4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * Some corrections by tytso.
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 static int __link_path_walk(const char *name, struct nameidata *nd);
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 static int do_getname(const char __user *filename, char *page)
123 unsigned long len = PATH_MAX;
125 if (!segment_eq(get_fs(), KERNEL_DS)) {
126 if ((unsigned long) filename >= TASK_SIZE)
128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 len = TASK_SIZE - (unsigned long) filename;
132 retval = strncpy_from_user(page, filename, len);
136 return -ENAMETOOLONG;
142 char * getname(const char __user * filename)
146 result = ERR_PTR(-ENOMEM);
149 int retval = do_getname(filename, tmp);
154 result = ERR_PTR(retval);
157 audit_getname(result);
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
164 if (unlikely(!audit_dummy_context()))
169 EXPORT_SYMBOL(putname);
174 * generic_permission - check for access rights on a Posix-like filesystem
175 * @inode: inode to check access rights for
176 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
177 * @check_acl: optional callback to check for Posix ACLs
179 * Used to check for read/write/execute permissions on a file.
180 * We use "fsuid" for this, letting us set arbitrary permissions
181 * for filesystem access without changing the "normal" uids which
182 * are used for other things..
184 int generic_permission(struct inode *inode, int mask,
185 int (*check_acl)(struct inode *inode, int mask))
187 umode_t mode = inode->i_mode;
189 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
191 if (current_fsuid() == inode->i_uid)
194 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
195 int error = check_acl(inode, mask);
196 if (error == -EACCES)
197 goto check_capabilities;
198 else if (error != -EAGAIN)
202 if (in_group_p(inode->i_gid))
207 * If the DACs are ok we don't need any capability check.
209 if ((mask & ~mode) == 0)
214 * Read/write DACs are always overridable.
215 * Executable DACs are overridable if at least one exec bit is set.
217 if (!(mask & MAY_EXEC) || execute_ok(inode))
218 if (capable(CAP_DAC_OVERRIDE))
222 * Searching includes executable on directories, else just read.
224 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
225 if (capable(CAP_DAC_READ_SEARCH))
232 * inode_permission - check for access rights to a given inode
233 * @inode: inode to check permission on
234 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
236 * Used to check for read/write/execute permissions on an inode.
237 * We use "fsuid" for this, letting us set arbitrary permissions
238 * for filesystem access without changing the "normal" uids which
239 * are used for other things.
241 int inode_permission(struct inode *inode, int mask)
245 if (mask & MAY_WRITE) {
246 umode_t mode = inode->i_mode;
249 * Nobody gets write access to a read-only fs.
251 if (IS_RDONLY(inode) &&
252 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
256 * Nobody gets write access to an immutable file.
258 if (IS_IMMUTABLE(inode))
262 if (inode->i_op->permission)
263 retval = inode->i_op->permission(inode, mask);
265 retval = generic_permission(inode, mask, NULL);
270 retval = devcgroup_inode_permission(inode, mask);
274 return security_inode_permission(inode,
275 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
279 * file_permission - check for additional access rights to a given file
280 * @file: file to check access rights for
281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
283 * Used to check for read/write/execute permissions on an already opened
287 * Do not use this function in new code. All access checks should
288 * be done using inode_permission().
290 int file_permission(struct file *file, int mask)
292 return inode_permission(file->f_path.dentry->d_inode, mask);
296 * get_write_access() gets write permission for a file.
297 * put_write_access() releases this write permission.
298 * This is used for regular files.
299 * We cannot support write (and maybe mmap read-write shared) accesses and
300 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
301 * can have the following values:
302 * 0: no writers, no VM_DENYWRITE mappings
303 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
304 * > 0: (i_writecount) users are writing to the file.
306 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
307 * except for the cases where we don't hold i_writecount yet. Then we need to
308 * use {get,deny}_write_access() - these functions check the sign and refuse
309 * to do the change if sign is wrong. Exclusion between them is provided by
310 * the inode->i_lock spinlock.
313 int get_write_access(struct inode * inode)
315 spin_lock(&inode->i_lock);
316 if (atomic_read(&inode->i_writecount) < 0) {
317 spin_unlock(&inode->i_lock);
320 atomic_inc(&inode->i_writecount);
321 spin_unlock(&inode->i_lock);
326 int deny_write_access(struct file * file)
328 struct inode *inode = file->f_path.dentry->d_inode;
330 spin_lock(&inode->i_lock);
331 if (atomic_read(&inode->i_writecount) > 0) {
332 spin_unlock(&inode->i_lock);
335 atomic_dec(&inode->i_writecount);
336 spin_unlock(&inode->i_lock);
342 * path_get - get a reference to a path
343 * @path: path to get the reference to
345 * Given a path increment the reference count to the dentry and the vfsmount.
347 void path_get(struct path *path)
352 EXPORT_SYMBOL(path_get);
355 * path_put - put a reference to a path
356 * @path: path to put the reference to
358 * Given a path decrement the reference count to the dentry and the vfsmount.
360 void path_put(struct path *path)
365 EXPORT_SYMBOL(path_put);
368 * release_open_intent - free up open intent resources
369 * @nd: pointer to nameidata
371 void release_open_intent(struct nameidata *nd)
373 if (nd->intent.open.file->f_path.dentry == NULL)
374 put_filp(nd->intent.open.file);
376 fput(nd->intent.open.file);
379 static inline struct dentry *
380 do_revalidate(struct dentry *dentry, struct nameidata *nd)
382 int status = dentry->d_op->d_revalidate(dentry, nd);
383 if (unlikely(status <= 0)) {
385 * The dentry failed validation.
386 * If d_revalidate returned 0 attempt to invalidate
387 * the dentry otherwise d_revalidate is asking us
388 * to return a fail status.
391 if (!d_invalidate(dentry)) {
397 dentry = ERR_PTR(status);
404 * Internal lookup() using the new generic dcache.
407 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
409 struct dentry * dentry = __d_lookup(parent, name);
411 /* lockess __d_lookup may fail due to concurrent d_move()
412 * in some unrelated directory, so try with d_lookup
415 dentry = d_lookup(parent, name);
417 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
418 dentry = do_revalidate(dentry, nd);
424 * Short-cut version of permission(), for calling by
425 * path_walk(), when dcache lock is held. Combines parts
426 * of permission() and generic_permission(), and tests ONLY for
427 * MAY_EXEC permission.
429 * If appropriate, check DAC only. If not appropriate, or
430 * short-cut DAC fails, then call permission() to do more
431 * complete permission check.
433 static int exec_permission_lite(struct inode *inode)
435 umode_t mode = inode->i_mode;
437 if (inode->i_op->permission)
440 if (current_fsuid() == inode->i_uid)
442 else if (in_group_p(inode->i_gid))
448 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
451 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
454 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
459 return security_inode_permission(inode, MAY_EXEC);
463 * This is called when everything else fails, and we actually have
464 * to go to the low-level filesystem to find out what we should do..
