Pull percpu-dtc into release branch
[linux-2.6] / drivers / ieee1394 / nodemgr.c
1 /*
2  * Node information (ConfigROM) collection and management.
3  *
4  * Copyright (C) 2000           Andreas E. Bombe
5  *               2001-2003      Ben Collins <bcollins@debian.net>
6  *
7  * This code is licensed under the GPL.  See the file COPYING in the root
8  * directory of the kernel sources for details.
9  */
10
11 #include <linux/bitmap.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/mutex.h>
20 #include <linux/freezer.h>
21 #include <asm/atomic.h>
22
23 #include "csr.h"
24 #include "highlevel.h"
25 #include "hosts.h"
26 #include "ieee1394.h"
27 #include "ieee1394_core.h"
28 #include "ieee1394_hotplug.h"
29 #include "ieee1394_types.h"
30 #include "ieee1394_transactions.h"
31 #include "nodemgr.h"
32
33 static int ignore_drivers;
34 module_param(ignore_drivers, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(ignore_drivers, "Disable automatic probing for drivers.");
36
37 struct nodemgr_csr_info {
38         struct hpsb_host *host;
39         nodeid_t nodeid;
40         unsigned int generation;
41         unsigned int speed_unverified:1;
42 };
43
44
45 /*
46  * Correct the speed map entry.  This is necessary
47  *  - for nodes with link speed < phy speed,
48  *  - for 1394b nodes with negotiated phy port speed < IEEE1394_SPEED_MAX.
49  * A possible speed is determined by trial and error, using quadlet reads.
50  */
51 static int nodemgr_check_speed(struct nodemgr_csr_info *ci, u64 addr,
52                                quadlet_t *buffer)
53 {
54         quadlet_t q;
55         u8 i, *speed, old_speed, good_speed;
56         int error;
57
58         speed = &(ci->host->speed[NODEID_TO_NODE(ci->nodeid)]);
59         old_speed = *speed;
60         good_speed = IEEE1394_SPEED_MAX + 1;
61
62         /* Try every speed from S100 to old_speed.
63          * If we did it the other way around, a too low speed could be caught
64          * if the retry succeeded for some other reason, e.g. because the link
65          * just finished its initialization. */
66         for (i = IEEE1394_SPEED_100; i <= old_speed; i++) {
67                 *speed = i;
68                 error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
69                                   &q, sizeof(quadlet_t));
70                 if (error)
71                         break;
72                 *buffer = q;
73                 good_speed = i;
74         }
75         if (good_speed <= IEEE1394_SPEED_MAX) {
76                 HPSB_DEBUG("Speed probe of node " NODE_BUS_FMT " yields %s",
77                            NODE_BUS_ARGS(ci->host, ci->nodeid),
78                            hpsb_speedto_str[good_speed]);
79                 *speed = good_speed;
80                 ci->speed_unverified = 0;
81                 return 0;
82         }
83         *speed = old_speed;
84         return error;
85 }
86
87 static int nodemgr_bus_read(struct csr1212_csr *csr, u64 addr, u16 length,
88                             void *buffer, void *__ci)
89 {
90         struct nodemgr_csr_info *ci = (struct nodemgr_csr_info*)__ci;
91         int i, error;
92
93         for (i = 1; ; i++) {
94                 error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
95                                   buffer, length);
96                 if (!error) {
97                         ci->speed_unverified = 0;
98                         break;
99                 }
100                 /* Give up after 3rd failure. */
101                 if (i == 3)
102                         break;
103
104                 /* The ieee1394_core guessed the node's speed capability from
105                  * the self ID.  Check whether a lower speed works. */
106                 if (ci->speed_unverified && length == sizeof(quadlet_t)) {
107                         error = nodemgr_check_speed(ci, addr, buffer);
108                         if (!error)
109                                 break;
110                 }
111                 if (msleep_interruptible(334))
112                         return -EINTR;
113         }
114         return error;
115 }
116
117 static int nodemgr_get_max_rom(quadlet_t *bus_info_data, void *__ci)
118 {
119         return (be32_to_cpu(bus_info_data[2]) >> 8) & 0x3;
120 }
121
122 static struct csr1212_bus_ops nodemgr_csr_ops = {
123         .bus_read =     nodemgr_bus_read,
124         .get_max_rom =  nodemgr_get_max_rom
125 };
126
127
128 /*
129  * Basically what we do here is start off retrieving the bus_info block.
130  * From there will fill in some info about the node, verify it is of IEEE
131  * 1394 type, and that the crc checks out ok. After that we start off with
132  * the root directory, and subdirectories. To do this, we retrieve the
133  * quadlet header for a directory, find out the length, and retrieve the
134  * complete directory entry (be it a leaf or a directory). We then process
135  * it and add the info to our structure for that particular node.
136  *
137  * We verify CRC's along the way for each directory/block/leaf. The entire
138  * node structure is generic, and simply stores the information in a way
139  * that's easy to parse by the protocol interface.
140  */
141
142 /*
143  * The nodemgr relies heavily on the Driver Model for device callbacks and
144  * driver/device mappings. The old nodemgr used to handle all this itself,
145  * but now we are much simpler because of the LDM.
146  */
147
148 static DEFINE_MUTEX(nodemgr_serialize);
149
150 struct host_info {
151         struct hpsb_host *host;
152         struct list_head list;
153         struct task_struct *thread;
154 };
155
156 static int nodemgr_bus_match(struct device * dev, struct device_driver * drv);
157 static int nodemgr_uevent(struct class_device *cdev, char **envp, int num_envp,
158                           char *buffer, int buffer_size);
159 static void nodemgr_resume_ne(struct node_entry *ne);
160 static void nodemgr_remove_ne(struct node_entry *ne);
161 static struct node_entry *find_entry_by_guid(u64 guid);
162
163 struct bus_type ieee1394_bus_type = {
164         .name           = "ieee1394",
165         .match          = nodemgr_bus_match,
166 };
167
168 static void host_cls_release(struct class_device *class_dev)
169 {
170         put_device(&container_of((class_dev), struct hpsb_host, class_dev)->device);
171 }
172
173 struct class hpsb_host_class = {
174         .name           = "ieee1394_host",
175         .release        = host_cls_release,
176 };
177
178 static void ne_cls_release(struct class_device *class_dev)
179 {
180         put_device(&container_of((class_dev), struct node_entry, class_dev)->device);
181 }
182
183 static struct class nodemgr_ne_class = {
184         .name           = "ieee1394_node",
185         .release        = ne_cls_release,
186 };
187
188 static void ud_cls_release(struct class_device *class_dev)
189 {
190         put_device(&container_of((class_dev), struct unit_directory, class_dev)->device);
191 }
192
193 /* The name here is only so that unit directory hotplug works with old
194  * style hotplug, which only ever did unit directories anyway. */
195 static struct class nodemgr_ud_class = {
196         .name           = "ieee1394",
197         .release        = ud_cls_release,
198         .uevent         = nodemgr_uevent,
199 };
200
201 static struct hpsb_highlevel nodemgr_highlevel;
202
203
204 static void nodemgr_release_ud(struct device *dev)
205 {
206         struct unit_directory *ud = container_of(dev, struct unit_directory, device);
207
208         if (ud->vendor_name_kv)
209                 csr1212_release_keyval(ud->vendor_name_kv);
210         if (ud->model_name_kv)
211                 csr1212_release_keyval(ud->model_name_kv);
212
213         kfree(ud);
214 }
215
216 static void nodemgr_release_ne(struct device *dev)
217 {
218         struct node_entry *ne = container_of(dev, struct node_entry, device);
219
220         if (ne->vendor_name_kv)
221                 csr1212_release_keyval(ne->vendor_name_kv);
222
223         kfree(ne);
224 }
225
226
227 static void nodemgr_release_host(struct device *dev)
228 {
229         struct hpsb_host *host = container_of(dev, struct hpsb_host, device);
230
231         csr1212_destroy_csr(host->csr.rom);
232
233         kfree(host);
234 }
235
236 static int nodemgr_ud_platform_data;
237
238 static struct device nodemgr_dev_template_ud = {
239         .bus            = &ieee1394_bus_type,
240         .release        = nodemgr_release_ud,
241         .platform_data  = &nodemgr_ud_platform_data,
242 };
243
244 static struct device nodemgr_dev_template_ne = {
245         .bus            = &ieee1394_bus_type,
246         .release        = nodemgr_release_ne,
247 };
248
249 /* This dummy driver prevents the host devices from being scanned. We have no
250  * useful drivers for them yet, and there would be a deadlock possible if the
251  * driver core scans the host device while the host's low-level driver (i.e.
