4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/swap.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/ptrace.h>
48 #include <linux/mount.h>
49 #include <linux/security.h>
50 #include <linux/syscalls.h>
51 #include <linux/rmap.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/audit.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
61 #include <linux/kmod.h>
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
73 int register_binfmt(struct linux_binfmt * fmt)
77 write_lock(&binfmt_lock);
78 list_add(&fmt->lh, &formats);
79 write_unlock(&binfmt_lock);
83 EXPORT_SYMBOL(register_binfmt);
85 void unregister_binfmt(struct linux_binfmt * fmt)
87 write_lock(&binfmt_lock);
89 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(unregister_binfmt);
94 static inline void put_binfmt(struct linux_binfmt * fmt)
96 module_put(fmt->module);
100 * Note that a shared library must be both readable and executable due to
103 * Also note that we take the address to load from from the file itself.
105 asmlinkage long sys_uselib(const char __user * library)
111 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
116 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
119 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
123 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
124 error = PTR_ERR(file);
130 struct linux_binfmt * fmt;
132 read_lock(&binfmt_lock);
133 list_for_each_entry(fmt, &formats, lh) {
134 if (!fmt->load_shlib)
136 if (!try_module_get(fmt->module))
138 read_unlock(&binfmt_lock);
139 error = fmt->load_shlib(file);
140 read_lock(&binfmt_lock);
142 if (error != -ENOEXEC)
145 read_unlock(&binfmt_lock);
151 release_open_intent(&nd);
158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
164 #ifdef CONFIG_STACK_GROWSUP
166 ret = expand_stack_downwards(bprm->vma, pos);
171 ret = get_user_pages(current, bprm->mm, pos,
172 1, write, 1, &page, NULL);
177 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 * We've historically supported up to 32 pages (ARG_MAX)
182 * of argument strings even with small stacks
188 * Limit to 1/4-th the stack size for the argv+env strings.
190 * - the remaining binfmt code will not run out of stack space,
191 * - the program will have a reasonable amount of stack left
194 rlim = current->signal->rlim;
195 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
204 static void put_arg_page(struct page *page)
209 static void free_arg_page(struct linux_binprm *bprm, int i)
213 static void free_arg_pages(struct linux_binprm *bprm)
217 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 static int __bprm_mm_init(struct linux_binprm *bprm)
226 struct vm_area_struct *vma = NULL;
227 struct mm_struct *mm = bprm->mm;
229 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 down_write(&mm->mmap_sem);
237 * Place the stack at the largest stack address the architecture
238 * supports. Later, we'll move this to an appropriate place. We don't
239 * use STACK_TOP because that can depend on attributes which aren't
242 vma->vm_end = STACK_TOP_MAX;
243 vma->vm_start = vma->vm_end - PAGE_SIZE;
245 vma->vm_flags = VM_STACK_FLAGS;
246 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
247 err = insert_vm_struct(mm, vma);
249 up_write(&mm->mmap_sem);
253 mm->stack_vm = mm->total_vm = 1;
254 up_write(&mm->mmap_sem);
256 bprm->p = vma->vm_end - sizeof(void *);
263 kmem_cache_free(vm_area_cachep, vma);
269 static bool valid_arg_len(struct linux_binprm *bprm, long len)
271 return len <= MAX_ARG_STRLEN;
276 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
281 page = bprm->page[pos / PAGE_SIZE];
282 if (!page && write) {
283 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
286 bprm->page[pos / PAGE_SIZE] = page;
292 static void put_arg_page(struct page *page)
296 static void free_arg_page(struct linux_binprm *bprm, int i)
299 __free_page(bprm->page[i]);
300 bprm->page[i] = NULL;
304 static void free_arg_pages(struct linux_binprm *bprm)
308 for (i = 0; i < MAX_ARG_PAGES; i++)
309 free_arg_page(bprm, i);
312 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
317 static int __bprm_mm_init(struct linux_binprm *bprm)
319 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
323 static bool valid_arg_len(struct linux_binprm *bprm, long len)
325 return len <= bprm->p;
328 #endif /* CONFIG_MMU */
331 * Create a new mm_struct and populate it with a temporary stack
332 * vm_area_struct. We don't have enough context at this point to set the stack
333 * flags, permissions, and offset, so we use temporary values. We'll update
334 * them later in setup_arg_pages().
