c_identify()*/
615 if (c->cpuid_level >= 0x00000001) {
616 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
618 # ifdef CONFIG_X86_HT
619 c->apicid = phys_pkg_id(c->initial_apicid, 0);
621 c->apicid = c->initial_apicid;
626 c->phys_proc_id = c->initial_apicid;
630 get_model_name(c); /* Default name */
632 init_scattered_cpuid_features(c);
637 * This does the hard work of actually picking apart the CPU stuff...
639 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
643 c->loops_per_jiffy = loops_per_jiffy;
644 c->x86_cache_size = -1;
645 c->x86_vendor = X86_VENDOR_UNKNOWN;
646 c->x86_model = c->x86_mask = 0; /* So far unknown... */
647 c->x86_vendor_id[0] = '\0'; /* Unset */
648 c->x86_model_id[0] = '\0'; /* Unset */
649 c->x86_max_cores = 1;
650 c->x86_coreid_bits = 0;
652 c->x86_clflush_size = 64;
654 c->cpuid_level = -1; /* CPUID not detected */
655 c->x86_clflush_size = 32;
657 c->x86_cache_alignment = c->x86_clflush_size;
658 memset(&c->x86_capability, 0, sizeof c->x86_capability);
662 if (this_cpu->c_identify)
663 this_cpu->c_identify(c);
666 c->apicid = phys_pkg_id(0);
670 * Vendor-specific initialization. In this section we
671 * canonicalize the feature flags, meaning if there are
672 * features a certain CPU supports which CPUID doesn't
673 * tell us, CPUID claiming incorrect flags, or other bugs,
674 * we handle them here.
676 * At the end of this section, c->x86_capability better
677 * indicate the features this CPU genuinely supports!
679 if (this_cpu->c_init)
682 /* Disable the PN if appropriate */
683 squash_the_stupid_serial_number(c);
686 * The vendor-specific functions might have changed features. Now
687 * we do "generic changes."
690 /* If the model name is still unset, do table lookup. */
691 if (!c->x86_model_id[0]) {
693 p = table_lookup_model(c);
695 strcpy(c->x86_model_id, p);
698 sprintf(c->x86_model_id, "%02x/%02x",
699 c->x86, c->x86_model);
707 * On SMP, boot_cpu_data holds the common feature set between
708 * all CPUs; so make sure that we indicate which features are
709 * common between the CPUs. The first time this routine gets
710 * executed, c == &boot_cpu_data.
712 if (c != &boot_cpu_data) {
713 /* AND the already accumulated flags with these */
714 for (i = 0; i < NCAPINTS; i++)
715 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
718 /* Clear all flags overriden by options */
719 for (i = 0; i < NCAPINTS; i++)
720 c->x86_capability[i] &= ~cleared_cpu_caps[i];
722 #ifdef CONFIG_X86_MCE
723 /* Init Machine Check Exception if available. */
727 select_idle_routine(c);
729 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
730 numa_add_cpu(smp_processor_id());
735 static void vgetcpu_set_mode(void)
737 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
738 vgetcpu_mode = VGETCPU_RDTSCP;
740 vgetcpu_mode = VGETCPU_LSL;
744 void __init identify_boot_cpu(void)
746 identify_cpu(&boot_cpu_data);
755 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
757 BUG_ON(c == &boot_cpu_data);
770 static struct msr_range msr_range_array[] __cpuinitdata = {
771 { 0x00000000, 0x00000418},
772 { 0xc0000000, 0xc000040b},
773 { 0xc0010000, 0xc0010142},
774 { 0xc0011000, 0xc001103b},
777 static void __cpuinit print_cpu_msr(void)
782 unsigned index_min, index_max;
784 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
785 index_min = msr_range_array[i].min;
786 index_max = msr_range_array[i].max;
787 for (index = index_min; index < index_max; index++) {
788 if (rdmsrl_amd_safe(index, &val))
790 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
795 static int show_msr __cpuinitdata;
796 static __init int setup_show_msr(char *arg)
800 get_option(&arg, &num);
806 __setup("show_msr=", setup_show_msr);
808 static __init int setup_noclflush(char *arg)
810 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
813 __setup("noclflush", setup_noclflush);
815 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
819 if (c->x86_vendor < X86_VENDOR_NUM)
820 vendor = this_cpu->c_vendor;
821 else if (c->cpuid_level >= 0)
822 vendor = c->x86_vendor_id;
824 if (vendor && !strstr(c->x86_model_id, vendor))
825 printk(KERN_CONT "%s ", vendor);
827 if (c->x86_model_id[0])
828 printk(KERN_CONT "%s", c->x86_model_id);
830 printk(KERN_CONT "%d86", c->x86);
832 if (c->x86_mask || c->cpuid_level >= 0)
833 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
835 printk(KERN_CONT "\n");
838 if (c->cpu_index < show_msr)
846 static __init int setup_disablecpuid(char *arg)
849 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
850 setup_clear_cpu_cap(bit);
855 __setup("clearcpuid=", setup_disablecpuid);
857 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
860 struct x8664_pda **_cpu_pda __read_mostly;
861 EXPORT_SYMBOL(_cpu_pda);
863 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
865 char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
867 void __cpuinit pda_init(int cpu)
869 struct x8664_pda *pda = cpu_pda(cpu);
871 /* Setup up data that may be needed in __get_free_pages early */
874 /* Memory clobbers used to order PDA accessed */
876 wrmsrl(MSR_GS_BASE, pda);
879 pda->cpunumber = cpu;
881 pda->kernelstack = (unsigned long)stack_thread_info() -
882 PDA_STACKOFFSET + THREAD_SIZE;
883 pda->active_mm = &init_mm;
887 /* others are initialized in smpboot.c */
888 pda->pcurrent = &init_task;
889 pda->irqstackptr = boot_cpu_stack;
890 pda->irqstackptr += IRQSTACKSIZE - 64;
892 if (!pda->irqstackptr) {
893 pda->irqstackptr = (char *)
894 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
895 if (!pda->irqstackptr)
896 panic("cannot allocate irqstack for cpu %d",
898 pda->irqstackptr += IRQSTACKSIZE - 64;
901 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
902 pda->nodenumber = cpu_to_node(cpu);
906 char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
907 DEBUG_STKSZ] __page_aligned_bss;
909 extern asmlinkage void ignore_sysret(void);
911 /* May not be marked __init: used by software suspend */
912 void syscall_init(void)
915 * LSTAR and STAR live in a bit strange symbiosis.
