2 * The USB Monitor, inspired by Dave Harding's USBMon.
4 * This is a binary format reader.
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006 Pete Zaitcev (zaitcev@redhat.com)
10 #include <linux/kernel.h>
11 #include <linux/types.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
19 #include <asm/uaccess.h>
24 * Defined by USB 2.0 clause 9.3, table 9.2.
29 #define MON_IOC_MAGIC 0x92
31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
46 * But it's all right. Just use a simple way to make sure the chunk is never
47 * smaller than a page.
49 * N.B. An application does not know our chunk size.
51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
52 * page-sized chunks for the time being.
54 #define CHUNK_SIZE PAGE_SIZE
55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
58 * The magic limit was calculated so that it allows the monitoring
59 * application to pick data once in two ticks. This way, another application,
60 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
62 * enormous overhead built into the bus protocol, so we need about 1000 KB.
64 * This is still too much for most cases, where we just snoop a few
65 * descriptor fetches for enumeration. So, the default is a "reasonable"
66 * amount for systems with HZ=250 and incomplete bus saturation.
68 * XXX What about multi-megabyte URBs which take minutes to transfer?
70 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
71 #define BUFF_DFL CHUNK_ALIGN(300*1024)
72 #define BUFF_MIN CHUNK_ALIGN(8*1024)
75 * The per-event API header (2 per URB).
77 * This structure is seen in userland as defined by the documentation.
80 u64 id; /* URB ID - from submission to callback */
81 unsigned char type; /* Same as in text API; extensible. */
82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
83 unsigned char epnum; /* Endpoint number and transfer direction */
84 unsigned char devnum; /* Device address */
85 unsigned short busnum; /* Bus number */
88 s64 ts_sec; /* gettimeofday */
89 s32 ts_usec; /* gettimeofday */
91 unsigned int len_urb; /* Length of data (submitted or actual) */
92 unsigned int len_cap; /* Delivered length */
93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
96 /* per file statistic */
97 struct mon_bin_stats {
103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
105 size_t alloc; /* Length of data (can be zero) */
108 struct mon_bin_mfetch {
109 u32 __user *offvec; /* Vector of events fetched */
110 u32 nfetch; /* Number of events to fetch (out: fetched) */
111 u32 nflush; /* Number of events to flush */
115 struct mon_bin_get32 {
121 struct mon_bin_mfetch32 {
128 /* Having these two values same prevents wrapping of the mon_bin_hdr */
132 /* max number of USB bus supported */
133 #define MON_BIN_MAX_MINOR 128
136 * The buffer: map of used pages.
140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
144 * This gets associated with an open file struct.
146 struct mon_reader_bin {
147 /* The buffer: one per open. */
148 spinlock_t b_lock; /* Protect b_cnt, b_in */
149 unsigned int b_size; /* Current size of the buffer - bytes */
150 unsigned int b_cnt; /* Bytes used */
151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
152 unsigned int b_read; /* Amount of read data in curr. pkt. */
153 struct mon_pgmap *b_vec; /* The map array */
154 wait_queue_head_t b_wait; /* Wait for data here */
156 struct mutex fetch_lock; /* Protect b_read, b_out */
159 /* A list of these is needed for "bus 0". Some time later. */
163 unsigned int cnt_lost;
166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
169 return (struct mon_bin_hdr *)
170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
175 static dev_t mon_bin_dev0;
176 static struct cdev mon_bin_cdev;
178 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
179 unsigned int offset, unsigned int size);
180 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
181 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
182 static void mon_free_buff(struct mon_pgmap *map, int npages);
185 * This is a "chunked memcpy". It does not manipulate any counters.
186 * But it returns the new offset for repeated application.
188 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
189 unsigned int off, const unsigned char *from, unsigned int length)
191 unsigned int step_len;
193 unsigned int in_page;
197 * Determine step_len.
200 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
201 if (in_page < step_len)
205 * Copy data and advance pointers.