466 * We get the directory semaphore, and after getting that we also
467 * make sure that nobody added the entry to the dcache in the meantime..
470 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
472 struct dentry * result;
473 struct inode *dir = parent->d_inode;
475 mutex_lock(&dir->i_mutex);
477 * First re-do the cached lookup just in case it was created
478 * while we waited for the directory semaphore..
480 * FIXME! This could use version numbering or similar to
481 * avoid unnecessary cache lookups.
483 * The "dcache_lock" is purely to protect the RCU list walker
484 * from concurrent renames at this point (we mustn't get false
485 * negatives from the RCU list walk here, unlike the optimistic
488 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
490 result = d_lookup(parent, name);
492 struct dentry *dentry;
494 /* Don't create child dentry for a dead directory. */
495 result = ERR_PTR(-ENOENT);
499 dentry = d_alloc(parent, name);
500 result = ERR_PTR(-ENOMEM);
502 result = dir->i_op->lookup(dir, dentry, nd);
509 mutex_unlock(&dir->i_mutex);
514 * Uhhuh! Nasty case: the cache was re-populated while
515 * we waited on the semaphore. Need to revalidate.
517 mutex_unlock(&dir->i_mutex);
518 if (result->d_op && result->d_op->d_revalidate) {
519 result = do_revalidate(result, nd);
521 result = ERR_PTR(-ENOENT);
527 * Wrapper to retry pathname resolution whenever the underlying
528 * file system returns an ESTALE.
530 * Retry the whole path once, forcing real lookup requests
531 * instead of relying on the dcache.
533 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
535 struct path save = nd->path;
538 /* make sure the stuff we saved doesn't go away */
541 result = __link_path_walk(name, nd);
542 if (result == -ESTALE) {
543 /* nd->path had been dropped */
546 nd->flags |= LOOKUP_REVAL;
547 result = __link_path_walk(name, nd);
555 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
563 struct fs_struct *fs = current->fs;
567 read_lock(&fs->lock);
570 read_unlock(&fs->lock);
573 res = link_path_walk(link, nd);
574 if (nd->depth || res || nd->last_type!=LAST_NORM)
577 * If it is an iterative symlinks resolution in open_namei() we
578 * have to copy the last component. And all that crap because of
579 * bloody create() on broken symlinks. Furrfu...
582 if (unlikely(!name)) {
586 strcpy(name, nd->last.name);
587 nd->last.name = name;
591 return PTR_ERR(link);
594 static void path_put_conditional(struct path *path, struct nameidata *nd)
597 if (path->mnt != nd->path.mnt)
601 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
603 dput(nd->path.dentry);
604 if (nd->path.mnt != path->mnt)
605 mntput(nd->path.mnt);
606 nd->path.mnt = path->mnt;
607 nd->path.dentry = path->dentry;
610 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
614 struct dentry *dentry = path->dentry;
616 touch_atime(path->mnt, dentry);
617 nd_set_link(nd, NULL);
619 if (path->mnt != nd->path.mnt) {
620 path_to_nameidata(path, nd);
624 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
625 error = PTR_ERR(cookie);
626 if (!IS_ERR(cookie)) {
627 char *s = nd_get_link(nd);
630 error = __vfs_follow_link(nd, s);
631 if (dentry->d_inode->i_op->put_link)
632 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
640 * This limits recursive symlink follows to 8, while
641 * limiting consecutive symlinks to 40.
643 * Without that kind of total limit, nasty chains of consecutive
644 * symlinks can cause almost arbitrarily long lookups.
646 static inline int do_follow_link(struct path *path, struct nameidata *nd)
649 if (current->link_count >= MAX_NESTED_LINKS)
651 if (current->total_link_count >= 40)
653 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
655 err = security_inode_follow_link(path->dentry, nd);
658 current->link_count++;
659 current->total_link_count++;
661 err = __do_follow_link(path, nd);
662 current->link_count--;
666 path_put_conditional(path, nd);
671 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
673 struct vfsmount *parent;
674 struct dentry *mountpoint;
675 spin_lock(&vfsmount_lock);
676 parent=(*mnt)->mnt_parent;
677 if (parent == *mnt) {
678 spin_unlock(&vfsmount_lock);
682 mountpoint=dget((*mnt)->mnt_mountpoint);
683 spin_unlock(&vfsmount_lock);
685 *dentry = mountpoint;
691 /* no need for dcache_lock, as serialization is taken care in
694 static int __follow_mount(struct path *path)
697 while (d_mountpoint(path->dentry)) {
698 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
705 path->dentry = dget(mounted->mnt_root);
711 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
713 while (d_mountpoint(*dentry)) {
714 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
720 *dentry = dget(mounted->mnt_root);
724 /* no need for dcache_lock, as serialization is taken care in
727 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
729 struct vfsmount *mounted;
731 mounted = lookup_mnt(*mnt, *dentry);
736 *dentry = dget(mounted->mnt_root);
742 static __always_inline void follow_dotdot(struct nameidata *nd)
744 struct fs_struct *fs = current->fs;
747 struct vfsmount *parent;
748 struct dentry *old = nd->path.dentry;
750 read_lock(&fs->lock);
751 if (nd->path.dentry == fs->root.dentry &&
752 nd->path.mnt == fs->root.mnt) {
753 read_unlock(&fs->lock);
756 read_unlock(&fs->lock);
757 spin_lock(&dcache_lock);
758 if (nd->path.dentry != nd->path.mnt->mnt_root) {
759 nd->path.dentry = dget(nd->path.dentry->d_parent);
760 spin_unlock(&dcache_lock);
764 spin_unlock(&dcache_lock);
765 spin_lock(&vfsmount_lock);
766 parent = nd->path.mnt->mnt_parent;
767 if (parent == nd->path.mnt) {
768 spin_unlock(&vfsmount_lock);
772 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
773 spin_unlock(&vfsmount_lock);
775 mntput(nd->path.mnt);
776 nd->path.mnt = parent;
778 follow_mount(&nd->path.mnt, &nd->path.dentry);
782 * It's more convoluted than I'd like it to be, but... it's still fairly
783 * small and for now I'd prefer to have fast path as straight as possible.
784 * It _is_ time-critical.
786 static int do_lookup(struct nameidata *nd, struct qstr *name,
789 struct vfsmount *mnt = nd->path.mnt;
790 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
794 if (dentry->d_op && dentry->d_op->d_revalidate)
795 goto need_revalidate;
798 path->dentry = dentry;
799 __follow_mount(path);
803 dentry = real_lookup(nd->path.dentry, name, nd);
809 dentry = do_revalidate(dentry, nd);
817 return PTR_ERR(dentry);
822 * This is the basic name resolution function, turning a pathname into
823 * the final dentry. We expect 'base' to be positive and a directory.