336 int bprm_mm_init(struct linux_binprm *bprm)
339 struct mm_struct *mm = NULL;
341 bprm->mm = mm = mm_alloc();
346 err = init_new_context(current, mm);
350 err = __bprm_mm_init(bprm);
366 * count() counts the number of strings in array ARGV.
368 static int count(char __user * __user * argv, int max)
376 if (get_user(p, argv))
390 * 'copy_strings()' copies argument/environment strings from the old
391 * processes's memory to the new process's stack. The call to get_user_pages()
392 * ensures the destination page is created and not swapped out.
394 static int copy_strings(int argc, char __user * __user * argv,
395 struct linux_binprm *bprm)
397 struct page *kmapped_page = NULL;
399 unsigned long kpos = 0;
407 if (get_user(str, argv+argc) ||
408 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
413 if (!valid_arg_len(bprm, len)) {
418 /* We're going to work our way backwords. */
424 int offset, bytes_to_copy;
426 offset = pos % PAGE_SIZE;
430 bytes_to_copy = offset;
431 if (bytes_to_copy > len)
434 offset -= bytes_to_copy;
435 pos -= bytes_to_copy;
436 str -= bytes_to_copy;
437 len -= bytes_to_copy;
439 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
442 page = get_arg_page(bprm, pos, 1);
449 flush_kernel_dcache_page(kmapped_page);
450 kunmap(kmapped_page);
451 put_arg_page(kmapped_page);
454 kaddr = kmap(kmapped_page);
455 kpos = pos & PAGE_MASK;
456 flush_arg_page(bprm, kpos, kmapped_page);
458 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
467 flush_kernel_dcache_page(kmapped_page);
468 kunmap(kmapped_page);
469 put_arg_page(kmapped_page);
475 * Like copy_strings, but get argv and its values from kernel memory.
477 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
480 mm_segment_t oldfs = get_fs();
482 r = copy_strings(argc, (char __user * __user *)argv, bprm);
486 EXPORT_SYMBOL(copy_strings_kernel);
491 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
492 * the binfmt code determines where the new stack should reside, we shift it to
493 * its final location. The process proceeds as follows:
495 * 1) Use shift to calculate the new vma endpoints.
496 * 2) Extend vma to cover both the old and new ranges. This ensures the
497 * arguments passed to subsequent functions are consistent.
498 * 3) Move vma's page tables to the new range.
499 * 4) Free up any cleared pgd range.
500 * 5) Shrink the vma to cover only the new range.
502 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
504 struct mm_struct *mm = vma->vm_mm;
505 unsigned long old_start = vma->vm_start;
506 unsigned long old_end = vma->vm_end;
507 unsigned long length = old_end - old_start;
508 unsigned long new_start = old_start - shift;
509 unsigned long new_end = old_end - shift;
510 struct mmu_gather *tlb;
512 BUG_ON(new_start > new_end);
515 * ensure there are no vmas between where we want to go
518 if (vma != find_vma(mm, new_start))
522 * cover the whole range: [new_start, old_end)
524 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
527 * move the page tables downwards, on failure we rely on
528 * process cleanup to remove whatever mess we made.
530 if (length != move_page_tables(vma, old_start,
531 vma, new_start, length))
535 tlb = tlb_gather_mmu(mm, 0);
536 if (new_end > old_start) {
538 * when the old and new regions overlap clear from new_end.
540 free_pgd_range(&tlb, new_end, old_end, new_end,
541 vma->vm_next ? vma->vm_next->vm_start : 0);
544 * otherwise, clean from old_start; this is done to not touch
545 * the address space in [new_end, old_start) some architectures
546 * have constraints on va-space that make this illegal (IA64) -
547 * for the others its just a little faster.
549 free_pgd_range(&tlb, old_start, old_end, new_end,
550 vma->vm_next ? vma->vm_next->vm_start : 0);
552 tlb_finish_mmu(tlb, new_end, old_end);
555 * shrink the vma to just the new range.
557 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
562 #define EXTRA_STACK_VM_PAGES 20 /* random */
565 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
566 * the stack is optionally relocated, and some extra space is added.