916 * They both write to the same internal register. STAR allows to
917 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
919 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
920 wrmsrl(MSR_LSTAR, system_call);
921 wrmsrl(MSR_CSTAR, ignore_sysret);
923 #ifdef CONFIG_IA32_EMULATION
924 syscall32_cpu_init();
927 /* Flags to clear on syscall */
928 wrmsrl(MSR_SYSCALL_MASK,
929 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
932 unsigned long kernel_eflags;
935 * Copies of the original ist values from the tss are only accessed during
936 * debugging, no special alignment required.
938 DEFINE_PER_CPU(struct orig_ist, orig_ist);
942 /* Make sure %fs is initialized properly in idle threads */
943 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
945 memset(regs, 0, sizeof(struct pt_regs));
946 regs->fs = __KERNEL_PERCPU;
952 * cpu_init() initializes state that is per-CPU. Some data is already
953 * initialized (naturally) in the bootstrap process, such as the GDT
954 * and IDT. We reload them nevertheless, this function acts as a
955 * 'CPU state barrier', nothing should get across.
956 * A lot of state is already set up in PDA init for 64 bit
959 void __cpuinit cpu_init(void)
961 int cpu = stack_smp_processor_id();
962 struct tss_struct *t = &per_cpu(init_tss, cpu);
963 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
965 char *estacks = NULL;
966 struct task_struct *me;
969 /* CPU 0 is initialised in head64.c */
973 estacks = boot_exception_stacks;
977 if (cpu_test_and_set(cpu, cpu_initialized))
978 panic("CPU#%d already initialized!\n", cpu);
980 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
982 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
985 * Initialize the per-CPU GDT with the boot GDT,
986 * and set up the GDT descriptor:
990 load_idt((const struct desc_ptr *)&idt_descr);
992 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
995 wrmsrl(MSR_FS_BASE, 0);
996 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1000 if (cpu != 0 && x2apic)
1004 * set up and load the per-CPU TSS
1006 if (!orig_ist->ist[0]) {
1007 static const unsigned int order[N_EXCEPTION_STACKS] = {
1008 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
1009 [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
1011 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1013 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
1015 panic("Cannot allocate exception "
1016 "stack %ld %d\n", v, cpu);
1018 estacks += PAGE_SIZE << order[v];
1019 orig_ist->ist[v] = t->x86_tss.ist[v] =
1020 (unsigned long)estacks;
1024 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1026 * <= is required because the CPU will access up to
1027 * 8 bits beyond the end of the IO permission bitmap.
1029 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1030 t->io_bitmap[i] = ~0UL;
1032 atomic_inc(&init_mm.mm_count);
1033 me->active_mm = &init_mm;
1036 enter_lazy_tlb(&init_mm, me);
1038 load_sp0(t, ¤t->thread);
1039 set_tss_desc(cpu, t);
1041 load_LDT(&init_mm.context);
1045 * If the kgdb is connected no debug regs should be altered. This
1046 * is only applicable when KGDB and a KGDB I/O module are built
1047 * into the kernel and you are using early debugging with
1048 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1050 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1051 arch_kgdb_ops.correct_hw_break();
1055 * Clear all 6 debug registers:
1058 set_debugreg(0UL, 0);
1059 set_debugreg(0UL, 1);
1060 set_debugreg(0UL, 2);
1061 set_debugreg(0UL, 3);
1062 set_debugreg(0UL, 6);
1063 set_debugreg(0UL, 7);
1065 /* If the kgdb is connected no debug regs should be altered. */
1071 raw_local_save_flags(kernel_eflags);
1079 void __cpuinit cpu_init(void)
1081 int cpu = smp_processor_id();
1082 struct task_struct *curr = current;
1083 struct tss_struct *t = &per_cpu(init_tss, cpu);
1084 struct thread_struct *thread = &curr->thread;
1086 if (cpu_test_and_set(cpu, cpu_initialized)) {
1087 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1088 for (;;) local_irq_enable();
1091 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1093 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1094 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1096 load_idt(&idt_descr);
1097 switch_to_new_gdt();
1100 * Set up and load the per-CPU TSS and LDT
1102 atomic_inc(&init_mm.mm_count);
1103 curr->active_mm = &init_mm;
1106 enter_lazy_tlb(&init_mm, curr);
1108 load_sp0(t, thread);
1109 set_tss_desc(cpu, t);
1111 load_LDT(&init_mm.context);
1113 #ifdef CONFIG_DOUBLEFAULT
1114 /* Set up doublefault TSS pointer in the GDT */
1115 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1119 asm volatile ("mov %0, %%gs" : : "r" (0));
1121 /* Clear all 6 debug registers: */
1130 * Force FPU initialization:
1133 current_thread_info()->status = TS_XSAVE;
1135 current_thread_info()->status = 0;
1137 mxcsr_feature_mask_init();
1140 * Boot processor to setup the FP and extended state context info.
1142 if (smp_processor_id() == boot_cpu_id)
1143 init_thread_xstate();