207 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
208 memcpy(buf, from, step_len);
209 if ((off += step_len) >= this->b_size) off = 0;
217 * This is a little worse than the above because it's "chunked copy_to_user".
218 * The return value is an error code, not an offset.
220 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
221 char __user *to, int length)
223 unsigned int step_len;
225 unsigned int in_page;
229 * Determine step_len.
232 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
233 if (in_page < step_len)
237 * Copy data and advance pointers.
239 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
240 if (copy_to_user(to, buf, step_len))
242 if ((off += step_len) >= this->b_size) off = 0;
250 * Allocate an (aligned) area in the buffer.
251 * This is called under b_lock.
252 * Returns ~0 on failure.
254 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
259 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
260 if (rp->b_cnt + size > rp->b_size)
264 if ((rp->b_in += size) >= rp->b_size)
265 rp->b_in -= rp->b_size;
270 * This is the same thing as mon_buff_area_alloc, only it does not allow
271 * buffers to wrap. This is needed by applications which pass references
272 * into mmap-ed buffers up their stacks (libpcap can do that).
274 * Currently, we always have the header stuck with the data, although
275 * it is not strictly speaking necessary.
277 * When a buffer would wrap, we place a filler packet to mark the space.
279 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
283 unsigned int fill_size;
285 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
286 if (rp->b_cnt + size > rp->b_size)
288 if (rp->b_in + size > rp->b_size) {
290 * This would wrap. Find if we still have space after
291 * skipping to the end of the buffer. If we do, place
292 * a filler packet and allocate a new packet.
294 fill_size = rp->b_size - rp->b_in;
295 if (rp->b_cnt + size + fill_size > rp->b_size)
297 mon_buff_area_fill(rp, rp->b_in, fill_size);
301 rp->b_cnt += size + fill_size;
302 } else if (rp->b_in + size == rp->b_size) {
315 * Return a few (kilo-)bytes to the head of the buffer.
316 * This is used if a DMA fetch fails.
318 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
321 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 rp->b_in += rp->b_size;
329 * This has to be called under both b_lock and fetch_lock, because
330 * it accesses both b_cnt and b_out.
332 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
335 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
337 if ((rp->b_out += size) >= rp->b_size)
338 rp->b_out -= rp->b_size;
341 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
342 unsigned int offset, unsigned int size)
344 struct mon_bin_hdr *ep;
346 ep = MON_OFF2HDR(rp, offset);
347 memset(ep, 0, PKT_SIZE);
349 ep->len_cap = size - PKT_SIZE;
352 static inline char mon_bin_get_setup(unsigned char *setupb,
353 const struct urb *urb, char ev_type)
356 if (!usb_pipecontrol(urb->pipe) || ev_type != 'S')
359 if (urb->dev->bus->uses_dma &&
360 (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
361 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN);
363 if (urb->setup_packet == NULL)
366 memcpy(setupb, urb->setup_packet, SETUP_LEN);
370 static char mon_bin_get_data(const struct mon_reader_bin *rp,
371 unsigned int offset, struct urb *urb, unsigned int length)
374 if (urb->dev->bus->uses_dma &&
375 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
376 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
380 if (urb->transfer_buffer == NULL)
383 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
387 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
392 unsigned int urb_length;
395 struct mon_bin_hdr *ep;
398 do_gettimeofday(&ts);
400 spin_lock_irqsave(&rp->b_lock, flags);
403 * Find the maximum allowable length, then allocate space.
405 urb_length = (ev_type == 'S') ?
406 urb->transfer_buffer_length : urb->actual_length;
409 if (length >= rp->b_size/5)
410 length = rp->b_size/5;
412 if (usb_pipein(urb->pipe)) {
413 if (ev_type == 'S') {
418 if (ev_type == 'C') {
425 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
427 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
430 spin_unlock_irqrestore(&rp->b_lock, flags);
434 ep = MON_OFF2HDR(rp, offset);
435 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
438 * Fill the allocated area.