252  * the host's parent device) is being removed. */
253 static struct device_driver nodemgr_mid_layer_driver = {
254         .bus            = &ieee1394_bus_type,
255         .name           = "nodemgr",
256         .owner          = THIS_MODULE,
257 };
258
259 struct device nodemgr_dev_template_host = {
260         .bus            = &ieee1394_bus_type,
261         .release        = nodemgr_release_host,
262 };
263
264
265 #define fw_attr(class, class_type, field, type, format_string)          \
266 static ssize_t fw_show_##class##_##field (struct device *dev, struct device_attribute *attr, char *buf)\
267 {                                                                       \
268         class_type *class;                                              \
269         class = container_of(dev, class_type, device);                  \
270         return sprintf(buf, format_string, (type)class->field);         \
271 }                                                                       \
272 static struct device_attribute dev_attr_##class##_##field = {           \
273         .attr = {.name = __stringify(field), .mode = S_IRUGO },         \
274         .show   = fw_show_##class##_##field,                            \
275 };
276
277 #define fw_attr_td(class, class_type, td_kv)                            \
278 static ssize_t fw_show_##class##_##td_kv (struct device *dev, struct device_attribute *attr, char *buf)\
279 {                                                                       \
280         int len;                                                        \
281         class_type *class = container_of(dev, class_type, device);      \
282         len = (class->td_kv->value.leaf.len - 2) * sizeof(quadlet_t);   \
283         memcpy(buf,                                                     \
284                CSR1212_TEXTUAL_DESCRIPTOR_LEAF_DATA(class->td_kv),      \
285                len);                                                    \
286         while ((buf + len - 1) == '\0')                                 \
287                 len--;                                                  \
288         buf[len++] = '\n';                                              \
289         buf[len] = '\0';                                                \
290         return len;                                                     \
291 }                                                                       \
292 static struct device_attribute dev_attr_##class##_##td_kv = {           \
293         .attr = {.name = __stringify(td_kv), .mode = S_IRUGO },         \
294         .show   = fw_show_##class##_##td_kv,                            \
295 };
296
297
298 #define fw_drv_attr(field, type, format_string)                 \
299 static ssize_t fw_drv_show_##field (struct device_driver *drv, char *buf) \
300 {                                                               \
301         struct hpsb_protocol_driver *driver;                    \
302         driver = container_of(drv, struct hpsb_protocol_driver, driver); \
303         return sprintf(buf, format_string, (type)driver->field);\
304 }                                                               \
305 static struct driver_attribute driver_attr_drv_##field = {      \
306         .attr = {.name = __stringify(field), .mode = S_IRUGO }, \
307         .show   = fw_drv_show_##field,                          \
308 };
309
310
311 static ssize_t fw_show_ne_bus_options(struct device *dev, struct device_attribute *attr, char *buf)
312 {
313         struct node_entry *ne = container_of(dev, struct node_entry, device);
314
315         return sprintf(buf, "IRMC(%d) CMC(%d) ISC(%d) BMC(%d) PMC(%d) GEN(%d) "
316                        "LSPD(%d) MAX_REC(%d) MAX_ROM(%d) CYC_CLK_ACC(%d)\n",
317                        ne->busopt.irmc,
318                        ne->busopt.cmc, ne->busopt.isc, ne->busopt.bmc,
319                        ne->busopt.pmc, ne->busopt.generation, ne->busopt.lnkspd,
320                        ne->busopt.max_rec,
321                        ne->busopt.max_rom,
322                        ne->busopt.cyc_clk_acc);
323 }
324 static DEVICE_ATTR(bus_options,S_IRUGO,fw_show_ne_bus_options,NULL);
325
326
327 #ifdef HPSB_DEBUG_TLABELS
328 static ssize_t fw_show_ne_tlabels_free(struct device *dev,
329                                        struct device_attribute *attr, char *buf)
330 {
331         struct node_entry *ne = container_of(dev, struct node_entry, device);
332         unsigned long flags;
333         unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
334         int tf;
335
336         spin_lock_irqsave(&hpsb_tlabel_lock, flags);
337         tf = 64 - bitmap_weight(tp, 64);
338         spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
339
340         return sprintf(buf, "%d\n", tf);
341 }
342 static DEVICE_ATTR(tlabels_free,S_IRUGO,fw_show_ne_tlabels_free,NULL);
343
344
345 static ssize_t fw_show_ne_tlabels_mask(struct device *dev,
346                                        struct device_attribute *attr, char *buf)
347 {
348         struct node_entry *ne = container_of(dev, struct node_entry, device);
349         unsigned long flags;
350         unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
351         u64 tm;
352
353         spin_lock_irqsave(&hpsb_tlabel_lock, flags);
354 #if (BITS_PER_LONG <= 32)
355         tm = ((u64)tp[0] << 32) + tp[1];
356 #else
357         tm = tp[0];
358 #endif
359         spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
360
361         return sprintf(buf, "0x%016llx\n", (unsigned long long)tm);
362 }
363 static DEVICE_ATTR(tlabels_mask, S_IRUGO, fw_show_ne_tlabels_mask, NULL);
364 #endif /* HPSB_DEBUG_TLABELS */
365
366
367 static ssize_t fw_set_ignore_driver(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
368 {
369         struct unit_directory *ud = container_of(dev, struct unit_directory, device);
370         int state = simple_strtoul(buf, NULL, 10);
371
372         if (state == 1) {
373                 ud->ignore_driver = 1;
374                 device_release_driver(dev);
375         } else if (state == 0)
376                 ud->ignore_driver = 0;
377
378         return count;
379 }
380 static ssize_t fw_get_ignore_driver(struct device *dev, struct device_attribute *attr, char *buf)
381 {
382         struct unit_directory *ud = container_of(dev, struct unit_directory, device);
383
384         return sprintf(buf, "%d\n", ud->ignore_driver);
385 }
386 static DEVICE_ATTR(ignore_driver, S_IWUSR | S_IRUGO, fw_get_ignore_driver, fw_set_ignore_driver);
387
388
389 static ssize_t fw_set_destroy_node(struct bus_type *bus, const char *buf, size_t count)
390 {
391         struct node_entry *ne;
392         u64 guid = (u64)simple_strtoull(buf, NULL, 16);
393
394         ne = find_entry_by_guid(guid);
395
396         if (ne == NULL || !ne->in_limbo)
397                 return -EINVAL;
398
399         nodemgr_remove_ne(ne);
400
401         return count;
402 }
403 static ssize_t fw_get_destroy_node(struct bus_type *bus, char *buf)
404 {
405         return sprintf(buf, "You can destroy in_limbo nodes by writing their GUID to this file\n");
406 }
407 static BUS_ATTR(destroy_node, S_IWUSR | S_IRUGO, fw_get_destroy_node, fw_set_destroy_node);
408
409
410 static ssize_t fw_set_rescan(struct bus_type *bus, const char *buf,
411                              size_t count)
412 {
413         int error = 0;
414
415         if (simple_strtoul(buf, NULL, 10) == 1)
416                 error = bus_rescan_devices(&ieee1394_bus_type);
417         return error ? error : count;
418 }
419 static ssize_t fw_get_rescan(struct bus_type *bus, char *buf)
420 {
421         return sprintf(buf, "You can force a rescan of the bus for "
422                         "drivers by writing a 1 to this file\n");
423 }
424 static BUS_ATTR(rescan, S_IWUSR | S_IRUGO, fw_get_rescan, fw_set_rescan);
425
426
427 static ssize_t fw_set_ignore_drivers(struct bus_type *bus, const char *buf, size_t count)
428 {
429         int state = simple_strtoul(buf, NULL, 10);
430
431         if (state == 1)
432                 ignore_drivers = 1;
433         else if (state == 0)
434                 ignore_drivers = 0;
435
436         return count;
437 }
438 static ssize_t fw_get_ignore_drivers(struct bus_type *bus, char *buf)
439 {
440         return sprintf(buf, "%d\n", ignore_drivers);
441 }
442 static BUS_ATTR(ignore_drivers, S_IWUSR | S_IRUGO, fw_get_ignore_drivers, fw_set_ignore_drivers);
443
444
445 struct bus_attribute *const fw_bus_attrs[] = {
446         &bus_attr_destroy_node,
447         &bus_attr_rescan,
448         &bus_attr_ignore_drivers,
449         NULL
450 };
451
452
453 fw_attr(ne, struct node_entry, capabilities, unsigned int, "0x%06x\n")
454 fw_attr(ne, struct node_entry, nodeid, unsigned int, "0x%04x\n")
455
456 fw_attr(ne, struct node_entry, vendor_id, unsigned int, "0x%06x\n")
457 fw_attr_td(ne, struct node_entry, vendor_name_kv)
458
459 fw_attr(ne, struct node_entry, guid, unsigned long long, "0x%016Lx\n")
460 fw_attr(ne, struct node_entry, guid_vendor_id, unsigned int, "0x%06x\n")
461 fw_attr(ne, struct node_entry, in_limbo, int, "%d\n");
462
463 static struct device_attribute *const fw_ne_attrs[] = {
464         &dev_attr_ne_guid,
465         &dev_attr_ne_guid_vendor_id,
466         &dev_attr_ne_capabilities,
467         &dev_attr_ne_vendor_id,
468         &dev_attr_ne_nodeid,
469         &dev_attr_bus_options,
470 #ifdef HPSB_DEBUG_TLABELS
471         &dev_attr_tlabels_free,
472         &dev_attr_tlabels_mask,
473 #endif
474 };
475
476
477
478 fw_attr(ud, struct unit_directory, address, unsigned long long, "0x%016Lx\n")
479 fw_attr(ud, struct unit_directory, length, int, "%d\n")
480 /* These are all dependent on the value being provided */
481 fw_attr(ud, struct unit_directory, vendor_id, unsigned int, "0x%06x\n")
482 fw_attr(ud, struct unit_directory, model_id, unsigned int, "0x%06x\n")