568 int setup_arg_pages(struct linux_binprm *bprm,
569 unsigned long stack_top,
570 int executable_stack)
573 unsigned long stack_shift;
574 struct mm_struct *mm = current->mm;
575 struct vm_area_struct *vma = bprm->vma;
576 struct vm_area_struct *prev = NULL;
577 unsigned long vm_flags;
578 unsigned long stack_base;
580 #ifdef CONFIG_STACK_GROWSUP
581 /* Limit stack size to 1GB */
582 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
583 if (stack_base > (1 << 30))
584 stack_base = 1 << 30;
586 /* Make sure we didn't let the argument array grow too large. */
587 if (vma->vm_end - vma->vm_start > stack_base)
590 stack_base = PAGE_ALIGN(stack_top - stack_base);
592 stack_shift = vma->vm_start - stack_base;
593 mm->arg_start = bprm->p - stack_shift;
594 bprm->p = vma->vm_end - stack_shift;
596 stack_top = arch_align_stack(stack_top);
597 stack_top = PAGE_ALIGN(stack_top);
598 stack_shift = vma->vm_end - stack_top;
600 bprm->p -= stack_shift;
601 mm->arg_start = bprm->p;
605 bprm->loader -= stack_shift;
606 bprm->exec -= stack_shift;
608 down_write(&mm->mmap_sem);
609 vm_flags = vma->vm_flags;
612 * Adjust stack execute permissions; explicitly enable for
613 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
614 * (arch default) otherwise.
616 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
618 else if (executable_stack == EXSTACK_DISABLE_X)
619 vm_flags &= ~VM_EXEC;
620 vm_flags |= mm->def_flags;
622 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
628 /* Move stack pages down in memory. */
630 ret = shift_arg_pages(vma, stack_shift);
632 up_write(&mm->mmap_sem);
637 #ifdef CONFIG_STACK_GROWSUP
638 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
640 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
642 ret = expand_stack(vma, stack_base);
647 up_write(&mm->mmap_sem);
650 EXPORT_SYMBOL(setup_arg_pages);
652 #endif /* CONFIG_MMU */
654 struct file *open_exec(const char *name)
660 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
664 struct inode *inode = nd.path.dentry->d_inode;
665 file = ERR_PTR(-EACCES);
666 if (S_ISREG(inode->i_mode)) {
667 int err = vfs_permission(&nd, MAY_EXEC);
670 file = nameidata_to_filp(&nd,
671 O_RDONLY|O_LARGEFILE);
673 err = deny_write_access(file);
683 release_open_intent(&nd);
689 EXPORT_SYMBOL(open_exec);
691 int kernel_read(struct file *file, unsigned long offset,
692 char *addr, unsigned long count)
700 /* The cast to a user pointer is valid due to the set_fs() */
701 result = vfs_read(file, (void __user *)addr, count, &pos);
706 EXPORT_SYMBOL(kernel_read);
708 static int exec_mmap(struct mm_struct *mm)
710 struct task_struct *tsk;
711 struct mm_struct * old_mm, *active_mm;
713 /* Notify parent that we're no longer interested in the old VM */
715 old_mm = current->mm;
716 mm_release(tsk, old_mm);
720 * Make sure that if there is a core dump in progress
721 * for the old mm, we get out and die instead of going
722 * through with the exec. We must hold mmap_sem around
723 * checking core_waiters and changing tsk->mm. The
724 * core-inducing thread will increment core_waiters for
725 * each thread whose ->mm == old_mm.
727 down_read(&old_mm->mmap_sem);
728 if (unlikely(old_mm->core_waiters)) {
729 up_read(&old_mm->mmap_sem);
734 active_mm = tsk->active_mm;
737 activate_mm(active_mm, mm);
739 mm_update_next_owner(old_mm);
740 arch_pick_mmap_layout(mm);
742 up_read(&old_mm->mmap_sem);
743 BUG_ON(active_mm != old_mm);
752 * This function makes sure the current process has its own signal table,
753 * so that flush_signal_handlers can later reset the handlers without
754 * disturbing other processes. (Other processes might share the signal
755 * table via the CLONE_SIGHAND option to clone().)
757 static int de_thread(struct task_struct *tsk)
759 struct signal_struct *sig = tsk->signal;
760 struct sighand_struct *oldsighand = tsk->sighand;
761 spinlock_t *lock = &oldsighand->siglock;
762 struct task_struct *leader = NULL;
765 if (thread_group_empty(tsk))
766 goto no_thread_group;
769 * Kill all other threads in the thread group.