825 * Returns 0 and nd will have valid dentry and mnt on success.
826 * Returns error and drops reference to input namei data on failure.
828 static int __link_path_walk(const char *name, struct nameidata *nd)
833 unsigned int lookup_flags = nd->flags;
840 inode = nd->path.dentry->d_inode;
842 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
844 /* At this point we know we have a real path component. */
850 nd->flags |= LOOKUP_CONTINUE;
851 err = exec_permission_lite(inode);
853 err = inode_permission(nd->path.dentry->d_inode,
856 err = ima_path_check(&nd->path, MAY_EXEC,
862 c = *(const unsigned char *)name;
864 hash = init_name_hash();
867 hash = partial_name_hash(c, hash);
868 c = *(const unsigned char *)name;
869 } while (c && (c != '/'));
870 this.len = name - (const char *) this.name;
871 this.hash = end_name_hash(hash);
873 /* remove trailing slashes? */
876 while (*++name == '/');
878 goto last_with_slashes;
881 * "." and ".." are special - ".." especially so because it has
882 * to be able to know about the current root directory and
883 * parent relationships.
885 if (this.name[0] == '.') switch (this.len) {
889 if (this.name[1] != '.')
892 inode = nd->path.dentry->d_inode;
898 * See if the low-level filesystem might want
899 * to use its own hash..
901 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
902 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
907 /* This does the actual lookups.. */
908 err = do_lookup(nd, &this, &next);
913 inode = next.dentry->d_inode;
917 if (inode->i_op->follow_link) {
918 err = do_follow_link(&next, nd);
922 inode = nd->path.dentry->d_inode;
926 path_to_nameidata(&next, nd);
928 if (!inode->i_op->lookup)
931 /* here ends the main loop */
934 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
936 /* Clear LOOKUP_CONTINUE iff it was previously unset */
937 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
938 if (lookup_flags & LOOKUP_PARENT)
940 if (this.name[0] == '.') switch (this.len) {
944 if (this.name[1] != '.')
947 inode = nd->path.dentry->d_inode;
952 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
953 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
958 err = do_lookup(nd, &this, &next);
961 inode = next.dentry->d_inode;
962 if ((lookup_flags & LOOKUP_FOLLOW)
963 && inode && inode->i_op->follow_link) {
964 err = do_follow_link(&next, nd);
967 inode = nd->path.dentry->d_inode;
969 path_to_nameidata(&next, nd);
973 if (lookup_flags & LOOKUP_DIRECTORY) {
975 if (!inode->i_op->lookup)
981 nd->last_type = LAST_NORM;
982 if (this.name[0] != '.')
985 nd->last_type = LAST_DOT;
986 else if (this.len == 2 && this.name[1] == '.')
987 nd->last_type = LAST_DOTDOT;
992 * We bypassed the ordinary revalidation routines.
993 * We may need to check the cached dentry for staleness.
995 if (nd->path.dentry && nd->path.dentry->d_sb &&
996 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
998 /* Note: we do not d_invalidate() */
999 if (!nd->path.dentry->d_op->d_revalidate(
1000 nd->path.dentry, nd))
1006 path_put_conditional(&next, nd);
1009 path_put(&nd->path);
1014 static int path_walk(const char *name, struct nameidata *nd)
1016 current->total_link_count = 0;
1017 return link_path_walk(name, nd);
1020 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1021 static int do_path_lookup(int dfd, const char *name,
1022 unsigned int flags, struct nameidata *nd)
1027 struct fs_struct *fs = current->fs;
1029 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1034 read_lock(&fs->lock);
1035 nd->path = fs->root;
1036 path_get(&fs->root);
1037 read_unlock(&fs->lock);
1038 } else if (dfd == AT_FDCWD) {
1039 read_lock(&fs->lock);
1042 read_unlock(&fs->lock);
1044 struct dentry *dentry;
1046 file = fget_light(dfd, &fput_needed);
1051 dentry = file->f_path.dentry;
1054 if (!S_ISDIR(dentry->d_inode->i_mode))
1057 retval = file_permission(file, MAY_EXEC);
1061 nd->path = file->f_path;
1062 path_get(&file->f_path);
1064 fput_light(file, fput_needed);
1067 retval = path_walk(name, nd);
1068 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1069 nd->path.dentry->d_inode))
1070 audit_inode(name, nd->path.dentry);
1075 fput_light(file, fput_needed);
1079 int path_lookup(const char *name, unsigned int flags,
1080 struct nameidata *nd)
1082 return do_path_lookup(AT_FDCWD, name, flags, nd);
1085 int kern_path(const char *name, unsigned int flags, struct path *path)
1087 struct nameidata nd;
1088 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1095 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1096 * @dentry: pointer to dentry of the base directory
1097 * @mnt: pointer to vfs mount of the base directory
1098 * @name: pointer to file name
1099 * @flags: lookup flags
1100 * @nd: pointer to nameidata
1102 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1103 const char *name, unsigned int flags,
1104 struct nameidata *nd)
1108 /* same as do_path_lookup */
1109 nd->last_type = LAST_ROOT;
1113 nd->path.dentry = dentry;
1115 path_get(&nd->path);
1117 retval = path_walk(name, nd);
1118 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1119 nd->path.dentry->d_inode))
1120 audit_inode(name, nd->path.dentry);
1127 * path_lookup_open - lookup a file path with open intent
1128 * @dfd: the directory to use as base, or AT_FDCWD
1129 * @name: pointer to file name
1130 * @lookup_flags: lookup intent flags
1131 * @nd: pointer to nameidata
1132 * @open_flags: open intent flags
1134 static int path_lookup_open(int dfd, const char *name,
1135 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1137 struct file *filp = get_empty_filp();
1142 nd->intent.open.file = filp;
1143 nd->intent.open.flags = open_flags;
1144 nd->intent.open.create_mode = 0;
1145 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1146 if (IS_ERR(nd->intent.open.file)) {
1148 err = PTR_ERR(nd->intent.open.file);
1149 path_put(&nd->path);
1151 } else if (err != 0)
1152 release_open_intent(nd);
1156 static struct dentry *__lookup_hash(struct qstr *name,
1157 struct dentry *base, struct nameidata *nd)
1159 struct dentry *dentry;
1160 struct inode *inode;
1163 inode = base->d_inode;
1166 * See if the low-level filesystem might want
1167 * to use its own hash..