483 fw_attr(ud, struct unit_directory, specifier_id, unsigned int, "0x%06x\n")
484 fw_attr(ud, struct unit_directory, version, unsigned int, "0x%06x\n")
485 fw_attr_td(ud, struct unit_directory, vendor_name_kv)
486 fw_attr_td(ud, struct unit_directory, model_name_kv)
487
488 static struct device_attribute *const fw_ud_attrs[] = {
489         &dev_attr_ud_address,
490         &dev_attr_ud_length,
491         &dev_attr_ignore_driver,
492 };
493
494
495 fw_attr(host, struct hpsb_host, node_count, int, "%d\n")
496 fw_attr(host, struct hpsb_host, selfid_count, int, "%d\n")
497 fw_attr(host, struct hpsb_host, nodes_active, int, "%d\n")
498 fw_attr(host, struct hpsb_host, in_bus_reset, int, "%d\n")
499 fw_attr(host, struct hpsb_host, is_root, int, "%d\n")
500 fw_attr(host, struct hpsb_host, is_cycmst, int, "%d\n")
501 fw_attr(host, struct hpsb_host, is_irm, int, "%d\n")
502 fw_attr(host, struct hpsb_host, is_busmgr, int, "%d\n")
503
504 static struct device_attribute *const fw_host_attrs[] = {
505         &dev_attr_host_node_count,
506         &dev_attr_host_selfid_count,
507         &dev_attr_host_nodes_active,
508         &dev_attr_host_in_bus_reset,
509         &dev_attr_host_is_root,
510         &dev_attr_host_is_cycmst,
511         &dev_attr_host_is_irm,
512         &dev_attr_host_is_busmgr,
513 };
514
515
516 static ssize_t fw_show_drv_device_ids(struct device_driver *drv, char *buf)
517 {
518         struct hpsb_protocol_driver *driver;
519         struct ieee1394_device_id *id;
520         int length = 0;
521         char *scratch = buf;
522
523         driver = container_of(drv, struct hpsb_protocol_driver, driver);
524
525         for (id = driver->id_table; id->match_flags != 0; id++) {
526                 int need_coma = 0;
527
528                 if (id->match_flags & IEEE1394_MATCH_VENDOR_ID) {
529                         length += sprintf(scratch, "vendor_id=0x%06x", id->vendor_id);
530                         scratch = buf + length;
531                         need_coma++;
532                 }
533
534                 if (id->match_flags & IEEE1394_MATCH_MODEL_ID) {
535                         length += sprintf(scratch, "%smodel_id=0x%06x",
536                                           need_coma++ ? "," : "",
537                                           id->model_id);
538                         scratch = buf + length;
539                 }
540
541                 if (id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) {
542                         length += sprintf(scratch, "%sspecifier_id=0x%06x",
543                                           need_coma++ ? "," : "",
544                                           id->specifier_id);
545                         scratch = buf + length;
546                 }
547
548                 if (id->match_flags & IEEE1394_MATCH_VERSION) {
549                         length += sprintf(scratch, "%sversion=0x%06x",
550                                           need_coma++ ? "," : "",
551                                           id->version);
552                         scratch = buf + length;
553                 }
554
555                 if (need_coma) {
556                         *scratch++ = '\n';
557                         length++;
558                 }
559         }
560
561         return length;
562 }
563 static DRIVER_ATTR(device_ids,S_IRUGO,fw_show_drv_device_ids,NULL);
564
565
566 fw_drv_attr(name, const char *, "%s\n")
567
568 static struct driver_attribute *const fw_drv_attrs[] = {
569         &driver_attr_drv_name,
570         &driver_attr_device_ids,
571 };
572
573
574 static void nodemgr_create_drv_files(struct hpsb_protocol_driver *driver)
575 {
576         struct device_driver *drv = &driver->driver;
577         int i;
578
579         for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
580                 if (driver_create_file(drv, fw_drv_attrs[i]))
581                         goto fail;
582         return;
583 fail:
584         HPSB_ERR("Failed to add sysfs attribute");
585 }
586
587
588 static void nodemgr_remove_drv_files(struct hpsb_protocol_driver *driver)
589 {
590         struct device_driver *drv = &driver->driver;
591         int i;
592
593         for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
594                 driver_remove_file(drv, fw_drv_attrs[i]);
595 }
596
597
598 static void nodemgr_create_ne_dev_files(struct node_entry *ne)
599 {
600         struct device *dev = &ne->device;
601         int i;
602
603         for (i = 0; i < ARRAY_SIZE(fw_ne_attrs); i++)
604                 if (device_create_file(dev, fw_ne_attrs[i]))
605                         goto fail;
606         return;
607 fail:
608         HPSB_ERR("Failed to add sysfs attribute");
609 }
610
611
612 static void nodemgr_create_host_dev_files(struct hpsb_host *host)
613 {
614         struct device *dev = &host->device;
615         int i;
616
617         for (i = 0; i < ARRAY_SIZE(fw_host_attrs); i++)
618                 if (device_create_file(dev, fw_host_attrs[i]))
619                         goto fail;
620         return;
621 fail:
622         HPSB_ERR("Failed to add sysfs attribute");
623 }
624
625
626 static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
627                                                nodeid_t nodeid);
628
629 static void nodemgr_update_host_dev_links(struct hpsb_host *host)
630 {
631         struct device *dev = &host->device;
632         struct node_entry *ne;
633
634         sysfs_remove_link(&dev->kobj, "irm_id");
635         sysfs_remove_link(&dev->kobj, "busmgr_id");
636         sysfs_remove_link(&dev->kobj, "host_id");
637
638         if ((ne = find_entry_by_nodeid(host, host->irm_id)) &&
639             sysfs_create_link(&dev->kobj, &ne->device.kobj, "irm_id"))
640                 goto fail;
641         if ((ne = find_entry_by_nodeid(host, host->busmgr_id)) &&
642             sysfs_create_link(&dev->kobj, &ne->device.kobj, "busmgr_id"))
643                 goto fail;
644         if ((ne = find_entry_by_nodeid(host, host->node_id)) &&
645             sysfs_create_link(&dev->kobj, &ne->device.kobj, "host_id"))
646                 goto fail;
647         return;
648 fail:
649         HPSB_ERR("Failed to update sysfs attributes for host %d", host->id);
650 }
651
652 static void nodemgr_create_ud_dev_files(struct unit_directory *ud)
653 {
654         struct device *dev = &ud->device;
655         int i;
656
657         for (i = 0; i < ARRAY_SIZE(fw_ud_attrs); i++)
658                 if (device_create_file(dev, fw_ud_attrs[i]))
659                         goto fail;
660         if (ud->flags & UNIT_DIRECTORY_SPECIFIER_ID)
661                 if (device_create_file(dev, &dev_attr_ud_specifier_id))
662                         goto fail;
663         if (ud->flags & UNIT_DIRECTORY_VERSION)
664                 if (device_create_file(dev, &dev_attr_ud_version))
665                         goto fail;
666         if (ud->flags & UNIT_DIRECTORY_VENDOR_ID) {
667                 if (device_create_file(dev, &dev_attr_ud_vendor_id))
668                         goto fail;
669                 if (ud->vendor_name_kv &&
670                     device_create_file(dev, &dev_attr_ud_vendor_name_kv))
671                         goto fail;
672         }
673         if (ud->flags & UNIT_DIRECTORY_MODEL_ID) {
674                 if (device_create_file(dev, &dev_attr_ud_model_id))
675                         goto fail;
676                 if (ud->model_name_kv &&
677                     device_create_file(dev, &dev_attr_ud_model_name_kv))
678                         goto fail;
679         }
680         return;
681 fail:
682         HPSB_ERR("Failed to add sysfs attribute");
683 }
684
685
686 static int nodemgr_bus_match(struct device * dev, struct device_driver * drv)
687 {
688         struct hpsb_protocol_driver *driver;
689         struct unit_directory *ud;
690         struct ieee1394_device_id *id;
691
692         /* We only match unit directories */
693         if (dev->platform_data != &nodemgr_ud_platform_data)
694                 return 0;
695
696         ud = container_of(dev, struct unit_directory, device);
697         if (ud->ne->in_limbo || ud->ignore_driver)
698                 return 0;
699
700         /* We only match drivers of type hpsb_protocol_driver */
701         if (drv == &nodemgr_mid_layer_driver)
702                 return 0;
703
704         driver = container_of(drv, struct hpsb_protocol_driver, driver);
705         for (id = driver->id_table; id->match_flags != 0; id++) {
706                 if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
707                     id->vendor_id != ud->vendor_id)
708                         continue;
709
710                 if ((id->match_flags & IEEE1394_MATCH_MODEL_ID) &&
711                     id->model_id != ud->model_id)
712                         continue;
713
714                 if ((id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) &&
715                     id->specifier_id != ud->specifier_id)
716                         continue;
717
718                 if ((id->match_flags & IEEE1394_MATCH_VERSION) &&
719                     id->version != ud->version)
720                         continue;
721
722                 return 1;
723         }
724
725         return 0;
726 }
727
728
729 static DEFINE_MUTEX(nodemgr_serialize_remove_uds);
730
731 static void nodemgr_remove_uds(struct node_entry *ne)
732 {
733         struct class_device *cdev;
734         struct unit_directory *tmp, *ud;
735
736         /* Iteration over nodemgr_ud_class.children has to be protected by
737          * nodemgr_ud_class.sem, but class_device_unregister() will eventually
738          * take nodemgr_ud_class.sem too. Therefore pick out one ud at a time,
739          * release the semaphore, and then unregister the ud. Since this code
740          * may be called from other contexts besides the knodemgrds, protect the
741          * gap after release of the semaphore by nodemgr_serialize_remove_uds.