440 memset(ep, 0, PKT_SIZE);
442 ep->xfer_type = usb_pipetype(urb->pipe);
443 /* We use the fact that usb_pipein() returns 0x80 */
444 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
445 ep->devnum = usb_pipedevice(urb->pipe);
446 ep->busnum = urb->dev->bus->busnum;
447 ep->id = (unsigned long) urb;
448 ep->ts_sec = ts.tv_sec;
449 ep->ts_usec = ts.tv_usec;
450 ep->status = urb->status;
451 ep->len_urb = urb_length;
452 ep->len_cap = length;
454 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
456 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
457 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
459 mon_buff_area_shrink(rp, length);
462 ep->flag_data = data_tag;
465 spin_unlock_irqrestore(&rp->b_lock, flags);
467 wake_up(&rp->b_wait);
470 static void mon_bin_submit(void *data, struct urb *urb)
472 struct mon_reader_bin *rp = data;
473 mon_bin_event(rp, urb, 'S');
476 static void mon_bin_complete(void *data, struct urb *urb)
478 struct mon_reader_bin *rp = data;
479 mon_bin_event(rp, urb, 'C');
482 static void mon_bin_error(void *data, struct urb *urb, int error)
484 struct mon_reader_bin *rp = data;
487 struct mon_bin_hdr *ep;
489 spin_lock_irqsave(&rp->b_lock, flags);
491 offset = mon_buff_area_alloc(rp, PKT_SIZE);
493 /* Not incrementing cnt_lost. Just because. */
494 spin_unlock_irqrestore(&rp->b_lock, flags);
498 ep = MON_OFF2HDR(rp, offset);
500 memset(ep, 0, PKT_SIZE);
502 ep->xfer_type = usb_pipetype(urb->pipe);
503 /* We use the fact that usb_pipein() returns 0x80 */
504 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
505 ep->devnum = usb_pipedevice(urb->pipe);
506 ep->busnum = urb->dev->bus->busnum;
507 ep->id = (unsigned long) urb;
510 ep->flag_setup = '-';
513 spin_unlock_irqrestore(&rp->b_lock, flags);
515 wake_up(&rp->b_wait);
518 static int mon_bin_open(struct inode *inode, struct file *file)
520 struct mon_bus *mbus;
521 struct mon_reader_bin *rp;
525 mutex_lock(&mon_lock);
526 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
527 mutex_unlock(&mon_lock);
530 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
531 printk(KERN_ERR TAG ": consistency error on open\n");
532 mutex_unlock(&mon_lock);
536 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
541 spin_lock_init(&rp->b_lock);
542 init_waitqueue_head(&rp->b_wait);
543 mutex_init(&rp->fetch_lock);
545 rp->b_size = BUFF_DFL;
547 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
548 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
553 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
558 rp->r.rnf_submit = mon_bin_submit;
559 rp->r.rnf_error = mon_bin_error;
560 rp->r.rnf_complete = mon_bin_complete;
562 mon_reader_add(mbus, &rp->r);
564 file->private_data = rp;
565 mutex_unlock(&mon_lock);
573 mutex_unlock(&mon_lock);
578 * Extract an event from buffer and copy it to user space.
579 * Wait if there is no event ready.
580 * Returns zero or error.