772 if (signal_group_exit(sig)) {
774 * Another group action in progress, just
775 * return so that the signal is processed.
777 spin_unlock_irq(lock);
780 sig->group_exit_task = tsk;
781 zap_other_threads(tsk);
783 /* Account for the thread group leader hanging around: */
784 count = thread_group_leader(tsk) ? 1 : 2;
785 sig->notify_count = count;
786 while (atomic_read(&sig->count) > count) {
787 __set_current_state(TASK_UNINTERRUPTIBLE);
788 spin_unlock_irq(lock);
792 spin_unlock_irq(lock);
795 * At this point all other threads have exited, all we have to
796 * do is to wait for the thread group leader to become inactive,
797 * and to assume its PID:
799 if (!thread_group_leader(tsk)) {
800 leader = tsk->group_leader;
802 sig->notify_count = -1; /* for exit_notify() */
804 write_lock_irq(&tasklist_lock);
805 if (likely(leader->exit_state))
807 __set_current_state(TASK_UNINTERRUPTIBLE);
808 write_unlock_irq(&tasklist_lock);
812 if (unlikely(task_child_reaper(tsk) == leader))
813 task_active_pid_ns(tsk)->child_reaper = tsk;
815 * The only record we have of the real-time age of a
816 * process, regardless of execs it's done, is start_time.
817 * All the past CPU time is accumulated in signal_struct
818 * from sister threads now dead. But in this non-leader
819 * exec, nothing survives from the original leader thread,
820 * whose birth marks the true age of this process now.
821 * When we take on its identity by switching to its PID, we
822 * also take its birthdate (always earlier than our own).
824 tsk->start_time = leader->start_time;
826 BUG_ON(!same_thread_group(leader, tsk));
827 BUG_ON(has_group_leader_pid(tsk));
829 * An exec() starts a new thread group with the
830 * TGID of the previous thread group. Rehash the
831 * two threads with a switched PID, and release
832 * the former thread group leader:
835 /* Become a process group leader with the old leader's pid.
836 * The old leader becomes a thread of the this thread group.
837 * Note: The old leader also uses this pid until release_task
838 * is called. Odd but simple and correct.
840 detach_pid(tsk, PIDTYPE_PID);
841 tsk->pid = leader->pid;
842 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
843 transfer_pid(leader, tsk, PIDTYPE_PGID);
844 transfer_pid(leader, tsk, PIDTYPE_SID);
845 list_replace_rcu(&leader->tasks, &tsk->tasks);
847 tsk->group_leader = tsk;
848 leader->group_leader = tsk;
850 tsk->exit_signal = SIGCHLD;
852 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
853 leader->exit_state = EXIT_DEAD;
855 write_unlock_irq(&tasklist_lock);
858 sig->group_exit_task = NULL;
859 sig->notify_count = 0;
864 release_task(leader);
866 if (atomic_read(&oldsighand->count) != 1) {
867 struct sighand_struct *newsighand;
869 * This ->sighand is shared with the CLONE_SIGHAND
870 * but not CLONE_THREAD task, switch to the new one.
872 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
876 atomic_set(&newsighand->count, 1);
877 memcpy(newsighand->action, oldsighand->action,
878 sizeof(newsighand->action));
880 write_lock_irq(&tasklist_lock);
881 spin_lock(&oldsighand->siglock);
882 rcu_assign_pointer(tsk->sighand, newsighand);
883 spin_unlock(&oldsighand->siglock);
884 write_unlock_irq(&tasklist_lock);
886 __cleanup_sighand(oldsighand);
889 BUG_ON(!thread_group_leader(tsk));
894 * These functions flushes out all traces of the currently running executable
895 * so that a new one can be started
897 static void flush_old_files(struct files_struct * files)
902 spin_lock(&files->file_lock);
904 unsigned long set, i;
908 fdt = files_fdtable(files);
909 if (i >= fdt->max_fds)
911 set = fdt->close_on_exec->fds_bits[j];
914 fdt->close_on_exec->fds_bits[j] = 0;
915 spin_unlock(&files->file_lock);
916 for ( ; set ; i++,set >>= 1) {
921 spin_lock(&files->file_lock);
924 spin_unlock(&files->file_lock);
927 char *get_task_comm(char *buf, struct task_struct *tsk)
929 /* buf must be at least sizeof(tsk->comm) in size */
931 strncpy(buf, tsk->comm, sizeof(tsk->comm));
936 void set_task_comm(struct task_struct *tsk, char *buf)
939 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
943 int flush_old_exec(struct linux_binprm * bprm)
947 char tcomm[sizeof(current->comm)];
950 * Make sure we have a private signal table and that
951 * we are unassociated from the previous thread group.