742          */
743         mutex_lock(&nodemgr_serialize_remove_uds);
744         for (;;) {
745                 ud = NULL;
746                 down(&nodemgr_ud_class.sem);
747                 list_for_each_entry(cdev, &nodemgr_ud_class.children, node) {
748                         tmp = container_of(cdev, struct unit_directory,
749                                            class_dev);
750                         if (tmp->ne == ne) {
751                                 ud = tmp;
752                                 break;
753                         }
754                 }
755                 up(&nodemgr_ud_class.sem);
756                 if (ud == NULL)
757                         break;
758                 class_device_unregister(&ud->class_dev);
759                 device_unregister(&ud->device);
760         }
761         mutex_unlock(&nodemgr_serialize_remove_uds);
762 }
763
764
765 static void nodemgr_remove_ne(struct node_entry *ne)
766 {
767         struct device *dev;
768
769         dev = get_device(&ne->device);
770         if (!dev)
771                 return;
772
773         HPSB_DEBUG("Node removed: ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
774                    NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
775
776         nodemgr_remove_uds(ne);
777
778         class_device_unregister(&ne->class_dev);
779         device_unregister(dev);
780
781         put_device(dev);
782 }
783
784 static int __nodemgr_remove_host_dev(struct device *dev, void *data)
785 {
786         nodemgr_remove_ne(container_of(dev, struct node_entry, device));
787         return 0;
788 }
789
790 static void nodemgr_remove_host_dev(struct device *dev)
791 {
792         WARN_ON(device_for_each_child(dev, NULL, __nodemgr_remove_host_dev));
793         sysfs_remove_link(&dev->kobj, "irm_id");
794         sysfs_remove_link(&dev->kobj, "busmgr_id");
795         sysfs_remove_link(&dev->kobj, "host_id");
796 }
797
798
799 static void nodemgr_update_bus_options(struct node_entry *ne)
800 {
801 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
802         static const u16 mr[] = { 4, 64, 1024, 0};
803 #endif
804         quadlet_t busoptions = be32_to_cpu(ne->csr->bus_info_data[2]);
805
806         ne->busopt.irmc         = (busoptions >> 31) & 1;
807         ne->busopt.cmc          = (busoptions >> 30) & 1;
808         ne->busopt.isc          = (busoptions >> 29) & 1;
809         ne->busopt.bmc          = (busoptions >> 28) & 1;
810         ne->busopt.pmc          = (busoptions >> 27) & 1;
811         ne->busopt.cyc_clk_acc  = (busoptions >> 16) & 0xff;
812         ne->busopt.max_rec      = 1 << (((busoptions >> 12) & 0xf) + 1);
813         ne->busopt.max_rom      = (busoptions >> 8) & 0x3;
814         ne->busopt.generation   = (busoptions >> 4) & 0xf;
815         ne->busopt.lnkspd       = busoptions & 0x7;
816
817         HPSB_VERBOSE("NodeMgr: raw=0x%08x irmc=%d cmc=%d isc=%d bmc=%d pmc=%d "
818                      "cyc_clk_acc=%d max_rec=%d max_rom=%d gen=%d lspd=%d",
819                      busoptions, ne->busopt.irmc, ne->busopt.cmc,
820                      ne->busopt.isc, ne->busopt.bmc, ne->busopt.pmc,
821                      ne->busopt.cyc_clk_acc, ne->busopt.max_rec,
822                      mr[ne->busopt.max_rom],
823                      ne->busopt.generation, ne->busopt.lnkspd);
824 }
825
826
827 static struct node_entry *nodemgr_create_node(octlet_t guid, struct csr1212_csr *csr,
828                                               struct host_info *hi, nodeid_t nodeid,
829                                               unsigned int generation)
830 {
831         struct hpsb_host *host = hi->host;
832         struct node_entry *ne;
833
834         ne = kzalloc(sizeof(*ne), GFP_KERNEL);
835         if (!ne)
836                 goto fail_alloc;
837
838         ne->host = host;
839         ne->nodeid = nodeid;
840         ne->generation = generation;
841         ne->needs_probe = 1;
842
843         ne->guid = guid;
844         ne->guid_vendor_id = (guid >> 40) & 0xffffff;
845         ne->csr = csr;
846
847         memcpy(&ne->device, &nodemgr_dev_template_ne,
848                sizeof(ne->device));
849         ne->device.parent = &host->device;
850         snprintf(ne->device.bus_id, BUS_ID_SIZE, "%016Lx",
851                  (unsigned long long)(ne->guid));
852
853         ne->class_dev.dev = &ne->device;
854         ne->class_dev.class = &nodemgr_ne_class;
855         snprintf(ne->class_dev.class_id, BUS_ID_SIZE, "%016Lx",
856                  (unsigned long long)(ne->guid));
857
858         if (device_register(&ne->device))
859                 goto fail_devreg;
860         if (class_device_register(&ne->class_dev))
861                 goto fail_classdevreg;
862         get_device(&ne->device);
863
864         nodemgr_create_ne_dev_files(ne);
865
866         nodemgr_update_bus_options(ne);
867
868         HPSB_DEBUG("%s added: ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
869                    (host->node_id == nodeid) ? "Host" : "Node",
870                    NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
871
872         return ne;
873
874 fail_classdevreg:
875         device_unregister(&ne->device);
876 fail_devreg:
877         kfree(ne);
878 fail_alloc:
879         HPSB_ERR("Failed to create node ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
880                  NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
881
882         return NULL;
883 }
884
885
886 static struct node_entry *find_entry_by_guid(u64 guid)
887 {
888         struct class_device *cdev;
889         struct node_entry *ne, *ret_ne = NULL;
890
891         down(&nodemgr_ne_class.sem);
892         list_for_each_entry(cdev, &nodemgr_ne_class.children, node) {
893                 ne = container_of(cdev, struct node_entry, class_dev);
894
895                 if (ne->guid == guid) {
896                         ret_ne = ne;
897                         break;
898                 }
899         }
900         up(&nodemgr_ne_class.sem);
901
902         return ret_ne;
903 }
904
905
906 static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
907                                                nodeid_t nodeid)
908 {
909         struct class_device *cdev;
910         struct node_entry *ne, *ret_ne = NULL;
911
912         down(&nodemgr_ne_class.sem);
913         list_for_each_entry(cdev, &nodemgr_ne_class.children, node) {
914                 ne = container_of(cdev, struct node_entry, class_dev);
915
916                 if (ne->host == host && ne->nodeid == nodeid) {
917                         ret_ne = ne;
918                         break;
919                 }
920         }
921         up(&nodemgr_ne_class.sem);
922
923         return ret_ne;
924 }
925
926
927 static void nodemgr_register_device(struct node_entry *ne, 
928         struct unit_directory *ud, struct device *parent)
929 {
930         memcpy(&ud->device, &nodemgr_dev_template_ud,
931                sizeof(ud->device));
932
933         ud->device.parent = parent;
934
935         snprintf(ud->device.bus_id, BUS_ID_SIZE, "%s-%u",
936                  ne->device.bus_id, ud->id);
937
938         ud->class_dev.dev = &ud->device;
939         ud->class_dev.class = &nodemgr_ud_class;
940         snprintf(ud->class_dev.class_id, BUS_ID_SIZE, "%s-%u",
941                  ne->device.bus_id, ud->id);
942
943         if (device_register(&ud->device))
944                 goto fail_devreg;
945         if (class_device_register(&ud->class_dev))
946                 goto fail_classdevreg;
947         get_device(&ud->device);
948
949         nodemgr_create_ud_dev_files(ud);
950
951         return;
952
953 fail_classdevreg:
954         device_unregister(&ud->device);
955 fail_devreg:
956         HPSB_ERR("Failed to create unit %s", ud->device.bus_id);
957 }       
958
959
960 /* This implementation currently only scans the config rom and its
961  * immediate unit directories looking for software_id and
962  * software_version entries, in order to get driver autoloading working. */
963 static struct unit_directory *nodemgr_process_unit_directory
964         (struct host_info *hi, struct node_entry *ne, struct csr1212_keyval *ud_kv,
965          unsigned int *id, struct unit_directory *parent)
966 {
967         struct unit_directory *ud;
968         struct unit_directory *ud_child = NULL;
969         struct csr1212_dentry *dentry;
970         struct csr1212_keyval *kv;
971         u8 last_key_id = 0;
972
973         ud = kzalloc(sizeof(*ud), GFP_KERNEL);
974         if (!ud)
975                 goto unit_directory_error;
976
977         ud->ne = ne;
978         ud->ignore_driver = ignore_drivers;
979         ud->address = ud_kv->offset + CSR1212_CONFIG_ROM_SPACE_BASE;
980         ud->ud_kv = ud_kv;
981         ud->id = (*id)++;
982
983         csr1212_for_each_dir_entry(ne->csr, kv, ud_kv, dentry) {
984                 switch (kv->key.id) {
985                 case CSR1212_KV_ID_VENDOR:
986                         if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
987                                 ud->vendor_id = kv->value.immediate;
988                                 ud->flags |= UNIT_DIRECTORY_VENDOR_ID;
989                         }
990                         break;
991
992                 case CSR1212_KV_ID_MODEL:
993                         ud->model_id = kv->value.immediate;
994                         ud->flags |= UNIT_DIRECTORY_MODEL_ID;
995                         break;
996
997                 case CSR1212_KV_ID_SPECIFIER_ID:
998                         ud->specifier_id = kv->value.immediate;
999                         ud->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
1000                         break;
1001
1002                 case CSR1212_KV_ID_VERSION:
1003                         ud->version = kv->value.immediate;
1004                         ud->flags |= UNIT_DIRECTORY_VERSION;
1005                         break;
1006
1007                 case CSR1212_KV_ID_DESCRIPTOR:
1008                         if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
1009                             CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
1010                             CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
1011                             CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
1012                             CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
1013                             CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
1014                                 switch (last_key_id) {