582 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
583 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
586 struct mon_bin_hdr *ep;
591 mutex_lock(&rp->fetch_lock);
593 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
594 mutex_unlock(&rp->fetch_lock);
598 ep = MON_OFF2HDR(rp, rp->b_out);
600 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
601 mutex_unlock(&rp->fetch_lock);
605 step_len = min(ep->len_cap, nbytes);
606 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
608 if (copy_from_buf(rp, offset, data, step_len)) {
609 mutex_unlock(&rp->fetch_lock);
613 spin_lock_irqsave(&rp->b_lock, flags);
614 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
615 spin_unlock_irqrestore(&rp->b_lock, flags);
618 mutex_unlock(&rp->fetch_lock);
622 static int mon_bin_release(struct inode *inode, struct file *file)
624 struct mon_reader_bin *rp = file->private_data;
625 struct mon_bus* mbus = rp->r.m_bus;
627 mutex_lock(&mon_lock);
629 if (mbus->nreaders <= 0) {
630 printk(KERN_ERR TAG ": consistency error on close\n");
631 mutex_unlock(&mon_lock);
634 mon_reader_del(mbus, &rp->r);
636 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
640 mutex_unlock(&mon_lock);
644 static ssize_t mon_bin_read(struct file *file, char __user *buf,
645 size_t nbytes, loff_t *ppos)
647 struct mon_reader_bin *rp = file->private_data;
649 struct mon_bin_hdr *ep;
656 mutex_lock(&rp->fetch_lock);
658 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
659 mutex_unlock(&rp->fetch_lock);
663 ep = MON_OFF2HDR(rp, rp->b_out);
665 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
666 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
667 ptr = ((char *)ep) + rp->b_read;
668 if (step_len && copy_to_user(buf, ptr, step_len)) {
669 mutex_unlock(&rp->fetch_lock);
674 rp->b_read += step_len;
678 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
679 step_len = min(nbytes, (size_t)ep->len_cap);
680 offset = rp->b_out + PKT_SIZE;
681 offset += rp->b_read - sizeof(struct mon_bin_hdr);
682 if (offset >= rp->b_size)
683 offset -= rp->b_size;
684 if (copy_from_buf(rp, offset, buf, step_len)) {
685 mutex_unlock(&rp->fetch_lock);
690 rp->b_read += step_len;
695 * Check if whole packet was read, and if so, jump to the next one.
697 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
698 spin_lock_irqsave(&rp->b_lock, flags);
699 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
700 spin_unlock_irqrestore(&rp->b_lock, flags);
704 mutex_unlock(&rp->fetch_lock);
709 * Remove at most nevents from chunked buffer.
710 * Returns the number of removed events.
712 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
715 struct mon_bin_hdr *ep;
718 mutex_lock(&rp->fetch_lock);
719 spin_lock_irqsave(&rp->b_lock, flags);
720 for (i = 0; i < nevents; ++i) {
721 if (MON_RING_EMPTY(rp))
724 ep = MON_OFF2HDR(rp, rp->b_out);
725 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
727 spin_unlock_irqrestore(&rp->b_lock, flags);
729 mutex_unlock(&rp->fetch_lock);
734 * Fetch at most max event offsets into the buffer and put them into vec.
735 * The events are usually freed later with mon_bin_flush.
736 * Return the effective number of events fetched.
738 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
739 u32 __user *vec, unsigned int max)
741 unsigned int cur_out;
742 unsigned int bytes, avail;
744 unsigned int nevents;
745 struct mon_bin_hdr *ep;
749 mutex_lock(&rp->fetch_lock);
751 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
752 mutex_unlock(&rp->fetch_lock);
756 spin_lock_irqsave(&rp->b_lock, flags);
758 spin_unlock_irqrestore(&rp->b_lock, flags);
763 while (bytes < avail) {
767 ep = MON_OFF2HDR(rp, cur_out);
768 if (put_user(cur_out, &vec[nevents])) {
769 mutex_unlock(&rp->fetch_lock);
774 size = ep->len_cap + PKT_SIZE;
775 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
776 if ((cur_out += size) >= rp->b_size)
777 cur_out -= rp->b_size;
781 mutex_unlock(&rp->fetch_lock);
786 * Count events. This is almost the same as the above mon_bin_fetch,
787 * only we do not store offsets into user vector, and we have no limit.