953 retval = de_thread(current);
957 set_mm_exe_file(bprm->mm, bprm->file);
960 * Release all of the old mmap stuff
962 retval = exec_mmap(bprm->mm);
966 bprm->mm = NULL; /* We're using it now */
968 /* This is the point of no return */
969 current->sas_ss_sp = current->sas_ss_size = 0;
971 if (current->euid == current->uid && current->egid == current->gid)
972 set_dumpable(current->mm, 1);
974 set_dumpable(current->mm, suid_dumpable);
976 name = bprm->filename;
978 /* Copies the binary name from after last slash */
979 for (i=0; (ch = *(name++)) != '\0';) {
981 i = 0; /* overwrite what we wrote */
983 if (i < (sizeof(tcomm) - 1))
987 set_task_comm(current, tcomm);
989 current->flags &= ~PF_RANDOMIZE;
992 /* Set the new mm task size. We have to do that late because it may
993 * depend on TIF_32BIT which is only updated in flush_thread() on
994 * some architectures like powerpc
996 current->mm->task_size = TASK_SIZE;
998 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1000 set_dumpable(current->mm, suid_dumpable);
1001 current->pdeath_signal = 0;
1002 } else if (file_permission(bprm->file, MAY_READ) ||
1003 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1005 set_dumpable(current->mm, suid_dumpable);
1008 /* An exec changes our domain. We are no longer part of the thread
1011 current->self_exec_id++;
1013 flush_signal_handlers(current, 0);
1014 flush_old_files(current->files);
1022 EXPORT_SYMBOL(flush_old_exec);
1025 * Fill the binprm structure from the inode.
1026 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1028 int prepare_binprm(struct linux_binprm *bprm)
1031 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1034 mode = inode->i_mode;
1035 if (bprm->file->f_op == NULL)
1038 bprm->e_uid = current->euid;
1039 bprm->e_gid = current->egid;
1041 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1043 if (mode & S_ISUID) {
1044 current->personality &= ~PER_CLEAR_ON_SETID;
1045 bprm->e_uid = inode->i_uid;
1050 * If setgid is set but no group execute bit then this
1051 * is a candidate for mandatory locking, not a setgid
1054 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1055 current->personality &= ~PER_CLEAR_ON_SETID;
1056 bprm->e_gid = inode->i_gid;
1060 /* fill in binprm security blob */
1061 retval = security_bprm_set(bprm);
1065 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1066 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1069 EXPORT_SYMBOL(prepare_binprm);
1071 static int unsafe_exec(struct task_struct *p)
1074 if (p->ptrace & PT_PTRACED) {
1075 if (p->ptrace & PT_PTRACE_CAP)
1076 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1078 unsafe |= LSM_UNSAFE_PTRACE;
1080 if (atomic_read(&p->fs->count) > 1 ||
1081 atomic_read(&p->files->count) > 1 ||
1082 atomic_read(&p->sighand->count) > 1)
1083 unsafe |= LSM_UNSAFE_SHARE;
1088 void compute_creds(struct linux_binprm *bprm)
1092 if (bprm->e_uid != current->uid) {
1094 current->pdeath_signal = 0;
1099 unsafe = unsafe_exec(current);
1100 security_bprm_apply_creds(bprm, unsafe);
1101 task_unlock(current);
1102 security_bprm_post_apply_creds(bprm);
1104 EXPORT_SYMBOL(compute_creds);
1107 * Arguments are '\0' separated strings found at the location bprm->p
1108 * points to; chop off the first by relocating brpm->p to right after
1109 * the first '\0' encountered.