1015                                 case CSR1212_KV_ID_VENDOR:
1016                                         ud->vendor_name_kv = kv;
1017                                         csr1212_keep_keyval(kv);
1018                                         break;
1019
1020                                 case CSR1212_KV_ID_MODEL:
1021                                         ud->model_name_kv = kv;
1022                                         csr1212_keep_keyval(kv);
1023                                         break;
1024
1025                                 }
1026                         } /* else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) ... */
1027                         break;
1028
1029                 case CSR1212_KV_ID_DEPENDENT_INFO:
1030                         /* Logical Unit Number */
1031                         if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
1032                                 if (ud->flags & UNIT_DIRECTORY_HAS_LUN) {
1033                                         ud_child = kmemdup(ud, sizeof(*ud_child), GFP_KERNEL);
1034                                         if (!ud_child)
1035                                                 goto unit_directory_error;
1036                                         nodemgr_register_device(ne, ud_child, &ne->device);
1037                                         ud_child = NULL;
1038                                         
1039                                         ud->id = (*id)++;
1040                                 }
1041                                 ud->lun = kv->value.immediate;
1042                                 ud->flags |= UNIT_DIRECTORY_HAS_LUN;
1043
1044                         /* Logical Unit Directory */
1045                         } else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) {
1046                                 /* This should really be done in SBP2 as this is
1047                                  * doing SBP2 specific parsing.
1048                                  */
1049                                 
1050                                 /* first register the parent unit */
1051                                 ud->flags |= UNIT_DIRECTORY_HAS_LUN_DIRECTORY;
1052                                 if (ud->device.bus != &ieee1394_bus_type)
1053                                         nodemgr_register_device(ne, ud, &ne->device);
1054                                 
1055                                 /* process the child unit */
1056                                 ud_child = nodemgr_process_unit_directory(hi, ne, kv, id, ud);
1057
1058                                 if (ud_child == NULL)
1059                                         break;
1060                                 
1061                                 /* inherit unspecified values, the driver core picks it up */
1062                                 if ((ud->flags & UNIT_DIRECTORY_MODEL_ID) &&
1063                                     !(ud_child->flags & UNIT_DIRECTORY_MODEL_ID))
1064                                 {
1065                                         ud_child->flags |=  UNIT_DIRECTORY_MODEL_ID;
1066                                         ud_child->model_id = ud->model_id;
1067                                 }
1068                                 if ((ud->flags & UNIT_DIRECTORY_SPECIFIER_ID) &&
1069                                     !(ud_child->flags & UNIT_DIRECTORY_SPECIFIER_ID))
1070                                 {
1071                                         ud_child->flags |=  UNIT_DIRECTORY_SPECIFIER_ID;
1072                                         ud_child->specifier_id = ud->specifier_id;
1073                                 }
1074                                 if ((ud->flags & UNIT_DIRECTORY_VERSION) &&
1075                                     !(ud_child->flags & UNIT_DIRECTORY_VERSION))
1076                                 {
1077                                         ud_child->flags |=  UNIT_DIRECTORY_VERSION;
1078                                         ud_child->version = ud->version;
1079                                 }
1080                                 
1081                                 /* register the child unit */
1082                                 ud_child->flags |= UNIT_DIRECTORY_LUN_DIRECTORY;
1083                                 nodemgr_register_device(ne, ud_child, &ud->device);
1084                         }
1085
1086                         break;
1087
1088                 default:
1089                         break;
1090                 }
1091                 last_key_id = kv->key.id;
1092         }
1093         
1094         /* do not process child units here and only if not already registered */
1095         if (!parent && ud->device.bus != &ieee1394_bus_type)
1096                 nodemgr_register_device(ne, ud, &ne->device);
1097
1098         return ud;
1099
1100 unit_directory_error:
1101         kfree(ud);
1102         return NULL;
1103 }
1104
1105
1106 static void nodemgr_process_root_directory(struct host_info *hi, struct node_entry *ne)
1107 {
1108         unsigned int ud_id = 0;
1109         struct csr1212_dentry *dentry;
1110         struct csr1212_keyval *kv;
1111         u8 last_key_id = 0;
1112
1113         ne->needs_probe = 0;
1114
1115         csr1212_for_each_dir_entry(ne->csr, kv, ne->csr->root_kv, dentry) {
1116                 switch (kv->key.id) {
1117                 case CSR1212_KV_ID_VENDOR:
1118                         ne->vendor_id = kv->value.immediate;
1119                         break;
1120
1121                 case CSR1212_KV_ID_NODE_CAPABILITIES:
1122                         ne->capabilities = kv->value.immediate;
1123                         break;
1124
1125                 case CSR1212_KV_ID_UNIT:
1126                         nodemgr_process_unit_directory(hi, ne, kv, &ud_id, NULL);
1127                         break;
1128
1129                 case CSR1212_KV_ID_DESCRIPTOR:
1130                         if (last_key_id == CSR1212_KV_ID_VENDOR) {
1131                                 if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
1132                                     CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
1133                                     CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
1134                                     CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
1135                                     CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
1136                                     CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
1137                                         ne->vendor_name_kv = kv;
1138                                         csr1212_keep_keyval(kv);
1139                                 }
1140                         }
1141                         break;
1142                 }
1143                 last_key_id = kv->key.id;
1144         }
1145
1146         if (ne->vendor_name_kv) {
1147                 int error = device_create_file(&ne->device,
1148                                                &dev_attr_ne_vendor_name_kv);
1149
1150                 if (error && error != -EEXIST)
1151                         HPSB_ERR("Failed to add sysfs attribute");
1152         }
1153 }
1154
1155 #ifdef CONFIG_HOTPLUG
1156
1157 static int nodemgr_uevent(struct class_device *cdev, char **envp, int num_envp,
1158                           char *buffer, int buffer_size)
1159 {
1160         struct unit_directory *ud;
1161         int i = 0;
1162         int length = 0;
1163         int retval = 0;
1164         /* ieee1394:venNmoNspNverN */
1165         char buf[8 + 1 + 3 + 8 + 2 + 8 + 2 + 8 + 3 + 8 + 1];
1166
1167         if (!cdev)
1168                 return -ENODEV;
1169
1170         ud = container_of(cdev, struct unit_directory, class_dev);
1171
1172         if (ud->ne->in_limbo || ud->ignore_driver)
1173                 return -ENODEV;
1174
1175 #define PUT_ENVP(fmt,val)                                       \
1176 do {                                                            \
1177         retval = add_uevent_var(envp, num_envp, &i,             \
1178                                 buffer, buffer_size, &length,   \
1179                                 fmt, val);                      \
1180         if (retval)                                             \
1181                 return retval;                                  \
1182 } while (0)
1183
1184         PUT_ENVP("VENDOR_ID=%06x", ud->vendor_id);
1185         PUT_ENVP("MODEL_ID=%06x", ud->model_id);
1186         PUT_ENVP("GUID=%016Lx", (unsigned long long)ud->ne->guid);
1187         PUT_ENVP("SPECIFIER_ID=%06x", ud->specifier_id);
1188         PUT_ENVP("VERSION=%06x", ud->version);
1189         snprintf(buf, sizeof(buf), "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
1190                         ud->vendor_id,
1191                         ud->model_id,
1192                         ud->specifier_id,
1193                         ud->version);
1194         PUT_ENVP("MODALIAS=%s", buf);
1195
1196 #undef PUT_ENVP
1197
1198         envp[i] = NULL;
1199
1200         return 0;
1201 }
1202
1203 #else
1204
1205 static int nodemgr_uevent(struct class_device *cdev, char **envp, int num_envp,
1206                           char *buffer, int buffer_size)
1207 {
1208         return -ENODEV;
1209 }
1210
1211 #endif /* CONFIG_HOTPLUG */
1212
1213
1214 int __hpsb_register_protocol(struct hpsb_protocol_driver *drv,
1215                              struct module *owner)
1216 {
1217         int error;
1218
1219         drv->driver.bus = &ieee1394_bus_type;
1220         drv->driver.owner = owner;
1221         drv->driver.name = drv->name;
1222
1223         /* This will cause a probe for devices */
1224         error = driver_register(&drv->driver);
1225         if (!error)
1226                 nodemgr_create_drv_files(drv);
1227         return error;
1228 }
1229
1230 void hpsb_unregister_protocol(struct hpsb_protocol_driver *driver)
1231 {
1232         nodemgr_remove_drv_files(driver);
1233         /* This will subsequently disconnect all devices that our driver
1234          * is attached to. */
1235         driver_unregister(&driver->driver);
1236 }
1237
1238
1239 /*
1240  * This function updates nodes that were present on the bus before the
1241  * reset and still are after the reset.  The nodeid and the config rom
1242  * may have changed, and the drivers managing this device must be
1243  * informed that this device just went through a bus reset, to allow
1244  * the to take whatever actions required.