1169 if (base->d_op && base->d_op->d_hash) {
1170 err = base->d_op->d_hash(base, name);
1171 dentry = ERR_PTR(err);
1176 dentry = cached_lookup(base, name, nd);
1180 /* Don't create child dentry for a dead directory. */
1181 dentry = ERR_PTR(-ENOENT);
1182 if (IS_DEADDIR(inode))
1185 new = d_alloc(base, name);
1186 dentry = ERR_PTR(-ENOMEM);
1189 dentry = inode->i_op->lookup(inode, new, nd);
1200 * Restricted form of lookup. Doesn't follow links, single-component only,
1201 * needs parent already locked. Doesn't follow mounts.
1204 static struct dentry *lookup_hash(struct nameidata *nd)
1208 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1210 return ERR_PTR(err);
1211 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1214 static int __lookup_one_len(const char *name, struct qstr *this,
1215 struct dentry *base, int len)
1225 hash = init_name_hash();
1227 c = *(const unsigned char *)name++;
1228 if (c == '/' || c == '\0')
1230 hash = partial_name_hash(c, hash);
1232 this->hash = end_name_hash(hash);
1237 * lookup_one_len - filesystem helper to lookup single pathname component
1238 * @name: pathname component to lookup
1239 * @base: base directory to lookup from
1240 * @len: maximum length @len should be interpreted to
1242 * Note that this routine is purely a helper for filesystem usage and should
1243 * not be called by generic code. Also note that by using this function the
1244 * nameidata argument is passed to the filesystem methods and a filesystem
1245 * using this helper needs to be prepared for that.
1247 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1252 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1254 err = __lookup_one_len(name, &this, base, len);
1256 return ERR_PTR(err);
1258 err = inode_permission(base->d_inode, MAY_EXEC);
1260 return ERR_PTR(err);
1261 return __lookup_hash(&this, base, NULL);
1265 * lookup_one_noperm - bad hack for sysfs
1266 * @name: pathname component to lookup
1267 * @base: base directory to lookup from
1269 * This is a variant of lookup_one_len that doesn't perform any permission
1270 * checks. It's a horrible hack to work around the braindead sysfs
1271 * architecture and should not be used anywhere else.
1273 * DON'T USE THIS FUNCTION EVER, thanks.
1275 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1280 err = __lookup_one_len(name, &this, base, strlen(name));
1282 return ERR_PTR(err);
1283 return __lookup_hash(&this, base, NULL);
1286 int user_path_at(int dfd, const char __user *name, unsigned flags,
1289 struct nameidata nd;
1290 char *tmp = getname(name);
1291 int err = PTR_ERR(tmp);
1294 BUG_ON(flags & LOOKUP_PARENT);
1296 err = do_path_lookup(dfd, tmp, flags, &nd);
1304 static int user_path_parent(int dfd, const char __user *path,
1305 struct nameidata *nd, char **name)
1307 char *s = getname(path);
1313 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1323 * It's inline, so penalty for filesystems that don't use sticky bit is
1326 static inline int check_sticky(struct inode *dir, struct inode *inode)
1328 uid_t fsuid = current_fsuid();
1330 if (!(dir->i_mode & S_ISVTX))
1332 if (inode->i_uid == fsuid)
1334 if (dir->i_uid == fsuid)
1336 return !capable(CAP_FOWNER);
1340 * Check whether we can remove a link victim from directory dir, check
1341 * whether the type of victim is right.
1342 * 1. We can't do it if dir is read-only (done in permission())
1343 * 2. We should have write and exec permissions on dir
1344 * 3. We can't remove anything from append-only dir
1345 * 4. We can't do anything with immutable dir (done in permission())
1346 * 5. If the sticky bit on dir is set we should either
1347 * a. be owner of dir, or
1348 * b. be owner of victim, or
1349 * c. have CAP_FOWNER capability
1350 * 6. If the victim is append-only or immutable we can't do antyhing with
1351 * links pointing to it.
1352 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1353 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1354 * 9. We can't remove a root or mountpoint.
1355 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1356 * nfs_async_unlink().
1358 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1362 if (!victim->d_inode)
1365 BUG_ON(victim->d_parent->d_inode != dir);
1366 audit_inode_child(victim->d_name.name, victim, dir);
1368 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1373 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1374 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1377 if (!S_ISDIR(victim->d_inode->i_mode))
1379 if (IS_ROOT(victim))
1381 } else if (S_ISDIR(victim->d_inode->i_mode))
1383 if (IS_DEADDIR(dir))
1385 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1390 /* Check whether we can create an object with dentry child in directory
1392 * 1. We can't do it if child already exists (open has special treatment for
1393 * this case, but since we are inlined it's OK)
1394 * 2. We can't do it if dir is read-only (done in permission())
1395 * 3. We should have write and exec permissions on dir
1396 * 4. We can't do it if dir is immutable (done in permission())
1398 static inline int may_create(struct inode *dir, struct dentry *child)
1402 if (IS_DEADDIR(dir))
1404 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1408 * O_DIRECTORY translates into forcing a directory lookup.
1410 static inline int lookup_flags(unsigned int f)
1412 unsigned long retval = LOOKUP_FOLLOW;
1415 retval &= ~LOOKUP_FOLLOW;
1417 if (f & O_DIRECTORY)
1418 retval |= LOOKUP_DIRECTORY;
1424 * p1 and p2 should be directories on the same fs.
1426 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1431 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1435 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1437 p = d_ancestor(p2, p1);
1439 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1440 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1444 p = d_ancestor(p1, p2);
1446 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1447 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1451 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1452 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1456 void unlock_rename(struct dentry *p1, struct dentry *p2)
1458 mutex_unlock(&p1->d_inode->i_mutex);
1460 mutex_unlock(&p2->d_inode->i_mutex);
1461 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1465 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1466 struct nameidata *nd)
1468 int error = may_create(dir, dentry);
1473 if (!dir->i_op->create)
1474 return -EACCES; /* shouldn't it be ENOSYS? */
1477 error = security_inode_create(dir, dentry, mode);
1481 error = dir->i_op->create(dir, dentry, mode, nd);
1483 fsnotify_create(dir, dentry);
1487 int may_open(struct path *path, int acc_mode, int flag)
1489 struct dentry *dentry = path->dentry;
1490 struct inode *inode = dentry->d_inode;
1496 switch (inode->i_mode & S_IFMT) {
1500 if (acc_mode & MAY_WRITE)
1505 if (path->mnt->mnt_flags & MNT_NODEV)
1514 error = inode_permission(inode, acc_mode);
1518 error = ima_path_check(path,
1519 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC),
1524 * An append-only file must be opened in append mode for writing.
1526 if (IS_APPEND(inode)) {
1527 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1533 /* O_NOATIME can only be set by the owner or superuser */
1534 if (flag & O_NOATIME)
1535 if (!is_owner_or_cap(inode))
1539 * Ensure there are no outstanding leases on the file.