789 static int mon_bin_queued(struct mon_reader_bin *rp)
791 unsigned int cur_out;
792 unsigned int bytes, avail;
794 unsigned int nevents;
795 struct mon_bin_hdr *ep;
798 mutex_lock(&rp->fetch_lock);
800 spin_lock_irqsave(&rp->b_lock, flags);
802 spin_unlock_irqrestore(&rp->b_lock, flags);
807 while (bytes < avail) {
808 ep = MON_OFF2HDR(rp, cur_out);
811 size = ep->len_cap + PKT_SIZE;
812 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
813 if ((cur_out += size) >= rp->b_size)
814 cur_out -= rp->b_size;
818 mutex_unlock(&rp->fetch_lock);
824 static int mon_bin_ioctl(struct inode *inode, struct file *file,
825 unsigned int cmd, unsigned long arg)
827 struct mon_reader_bin *rp = file->private_data;
828 // struct mon_bus* mbus = rp->r.m_bus;
830 struct mon_bin_hdr *ep;
835 case MON_IOCQ_URB_LEN:
837 * N.B. This only returns the size of data, without the header.
839 spin_lock_irqsave(&rp->b_lock, flags);
840 if (!MON_RING_EMPTY(rp)) {
841 ep = MON_OFF2HDR(rp, rp->b_out);
844 spin_unlock_irqrestore(&rp->b_lock, flags);
847 case MON_IOCQ_RING_SIZE:
851 case MON_IOCT_RING_SIZE:
853 * Changing the buffer size will flush it's contents; the new
854 * buffer is allocated before releasing the old one to be sure
855 * the device will stay functional also in case of memory
860 struct mon_pgmap *vec;
862 if (arg < BUFF_MIN || arg > BUFF_MAX)
865 size = CHUNK_ALIGN(arg);
866 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
867 GFP_KERNEL)) == NULL) {
872 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
878 mutex_lock(&rp->fetch_lock);
879 spin_lock_irqsave(&rp->b_lock, flags);
880 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
884 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
886 spin_unlock_irqrestore(&rp->b_lock, flags);
887 mutex_unlock(&rp->fetch_lock);
891 case MON_IOCH_MFLUSH:
892 ret = mon_bin_flush(rp, arg);
897 struct mon_bin_get getb;
899 if (copy_from_user(&getb, (void __user *)arg,
900 sizeof(struct mon_bin_get)))
903 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
905 ret = mon_bin_get_event(file, rp,
906 getb.hdr, getb.data, (unsigned int)getb.alloc);
911 case MON_IOCX_GET32: {
912 struct mon_bin_get32 getb;
914 if (copy_from_user(&getb, (void __user *)arg,
915 sizeof(struct mon_bin_get32)))
918 ret = mon_bin_get_event(file, rp,
919 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
925 case MON_IOCX_MFETCH:
927 struct mon_bin_mfetch mfetch;
928 struct mon_bin_mfetch __user *uptr;
930 uptr = (struct mon_bin_mfetch __user *)arg;
932 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
936 ret = mon_bin_flush(rp, mfetch.nflush);
939 if (put_user(ret, &uptr->nflush))
942 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
945 if (put_user(ret, &uptr->nfetch))
952 case MON_IOCX_MFETCH32:
954 struct mon_bin_mfetch32 mfetch;
955 struct mon_bin_mfetch32 __user *uptr;
957 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
959 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
962 if (mfetch.nflush32) {
963 ret = mon_bin_flush(rp, mfetch.nflush32);
966 if (put_user(ret, &uptr->nflush32))
969 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
973 if (put_user(ret, &uptr->nfetch32))
980 case MON_IOCG_STATS: {
981 struct mon_bin_stats __user *sp;
982 unsigned int nevents;
983 unsigned int ndropped;
985 spin_lock_irqsave(&rp->b_lock, flags);
986 ndropped = rp->cnt_lost;
988 spin_unlock_irqrestore(&rp->b_lock, flags);
989 nevents = mon_bin_queued(rp);
991 sp = (struct mon_bin_stats __user *)arg;
992 if (put_user(rp->cnt_lost, &sp->dropped))
994 if (put_user(nevents, &sp->queued))
1008 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1010 struct mon_reader_bin *rp = file->private_data;
1011 unsigned int mask = 0;
1012 unsigned long flags;
1014 if (file->f_mode & FMODE_READ)
1015 poll_wait(file, &rp->b_wait, wait);
1017 spin_lock_irqsave(&rp->b_lock, flags);
1018 if (!MON_RING_EMPTY(rp))
1019 mask |= POLLIN | POLLRDNORM; /* readable */
1020 spin_unlock_irqrestore(&rp->b_lock, flags);
1025 * open and close: just keep track of how many times the device is
1026 * mapped, to use the proper memory allocation function.