1245  */
1246 static void nodemgr_update_node(struct node_entry *ne, struct csr1212_csr *csr,
1247                                 struct host_info *hi, nodeid_t nodeid,
1248                                 unsigned int generation)
1249 {
1250         if (ne->nodeid != nodeid) {
1251                 HPSB_DEBUG("Node changed: " NODE_BUS_FMT " -> " NODE_BUS_FMT,
1252                            NODE_BUS_ARGS(ne->host, ne->nodeid),
1253                            NODE_BUS_ARGS(ne->host, nodeid));
1254                 ne->nodeid = nodeid;
1255         }
1256
1257         if (ne->busopt.generation != ((be32_to_cpu(csr->bus_info_data[2]) >> 4) & 0xf)) {
1258                 kfree(ne->csr->private);
1259                 csr1212_destroy_csr(ne->csr);
1260                 ne->csr = csr;
1261
1262                 /* If the node's configrom generation has changed, we
1263                  * unregister all the unit directories. */
1264                 nodemgr_remove_uds(ne);
1265
1266                 nodemgr_update_bus_options(ne);
1267
1268                 /* Mark the node as new, so it gets re-probed */
1269                 ne->needs_probe = 1;
1270         } else {
1271                 /* old cache is valid, so update its generation */
1272                 struct nodemgr_csr_info *ci = ne->csr->private;
1273                 ci->generation = generation;
1274                 /* free the partially filled now unneeded new cache */
1275                 kfree(csr->private);
1276                 csr1212_destroy_csr(csr);
1277         }
1278
1279         if (ne->in_limbo)
1280                 nodemgr_resume_ne(ne);
1281
1282         /* Mark the node current */
1283         ne->generation = generation;
1284 }
1285
1286
1287
1288 static void nodemgr_node_scan_one(struct host_info *hi,
1289                                   nodeid_t nodeid, int generation)
1290 {
1291         struct hpsb_host *host = hi->host;
1292         struct node_entry *ne;
1293         octlet_t guid;
1294         struct csr1212_csr *csr;
1295         struct nodemgr_csr_info *ci;
1296         u8 *speed;
1297
1298         ci = kmalloc(sizeof(*ci), GFP_KERNEL);
1299         if (!ci)
1300                 return;
1301
1302         ci->host = host;
1303         ci->nodeid = nodeid;
1304         ci->generation = generation;
1305
1306         /* Prepare for speed probe which occurs when reading the ROM */
1307         speed = &(host->speed[NODEID_TO_NODE(nodeid)]);
1308         if (*speed > host->csr.lnk_spd)
1309                 *speed = host->csr.lnk_spd;
1310         ci->speed_unverified = *speed > IEEE1394_SPEED_100;
1311
1312         /* We need to detect when the ConfigROM's generation has changed,
1313          * so we only update the node's info when it needs to be.  */
1314
1315         csr = csr1212_create_csr(&nodemgr_csr_ops, 5 * sizeof(quadlet_t), ci);
1316         if (!csr || csr1212_parse_csr(csr) != CSR1212_SUCCESS) {
1317                 HPSB_ERR("Error parsing configrom for node " NODE_BUS_FMT,
1318                          NODE_BUS_ARGS(host, nodeid));
1319                 if (csr)
1320                         csr1212_destroy_csr(csr);
1321                 kfree(ci);
1322                 return;
1323         }
1324
1325         if (csr->bus_info_data[1] != IEEE1394_BUSID_MAGIC) {
1326                 /* This isn't a 1394 device, but we let it slide. There
1327                  * was a report of a device with broken firmware which
1328                  * reported '2394' instead of '1394', which is obviously a
1329                  * mistake. One would hope that a non-1394 device never
1330                  * gets connected to Firewire bus. If someone does, we
1331                  * shouldn't be held responsible, so we'll allow it with a
1332                  * warning.  */
1333                 HPSB_WARN("Node " NODE_BUS_FMT " has invalid busID magic [0x%08x]",
1334                           NODE_BUS_ARGS(host, nodeid), csr->bus_info_data[1]);
1335         }
1336
1337         guid = ((u64)be32_to_cpu(csr->bus_info_data[3]) << 32) | be32_to_cpu(csr->bus_info_data[4]);
1338         ne = find_entry_by_guid(guid);
1339
1340         if (ne && ne->host != host && ne->in_limbo) {
1341                 /* Must have moved this device from one host to another */
1342                 nodemgr_remove_ne(ne);
1343                 ne = NULL;
1344         }
1345
1346         if (!ne)
1347                 nodemgr_create_node(guid, csr, hi, nodeid, generation);
1348         else
1349                 nodemgr_update_node(ne, csr, hi, nodeid, generation);
1350 }
1351
1352
1353 static void nodemgr_node_scan(struct host_info *hi, int generation)
1354 {
1355         int count;
1356         struct hpsb_host *host = hi->host;
1357         struct selfid *sid = (struct selfid *)host->topology_map;
1358         nodeid_t nodeid = LOCAL_BUS;
1359
1360         /* Scan each node on the bus */
1361         for (count = host->selfid_count; count; count--, sid++) {
1362                 if (sid->extended)
1363                         continue;
1364
1365                 if (!sid->link_active) {
1366                         nodeid++;
1367                         continue;
1368                 }
1369                 nodemgr_node_scan_one(hi, nodeid++, generation);
1370         }
1371 }
1372
1373
1374 static void nodemgr_suspend_ne(struct node_entry *ne)
1375 {
1376         struct class_device *cdev;
1377         struct unit_directory *ud;
1378
1379         HPSB_DEBUG("Node suspended: ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
1380                    NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
1381
1382         ne->in_limbo = 1;
1383         WARN_ON(device_create_file(&ne->device, &dev_attr_ne_in_limbo));
1384
1385         down(&nodemgr_ud_class.sem);
1386         list_for_each_entry(cdev, &nodemgr_ud_class.children, node) {
1387                 ud = container_of(cdev, struct unit_directory, class_dev);
1388                 if (ud->ne != ne)
1389                         continue;
1390
1391                 if (ud->device.driver &&
1392                     (!ud->device.driver->suspend ||
1393                       ud->device.driver->suspend(&ud->device, PMSG_SUSPEND)))
1394                         device_release_driver(&ud->device);
1395         }
1396         up(&nodemgr_ud_class.sem);
1397 }
1398
1399
1400 static void nodemgr_resume_ne(struct node_entry *ne)
1401 {
1402         struct class_device *cdev;
1403         struct unit_directory *ud;
1404
1405         ne->in_limbo = 0;
1406         device_remove_file(&ne->device, &dev_attr_ne_in_limbo);
1407
1408         down(&nodemgr_ud_class.sem);
1409         list_for_each_entry(cdev, &nodemgr_ud_class.children, node) {
1410                 ud = container_of(cdev, struct unit_directory, class_dev);
1411                 if (ud->ne != ne)
1412                         continue;
1413
1414                 if (ud->device.driver && ud->device.driver->resume)
1415                         ud->device.driver->resume(&ud->device);
1416         }
1417         up(&nodemgr_ud_class.sem);
1418
1419         HPSB_DEBUG("Node resumed: ID:BUS[" NODE_BUS_FMT "]  GUID[%016Lx]",
1420                    NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
1421 }
1422
1423
1424 static void nodemgr_update_pdrv(struct node_entry *ne)
1425 {
1426         struct unit_directory *ud;
1427         struct hpsb_protocol_driver *pdrv;
1428         struct class_device *cdev;
1429
1430         down(&nodemgr_ud_class.sem);
1431         list_for_each_entry(cdev, &nodemgr_ud_class.children, node) {
1432                 ud = container_of(cdev, struct unit_directory, class_dev);
1433                 if (ud->ne != ne)
1434                         continue;
1435
1436                 if (ud->device.driver) {
1437                         pdrv = container_of(ud->device.driver,
1438                                             struct hpsb_protocol_driver,
1439                                             driver);
1440                         if (pdrv->update && pdrv->update(ud))
1441                                 device_release_driver(&ud->device);
1442                 }
1443         }
1444         up(&nodemgr_ud_class.sem);
1445 }
1446
1447
1448 /* Write the BROADCAST_CHANNEL as per IEEE1394a 8.3.2.3.11 and 8.4.2.3.  This
1449  * seems like an optional service but in the end it is practically mandatory
1450  * as a consequence of these clauses.