1541 error = break_lease(inode, flag);
1545 if (flag & O_TRUNC) {
1546 error = get_write_access(inode);
1551 * Refuse to truncate files with mandatory locks held on them.
1553 error = locks_verify_locked(inode);
1555 error = security_path_truncate(path, 0,
1556 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1560 error = do_truncate(dentry, 0,
1561 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1564 put_write_access(inode);
1568 if (flag & FMODE_WRITE)
1575 * Be careful about ever adding any more callers of this
1576 * function. Its flags must be in the namei format, not
1577 * what get passed to sys_open().
1579 static int __open_namei_create(struct nameidata *nd, struct path *path,
1583 struct dentry *dir = nd->path.dentry;
1585 if (!IS_POSIXACL(dir->d_inode))
1586 mode &= ~current_umask();
1587 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1590 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1592 mutex_unlock(&dir->d_inode->i_mutex);
1593 dput(nd->path.dentry);
1594 nd->path.dentry = path->dentry;
1597 /* Don't check for write permission, don't truncate */
1598 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1602 * Note that while the flag value (low two bits) for sys_open means:
1607 * it is changed into
1608 * 00 - no permissions needed
1609 * 01 - read-permission
1610 * 10 - write-permission
1612 * for the internal routines (ie open_namei()/follow_link() etc)
1613 * This is more logical, and also allows the 00 "no perm needed"
1614 * to be used for symlinks (where the permissions are checked
1618 static inline int open_to_namei_flags(int flag)
1620 if ((flag+1) & O_ACCMODE)
1625 static int open_will_write_to_fs(int flag, struct inode *inode)
1628 * We'll never write to the fs underlying
1631 if (special_file(inode->i_mode))
1633 return (flag & O_TRUNC);
1637 * Note that the low bits of the passed in "open_flag"
1638 * are not the same as in the local variable "flag". See
1639 * open_to_namei_flags() for more details.
1641 struct file *do_filp_open(int dfd, const char *pathname,
1642 int open_flag, int mode, int acc_mode)
1645 struct nameidata nd;
1651 int flag = open_to_namei_flags(open_flag);
1654 acc_mode = MAY_OPEN | ACC_MODE(flag);
1656 /* O_TRUNC implies we need access checks for write permissions */
1658 acc_mode |= MAY_WRITE;
1660 /* Allow the LSM permission hook to distinguish append
1661 access from general write access. */
1662 if (flag & O_APPEND)
1663 acc_mode |= MAY_APPEND;
1666 * The simplest case - just a plain lookup.
1668 if (!(flag & O_CREAT)) {
1669 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1672 return ERR_PTR(error);
1677 * Create - we need to know the parent.
1679 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1681 return ERR_PTR(error);
1684 * We have the parent and last component. First of all, check
1685 * that we are not asked to creat(2) an obvious directory - that
1689 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1693 filp = get_empty_filp();
1696 nd.intent.open.file = filp;
1697 nd.intent.open.flags = flag;
1698 nd.intent.open.create_mode = mode;
1699 dir = nd.path.dentry;
1700 nd.flags &= ~LOOKUP_PARENT;
1701 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1703 nd.flags |= LOOKUP_EXCL;
1704 mutex_lock(&dir->d_inode->i_mutex);
1705 path.dentry = lookup_hash(&nd);
1706 path.mnt = nd.path.mnt;
1709 error = PTR_ERR(path.dentry);
1710 if (IS_ERR(path.dentry)) {
1711 mutex_unlock(&dir->d_inode->i_mutex);
1715 if (IS_ERR(nd.intent.open.file)) {
1716 error = PTR_ERR(nd.intent.open.file);
1717 goto exit_mutex_unlock;
1720 /* Negative dentry, just create the file */
1721 if (!path.dentry->d_inode) {
1723 * This write is needed to ensure that a
1724 * ro->rw transition does not occur between
1725 * the time when the file is created and when
1726 * a permanent write count is taken through
1727 * the 'struct file' in nameidata_to_filp().
1729 error = mnt_want_write(nd.path.mnt);
1731 goto exit_mutex_unlock;
1732 error = __open_namei_create(&nd, &path, flag, mode);
1734 mnt_drop_write(nd.path.mnt);
1737 filp = nameidata_to_filp(&nd, open_flag);
1738 mnt_drop_write(nd.path.mnt);
1743 * It already exists.
1745 mutex_unlock(&dir->d_inode->i_mutex);
1746 audit_inode(pathname, path.dentry);
1752 if (__follow_mount(&path)) {
1754 if (flag & O_NOFOLLOW)
1759 if (!path.dentry->d_inode)
1761 if (path.dentry->d_inode->i_op->follow_link)
1764 path_to_nameidata(&path, &nd);
1766 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1771 * 1. may_open() truncates a file
1772 * 2. a rw->ro mount transition occurs
1773 * 3. nameidata_to_filp() fails due to
1775 * That would be inconsistent, and should
1776 * be avoided. Taking this mnt write here
1777 * ensures that (2) can not occur.
1779 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1781 error = mnt_want_write(nd.path.mnt);
1785 error = may_open(&nd.path, acc_mode, flag);
1788 mnt_drop_write(nd.path.mnt);
1791 filp = nameidata_to_filp(&nd, open_flag);
1793 * It is now safe to drop the mnt write
1794 * because the filp has had a write taken
1798 mnt_drop_write(nd.path.mnt);
1802 mutex_unlock(&dir->d_inode->i_mutex);
1804 path_put_conditional(&path, &nd);
1806 if (!IS_ERR(nd.intent.open.file))
1807 release_open_intent(&nd);
1810 return ERR_PTR(error);
1814 if (flag & O_NOFOLLOW)
1817 * This is subtle. Instead of calling do_follow_link() we do the
1818 * thing by hands. The reason is that this way we have zero link_count
1819 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1820 * After that we have the parent and last component, i.e.
1821 * we are in the same situation as after the first path_walk().
1822 * Well, almost - if the last component is normal we get its copy
1823 * stored in nd->last.name and we will have to putname() it when we
1824 * are done. Procfs-like symlinks just set LAST_BIND.
1826 nd.flags |= LOOKUP_PARENT;
1827 error = security_inode_follow_link(path.dentry, &nd);
1830 error = __do_follow_link(&path, &nd);
1832 /* Does someone understand code flow here? Or it is only
1833 * me so stupid? Anathema to whoever designed this non-sense
1834 * with "intent.open".