1111 int remove_arg_zero(struct linux_binprm *bprm)
1114 unsigned long offset;
1122 offset = bprm->p & ~PAGE_MASK;
1123 page = get_arg_page(bprm, bprm->p, 0);
1128 kaddr = kmap_atomic(page, KM_USER0);
1130 for (; offset < PAGE_SIZE && kaddr[offset];
1131 offset++, bprm->p++)
1134 kunmap_atomic(kaddr, KM_USER0);
1137 if (offset == PAGE_SIZE)
1138 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1139 } while (offset == PAGE_SIZE);
1148 EXPORT_SYMBOL(remove_arg_zero);
1151 * cycle the list of binary formats handler, until one recognizes the image
1153 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1156 struct linux_binfmt *fmt;
1157 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1158 /* handle /sbin/loader.. */
1160 struct exec * eh = (struct exec *) bprm->buf;
1162 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1163 (eh->fh.f_flags & 0x3000) == 0x3000)
1166 unsigned long loader;
1168 allow_write_access(bprm->file);
1172 loader = bprm->vma->vm_end - sizeof(void *);
1174 file = open_exec("/sbin/loader");
1175 retval = PTR_ERR(file);
1179 /* Remember if the application is TASO. */
1180 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1183 bprm->loader = loader;
1184 retval = prepare_binprm(bprm);
1187 /* should call search_binary_handler recursively here,
1188 but it does not matter */
1192 retval = security_bprm_check(bprm);
1196 /* kernel module loader fixup */
1197 /* so we don't try to load run modprobe in kernel space. */
1200 retval = audit_bprm(bprm);
1205 for (try=0; try<2; try++) {
1206 read_lock(&binfmt_lock);
1207 list_for_each_entry(fmt, &formats, lh) {
1208 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1211 if (!try_module_get(fmt->module))
1213 read_unlock(&binfmt_lock);
1214 retval = fn(bprm, regs);
1217 allow_write_access(bprm->file);
1221 current->did_exec = 1;
1222 proc_exec_connector(current);
1225 read_lock(&binfmt_lock);
1227 if (retval != -ENOEXEC || bprm->mm == NULL)
1230 read_unlock(&binfmt_lock);
1234 read_unlock(&binfmt_lock);
1235 if (retval != -ENOEXEC || bprm->mm == NULL) {
1239 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1240 if (printable(bprm->buf[0]) &&
1241 printable(bprm->buf[1]) &&
1242 printable(bprm->buf[2]) &&
1243 printable(bprm->buf[3]))
1244 break; /* -ENOEXEC */
1245 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1252 EXPORT_SYMBOL(search_binary_handler);
1255 * sys_execve() executes a new program.
1257 int do_execve(char * filename,
1258 char __user *__user *argv,
1259 char __user *__user *envp,
1260 struct pt_regs * regs)
1262 struct linux_binprm *bprm;
1264 struct files_struct *displaced;
1267 retval = unshare_files(&displaced);
1272 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1276 file = open_exec(filename);
1277 retval = PTR_ERR(file);
1284 bprm->filename = filename;
1285 bprm->interp = filename;
1287 retval = bprm_mm_init(bprm);
1291 bprm->argc = count(argv, MAX_ARG_STRINGS);
1292 if ((retval = bprm->argc) < 0)
1295 bprm->envc = count(envp, MAX_ARG_STRINGS);
1296 if ((retval = bprm->envc) < 0)
1299 retval = security_bprm_alloc(bprm);
1303 retval = prepare_binprm(bprm);
1307 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1311 bprm->exec = bprm->p;
1312 retval = copy_strings(bprm->envc, envp, bprm);
1316 retval = copy_strings(bprm->argc, argv, bprm);
1320 retval = search_binary_handler(bprm,regs);
1322 /* execve success */
1323 free_arg_pages(bprm);
1324 security_bprm_free(bprm);
1325 acct_update_integrals(current);
1328 put_files_struct(displaced);
1333 free_arg_pages(bprm);
1335 security_bprm_free(bprm);
1343 allow_write_access(bprm->file);
1351 reset_files_struct(displaced);
1356 int set_binfmt(struct linux_binfmt *new)
1358 struct linux_binfmt *old = current->binfmt;
1361 if (!try_module_get(new->module))
1364 current->binfmt = new;
1366 module_put(old->module);
1370 EXPORT_SYMBOL(set_binfmt);
1372 /* format_corename will inspect the pattern parameter, and output a
1373 * name into corename, which must have space for at least
1374 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1376 static int format_corename(char *corename, const char *pattern, long signr)