1451  *
1452  * Note that we cannot do a broadcast write to all nodes at once because some
1453  * pre-1394a devices would hang. */
1454 static void nodemgr_irm_write_bc(struct node_entry *ne, int generation)
1455 {
1456         const u64 bc_addr = (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL);
1457         quadlet_t bc_remote, bc_local;
1458         int error;
1459
1460         if (!ne->host->is_irm || ne->generation != generation ||
1461             ne->nodeid == ne->host->node_id)
1462                 return;
1463
1464         bc_local = cpu_to_be32(ne->host->csr.broadcast_channel);
1465
1466         /* Check if the register is implemented and 1394a compliant. */
1467         error = hpsb_read(ne->host, ne->nodeid, generation, bc_addr, &bc_remote,
1468                           sizeof(bc_remote));
1469         if (!error && bc_remote & cpu_to_be32(0x80000000) &&
1470             bc_remote != bc_local)
1471                 hpsb_node_write(ne, bc_addr, &bc_local, sizeof(bc_local));
1472 }
1473
1474
1475 static void nodemgr_probe_ne(struct host_info *hi, struct node_entry *ne, int generation)
1476 {
1477         struct device *dev;
1478
1479         if (ne->host != hi->host || ne->in_limbo)
1480                 return;
1481
1482         dev = get_device(&ne->device);
1483         if (!dev)
1484                 return;
1485
1486         nodemgr_irm_write_bc(ne, generation);
1487
1488         /* If "needs_probe", then this is either a new or changed node we
1489          * rescan totally. If the generation matches for an existing node
1490          * (one that existed prior to the bus reset) we send update calls
1491          * down to the drivers. Otherwise, this is a dead node and we
1492          * suspend it. */
1493         if (ne->needs_probe)
1494                 nodemgr_process_root_directory(hi, ne);
1495         else if (ne->generation == generation)
1496                 nodemgr_update_pdrv(ne);
1497         else
1498                 nodemgr_suspend_ne(ne);
1499
1500         put_device(dev);
1501 }
1502
1503
1504 static void nodemgr_node_probe(struct host_info *hi, int generation)
1505 {
1506         struct hpsb_host *host = hi->host;
1507         struct class_device *cdev;
1508         struct node_entry *ne;
1509
1510         /* Do some processing of the nodes we've probed. This pulls them
1511          * into the sysfs layer if needed, and can result in processing of
1512          * unit-directories, or just updating the node and it's
1513          * unit-directories.
1514          *
1515          * Run updates before probes. Usually, updates are time-critical
1516          * while probes are time-consuming. (Well, those probes need some
1517          * improvement...) */
1518
1519         down(&nodemgr_ne_class.sem);
1520         list_for_each_entry(cdev, &nodemgr_ne_class.children, node) {
1521                 ne = container_of(cdev, struct node_entry, class_dev);
1522                 if (!ne->needs_probe)
1523                         nodemgr_probe_ne(hi, ne, generation);
1524         }
1525         list_for_each_entry(cdev, &nodemgr_ne_class.children, node) {
1526                 ne = container_of(cdev, struct node_entry, class_dev);
1527                 if (ne->needs_probe)
1528                         nodemgr_probe_ne(hi, ne, generation);
1529         }
1530         up(&nodemgr_ne_class.sem);
1531
1532
1533         /* If we had a bus reset while we were scanning the bus, it is
1534          * possible that we did not probe all nodes.  In that case, we
1535          * skip the clean up for now, since we could remove nodes that
1536          * were still on the bus.  Another bus scan is pending which will
1537          * do the clean up eventually.
1538          *
1539          * Now let's tell the bus to rescan our devices. This may seem
1540          * like overhead, but the driver-model core will only scan a
1541          * device for a driver when either the device is added, or when a
1542          * new driver is added. A bus reset is a good reason to rescan
1543          * devices that were there before.  For example, an sbp2 device
1544          * may become available for login, if the host that held it was
1545          * just removed.  */
1546
1547         if (generation == get_hpsb_generation(host))
1548                 if (bus_rescan_devices(&ieee1394_bus_type))
1549                         HPSB_DEBUG("bus_rescan_devices had an error");
1550 }
1551
1552 static int nodemgr_send_resume_packet(struct hpsb_host *host)
1553 {
1554         struct hpsb_packet *packet;
1555         int error = -ENOMEM;
1556
1557         packet = hpsb_make_phypacket(host,
1558                         EXTPHYPACKET_TYPE_RESUME |
1559                         NODEID_TO_NODE(host->node_id) << PHYPACKET_PORT_SHIFT);
1560         if (packet) {
1561                 packet->no_waiter = 1;
1562                 packet->generation = get_hpsb_generation(host);
1563                 error = hpsb_send_packet(packet);
1564         }
1565         if (error)
1566                 HPSB_WARN("fw-host%d: Failed to broadcast resume packet",
1567                           host->id);
1568         return error;
1569 }
1570
1571 /* Perform a few high-level IRM responsibilities. */
1572 static int nodemgr_do_irm_duties(struct hpsb_host *host, int cycles)
1573 {
1574         quadlet_t bc;
1575
1576         /* if irm_id == -1 then there is no IRM on this bus */
1577         if (!host->is_irm || host->irm_id == (nodeid_t)-1)
1578                 return 1;
1579
1580         /* We are a 1394a-2000 compliant IRM. Set the validity bit. */
1581         host->csr.broadcast_channel |= 0x40000000;
1582
1583         /* If there is no bus manager then we should set the root node's
1584          * force_root bit to promote bus stability per the 1394
1585          * spec. (8.4.2.6) */
1586         if (host->busmgr_id == 0xffff && host->node_count > 1)
1587         {
1588                 u16 root_node = host->node_count - 1;
1589
1590                 /* get cycle master capability flag from root node */
1591                 if (host->is_cycmst ||
1592                     (!hpsb_read(host, LOCAL_BUS | root_node, get_hpsb_generation(host),
1593                                 (CSR_REGISTER_BASE + CSR_CONFIG_ROM + 2 * sizeof(quadlet_t)),
1594                                 &bc, sizeof(quadlet_t)) &&
1595                      be32_to_cpu(bc) & 1 << CSR_CMC_SHIFT))
1596                         hpsb_send_phy_config(host, root_node, -1);
1597                 else {
1598                         HPSB_DEBUG("The root node is not cycle master capable; "
1599                                    "selecting a new root node and resetting...");
1600
1601                         if (cycles >= 5) {
1602                                 /* Oh screw it! Just leave the bus as it is */
1603                                 HPSB_DEBUG("Stopping reset loop for IRM sanity");
1604                                 return 1;
1605                         }
1606
1607                         hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
1608                         hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
1609
1610                         return 0;
1611                 }
1612         }
1613
1614         /* Some devices suspend their ports while being connected to an inactive
1615          * host adapter, i.e. if connected before the low-level driver is
1616          * loaded.  They become visible either when physically unplugged and
1617          * replugged, or when receiving a resume packet.  Send one once. */
1618         if (!host->resume_packet_sent && !nodemgr_send_resume_packet(host))
1619                 host->resume_packet_sent = 1;
1620
1621         return 1;
1622 }
1623
1624 /* We need to ensure that if we are not the IRM, that the IRM node is capable of
1625  * everything we can do, otherwise issue a bus reset and try to become the IRM
1626  * ourselves. */
1627 static int nodemgr_check_irm_capability(struct hpsb_host *host, int cycles)
1628 {
1629         quadlet_t bc;
1630         int status;
1631
1632         if (hpsb_disable_irm || host->is_irm)
1633                 return 1;
1634
1635         status = hpsb_read(host, LOCAL_BUS | (host->irm_id),
1636                            get_hpsb_generation(host),
1637                            (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL),
1638                            &bc, sizeof(quadlet_t));
1639
1640         if (status < 0 || !(be32_to_cpu(bc) & 0x80000000)) {
1641                 /* The current irm node does not have a valid BROADCAST_CHANNEL
1642                  * register and we do, so reset the bus with force_root set */
1643                 HPSB_DEBUG("Current remote IRM is not 1394a-2000 compliant, resetting...");
1644
1645                 if (cycles >= 5) {
1646                         /* Oh screw it! Just leave the bus as it is */
1647                         HPSB_DEBUG("Stopping reset loop for IRM sanity");
1648                         return 1;
1649                 }
1650
1651                 hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
1652                 hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