1836 release_open_intent(&nd);
1837 return ERR_PTR(error);
1839 nd.flags &= ~LOOKUP_PARENT;
1840 if (nd.last_type == LAST_BIND)
1843 if (nd.last_type != LAST_NORM)
1845 if (nd.last.name[nd.last.len]) {
1846 __putname(nd.last.name);
1851 __putname(nd.last.name);
1854 dir = nd.path.dentry;
1855 mutex_lock(&dir->d_inode->i_mutex);
1856 path.dentry = lookup_hash(&nd);
1857 path.mnt = nd.path.mnt;
1858 __putname(nd.last.name);
1863 * filp_open - open file and return file pointer
1865 * @filename: path to open
1866 * @flags: open flags as per the open(2) second argument
1867 * @mode: mode for the new file if O_CREAT is set, else ignored
1869 * This is the helper to open a file from kernelspace if you really
1870 * have to. But in generally you should not do this, so please move
1871 * along, nothing to see here..
1873 struct file *filp_open(const char *filename, int flags, int mode)
1875 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1877 EXPORT_SYMBOL(filp_open);
1880 * lookup_create - lookup a dentry, creating it if it doesn't exist
1881 * @nd: nameidata info
1882 * @is_dir: directory flag
1884 * Simple function to lookup and return a dentry and create it
1885 * if it doesn't exist. Is SMP-safe.
1887 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1889 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1891 struct dentry *dentry = ERR_PTR(-EEXIST);
1893 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1895 * Yucky last component or no last component at all?
1896 * (foo/., foo/.., /////)
1898 if (nd->last_type != LAST_NORM)
1900 nd->flags &= ~LOOKUP_PARENT;
1901 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1902 nd->intent.open.flags = O_EXCL;
1905 * Do the final lookup.
1907 dentry = lookup_hash(nd);
1911 if (dentry->d_inode)
1914 * Special case - lookup gave negative, but... we had foo/bar/
1915 * From the vfs_mknod() POV we just have a negative dentry -
1916 * all is fine. Let's be bastards - you had / on the end, you've
1917 * been asking for (non-existent) directory. -ENOENT for you.
1919 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1921 dentry = ERR_PTR(-ENOENT);
1926 dentry = ERR_PTR(-EEXIST);
1930 EXPORT_SYMBOL_GPL(lookup_create);
1932 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1934 int error = may_create(dir, dentry);
1939 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1942 if (!dir->i_op->mknod)
1945 error = devcgroup_inode_mknod(mode, dev);
1949 error = security_inode_mknod(dir, dentry, mode, dev);
1954 error = dir->i_op->mknod(dir, dentry, mode, dev);
1956 fsnotify_create(dir, dentry);
1960 static int may_mknod(mode_t mode)
1962 switch (mode & S_IFMT) {
1968 case 0: /* zero mode translates to S_IFREG */
1977 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1982 struct dentry *dentry;
1983 struct nameidata nd;
1988 error = user_path_parent(dfd, filename, &nd, &tmp);
1992 dentry = lookup_create(&nd, 0);
1993 if (IS_ERR(dentry)) {
1994 error = PTR_ERR(dentry);
1997 if (!IS_POSIXACL(nd.path.dentry->d_inode))
1998 mode &= ~current_umask();
1999 error = may_mknod(mode);
2002 error = mnt_want_write(nd.path.mnt);
2005 error = security_path_mknod(&nd.path, dentry, mode, dev);
2007 goto out_drop_write;
2008 switch (mode & S_IFMT) {
2009 case 0: case S_IFREG:
2010 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2012 case S_IFCHR: case S_IFBLK:
2013 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2014 new_decode_dev(dev));
2016 case S_IFIFO: case S_IFSOCK:
2017 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2021 mnt_drop_write(nd.path.mnt);
2025 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2032 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2034 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2037 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2039 int error = may_create(dir, dentry);
2044 if (!dir->i_op->mkdir)
2047 mode &= (S_IRWXUGO|S_ISVTX);
2048 error = security_inode_mkdir(dir, dentry, mode);
2053 error = dir->i_op->mkdir(dir, dentry, mode);
2055 fsnotify_mkdir(dir, dentry);
2059 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2063 struct dentry *dentry;
2064 struct nameidata nd;
2066 error = user_path_parent(dfd, pathname, &nd, &tmp);
2070 dentry = lookup_create(&nd, 1);
2071 error = PTR_ERR(dentry);
2075 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2076 mode &= ~current_umask();
2077 error = mnt_want_write(nd.path.mnt);
2080 error = security_path_mkdir(&nd.path, dentry, mode);
2082 goto out_drop_write;
2083 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2085 mnt_drop_write(nd.path.mnt);
2089 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2096 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2098 return sys_mkdirat(AT_FDCWD, pathname, mode);
2102 * We try to drop the dentry early: we should have
2103 * a usage count of 2 if we're the only user of this
2104 * dentry, and if that is true (possibly after pruning
2105 * the dcache), then we drop the dentry now.
2107 * A low-level filesystem can, if it choses, legally
2110 * if (!d_unhashed(dentry))
2113 * if it cannot handle the case of removing a directory
2114 * that is still in use by something else..
2116 void dentry_unhash(struct dentry *dentry)
2119 shrink_dcache_parent(dentry);
2120 spin_lock(&dcache_lock);
2121 spin_lock(&dentry->d_lock);
2122 if (atomic_read(&dentry->d_count) == 2)
2124 spin_unlock(&dentry->d_lock);
2125 spin_unlock(&dcache_lock);
2128 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2130 int error = may_delete(dir, dentry, 1);
2135 if (!dir->i_op->rmdir)
2140 mutex_lock(&dentry->d_inode->i_mutex);
2141 dentry_unhash(dentry);
2142 if (d_mountpoint(dentry))
2145 error = security_inode_rmdir(dir, dentry);
2147 error = dir->i_op->rmdir(dir, dentry);
2149 dentry->d_inode->i_flags |= S_DEAD;
2152 mutex_unlock(&dentry->d_inode->i_mutex);
2161 static long do_rmdir(int dfd, const char __user *pathname)
2165 struct dentry *dentry;
2166 struct nameidata nd;
2168 error = user_path_parent(dfd, pathname, &nd, &name);
2172 switch(nd.last_type) {
2184 nd.flags &= ~LOOKUP_PARENT;
2186 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2187 dentry = lookup_hash(&nd);
2188 error = PTR_ERR(dentry);
2191 error = mnt_want_write(nd.path.mnt);
2194 error = security_path_rmdir(&nd.path, dentry);
2197 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2199 mnt_drop_write(nd.path.mnt);
2203 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2210 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2212 return do_rmdir(AT_FDCWD, pathname);
2215 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2217 int error = may_delete(dir, dentry, 0);
2222 if (!dir->i_op->unlink)
2227 mutex_lock(&dentry->d_inode->i_mutex);
2228 if (d_mountpoint(dentry))
2231 error = security_inode_unlink(dir, dentry);
2233 error = dir->i_op->unlink(dir, dentry);
2235 mutex_unlock(&dentry->d_inode->i_mutex);
2237 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2238 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2239 fsnotify_link_count(dentry->d_inode);
2247 * Make sure that the actual truncation of the file will occur outside its
2248 * directory's i_mutex. Truncate can take a long time if there is a lot of
2249 * writeout happening, and we don't want to prevent access to the directory
2250 * while waiting on the I/O.