1378 const char *pat_ptr = pattern;
1379 char *out_ptr = corename;
1380 char *const out_end = corename + CORENAME_MAX_SIZE;
1382 int pid_in_pattern = 0;
1385 if (*pattern == '|')
1388 /* Repeat as long as we have more pattern to process and more output
1391 if (*pat_ptr != '%') {
1392 if (out_ptr == out_end)
1394 *out_ptr++ = *pat_ptr++;
1396 switch (*++pat_ptr) {
1399 /* Double percent, output one percent */
1401 if (out_ptr == out_end)
1408 rc = snprintf(out_ptr, out_end - out_ptr,
1409 "%d", task_tgid_vnr(current));
1410 if (rc > out_end - out_ptr)
1416 rc = snprintf(out_ptr, out_end - out_ptr,
1417 "%d", current->uid);
1418 if (rc > out_end - out_ptr)
1424 rc = snprintf(out_ptr, out_end - out_ptr,
1425 "%d", current->gid);
1426 if (rc > out_end - out_ptr)
1430 /* signal that caused the coredump */
1432 rc = snprintf(out_ptr, out_end - out_ptr,
1434 if (rc > out_end - out_ptr)
1438 /* UNIX time of coredump */
1441 do_gettimeofday(&tv);
1442 rc = snprintf(out_ptr, out_end - out_ptr,
1444 if (rc > out_end - out_ptr)
1451 down_read(&uts_sem);
1452 rc = snprintf(out_ptr, out_end - out_ptr,
1453 "%s", utsname()->nodename);
1455 if (rc > out_end - out_ptr)
1461 rc = snprintf(out_ptr, out_end - out_ptr,
1462 "%s", current->comm);
1463 if (rc > out_end - out_ptr)
1467 /* core limit size */
1469 rc = snprintf(out_ptr, out_end - out_ptr,
1470 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1471 if (rc > out_end - out_ptr)
1481 /* Backward compatibility with core_uses_pid:
1483 * If core_pattern does not include a %p (as is the default)
1484 * and core_uses_pid is set, then .%pid will be appended to
1485 * the filename. Do not do this for piped commands. */
1486 if (!ispipe && !pid_in_pattern
1487 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) {
1488 rc = snprintf(out_ptr, out_end - out_ptr,
1489 ".%d", task_tgid_vnr(current));
1490 if (rc > out_end - out_ptr)
1499 static void zap_process(struct task_struct *start)
1501 struct task_struct *t;
1503 start->signal->flags = SIGNAL_GROUP_EXIT;
1504 start->signal->group_stop_count = 0;
1508 if (t != current && t->mm) {
1509 t->mm->core_waiters++;
1510 sigaddset(&t->pending.signal, SIGKILL);
1511 signal_wake_up(t, 1);
1513 } while ((t = next_thread(t)) != start);
1516 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1519 struct task_struct *g, *p;
1520 unsigned long flags;
1523 spin_lock_irq(&tsk->sighand->siglock);
1524 if (!signal_group_exit(tsk->signal)) {
1525 tsk->signal->group_exit_code = exit_code;
1529 spin_unlock_irq(&tsk->sighand->siglock);
1533 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1537 for_each_process(g) {
1538 if (g == tsk->group_leader)
1546 * p->sighand can't disappear, but
1547 * may be changed by de_thread()
1549 lock_task_sighand(p, &flags);
1551 unlock_task_sighand(p, &flags);
1555 } while ((p = next_thread(p)) != g);
1559 return mm->core_waiters;
1562 static int coredump_wait(int exit_code)
1564 struct task_struct *tsk = current;
1565 struct mm_struct *mm = tsk->mm;
1566 struct completion startup_done;
1567 struct completion *vfork_done;
1570 init_completion(&mm->core_done);
1571 init_completion(&startup_done);
1572 mm->core_startup_done = &startup_done;
1574 core_waiters = zap_threads(tsk, mm, exit_code);
1575 up_write(&mm->mmap_sem);
1577 if (unlikely(core_waiters < 0))
1581 * Make sure nobody is waiting for us to release the VM,
1582 * otherwise we can deadlock when we wait on each other
1584 vfork_done = tsk->vfork_done;
1586 tsk->vfork_done = NULL;
1587 complete(vfork_done);
1591 wait_for_completion(&startup_done);
1593 BUG_ON(mm->core_waiters);
1594 return core_waiters;
1598 * set_dumpable converts traditional three-value dumpable to two flags and
1599 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1600 * these bits are not changed atomically. So get_dumpable can observe the
1601 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1602 * return either old dumpable or new one by paying attention to the order of
1603 * modifying the bits.