1653
1654                 return 0;
1655         }
1656
1657         return 1;
1658 }
1659
1660 static int nodemgr_host_thread(void *__hi)
1661 {
1662         struct host_info *hi = (struct host_info *)__hi;
1663         struct hpsb_host *host = hi->host;
1664         unsigned int g, generation = 0;
1665         int i, reset_cycles = 0;
1666
1667         /* Setup our device-model entries */
1668         nodemgr_create_host_dev_files(host);
1669
1670         for (;;) {
1671                 /* Sleep until next bus reset */
1672                 set_current_state(TASK_INTERRUPTIBLE);
1673                 if (get_hpsb_generation(host) == generation &&
1674                     !kthread_should_stop())
1675                         schedule();
1676                 __set_current_state(TASK_RUNNING);
1677
1678                 /* Thread may have been woken up to freeze or to exit */
1679                 if (try_to_freeze())
1680                         continue;
1681                 if (kthread_should_stop())
1682                         goto exit;
1683
1684                 if (mutex_lock_interruptible(&nodemgr_serialize)) {
1685                         if (try_to_freeze())
1686                                 continue;
1687                         goto exit;
1688                 }
1689
1690                 /* Pause for 1/4 second in 1/16 second intervals,
1691                  * to make sure things settle down. */
1692                 g = get_hpsb_generation(host);
1693                 for (i = 0; i < 4 ; i++) {
1694                         if (msleep_interruptible(63) || kthread_should_stop())
1695                                 goto unlock_exit;
1696
1697                         /* Now get the generation in which the node ID's we collect
1698                          * are valid.  During the bus scan we will use this generation
1699                          * for the read transactions, so that if another reset occurs
1700                          * during the scan the transactions will fail instead of
1701                          * returning bogus data. */
1702                         generation = get_hpsb_generation(host);
1703
1704                         /* If we get a reset before we are done waiting, then
1705                          * start the the waiting over again */
1706                         if (generation != g)
1707                                 g = generation, i = 0;
1708                 }
1709
1710                 if (!nodemgr_check_irm_capability(host, reset_cycles) ||
1711                     !nodemgr_do_irm_duties(host, reset_cycles)) {
1712                         reset_cycles++;
1713                         mutex_unlock(&nodemgr_serialize);
1714                         continue;
1715                 }
1716                 reset_cycles = 0;
1717
1718                 /* Scan our nodes to get the bus options and create node
1719                  * entries. This does not do the sysfs stuff, since that
1720                  * would trigger uevents and such, which is a bad idea at
1721                  * this point. */
1722                 nodemgr_node_scan(hi, generation);
1723
1724                 /* This actually does the full probe, with sysfs
1725                  * registration. */
1726                 nodemgr_node_probe(hi, generation);
1727
1728                 /* Update some of our sysfs symlinks */
1729                 nodemgr_update_host_dev_links(host);
1730
1731                 mutex_unlock(&nodemgr_serialize);
1732         }
1733 unlock_exit:
1734         mutex_unlock(&nodemgr_serialize);
1735 exit:
1736         HPSB_VERBOSE("NodeMgr: Exiting thread");
1737         return 0;
1738 }
1739
1740 /**
1741  * nodemgr_for_each_host - call a function for each IEEE 1394 host
1742  * @data: an address to supply to the callback
1743  * @cb: function to call for each host
1744  *
1745  * Iterate the hosts, calling a given function with supplied data for each host.
1746  * If the callback fails on a host, i.e. if it returns a non-zero value, the
1747  * iteration is stopped.
1748  *
1749  * Return value: 0 on success, non-zero on failure (same as returned by last run
1750  * of the callback).
1751  */
1752 int nodemgr_for_each_host(void *data, int (*cb)(struct hpsb_host *, void *))
1753 {
1754         struct class_device *cdev;
1755         struct hpsb_host *host;
1756         int error = 0;
1757
1758         down(&hpsb_host_class.sem);
1759         list_for_each_entry(cdev, &hpsb_host_class.children, node) {
1760                 host = container_of(cdev, struct hpsb_host, class_dev);
1761
1762                 if ((error = cb(host, data)))
1763                         break;
1764         }
1765         up(&hpsb_host_class.sem);
1766
1767         return error;
1768 }
1769
1770 /* The following two convenience functions use a struct node_entry
1771  * for addressing a node on the bus.  They are intended for use by any
1772  * process context, not just the nodemgr thread, so we need to be a
1773  * little careful when reading out the node ID and generation.  The
1774  * thing that can go wrong is that we get the node ID, then a bus
1775  * reset occurs, and then we read the generation.  The node ID is
1776  * possibly invalid, but the generation is current, and we end up
1777  * sending a packet to a the wrong node.
1778  *
1779  * The solution is to make sure we read the generation first, so that
1780  * if a reset occurs in the process, we end up with a stale generation
1781  * and the transactions will fail instead of silently using wrong node
1782  * ID's.
1783  */
1784
1785 /**
1786  * hpsb_node_fill_packet - fill some destination information into a packet
1787  * @ne: destination node
1788  * @packet: packet to fill in
1789  *
1790  * This will fill in the given, pre-initialised hpsb_packet with the current
1791  * information from the node entry (host, node ID, bus generation number).
1792  */
1793 void hpsb_node_fill_packet(struct node_entry *ne, struct hpsb_packet *packet)
1794 {
1795         packet->host = ne->host;
1796         packet->generation = ne->generation;
1797         barrier();
1798         packet->node_id = ne->nodeid;
1799 }
1800
1801 int hpsb_node_write(struct node_entry *ne, u64 addr,
1802                     quadlet_t *buffer, size_t length)
1803 {
1804         unsigned int generation = ne->generation;
1805
1806         barrier();
1807         return hpsb_write(ne->host, ne->nodeid, generation,
1808                           addr, buffer, length);
1809 }
1810
1811 static void nodemgr_add_host(struct hpsb_host *host)
1812 {
1813         struct host_info *hi;
1814
1815         hi = hpsb_create_hostinfo(&nodemgr_highlevel, host, sizeof(*hi));
1816         if (!hi) {
1817                 HPSB_ERR("NodeMgr: out of memory in add host");
1818                 return;
1819         }
1820         hi->host = host;
1821         hi->thread = kthread_run(nodemgr_host_thread, hi, "knodemgrd_%d",
1822                                  host->id);
1823         if (IS_ERR(hi->thread)) {
1824                 HPSB_ERR("NodeMgr: cannot start thread for host %d", host->id);
1825                 hpsb_destroy_hostinfo(&nodemgr_highlevel, host);
1826         }
1827 }
1828
1829 static void nodemgr_host_reset(struct hpsb_host *host)
1830 {
1831         struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
1832
1833         if (hi) {
1834                 HPSB_VERBOSE("NodeMgr: Processing reset for host %d", host->id);
1835                 wake_up_process(hi->thread);
1836         }
1837 }
1838
1839 static void nodemgr_remove_host(struct hpsb_host *host)
1840 {
1841         struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
1842
1843         if (hi) {
1844                 kthread_stop(hi->thread);
1845                 nodemgr_remove_host_dev(&host->device);
1846         }
1847 }
1848
1849 static struct hpsb_highlevel nodemgr_highlevel = {
1850         .name =         "Node manager",
1851         .add_host =     nodemgr_add_host,
1852         .host_reset =   nodemgr_host_reset,
1853         .remove_host =  nodemgr_remove_host,
1854 };
1855
1856 int init_ieee1394_nodemgr(void)
1857 {
1858         int error;
1859
1860         error = class_register(&nodemgr_ne_class);
1861         if (error)
1862                 goto fail_ne;
1863         error = class_register(&nodemgr_ud_class);
1864         if (error)
1865                 goto fail_ud;
1866         error = driver_register(&nodemgr_mid_layer_driver);
1867         if (error)
1868                 goto fail_ml;
1869         /* This driver is not used if nodemgr is off (disable_nodemgr=1). */
1870         nodemgr_dev_template_host.driver = &nodemgr_mid_layer_driver;
1871
1872         hpsb_register_highlevel(&nodemgr_highlevel);
1873         return 0;
1874
1875 fail_ml:
1876         class_unregister(&nodemgr_ud_class);
1877 fail_ud:
1878         class_unregister(&nodemgr_ne_class);
1879 fail_ne:
1880         return error;
1881 }
1882
1883 void cleanup_ieee1394_nodemgr(void)
1884 {
1885         hpsb_unregister_highlevel(&nodemgr_highlevel);
1886         driver_unregister(&nodemgr_mid_layer_driver);
1887         class_unregister(&nodemgr_ud_class);
1888         class_unregister(&nodemgr_ne_class);
1889 }