2252 static long do_unlinkat(int dfd, const char __user *pathname)
2256 struct dentry *dentry;
2257 struct nameidata nd;
2258 struct inode *inode = NULL;
2260 error = user_path_parent(dfd, pathname, &nd, &name);
2265 if (nd.last_type != LAST_NORM)
2268 nd.flags &= ~LOOKUP_PARENT;
2270 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2271 dentry = lookup_hash(&nd);
2272 error = PTR_ERR(dentry);
2273 if (!IS_ERR(dentry)) {
2274 /* Why not before? Because we want correct error value */
2275 if (nd.last.name[nd.last.len])
2277 inode = dentry->d_inode;
2279 atomic_inc(&inode->i_count);
2280 error = mnt_want_write(nd.path.mnt);
2283 error = security_path_unlink(&nd.path, dentry);
2286 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2288 mnt_drop_write(nd.path.mnt);
2292 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2294 iput(inode); /* truncate the inode here */
2301 error = !dentry->d_inode ? -ENOENT :
2302 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2306 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2308 if ((flag & ~AT_REMOVEDIR) != 0)
2311 if (flag & AT_REMOVEDIR)
2312 return do_rmdir(dfd, pathname);
2314 return do_unlinkat(dfd, pathname);
2317 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2319 return do_unlinkat(AT_FDCWD, pathname);
2322 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2324 int error = may_create(dir, dentry);
2329 if (!dir->i_op->symlink)
2332 error = security_inode_symlink(dir, dentry, oldname);
2337 error = dir->i_op->symlink(dir, dentry, oldname);
2339 fsnotify_create(dir, dentry);
2343 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2344 int, newdfd, const char __user *, newname)
2349 struct dentry *dentry;
2350 struct nameidata nd;
2352 from = getname(oldname);
2354 return PTR_ERR(from);
2356 error = user_path_parent(newdfd, newname, &nd, &to);
2360 dentry = lookup_create(&nd, 0);
2361 error = PTR_ERR(dentry);
2365 error = mnt_want_write(nd.path.mnt);
2368 error = security_path_symlink(&nd.path, dentry, from);
2370 goto out_drop_write;
2371 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2373 mnt_drop_write(nd.path.mnt);
2377 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2385 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2387 return sys_symlinkat(oldname, AT_FDCWD, newname);
2390 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2392 struct inode *inode = old_dentry->d_inode;
2398 error = may_create(dir, new_dentry);
2402 if (dir->i_sb != inode->i_sb)
2406 * A link to an append-only or immutable file cannot be created.
2408 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2410 if (!dir->i_op->link)
2412 if (S_ISDIR(inode->i_mode))
2415 error = security_inode_link(old_dentry, dir, new_dentry);
2419 mutex_lock(&inode->i_mutex);
2421 error = dir->i_op->link(old_dentry, dir, new_dentry);
2422 mutex_unlock(&inode->i_mutex);
2424 fsnotify_link(dir, inode, new_dentry);
2429 * Hardlinks are often used in delicate situations. We avoid
2430 * security-related surprises by not following symlinks on the
2433 * We don't follow them on the oldname either to be compatible
2434 * with linux 2.0, and to avoid hard-linking to directories
2435 * and other special files. --ADM
2437 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2438 int, newdfd, const char __user *, newname, int, flags)
2440 struct dentry *new_dentry;
2441 struct nameidata nd;
2442 struct path old_path;
2446 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2449 error = user_path_at(olddfd, oldname,
2450 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2455 error = user_path_parent(newdfd, newname, &nd, &to);
2459 if (old_path.mnt != nd.path.mnt)
2461 new_dentry = lookup_create(&nd, 0);
2462 error = PTR_ERR(new_dentry);
2463 if (IS_ERR(new_dentry))
2465 error = mnt_want_write(nd.path.mnt);
2468 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2470 goto out_drop_write;
2471 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2473 mnt_drop_write(nd.path.mnt);
2477 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2482 path_put(&old_path);
2487 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2489 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2493 * The worst of all namespace operations - renaming directory. "Perverted"
2494 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2496 * a) we can get into loop creation. Check is done in is_subdir().
2497 * b) race potential - two innocent renames can create a loop together.
2498 * That's where 4.4 screws up. Current fix: serialization on
2499 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2501 * c) we have to lock _three_ objects - parents and victim (if it exists).
2502 * And that - after we got ->i_mutex on parents (until then we don't know
2503 * whether the target exists). Solution: try to be smart with locking
2504 * order for inodes. We rely on the fact that tree topology may change
2505 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2506 * move will be locked. Thus we can rank directories by the tree
2507 * (ancestors first) and rank all non-directories after them.
2508 * That works since everybody except rename does "lock parent, lookup,
2509 * lock child" and rename is under ->s_vfs_rename_mutex.
2510 * HOWEVER, it relies on the assumption that any object with ->lookup()
2511 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2512 * we'd better make sure that there's no link(2) for them.
2513 * d) some filesystems don't support opened-but-unlinked directories,
2514 * either because of layout or because they are not ready to deal with
2515 * all cases correctly. The latter will be fixed (taking this sort of
2516 * stuff into VFS), but the former is not going away. Solution: the same
2517 * trick as in rmdir().
2518 * e) conversion from fhandle to dentry may come in the wrong moment - when
2519 * we are removing the target. Solution: we will have to grab ->i_mutex
2520 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2521 * ->i_mutex on parents, which works but leads to some truely excessive
2524 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2525 struct inode *new_dir, struct dentry *new_dentry)
2528 struct inode *target;
2531 * If we are going to change the parent - check write permissions,
2532 * we'll need to flip '..'.