1605 * dumpable | mm->flags (binary)
1606 * old new | initial interim final
1607 * ---------+-----------------------
1615 * (*) get_dumpable regards interim value of 10 as 11.
1617 void set_dumpable(struct mm_struct *mm, int value)
1621 clear_bit(MMF_DUMPABLE, &mm->flags);
1623 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1626 set_bit(MMF_DUMPABLE, &mm->flags);
1628 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1631 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1633 set_bit(MMF_DUMPABLE, &mm->flags);
1638 int get_dumpable(struct mm_struct *mm)
1642 ret = mm->flags & 0x3;
1643 return (ret >= 2) ? 2 : ret;
1646 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1648 char corename[CORENAME_MAX_SIZE + 1];
1649 struct mm_struct *mm = current->mm;
1650 struct linux_binfmt * binfmt;
1651 struct inode * inode;
1654 int fsuid = current->fsuid;
1657 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1658 char **helper_argv = NULL;
1659 int helper_argc = 0;
1662 audit_core_dumps(signr);
1664 binfmt = current->binfmt;
1665 if (!binfmt || !binfmt->core_dump)
1667 down_write(&mm->mmap_sem);
1669 * If another thread got here first, or we are not dumpable, bail out.
1671 if (mm->core_waiters || !get_dumpable(mm)) {
1672 up_write(&mm->mmap_sem);
1677 * We cannot trust fsuid as being the "true" uid of the
1678 * process nor do we know its entire history. We only know it
1679 * was tainted so we dump it as root in mode 2.
1681 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1682 flag = O_EXCL; /* Stop rewrite attacks */
1683 current->fsuid = 0; /* Dump root private */
1686 retval = coredump_wait(exit_code);
1691 * Clear any false indication of pending signals that might
1692 * be seen by the filesystem code called to write the core file.
1694 clear_thread_flag(TIF_SIGPENDING);
1697 * lock_kernel() because format_corename() is controlled by sysctl, which
1698 * uses lock_kernel()
1701 ispipe = format_corename(corename, core_pattern, signr);
1704 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1705 * to a pipe. Since we're not writing directly to the filesystem
1706 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1707 * created unless the pipe reader choses to write out the core file
1708 * at which point file size limits and permissions will be imposed
1709 * as it does with any other process
1711 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1715 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1716 /* Terminate the string before the first option */
1717 delimit = strchr(corename, ' ');
1720 delimit = strrchr(helper_argv[0], '/');
1724 delimit = helper_argv[0];
1725 if (!strcmp(delimit, current->comm)) {
1726 printk(KERN_NOTICE "Recursive core dump detected, "
1731 core_limit = RLIM_INFINITY;
1733 /* SIGPIPE can happen, but it's just never processed */
1734 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1736 printk(KERN_INFO "Core dump to %s pipe failed\n",
1741 file = filp_open(corename,
1742 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1746 inode = file->f_path.dentry->d_inode;
1747 if (inode->i_nlink > 1)
1748 goto close_fail; /* multiple links - don't dump */
1749 if (!ispipe && d_unhashed(file->f_path.dentry))
1752 /* AK: actually i see no reason to not allow this for named pipes etc.,
1753 but keep the previous behaviour for now. */
1754 if (!ispipe && !S_ISREG(inode->i_mode))
1757 * Dont allow local users get cute and trick others to coredump
1758 * into their pre-created files:
1760 if (inode->i_uid != current->fsuid)
1764 if (!file->f_op->write)
1766 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1769 retval = binfmt->core_dump(signr, regs, file, core_limit);
1772 current->signal->group_exit_code |= 0x80;
1774 filp_close(file, NULL);
1777 argv_free(helper_argv);
1779 current->fsuid = fsuid;
1780 complete_all(&mm->core_done);