1028 static void mon_bin_vma_open(struct vm_area_struct *vma)
1030 struct mon_reader_bin *rp = vma->vm_private_data;
1034 static void mon_bin_vma_close(struct vm_area_struct *vma)
1036 struct mon_reader_bin *rp = vma->vm_private_data;
1041 * Map ring pages to user space.
1043 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma,
1044 unsigned long address, int *type)
1046 struct mon_reader_bin *rp = vma->vm_private_data;
1047 unsigned long offset, chunk_idx;
1048 struct page *pageptr;
1050 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
1051 if (offset >= rp->b_size)
1052 return NOPAGE_SIGBUS;
1053 chunk_idx = offset / CHUNK_SIZE;
1054 pageptr = rp->b_vec[chunk_idx].pg;
1057 *type = VM_FAULT_MINOR;
1061 struct vm_operations_struct mon_bin_vm_ops = {
1062 .open = mon_bin_vma_open,
1063 .close = mon_bin_vma_close,
1064 .nopage = mon_bin_vma_nopage,
1067 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1069 /* don't do anything here: "nopage" will set up page table entries */
1070 vma->vm_ops = &mon_bin_vm_ops;
1071 vma->vm_flags |= VM_RESERVED;
1072 vma->vm_private_data = filp->private_data;
1073 mon_bin_vma_open(vma);
1077 struct file_operations mon_fops_binary = {
1078 .owner = THIS_MODULE,
1079 .open = mon_bin_open,
1080 .llseek = no_llseek,
1081 .read = mon_bin_read,
1082 /* .write = mon_text_write, */
1083 .poll = mon_bin_poll,
1084 .ioctl = mon_bin_ioctl,
1085 .release = mon_bin_release,
1088 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1090 DECLARE_WAITQUEUE(waita, current);
1091 unsigned long flags;
1093 add_wait_queue(&rp->b_wait, &waita);
1094 set_current_state(TASK_INTERRUPTIBLE);
1096 spin_lock_irqsave(&rp->b_lock, flags);
1097 while (MON_RING_EMPTY(rp)) {
1098 spin_unlock_irqrestore(&rp->b_lock, flags);
1100 if (file->f_flags & O_NONBLOCK) {
1101 set_current_state(TASK_RUNNING);
1102 remove_wait_queue(&rp->b_wait, &waita);
1103 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1106 if (signal_pending(current)) {
1107 remove_wait_queue(&rp->b_wait, &waita);
1110 set_current_state(TASK_INTERRUPTIBLE);
1112 spin_lock_irqsave(&rp->b_lock, flags);
1114 spin_unlock_irqrestore(&rp->b_lock, flags);
1116 set_current_state(TASK_RUNNING);
1117 remove_wait_queue(&rp->b_wait, &waita);
1121 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1124 unsigned long vaddr;
1126 for (n = 0; n < npages; n++) {
1127 vaddr = get_zeroed_page(GFP_KERNEL);
1130 free_page((unsigned long) map[n].ptr);
1133 map[n].ptr = (unsigned char *) vaddr;
1134 map[n].pg = virt_to_page(vaddr);
1139 static void mon_free_buff(struct mon_pgmap *map, int npages)
1143 for (n = 0; n < npages; n++)
1144 free_page((unsigned long) map[n].ptr);
1147 int __init mon_bin_init(void)
1151 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1155 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1156 mon_bin_cdev.owner = THIS_MODULE;
1158 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1165 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1170 void mon_bin_exit(void)
1172 cdev_del(&mon_bin_cdev);
1173 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);