2534 if (new_dir != old_dir) {
2535 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2540 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2544 target = new_dentry->d_inode;
2546 mutex_lock(&target->i_mutex);
2547 dentry_unhash(new_dentry);
2549 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2552 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2555 target->i_flags |= S_DEAD;
2556 mutex_unlock(&target->i_mutex);
2557 if (d_unhashed(new_dentry))
2558 d_rehash(new_dentry);
2562 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2563 d_move(old_dentry,new_dentry);
2567 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2568 struct inode *new_dir, struct dentry *new_dentry)
2570 struct inode *target;
2573 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2578 target = new_dentry->d_inode;
2580 mutex_lock(&target->i_mutex);
2581 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2584 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2586 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2587 d_move(old_dentry, new_dentry);
2590 mutex_unlock(&target->i_mutex);
2595 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2596 struct inode *new_dir, struct dentry *new_dentry)
2599 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2600 const char *old_name;
2602 if (old_dentry->d_inode == new_dentry->d_inode)
2605 error = may_delete(old_dir, old_dentry, is_dir);
2609 if (!new_dentry->d_inode)
2610 error = may_create(new_dir, new_dentry);
2612 error = may_delete(new_dir, new_dentry, is_dir);
2616 if (!old_dir->i_op->rename)
2619 vfs_dq_init(old_dir);
2620 vfs_dq_init(new_dir);
2622 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2625 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2627 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2629 const char *new_name = old_dentry->d_name.name;
2630 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2631 new_dentry->d_inode, old_dentry);
2633 fsnotify_oldname_free(old_name);
2638 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2639 int, newdfd, const char __user *, newname)
2641 struct dentry *old_dir, *new_dir;
2642 struct dentry *old_dentry, *new_dentry;
2643 struct dentry *trap;
2644 struct nameidata oldnd, newnd;
2649 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2653 error = user_path_parent(newdfd, newname, &newnd, &to);
2658 if (oldnd.path.mnt != newnd.path.mnt)
2661 old_dir = oldnd.path.dentry;
2663 if (oldnd.last_type != LAST_NORM)
2666 new_dir = newnd.path.dentry;
2667 if (newnd.last_type != LAST_NORM)
2670 oldnd.flags &= ~LOOKUP_PARENT;
2671 newnd.flags &= ~LOOKUP_PARENT;
2672 newnd.flags |= LOOKUP_RENAME_TARGET;
2674 trap = lock_rename(new_dir, old_dir);
2676 old_dentry = lookup_hash(&oldnd);
2677 error = PTR_ERR(old_dentry);
2678 if (IS_ERR(old_dentry))
2680 /* source must exist */
2682 if (!old_dentry->d_inode)
2684 /* unless the source is a directory trailing slashes give -ENOTDIR */
2685 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2687 if (oldnd.last.name[oldnd.last.len])
2689 if (newnd.last.name[newnd.last.len])
2692 /* source should not be ancestor of target */
2694 if (old_dentry == trap)
2696 new_dentry = lookup_hash(&newnd);
2697 error = PTR_ERR(new_dentry);
2698 if (IS_ERR(new_dentry))
2700 /* target should not be an ancestor of source */
2702 if (new_dentry == trap)
2705 error = mnt_want_write(oldnd.path.mnt);
2708 error = security_path_rename(&oldnd.path, old_dentry,
2709 &newnd.path, new_dentry);
2712 error = vfs_rename(old_dir->d_inode, old_dentry,
2713 new_dir->d_inode, new_dentry);
2715 mnt_drop_write(oldnd.path.mnt);
2721 unlock_rename(new_dir, old_dir);
2723 path_put(&newnd.path);
2726 path_put(&oldnd.path);
2732 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2734 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2737 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2741 len = PTR_ERR(link);
2746 if (len > (unsigned) buflen)
2748 if (copy_to_user(buffer, link, len))
2755 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2756 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2757 * using) it for any given inode is up to filesystem.
2759 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2761 struct nameidata nd;
2766 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2768 return PTR_ERR(cookie);
2770 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2771 if (dentry->d_inode->i_op->put_link)
2772 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2776 int vfs_follow_link(struct nameidata *nd, const char *link)
2778 return __vfs_follow_link(nd, link);
2781 /* get the link contents into pagecache */
2782 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2786 struct address_space *mapping = dentry->d_inode->i_mapping;
2787 page = read_mapping_page(mapping, 0, NULL);
2792 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2796 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2798 struct page *page = NULL;
2799 char *s = page_getlink(dentry, &page);
2800 int res = vfs_readlink(dentry,buffer,buflen,s);
2803 page_cache_release(page);
2808 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2810 struct page *page = NULL;
2811 nd_set_link(nd, page_getlink(dentry, &page));
2815 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2817 struct page *page = cookie;
2821 page_cache_release(page);
2826 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2828 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2830 struct address_space *mapping = inode->i_mapping;
2835 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2837 flags |= AOP_FLAG_NOFS;
2840 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2841 flags, &page, &fsdata);
2845 kaddr = kmap_atomic(page, KM_USER0);
2846 memcpy(kaddr, symname, len-1);
2847 kunmap_atomic(kaddr, KM_USER0);
2849 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2856 mark_inode_dirty(inode);
2862 int page_symlink(struct inode *inode, const char *symname, int len)
2864 return __page_symlink(inode, symname, len,
2865 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2868 const struct inode_operations page_symlink_inode_operations = {
2869 .readlink = generic_readlink,
2870 .follow_link = page_follow_link_light,
2871 .put_link = page_put_link,
2874 EXPORT_SYMBOL(user_path_at);
2875 EXPORT_SYMBOL(follow_down);
2876 EXPORT_SYMBOL(follow_up);
2877 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2878 EXPORT_SYMBOL(getname);
2879 EXPORT_SYMBOL(lock_rename);
2880 EXPORT_SYMBOL(lookup_one_len);
2881 EXPORT_SYMBOL(page_follow_link_light);
2882 EXPORT_SYMBOL(page_put_link);
2883 EXPORT_SYMBOL(page_readlink);
2884 EXPORT_SYMBOL(__page_symlink);
2885 EXPORT_SYMBOL(page_symlink);
2886 EXPORT_SYMBOL(page_symlink_inode_operations);
2887 EXPORT_SYMBOL(path_lookup);
2888 EXPORT_SYMBOL(kern_path);
2889 EXPORT_SYMBOL(vfs_path_lookup);
2890 EXPORT_SYMBOL(inode_permission);
2891 EXPORT_SYMBOL(file_permission);
2892 EXPORT_SYMBOL(unlock_rename);
2893 EXPORT_SYMBOL(vfs_create);
2894 EXPORT_SYMBOL(vfs_follow_link);
2895 EXPORT_SYMBOL(vfs_link);
2896 EXPORT_SYMBOL(vfs_mkdir);
2897 EXPORT_SYMBOL(vfs_mknod);
2898 EXPORT_SYMBOL(generic_permission);
2899 EXPORT_SYMBOL(vfs_readlink);
2900 EXPORT_SYMBOL(vfs_rename);
2901 EXPORT_SYMBOL(vfs_rmdir);
2902 EXPORT_SYMBOL(vfs_symlink);
2903 EXPORT_SYMBOL(vfs_unlink);
2904 EXPORT_SYMBOL(dentry_unhash);
2905 EXPORT_SYMBOL(generic_readlink);